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  

Abstract — Cerebellar dysfunction (CD) is a neurological 

disorder that involves a number of abnormalities that affect the 

movement of various parts of the body such as gait abnormality or 

tremors in limbs such as hands or feet while reaching out for 

something. A user-friend tool that can objectively evaluate the 

aforementioned body movements in CD patients can aid the 

clinicians for an objective assessment in clinical settings. The 

objective of this work is to develop a method that quantifies the 

gait abnormality and tremors in hand using S-Band sensing 

technique. The S-Band sensing essentially leverages small wireless 

devices such as network interface card, omnidirectional antenna 

and router operating at 2.4 GHz to record the wireless channel 

data. Specifically, the aim is to use the variances of amplitude and 

phase information induced due to the human body movements. 

Each body movement leaves a unique imprint in the form of 

wireless channel information that is used to identify abnormalities 

in body motions. The proposed framework applied a linear 

transformation on raw phase data for calibrations since the data 

retrieved using interface card contain noise and is inapplicable for 

motion detection. The support vector machine used to classify the 

data achieved high classification accuracy.  

 

Index Terms — S-Band Sensing, Disease Detection, Motion 

Disorder 

I. INTRODUCTION 

The cerebellar syndromes involve a number of abnormalities 

associated with limb movements and coordination of different 

parts of the body [1]. The two main types of these abnormalities 
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include walking or gait abnormality, generally known as ataxia, 

where a CD patient stagger around and is very unsteady when 

walking, with poor balance. There can be other parts of the 

nervous system that is responsible for an in-coordinated walk, 

but the middle part is the common place of dysfunction. The 

second type of in-coordination in cerebellar dysfunction is the 

limb movements. For example, a CD patient trying to reach out 

and grab something with the hand could result in inaccurate 

movement, or the same thing goes with the leg, if this patient is 

trying to reach out using a foot. This kind of dysfunction 

usually comes from the side of the cerebellum. In general, gait 

abnormality and hand tremors are two main indicators to detect 

cerebellar dysfunction disorders.  

Various research methods have been used to detect gait 

abnormality and tremors, which can be roughly classified into 

three categories: radar based approaches, sensor based 

approaches and camera based approaches. Radar based 

approaches used predefined features from the time-frequency 

representation (TFR) of the radar return signal to monitor 

human gait [2]. Sensor based approaches detect gait 

abnormality or tremors using contact sensors such as 

MetaMotionR – an Inertial Measurement Unit (IMU) sensor 

from Mbientlab [3] and the Axivity AX3 accelerometer [4]. 

Camera based approaches recognizes gait abnormality or 

tremors using the Kinect camera [5], [6]. 

In this paper, a framework leveraging access point and a 

network interface that estimates these two primary indicators - 

gait abnormality and hand tremors - is presented for detecting 

cerebellar dysfunction disorders. Compared with the above 

methods, the method is non-invasive, thus not requiring any 

device deployment on subject’s body, can be implemented on 

commodity devices, protects the patient’s privacy and presents 

fine-grained motion detection. The key idea is to leverage the 

disturbances occurred in the wireless medium due to human 

body’s motion when the host computer is connected to the 

access point using network interface card (NIC). Some studies 

have extracted sleep-specific subject-invariant features and 

captured the temporal progression of sleep from RF signals [7]. 

The technique can also be used to detect person’s respiratory 

behavior. 

The main contributions of the proposed study are: 

1) Characterization of CD Motion: Firstly, we present that 

the channel information retrieved from the host computer 

reflects the fine-grained human motions. The experiments 

are performed on small wireless devices to record the 

wireless channel data with four body motions: normal gait, 

abnormal gait (ataxia); and hand reach-out movement with 
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and without tremors. 

2) Classification of motion types: The next step, we 

demonstrate that particular features received from wireless 

channel data generate a unique signature for various types 

of motions. We examine the data of four various 

aforementioned body motions and observe that the 

wireless channel data is unique for each body motion using 

machine learning algorithm. Based on this narrative, we 

design a framework that efficiently classifies the four body 

motions using a machine learning classifier, which trains 

the acquired data and classifies it with a short period of 

time.  

