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Abstract—Humongous contextual data are produced by sens-
ing and computing devices (nodes) in distributed computing
environments supporting inferential/predictive analytics. Nodes
locally process and execute analytics tasks over contextual data.
Demanding inferential analytics are crucial for supporting local
real-time applications, however, they deplete nodes’ resources.
We contribute with a distributed methodology that pushes the
task allocation decision at the network edge by intelligently
scheduling and distributing analytics tasks among nodes. Each
node autonomously decides whether the tasks are conditionally
executed locally, or in networked neighboring nodes, or delegated
to the Cloud based on the current nodes’ context and statistical
data relevance. We comprehensively evaluate our methodology
demonstrating its applicability in edge computing environments.

Index Terms—Edge-centric task allocation, multi-criteria de-
cision making, contextual reasoning, statistical data relevance.

I. INTRODUCTION

Internet of Things (IoT) gives the opportunity for the
development of intelligent analytics applications over sens-
ing and computing devices. Such devices are interconnected
to communicate while collecting contextual data from their
environment. Moreover, they become knowledge producers as
based on their (limited) computational capabilities they pro-
ceed with analytics tasks, knowledge extraction and inference.
The inferred and/or exacted knowledge refers to the outcome
of execution tasks issued by analytics (predictive, exploratory)
queries defined by analysts and applications [1], [2], [13].

Legacy systems adopt the Cloud infrastructure, where var-
ious services are available. However, large-scale data centers
present in Cloud are centralized systems which implies a
large average separation between devices and their Clouds.
This, in turn, increases the average latency and data migration
[16], where delay sensitive applications can be negatively
affected. For alleviating such problems, edge computing [15]
is coming into play. It deploys Cloud-like capabilities in the
network edge devices and gateways making them capable
of processing the collected data, thus, becoming efficient
knowledge producers [8]. Edge-centric analytics contributes
to a distributed analytics tasks exploiting the interconnected
heterogeneous resources controlled by edge nodes.

Challenge: Our aim is to keep multiple edge analytics and
processing tasks as close to the nodes and their corresponding
sources of contextual data as possible avoiding migrating data

and tasks to the Cloud. For supporting edge-centric analytics
tasks, edge nodes should compute/execute a set of tasks [5].
Such tasks are generated, possibly at high rates, and should
be concluded immediately in terms of allocation and execution
taking into consideration certain contextual parameters focus-
ing explicitly on: (i) current node’s computational load, (ii)
communication cost within a group of edge nodes, and (iii)
relevance with the data to be processed. Such tasks allocation
process should be promptly determined in a distributed way
within a group of nodes. The challenge is to maximize nodes’
performance while minimizing the required resources and
the induced communication overhead. Related research deals
with centralized approaches, thus, the task allocation models
suffer from the drawbacks reported for Cloud computing. Our
challenge is to push the task allocation intelligence into the
edge network exploiting the nodes’ context and data relevance,
thus, the edge nodes locally, based on the current contextual
data reason about appropriate decisions for tasks allocation.

Contribution: We build on the autonomous nature of
nodes by proposing a distributed methodology for pushing
the analytics tasks allocation of a stream of incoming tasks
to the network edge. Due to nodes’ resource constraints, each
node can execute a limited number of tasks, thus, selecting
those that maximize its performance and meet specific resource
constraints. Our two-level decision making methodology se-
quentially reasons on the best decision for task execution either
on the node, or on its neighboring networking peer nodes, or
at the Cloud. The rationale behind our methodology is that
we distinguish two conditioned decisions on an edge node.
The first decision is related to whether a task can be executed
locally based on the current context of the node. The second
decision is related to whether this task can be executed in
a neighboring node with statistically similar data and more
available resources, or on the Cloud conditioned on the result
of the former decisions. Such sequential decision making is
achieved by the fusion of a probabilistic classification with
the multi-criteria optimization VIKOR methodology [17] w.r.t.
the current load, the remaining resources, the collected data
statistics, and task’s characteristics (e.g., priority, execution
requirements). Our contribution is: (i) a distributed sequential
decision making mechanism for tasks allocation, (ii) a scheme
for efficient selection of neighboring nodes when tasks are
decided not to be executed locally; (iii) comprehensive ex-



perimental simulations and sensitivity analysis on the most
significant methodology parameters.

The paper is organized as follows: Section II reports on
related work and our contribution. Section III presents the
problem of pushing tasks allocation to the edge and elaborates
on the decision making methodology, while in Section IV, we
provide the experimental evaluation of our scheme. Section V
concludes the paper discussing future research plans.

II. RELATED WORK

Prior Research Activities. Task allocation is studied in
Wireless Sensor Networks (WSNs) as in [20], where the
authors present a task mapping into WSN sensing devices
taking into consideration energy constraints, communication
and computation scheduling. The approach in [3] is based
on a collaborative processing among nodes for task allocation
adopting linear task clustering and a node assignment mech-
anism based on task duplication schemes. The model in [7]
focuses on minimizing the task execution time in a clustered
WSN. In [6], the authors propose a model for allocating the in-
coming tasks in WSN sensors according energy requirements.
An Integer Linear Programming (ILP) formulation for task
allocation is proposed in [24], where the time and energy
costs of both computation and communication activities are
considered. In [22], the authors propose a modified version of
the binary Particle Swarm Optimization (PSO). The method
adopts a different transfer function, a new position updating
procedure and mutation to obtain the best solution. Another
PSO-based solution is presented in [14] which allocates tasks
into a number of robots decreasing the communication cost in
a WSN. In [10], the authors present a mechanism of dynamic
alliance based on a Genetic Algorithm (GA) to acquire the
balance between energy consumption and accuracy considered
in area sum method. In [11], the authors propose a QoS aware
resource scheduling algorithm adopting PSO to derive the final
scheduling. The aim is to reduce time and ensure the load
balancing to maximize the performance.

A review on task allocation algorithms that fit in the Cloud
is discussed in [18]. In [13], the authors propose a model
for data distribution over computing devices. The model aims
to eliminate the bandwidth and the storage constraints. The
assigned tasks are executed over data while only one task
is executed in each machine. However, this could not be the
usual case when we consider real-time applications. Simulated
annealing is adopted to solve the problem of task allocation
in Cloud [12] by parallelizing various tasks in a multi-Cloud
system. JarvSis is proposed as a distributed scheduler capable
to automate the execution of multiple heterogeneous tasks in
IoT [4]. Through JarvSis, developers can easily configure and
deploy hierarchies of control tasks running in the Cloud. A
distributed optimization approach manages to adopt multiple
optimization results [19]. This approach can provide sub-
optimal solutions when a centralized approach can not be used
in a real environment.

Research Outcome: The major difference of our work
compared to the above-mentioned approaches is that the

related work to task allocation problems mainly focuses on
energy constraints in the decision making process. Addition-
ally, they focus on eliminating the communication overhead
to reduce messages transmission, thus, to lower the number of
collisions. They are, usually, centralized approaches meaning
that a central unit decides on the final allocation based on
the currently available information on the performance and
the load of nodes. This inevitably conveys the disadvantages
of any centralized system including communication overhead
and a single point of failure. A baseline solution is to transfer
the data to the specific node where the task will be executed.
In general, research efforts adopting this methodology focus
on ‘univariate’ contextual information meaning that the final
decision for task allocation is delivered based only on a sin-
gle parameter/perspective, e.g., either energy, or transmission
requirements, or topology of the network. In addition, data
migration techniques suffer from the increased migration cost
especially in the network edge.

To the best of our knowledge our methodology firstly
departs from the centralized task allocation intelligence and
focuses on a distributed, local ‘multivariate’ case where the
intelligence is pushed to the edge network. That said, the
final decision is locally taken based on multiple parame-
ters/perspectives, e.g., the current load of the nodes, their
processing power, communication cost, remaining resources
and data relevance. Our methodology casts as a local multi-
criteria decision making mechanism for delivering the best
task allocation decision. Apart from that, we further take into
consideration the data collected at each node without adopting
any data migration solutions, thus, avoiding redundant data
communication overhead. Only meta-data information about
a task and sufficient statistics over the collected data in
nodes, which are relatively negligible comparing with raw
data transfer, are disseminated into the network edge. Our
sequential decision making methodology aims to eliminate
the start-off time of tasks execution giving priority to local
decisions, i.e., to the node where each task is initially assigned.