 

II.  WIRELESS CHANNEL DATA AND BODY MOTION 

Currently, the IEEE 802.11n standards use orthogonal 

frequency division multiplexing (OFDM) that splits the single 

carrier channel into several subcarriers and transmits the data 

into parallel streams [8]. This division of whole frequency 

spectrum into subcarriers allows OFDM to combat the 

multipath fading. The wireless channel data obtained using 

network interface card provides the signal strength raw phase 

data of OFDM subcarriers. The received signal can be 

represented as: 

 

                         Y H X N   .                                (1) 

 

Here Y and X are the received and transmitted signal, 

respectively. H is the channel frequency response (CFR) 

carrying the wireless channel data and is a complex number that 

primarily describes the individual subcarrier. The wireless 

channel data retrieved for all subcarriers can be written as 

l m o   a matrix, where l and m denote the total number of 

transmitted and received antennas (which is one pair in this 

study), whereas o is the total number of subcarriers. The matrix 

carrying the wireless channel data is fine-grained and 

accurately records the spectral and temporal conditions of the 

wireless channel and the changes occurred due to multipath 

fading. The proposed method uses the fine-grained features of 

wireless channel data to recognize the abnormal walk and hand 

tremors when reaching out to grab something, which leads to 

the detection of cerebellar dysfunction. The wireless channel 

data is now on a firmware developed by Harperin [9] using 

network interface card that extracts the wireless channel values 

in the form of 30 OFDM subcarriers. The equipment used in the 

proposed method generates particular number of subcarrier. 

The 30 subcarriers extracted can be expressed as: 

 

              
1 2 3 30[ , , ,... ]H H H HH .                      (2) 

 

Here, Hi denotes the channel frequency response for ith 

subcarrier and is a complex number that describes the signal 

strength and raw phase data as follows: 

 

                     || ||i jH h e  .                                                  (3) 

 

with ||h|| the amplitude information and   is the raw wireless 

channel phase data. It should be noted that the raw channel data 

obtained using network interface card is extremely random and 

infeasible for particular motion detection [10]. Thus we 

calibrate the phase data using linear transformation. 

 

Wireless Channel Phase Calibration  

The variances of amplitude information of wireless channel 

data have been used in several applications while ignoring the 

equally important phase information. The aforementioned 

reason for not leveraging phase data is due to the random noise 

and unsynchronized clock between the transmitter-receiver pair 

present in the phase data collected from the network interface 

card [11]. In this work, the amplitude and phase information are 

fully leveraged to determine the abnormal walking and hand 

tremors when reaching out to grab something using linear 

transformation on raw channel data to remove the random 

phase offset [12]. Firstly, we consider the measured phase data 

for ith subcarrier.  

 

              ' 2 i
i i

T
N

M
       .                      (4) 

 

Here i denotes the genuine phase,   indicates the time lag, 

iT  describes the subcarrier number for ith subcarrier ranging 

from 1 to 30. The terms  and M represent the phase offset and 

size of the fast Fourier transform (FFT), respectively. The 

unknown terms  and   make it impossible to retrieve useful 

phase information solely from network interface card. To 

remove the impact of random noise, we employ a linear 

transformation on the raw wireless channel phase data, as in 

[13].  

 

Machine Learning Model for Classifying Body Motion 

The amplitude and phase values obtained are classified using 

machine learning algorithm called support vector machine 

(SVM). An SVM essentially draws a hyperplane that works as a 

decision boundary to separate two classes for classification [14]. 

Suppose we have a problem to classify a dataset in the 

data-space K in one of two classes such as P or P’. Consider 

each data point k is represented by the feature vector k in the 

feature space
nX  . The given data point 1 2 3{ , , ,... }kk x x x x

is known as training data with the labeled dataset

1 2 3{ , , ... }ky y y y , where 1iy  , provided   1i P andx 

otherwise. The goal is to predict new dataset k, in either one of 

the two classes. The support vector machine efficiently and 

accurately resolves this issue [15]. Typically following steps 

are taken when finite data space is present: 

 

 Firstly a symmetric kernel function is defined, 

:Z X X  and the k k matrix 
, 1

( , )
k

i j i j
K x x


 
  must 

be non-negative Eigen values.  