III. IN-EDGE NETWORK TASK ALLOCATION

A. Definitions & Overview

Consider a set of N nodes, i.e., N = {n1, n2, . . . , nN}.
Nodes form a network represented by the graph G = (N , E)
where E is the set of edges connecting the nodes. An edge
eij ∈ E represents the communication channel between nodes
ni and nj and is characterized by the communication cost
κij > 0. Given a node ni, its neighborhood is defined by
the subset of nodes Ni = {nj ∈ N : eij ∈ E}. Nodes
are involved in certain tasks: sensing, collecting, computing
and processing contextual data. Tasks are assigned to ni at
random intervals through a task stream Ti = (〈Tit, Cit〉)
defined by a series of temporal ordered tuples 〈Tit, Cit〉, where
t = 1, 2, . . . is the discrete time instance occurrence of the task
Tit and Cit is a set of constraints for Tit. Tit is accompanied
by the realization of a set of constraints Cit, e.g., consider
C = {priority, latency, lifetime} be the set of constraints and



Cit = {0, 2s, 15s} be their realization for Tit; Cit = ∅ denotes
no constraints for Tit.

A task stream Ti at node ni yields an appropriate decision
making for task allocation. Upon a task Tit reception at
time instance t, node ni creates the context vector vi =
[λi, πi, ρi]

>, where λi ∈ (0, 1) is the current percentage node
load, πi ∈ (0, 1) is the priority of the task, and ρi ∈ (0, 1) is
the ratio of the remaining available resources of ni; without
loss of generality, ρi represents the available ratio of resources
left for task execution in ni, e.g., remaining energy budget.
ni, after receiving Tit at t, must decide w.r.t. Cit and vector
v whether to: (i) Execute Tit locally - action al; (ii) Send Tit
for execution to one of the networked neighboring nodes in
the local neighbourhood Ni of ni - action an; (iii) Send Tit
to be executed in the Cloud - action ac.

Our decision making methodology is a function g : v →
{al, an, ac}, where action al refers to task execution at ni,
an refers to task execution of a selected neighbouring node
nj ∈ Ni and action ac refers to the task execution at Cloud
since there is no node nj ∈ Nj appropriate for the execution of
Tit. The decision making function g(v) secures the execution
of task Tit as it sequentially selects the best decision among
actions al, an, ac that are mutually exclusive and exhaustively
describe the universe of discourse (concerning the available
actions for executing a task).
ni senses and stores its d-dimensional contextual data

vectors x ∈ Rd in a dataset Xi = {x} characterized by the
specific statistics: expectation vector E[x] = µ ∈ Rd and
covariance matrix Σ = E[(x − µ)(x − µ)>]. Each element
σkl of matrix Σ is the covariance between data dimensions
xk and xl from the data vector x. At predefined intervals, ni
exchanges contextual information about its task requirements
vector vi and the current data statistics (µ,Σ)i to support
the decision making and receives (µ,Σ)j from its neighbors
nj ∈ Ni. Node ni produces then the information vector:
pij = [λj , κij , δij ]

> for each of its neighbors nj , where δij
is defined as the data statistical difference between statistics
(µ,Σ)i and (µ,Σ)j , defined by the convex sum of Euclidean
norm and Frobenius norm over the expectation vectors and
covariance matrices, respectively:

δij =
1

2
(‖µi − µj‖2 + ‖Σi − Σj‖F ), (1)

where the Frobenius norm is defined as: ‖Σ‖F =√∑d
k=1

∑d
l=1 |σkl|2 and the Euclidean norm ‖x‖2 =√∑d

k=1 x
2
k. The advantage of applying a convex combination

of both norms is that we can easily combine heterogeneous
models exhibiting different characteristics. The δij represents
the dataset similarity between Xi and Xj in terms of their
sufficient statistics. The rationale for the data statistical differ-
ence is that ni takes into consideration the dataset similarities
among their neighboring nodes to potentially assign its ana-
lytics tasks over similar data, thus, extracting approximately
similar pieces of knowledge. This is reasoned when ni cannot
proceed with local tasks execution (w.r.t. context vector), thus,

assigning the tasks to neighboring nodes nj with similar
data statistics achieves its goals and avoid transferring the
task to the Cloud. Based on the received information vectors
{pij , nj ∈ Ni} and the current context vector vi, ni then
decides on the actions {al, an, ac}.

Methodology Overview: Upon the reception of Tit ∈ Ti, ni
sequentially examines the available choices for the execution
of Tit. Initially, ni checks if Tit can be executed locally,
thus, the communication cost is κii = 0 and the start-
off time is limited. Based on vi, ni is then able to decide
on action al. If ni rejects action al, it checks if Tit can
be executed by a node nj from its neighborhood Ni, i.e.,
action an. This decision is based on the processing of the
information vectors and context vector, pij and vi, where
the expected communication cost is κij . If no node nj can
be assigned the Tit, ni decides to send it to Cloud with
inherent increased communication cost including e.g., data
transfer; possibly higher than max(κij),∀i, j. The decision
function g decides the one-step optimal execution of Tit w.r.t.
actions al, an, ac. g(·) delivers the final action ai based on
a sequential processing applying the principle of optimality,
which implies that every decision should be optimal for the
remaining problem (initially, we select between three actions,
next, we select between two actions).

B. Edge-centric Methodology

We analytically describe our methodology for concluding on
an action to execute Tit. It is worth noting that the proposed
techniques should deliver the decision in the minimum time
since our methodology supports (near) real-time applications
at the network edge. For deriving the action al, we rely on
a probabilistic classifier [9], while for actions an and ac,
we adopt the multi-criteria VIKOR method [17] over the
context and information vectors. The probabilistic classifier is
computationally light and requires less training data compared
to other classification methods while being highly scalable
(linearly) with the number of data [23]. The VIKOR method
solves decision problems with conflicting and noncommen-
surable criteria, assuming that compromise is acceptable for
conflict resolution. In any case, it tries to approach a solution
close to the optimal while the evaluation of a solution is based
on a set of criteria. VIKOR ranks alternatives and determines
the solution that is the closest to the optimal.

1) Probabilistic Local Task Allocation: The decision mak-
ing for the action al depends on a Bayesian inference for
deriving the posterior probability over the prior probabilities
of specific events. Te probabilistic decision maker classifies the
context vector vi to the action class al and the complement
ā1, where the later represents the actions ā1 = {an, ac}. The
output is the probability of Tit be executed at ni or not. Node
ni requires a training set I = {vk, ak} to train the classifier
for estimating the probability P (al|vi). Hence, the decision
maker decides on al, i.e.,

g(vi) =

{
{al} if P (al|vi) > P (āl|vi)
{āl} = {an, ac} otherwise. (2)



If the decision is the al class, Tit is locally executed, otherwise,
node ni proceeds with the multi-criteria decision making to
conclude either on an or ac actions.

2) Multi-criteria Local Task Allocation: In our context, the
VIKOR method results to an ordered list of the information
vectors (pi1,pi2, . . .piNi

) with ranking scores z1, z2, . . . , zNi

with Ni = |Ni|. The required parameters and the steps if the
VIKOR model are as follows. For the j-th candidate node nj ∈
Ni with rank zj , the rating of the k-th criterion dimension
from the information vector pij = [λj , κij , δij ] is denoted by
hjk. The steps for deciding on an optimal action, i.e., the best
candidate node for task execution are:

• Step 1: Determine the highest h+jk and lowest h−jk values
for the k-th criterion dimension for all nj ∈ Ni;

• Step 2: Calculate the ratios per k-th criterion dimension:

Sk =
∑

nj∈Ni

wk

h+jk − hjk
h+jk − h

−
jk

,

Rk = max
nj∈Ni

{
h+jk − hjk
h+j − h

−
jk

},

where wk ∈ (0, 1) is the weight for the k-th criterion
dimension expressing its relative importance against the
remaining criteria/dimensions. Based on the ratios, define
the normalized convex criterion score:

qk =
1

2
(
Sk −min{Sk}
max{Sk} − Sk

+
Rk −min{Rk}
max{Rk} −Rk

) (3)

This creates the criterion vector q = [q1, q2, q3]> for
load, communication cost and dataset statistics difference,
respectively.

• Step 3: The score value for candidate nj is then defined
as zj = q>pij , i.e., the vector information distance of
node nj from the criterion vector. The nodes are then
ranked w.r.t. the inner products zj in a descending order
and the node nj∗ = arg maxnj∈Ni

{zj} is candidate for
selection.

Now, the candidate node nj∗ is to be assigned the task Tit
if point-wise the elements of pij∗ are greater than the pre-
defined thresholds from the threshold vector θ = [θ1, θ2, θ3]>

corresponding to the thresholds for the dimension criteria of
interest (notated by: pij∗ � θ). In this case, action an is
decided with node nj∗ . Otherwise, the action ac is decided,
that is, Tit is sent to the Cloud for execution. Our methodology
is shown in Algorithm 1.

IV. EXPERIMENTAL EVALUATION

We report on the performance of the proposed methodology
and provide a sensitivity analysis on several performance
metrics. We investigate whether the proposed in-edge network
methodology is capable of efficiently deciding on local task
executions or transferring such responsibility to edge neigh-
bouring nodes and/or Cloud.