 The decision function can be expressed as : 
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1 , 1

1
( ) ( , )

2

k k

i i j i j i j

i i j

F y y K x x   
 

   .           (5) 

 

Provided 

1

0

k

i i

i

y


  where 

 0 , (1, )i C i k   .                          (6) 

 

Considering the 1 2 3( ' , ' , ' ,..., ' )k    matrix solution for 

obtaining the optimum decision boundary. We select 

( ) 1i K iy h x  for all values of i when 0 'ia C  . The training 

dataset that corresponds to ( , ' )ii a is known as support vectors 

[16]. The final decision function that classifies the data point x 

is x G when ( ( )) 1Ksign h x   is written as [17]: 

 

1 , ?    

( ) ' | ( , ) '

ii k x is a support vecto

K i i

r

ih x a y K x x b

 

  .     (7) 

 

The function represents the hyperplane in X  that imparts 

the training datasets X. The results obtained using SVM 

algorithm are presented in terms of percentage accuracy.  

 

III. EXPERIMENTAL SETTINGS  

a). Experimental environment: The experiment for detecting 

cerebellar dysfunction was implemented using small wireless 

devices, interface card and evaluated the performance in a 

meeting hall at Xidian University, as shown in Figure 1 and 2.  

 

         
Figure 1 – Experimental setup for identifying gait abnormality 

 

We deployed AD Smart Router operating at S Band as an 

access point (AP). An HP desktop computer connected to an 

omnidirectional antenna was used as the receiver. The distance 

between transmitter and receiver was 8 meters. 

 The specific type of the absorbing material used in the 

experiment is FA-500, and the shape is pyramid. The base size 

is 500*500mm and the thickness is 500mm. 

b). Experimental Methodology: A volunteer was asked to 

walk normally and then walk with abnormality by going back 

and forth from point A  point B as shown in Figure 1. Data is 

recorded on a desktop computer by pinging the AP to receive 

the wireless channel packets for measurements.  

For the second part of the assessment, the volunteer was 

asked to grab something with one hand. The router and the 

receiving antenna placed at 1 meter apart as shown in Figure 2 

and the volunteer first grab the glass without tremors in hand 

and then grabbed it with tremors as experienced by a patient 

suffering cerebellar dysfunction.      

 

 
Figure 2 – Volunteer sitting on chair and reaching out to grab something 

 

IV. IDENTIFYING MOTION USING WIRELESS CHANNEL DATA 

This section deals with the effect of certain body motions on 

wireless channel data. It is observed that body motion changes 

the multipath of wireless signals propagation, as a result, the 

individual subcarriers are affected. Each body motion induces a 

particular wireless channel data. Thus, we demonstrate four 

various body motions such as normal walk, abnormal walk, 

normal grab and grabbing with tremors can be differentiated by 

examining the variances of amplitude information, calibrated 

phase information retrieved using S-Band sensing technique. In 

order to extract the wireless channel information features, we 

first draw statistics in frequency and time domain based on raw 

wireless channel data. The two extracted set of features are 

presented in terms of the individual subcarrier and features 

considering all subcarriers i.e. 30 subcarriers [18].  

The features that present the individual subcarrier indicate 

the variances of amplitude information against a particular 

subcarrier retrieved using network interface card. The features 
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across all subcarriers are calculated by considering the value for 

a certain wireless channel packet received. Then various 

statistical wireless channel values are taken for a particular time 

window considering many wireless channel packets [19]. In 

addition, to calculate the overall time history of wireless 

channel information received for a particular time period T 

across all subcarriers, we present the following matrix: 

 

           1 2 3[ , , ,..., ]T T T T
time history iH  H H H H .             (8) 

 

Here  time historyH denote the overall time history and iH

indicate the ith wireless channel information packet received.   