Algorithm 1 Task Decision Making Methodology on Node ni
while task Tit ∈ Tt do

Calculate context vector vi

Receive information vectors pij ;nj ∈ Ni

if g(vi) = {al} then
execute Tit at node ni

else
Calculate criterion vector q and scores zj =
q>pij ,∀nj
zj∗ ← arg maxnj∈Ni

(zj)
if pij∗ � θ then

send Tit to node nj∗ ∈ Ni

else
send Tit to Cloud

end if
end if

end while

A. Performance Metrics

We define the performance metrics over the context vector
dimensions vi = [λi, πi, ρi] for load, task priority, ratio of
remaining available resources, and task requirements along
with the information vectors {pij} from neighbouring nodes.
We focus on three aspects for evaluating the performance of
our methodology. Specifically, for each node ni, we:

• assess the correct identification of tasks that should be
executed locally, i.e., given a specific task Tit, the current
context vector vi and the information vectors pij , nj ∈
Ni, the methodology correctly concludes on the action
al and not on the actions {an, ac}.

• assess the correct identification of the appropriate neigh-
bouring node nj∗ ∈ Ni to execute Tit given that the
methodology correctly does not decide on ac and it is not
possible node ni to execute Tit locally (not considering
the action al).

• assess the ‘closeness’ of the proposed methodology to the
optimal decision given that there would exist an ideal
node in n′is neighbourhood, which should have been
selected to task execution. We quantify this closeness as
the distance (norm) of the context and information vectors
from these corresponding to the ideal node, as will be
elaborated later.

For the first two aspects, we adopt the widely known
metrics precision P , recall R, F-measure F , and accuracy
ε defined as: P = TP

TP+FP , R = TP
TP+FN , F = 2 PR

P+R ,
and ε = TP+TN

TP+TN+FP+FN , where TP refers to True Positive
events, i.e., correctly decided actions that had to be identified
(e.g., the methodology decides on al and this is the correct
action w.r.t. context and information vectors), FP refers to
False Positive events, i.e., actions that have not been correctly
decided (e.g., the methodology decides on al but either action
an or action ac should have been decided), TN refers to True
Negative events, i.e., incorrectly decided actions that had been
identified, FN refers to False Negative events, i.e., actions that



had to not been incorrectly decided.
For the third aspect, we assess the appropriate selection

of the node nj∗ when node ni correctly decides on the action
an, i.e., the task should be transferred to the neighbourhood of
ni. In this context, we introduce the concept of the ideal node
n` ∈ Ni which is considered as the most appropriate (best)
node for being assigned Tit given that ni decides on the action
an. Such node appropriateness is represented by the distance
of the information vector pi,` regarding the ideal node n` from
the information vector pi,j∗ of the selected node nj∗ regarding
the VIKOR optimal selection process in Section III. The
information vector pi,` = [λ`, κi`, δi`] of the ideal vector n` is
constructed from (i) the lowest load λ` = minnj∈Ni

{λj}, (ii)
the lowest communication cost κi` = minnj∈Ni

{κij}, and (iii)
the closest dataset statistical distance δi` = minnj∈Ni

{δij}.
Note that, λ`, κi`, δi` do not necessarily correspond to the
same neighbouring node from Ni. It would be the ideal
case to have the node n` in the neighbourhood of ni, thus,
immediately ni would assign its task to node n`. However,
this is not happening in reality. Hence, we assess how ‘closely’
the proposed methodology w.r.t. action an selects the node
nj∗ , which is as close to the ideal node as possible w.r.t.
information vector, i.e., the best possible decision we can
obtain. We quantify this closeness by the Euclidean distance:
ωi = ‖pi,` − pi,j∗‖, nj∗ ∈ Ni, in the information vectors
space and desire ωi → 0, i.e., the selected node nj∗ to be
the best possible for selection, thus, enjoying the optimality
achievement of our methodology. The metric ω represents the
difference with the best node in the neighbouring network
per task execution request as depicted by its computational,
networking, loading and statistics attributes.

B. Experiment Setup

We adopt (i) a real dataset related to the prediction of
companies bankruptcy from qualitative parameters as pre-
dicted by experts1 to evaluate the classification ‘power’ of our
methodology, i.e., if our methodology correctly classifies the
context vectors to the best actions, and (ii) the real dataset2

from the Intel Lab containing 3,000 contextual 4-dimensional
data vectors x = [temperature, humidity, light, voltage]>. The
dataset is becomes the basis for each dimension of the data
stored in every node in the network. From the decision making
perspective, we train the probabilistic local decision making
methodology using a training set of pairs: (context vectors,
best actions), i.e., Ii = {(vk, ak)}Kk=1 for each node ni,
k = 1, . . . ,K = 300. The training dataset Ii provides
various combinations of the aforementioned vector parameters
accompanied by the appropriate actions, i.e., the corresponding
classes. By analyzing the class labels, approximately 65% of
the training pairs are classified in action al, i.e., P (al) = 0.65
(35% of pairs are classified as ā1). Node ni decides on al if
P (al|vi) > P (ā1|vi), while the classifier is trained with 10-
fold cross validation having a split of 60% of the dataset as the

1https://archive.ics.uci.edu/ml/datasets/qualitative bankruptcy
2http://db.csail.mit.edu/labdata/labdata.html

training set I and 40% at the testing set in each node. If action
al is not the outcome of the probabilistic decision maker, then
the actions an and ac are decided w.r.t. VIKOR methodology.
A ‘typical’ running example is as follows: (i) the production
of a contextual vector at a random node (data are retrieved by
the aforementioned datasets); (ii) at pre-defined intervals, the
node sends its information vectors to the neighbourhood; (iii)
the execution of the decision function to reveal if the action al
should be chosen; (iv) if al is selected, we store the incoming
vector and update the dataset; otherwise, we apply the VIKOR
methodology and get the rankings of the neighbours; (v) we
get the maximum score and if this score is over the pre-defined
threshold, we select the action an and update the dataset of
the selected peer node; (vi) if an is not selected, Tit is sent
to the Cloud.

We construct random neighbouring networking topologies
of 5,000 nodes, where each node ni has a neighbourhood
size |Ni| = {10, 50, 100, 1000} nodes. The ‘randomness’ in
the topology of the network does not affect the proposed
model and is adopted to ‘spread’ the nodes in the area under
consideration. The communication cost κij ∼ U(0, 1) is
uniformly distributed for eij ∈ E , the task priority per node ni
is drawn uniformly ρi ∼ U(0, 1). The uniformity of the task
priority gives the necessary randomness in the characteristics
of tasks arriving at any node in the network. Based on this, we
investigate how the number of neighbouring nodes in the edge
network affects the results of our decision making mechanism.
We expect that the higher the number of nodes, the more the
options of selecting a node which can be assigned tasks, thus,
avoiding transferring the task to the Cloud, i.e., ac. However,
on the other hand, this potentially increases the expected load
of neighbouring nodes, if they are assigned relatively a huge
number of tasks for possible execution. Hence, the decision
on action ac is not entirely avoidable, but it is considered as
a last resort after each neighbourhood can successfully satisfy
the assigned task executions. We also examine the importance
of each criterion dimension wk ∈ (0, 1),

∑
k wk = 1, in the

VIKOR method and investigate their impact on the closeness
of our methodology to the best decision w.r.t. action an.
Hence, we consider four experimental scenarios with different
importance weight distributions on the criteria: load, com-
munication cost, remaining available resources, and dataset
statistical distance (data similarity):

TABLE I
WEIGHTS IMPORTANCE DISTRIBUTION OVER CRITERIA.

Scenario load (λ) comm. (κ) resources (ρ) distance (δ)

Scenario A 0.25 0.25 0.25 0.25
Scenario B 0.70 0.10 0.10 0.10
Scenario C 0.10 0.10 0.40 0.40
Scenario D 0.10 0.10 0.10 0.70

Through the aforementioned scenarios, we pay attention on
different parameters when selecting nodes for transferring a
task. Scenario A pays equal attention on all criteria while
Scenario B pays more attention on the load of each node.



Scenario C pays more attention on the remaining resources
and dataset statistical distance, while Scenario D pays attention
on the similarity of data in terms of statistics that nodes have
collected from their environment.

C. Performance Evaluation

Firstly, we evaluate the proposed mechanism concerning
the decision of the local task execution in all edge nodes,
i.e., concerning the action al. For a workload of |T | = 250
tasks per node, we obtain an average precision P = 78.8%,
average recall R = 93.7%, average F-measure F = 85.6%
and expected accuracy ε = 90.71% (deviation: 0.047). Such
statistics indicate that our methodology is capable of identi-
fying when a task should be locally executed. The classifier
manages to eliminate false negative events, thus, we enjoy
an increased R. However, we observe that there is room for
reducing false positives, thus, we could enjoy P close to
unity. The expected accuracy per node ε is also at high levels
indicating the certainty of a node when concludes on action
al, thus, avoiding further communication with its neighbors.