                      

V. RESULTS AND DISCUSSIONS 

The wireless channel data obtained using network interface 

card when the host computer was connected to the AP to detect 

the two primary indicators: to record the tremors in hand while 

reaching out to grab something and ataxia.  

 

 
(a). Raw wireless channel data: variances of the amplitude of 30 subcarriers for 

70 seconds.  

 

 
 (b). Variances of the individual subcarrier for 70 seconds.  

Figure 3 – The wireless channel data retrieved when subject was reaching out to 

grab something without tremor in hand 

 

The goal of analyzing the variances of amplitude and 

calibrated phase information is to differentiate the hand 

movements with and without tremors when reaching out to grab 

something. Figure 3(a) shows the variances of raw amplitude 

data for 30 subcarriers over a period of 70 seconds. The main 

advantage of this S-Band sensing technique is that we can 

choose any one or multiple subcarriers against time history for 

analysis. In order to differentiate the tremors and non-tremors 

in hand, we examine subcarrier # 11 in Figure 3(b), which 

indicate the variances in amplitude information between 14 dB 

and 17 dB. We further examined the calibrated phase 

information after applying the linear transformation on raw 

wireless phase data as shown in Figure 4.  

 

 
Figure 4 – Calibrated phase information for grabbing something without 

tremor in hand 

 

In order to analyze the second primary indicator for detecting 

the cerebellar dysfunction, we study the calibrated phase 

information as in Figure 4. The data in green indicate the raw 

phase data and the phase information in red denote the 

calibrated phase information. The calibrated phase information 

recorded when the subject was reaching out for grabbing 

something is plotted between 00 and 100 from 4 dB to 6 dB. The 

amplitude and calibrated phase information that are recorded 

for person grabbing something with tremors are observed in 

Figure 5 and 6, respectively.      

 

 
(a). Variances of the amplitude of 30 subcarriers for 60 seconds.  

 

 
 (b). The amplitude information of 11th subcarrier for 60 seconds. 

Figure 5 – The wireless channel data recorded when subject was repeated 

grabbing something with tremors in hand 

 

Figure 5(a) shows the variation of amplitude information 

when the subject reaches out to grab something repeatedly. The 

data, in this case, is collected for 60 seconds. Figure 5(b) 
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describes the amplitude information of the 11th subcarrier when 

the subject grabbed something with a tremor, which varied 

between 14 dB and 23 dB.  

 
Figure 6 – Calibrated phase information for reaching out to grab 

something with tremors in hand 

 

The calibrated phase information for grabbing something 

within tremors in hands in Figure 6 is mostly plotted between 

500 and 1000. When this calibrated phase information is 

compared with Figure 4, we observe that each movement such 

as tremor in hands and non-tremors in hands generated a unique 

pattern which clearly distinguishes the two motions for 

detecting cerebellar dysfunction. In order to observe the time 

history of the two body motions, we examine the Figure 7.  

 

 
Figure 7 – Time history of two motions such as non-tremors and tremors 

in hands 

 

The time history of 11th subcarrier presenting non-tremors 

and tremors when the subject was reaching out to grab 

something for a period of 130 seconds is shown in Figure 7. 

From 0 to the 70th second, the variances of amplitude 

information indicated no tremors, whereas from the 70th second 

to the 130th second, the variations described the tremors in 

hands. We observe that the power level for each motion is 

different but there are moments with similarity in the power 

level in dB. For example, from the 20th second to the 40th 

second and the 110th second to the 120th second, the power 

levels are almost the same that make it difficult the differentiate 

the two motions using the time history. Thus we classify the 

data obtained using S-Band sensing technique using support 

vector machine.  

 
Figure 8 - Two motion represented in their feature space 

 

The first goal to classify the data retrieved using S-Band 

sensing technique was to identify the particular features that 

would play the role of a fingerprint of the wireless channel 

traces. Initially, a limited number of possible features were 

defined, from which the best performers were selected as 

shown in Figure 8. The best possible features such as mean, 

standard deviation and kurtosis were considered for 

classification using SVM algorithm. 