Figure 1 (upper) shows the evolution of P per node aligned
with the tasks stream Ti1, Ti2, Ti3, . . .. One can observe that
for the first 150 tasks, the precision is equal to 1.0 (100%).
This is because in the test dataset, the local tasks execution
events are stored in the first places of the tasks stream and
the proposed scheme correctly identifies them. Afterwards,
the proposed scheme decides that the incoming tasks should
not be executed locally. We observe that P decreases as false
positives are identified. In any case, all the tasks that should
be locally executed are correctly identified obtaining high
accuracy and precision. Moreover, Figure 1 (upper) illustrates
the evolution for the recall per node. The recall is characterized
by stability after the allocation of the first 150 tasks. Figure
1 (lower) illustrates the probability density function of the
accuracy metric regarding the action al indicating that the node
ni correctly concludes on al and rejects the actions an and ac
provided the current context vector.

We now assess the proposed methodology regarding the de-
cision on actions an and ac given that the action al is rejected
by the node. Our methodology decides to execute locally 50%
of the total tasks with average node load E[λ] = 0.325 and
average ratio of remaining resources E[ρ] = 0.459. In this
context, the average node load deciding on locally executing
the tasks is relatively low, while the remaining resources are at
a medium level. Moreover, 25% of the tasks on average were
assigned to neighbouring nodes (action an), while 25% of the
tasks were transferred to Cloud (action ac).

Figure 2 (lower) shows the θ normalized threshold vector
space (for the criteria: dataset similarity, load, communication
cost) for the VIKOR method and the corresponding per-
centages of the tasks assigned and executed: locally, in the
neighborhood, at the Cloud. Based on the VIKOR decision
making, the criteria thresholds θk were set to (0.4, 0.4, 0.2)
for the criteria dimensions λj , κij and δij , respectively; this is
the methodology that selects the node with the highest score
uj∗ iff λj∗ ≤ 0.4 , κij∗ ≤ 0.4 and δij∗ ≤ 0.2. We also
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Fig. 1. (Upper) Precision, recall, and F-measure against tasks stream for action
al; (lower) probability density function f(ε) of the accuracy in concluding
on action al.

experiment with other threshold values. Specifically, with θk
values defined in (0.455, 0.455, 0.05), we observed that no
task will be executed in any neighbouring node, thus, 80%
of the tasks were to be transferred to the Cloud (and 20%
locally). In addition, with θk values defined in (0.33, 0.33,
0.33), on average 30% of the tasks would have been executed
in the neighbourhoods and 20% in the Cloud. Hence, to avoid
having many tasks transferred to the Cloud and avoid not
assigning certain tasks in the neighbourhoods, we select the
(0.4, 0.4, 0.2) normalized threshold values for the VIKOR
method regarding the action an.

We also plot the closeness metric ωi in Figure 2 (upper)
demonstrating that in all scenarios the size of the neighbour-
hood results to the selection of the most appropriate node
for tasks assignments in all the considered criteria (load,
communication cost, dataset similarity). Hence, the proposed
methodology efficiently and successfully finds the best neigh-
bouring node upon concluding on the action an.

We further assess the behaviour of our methodology based
on the closeness to the optimal (ideal) solution regarding
action an. Specifically, we assess the closeness of our method-
ology concerning the selection of the appropriate neighbouring
node for executing a task w.r.t. the ideal node as described in
Section III. Recall that the ideal node is characterized by the
lowest load, lowest communication cost and closest distance
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of the collected data (all these, at the same time) in a specific
neighbourhood.

Figure 3 (upper) presents our results concerning the distance
(absolute difference) of the load parameter |λj∗−λ`| between
λj∗ of the selected node nj∗ and the lowest load λ` of the
ideal node versus the size of the neighbourhood |Ni| for all
scenarios (Table I). We observe that the neighbourhood size
influences the final difference since an increased number of
neighbouring nodes leads to more opportunities for assign-
ing tasks. This stands for all the examined scenarios. The
difference is below 0.04 (4%; quantities are normalized in
(0,1)), which depicts the efficiency of the proposed scheme.
The performance of our mechanism increases as tasks are
allocated to nodes with low load, thus, no node is expected to
be overloaded creating a bottleneck in the neighborhood. One
can also observe that when |Ni| ∈ {50, 100}, the distance
from the optimal load is less than 1% especially in Scenario
B. Note that, in Scenario B we pay increased attention on the
load of the nodes, which this is reflected by our methodology
for finding the most appropriate neighbouring node.

Regarding the dataset statistical relevance in terms of the
sufficient statistics distance δij∗ and from the corresponding
ideal node δi`, Figure 3 (lower) illustrates the absolute dif-
ference |δij∗ − δi`| for all scenarios and neighbourhood size.

Similarly to the aforementioned results, an increased number
of nodes positively affects the results. When |Ni| → 1000,
our methodology exhibits the best performance resulting to a
distance from the ideal case close to zero. This indicates that
our scheme assigns tasks to the most similar dataset.
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Fig. 3. (Upper) Distance of the load criterion and (lower) distance of the
dataset statistical relevance from the ideal node/decision against neighborhood
size for all scenarios.

In addition, we perform experiments to measure the differ-
ence in the communication cost of the selected neighbouring
node compared to the optimal (ideal) communication cost in
the neighbourhood. The distances |κi`−κij∗ | for all scenarios
against different neighbourhood sizes are presented in Table II.
In the majority of the cases, such differences are close to zero.
Again, a limited number of selected neighbouring nodes may
lead to high values for such difference, thus, our methodology
requires a relatively high number of nodes to efficiently decide
on the most appropriate node for transferring the incoming
tasks.

TABLE II
AVERAGE DIFFERENCE IN THE COMMUNICATION COST.

|Ni|
|κi` − κij∗ |

Scenario A Scenario B Scenario C Scenario D
10 0.007 0.011 0.031 0.022
50 0.021 0.004 0.016 0.001

100 0.004 0.002 0.007 0.008
1000 0.004 0.009 0.018 0.004

Based on the above, we can safely conclude on the effi-
ciency of the proposed scheme as it can select the best possible



node based on the entire set of parameters and not on a single
one.

Expected Overhead: Our methodology mainly aims to
stochastically avoid the migration of the data X that should
be transferred from the edge network to the Cloud. Instead
of migrating data, the methodology intelligently decides on
assigning tasks to neighboring nodes over statistically similar
data residing on different edge nodes, if the option of local
task execution is rejected. The expected overhead in terms
of messages sent within the edge network relates to (i) tasks
transfer/assignment in action an and (ii) data transfer from the
node to the Cloud in action ac, i.e., the overhead is faced only
when the task itself is decided to be relocated.

Let p1 = P (al|vi) and p2 = P (pij∗ � θ|āl) be the
probability of selecting the action al for local task execution
(given context vector vi) and the probability of assigning a
task to neighbouring node nj∗ ∈ Ni as inferred from the
VIKOR method given that action al is rejected, respectively.
In the former case, the expected communication overhead is
zero, while in the latter case, node ni should first collect the
information vectors pij and then assign the task to the selected
nj∗ , thus, incurring |Ni| + 1 communication messages. The
expected overhead for both actions ensuring task execution
in the network edge is then

∑
ni∈N (1 − p1)p2(|Ni| + 1),

which depends linearly on the neighbourhood side, as ex-
pected. Concerning the action ac, we face the case as in the
baseline/centralized approaches, where the node ni decides
to migrate the data Xi to the Cloud. In the centralized
approaches this happens with probability 1, while in our case,
this occurs with probability (1−p1)(1−p2). Indicatively, based
on our experimental setting and results, this corresponds to
maximum 25% of the cases on average, which denotes the
communication gain of our methodology by pushing the task
execution at the network edge taking into consideration the
nodes’ context and data relevance.

V. CONCLUSIONS

Recent advances in edge computing involve the execution
of analytics tasks close to the sensing/computing devices
challenging with the limited computational capabilities. Our
methodology faces with the problem: which tasks each node
should execute to avoid data migration and maximize the
expected performance. We contribute with an efficient, intel-
ligent, distributed scheme adopted by every node that pushes
the task allocation to the edge providing a two-level decision
making mechanism. Our scheme sequentially examines pos-
sible actions to efficiently decide the place where tasks are
executed: locally, in the node neighborhood, and at the Cloud,
considering context and information vectors. We evaluate our
scheme with real data and the experimental evaluation shows
that the selected nodes for task allocation are among the
best possible solutions minimizing the average difference. Our
future agenda involves a time-optimized scheme for handling
the uncertainty in the decision making process.
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