 

 
Figure 9 – The SVM results obtained considering mean and standard 

deviation 

 

The SVM algorithm obtained an accuracy of 91% when the 

two features such as mean and standard deviation were 

considered for classifying the non-tremors and tremors in 

hands.   
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(b) 

(a). Perturbations of amplitude information of 30 subcarriers for 450 seconds. 

(b). Variances of amplitude information for individual subcarrier.   

Figure 10 – The wireless channel information obtained when subject was 

walking normally around the room 

 

To examine the second primary indicator for detecting 

cerebellar dysfunction, we consider the data obtained in Figure 

10. The variations in amplitude information against 30 

subcarriers for 450 seconds are shown in Figure 10(a) and the 

perturbations of amplitude information that fluctuate between 

18 dB and 26 dB for 450 seconds is illustrated in Figure 10(b). 

Next, we discuss the calibrated phase information in Figure 11 

for a person’s normal walk around the room.  

 

 
Figure 11 – Calibrated phase information when subject was walking in indoor 

environment 

 

As far as the calibrated phase information is concerned when 

the normal walk was considered, we have obtained two clusters 

of data that is spread from 300 to 2700 and 850 to 900. The 

reason for dispersed phase information is due to the fact person 

walks around the room. As a result, there is continuous change 

in the wireless medium.  

 

 
(a) 

 
   (b) 

Figure 12 – The wireless channel information obtained when subject was 

walking abnormally around the room 

 

Figure 12(a) indicates the raw wireless channel data when 

the person was walking abnormally around the room, and 

Figure 12(b) describes the time history of individual subcarrier 

330 seconds. The amplitude information, in this case, fluctuates 

between -5 dB and 25 dB.  

 

 
Figure 13 – Calibrated phase information when person was walking in an 

abnormal manner (ataxia) 

 

The calibrated phase information extracted using S-Band 

sensing technique is scattered from 300 to 2500 that fluctuate 

between 5 dB to 20 dB. We further combine the individual 

subcarrier (6th in this case) to examine the overall time history 

of a person walking normally and undergoing ataxia attacks. 

 

 
Figure 14 – Overall time history of person performing walking activity 

 

The overall time history of 6th subcarrier shows a clear sign 

of a shift in power level when was first started walking 

normally from 0 to 450th second and then experienced ataxia 

attack (abnormal walk) from 450th second till the 780th second. 

The power level in the case of the former varies between 18 dB 

and 26 dB, whereas in the latter case, it fluctuates between -5 

dB and 25 dB as indicated in Figure 14. It should be noted that 
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the power level will be different when the system is deployed in 

different geometrical structure. We can see in both cases when 

the person was reaching out to grab something and in walking 

activity, each body motion has induced a unique an imprint that 

can be leveraged to identify a particular disease such as 

cerebellar dysfunction. The idea of analyzing the individual 

subcarrier is to see the time when the patient has observed a 

particular abnormal motion such as tremors in hands or 

abnormal walk. To determine the accuracy in terms of 

percentage of the data obtained for a normal walk and 

abnormal walk, we consider the 30 subcarriers data and classify 

it using SVM as indicated in Figure 15. 

 

 
Figure 15 – The SVM results obtained for classifying normal and abnormal 

walk 

 

The SVM results obtained by considering the standard 

deviation and kurtosis as the two features for classification as 

shown in Figure 15. The results show an accuracy of 93% when 

the 30 subcarrier data was considered. A different kernel 

function was used since the data was recorded as different 

experimental setup was made.    

 

VI. CONCLUSION 

A framework which can easily be deployed in the clinical 

settings was developed by evaluating the two abnormal body 

motions, gait abnormality and tremors in hand. This framework 

uses S-Band sensing technique that leveraged low-cost small 

wireless devices, which provided seamless data reception. The 

proposed framework utilized the variances of amplitude and 

calibrated phase information that induced a unique wireless 

channel imprint to identify the particular motion disorders. The 

data classification was performed using support vector machine 

that provided high classification accuracy.  
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