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Abstract— This paper presents an innovative wrist-worn device
with machine learning capabilities and a wearable pressure
sensor array. The device is used for monitoring different hand
gestures by tracking tendon movements around the wrist. Thus,
an array of PDMS-encapsulated capacitive pressure sensors is
attached to the user to capture wrist movement. The sensors are
embedded on a flexible substrate and their readout requires a
reliable approach for measuring small changes in capacitance.
This challenge was addressed by measuring the capacitance via
the switched capacitor method. The values were processed using a
programme on LabVIEW to visually reconstruct the gestures on
a computer. In addition, to overcome limitations of tendo’s uncer-
tainty when the wristband is re-worn, or the user is changed,
a calibration step based on the support vector machine (SVM)
learning technique is implemented. Sequential minimal optimiza-
tion algorithm is also applied in the system to generate SVM
classifiers efficiently in real-time. The working principle and
the performance of the SVM algorithms demonstrate through
experiments. Three discriminated gestures have been clearly
separated by SVM hyperplane and correctly classified with high
accuracy (>90%) during real-time gesture recognition.

Index Terms—Support vector machine, sequential minimal
optimization, gesture recognition, wearable intelligence, capac-
itance measurement.

I. INTRODUCTION

HE latest advances in artificial intelligence (AI) pro-

vide more possibilities for conventional wearable devices
in the form of novel sensor systems and smart sensor
arrays [1]-[3]. In the case of a Smart Wearable System (SWS),
a number of sensors are attached to a user’s body to collect
data or receive commands from the user, which will be
used to control a robot or a smart device to assist users in
performing everyday tasks [1]-[5]. Various sensors can detect
and measure the properties of the human body by different
SWS. For example, gestures, electromyography (EMG), elec-
troencephalography (EEG), sphygmus, eye movement, etc. are
valuable data that can be collected by a SWS [2], [4], [6], [7].
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The hand is a highly flexible part of the human body.
Among the smart wearable applications, gesture recognition
has been a centre of attention because of its flexibility and
feasibility [6], [8]. It aims to measure the motions of the hand
and is a typical multidisciplinary research. The conventional
approaches can mainly be classified into two categories:
movement-sensor-based and camera-based [8], [9], which will
be discussed in Section II.

This paper introduces a gesture recognition method that
requires less on-body attachments and has no limitation from
camera [10], [11]. The principle assumes that gestures are
based on tendon movement around the wrist. The pressure
distribution around the wrist can be measured by a pressure
sensor array embedded in a wristband. These pressure values
are used to distinguish and reconstruct gestures on a computer
after calibration [10]-[12]. As shown in Fig. 1, this work
introduces a system based on flexible and thin capacitive
pressure sensors, a measuring readout circuit, a flexible sub-
strate wristband and machine learning algorithms. The gesture
is reconstructed using the Support Vector Machine (SVM)
learning algorithm to perform the corresponding control. SVM
is a supervised learning algorithm for pattern recognition,
data analysis and regression analysis. It is suitable at non-
linear classification, requires fewer samples and enables high-
dimensional pattern recognition [16]-[19]. It can drive the
system to adapt to different situations by taking samples
in the calibration step and optimising thresholds in the
system [16]-[21].

Recent advances in flexible and wearable electronics as
well as materials research allow this kind of device to be
implemented in the form of a wristband [13]-[15]. After
collecting the pressure data from the capacitive sensors, there
should be a procedure to process these values and reconstruct
gestures. However, the relatively small, uncertain and different
tendon movements from person to person imply that there
are challenges with this approach [10]. This issue could be
solved by recording values, calculating the threshold and clas-
sification. Therefore, this algorithm must be automatically self-
adapting to different gestures, users and working conditions.

In this paper, SVM will be used to create hyperplanes, which
are classifiers according to the samples collected from the
calibration step [22]. Afterwards, when a device is in use,
the current data can be arranged according to these classifiers.
The conventional SVM is too computationally intensive to
apply on a real-time calculation [23], [24]. However, the ges-
ture recognition of this device should respond rapidly and run
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Fig. 1. The conceptual schematic of wrist-worn gesture sensing with machine
learning for wearable intelligence.

in real-time continuously. Hence, we use Sequential Minimal
Optimization (SMO) instead of the typical SVM procedure
to optimize calculation procedures and achieve high speed
training. SMO is a quadratic programming algorithm for
efficiently solving the duality of Lagrange in SVM, which
can reduce computing significantly [23], [24]. With the help of
SMO, small-size real-time SVM system can be implemented at
relatively low cost. Furthermore, it is worth noting that single
SVM creates a binary classifier, while the number of recog-
nizable gestures should be more than two which is multi-class
classification. Therefore, we need more classifiers and a struc-
ture named Directed Acyclic Graph Support Vector Machines
(DAG SVM) to organize their relationship [24], [25].

Considering these aforementioned backgrounds, this paper
presents a system that aims to reconstruct gesture by mea-
suring a user’s tendon movements. Moreover, we aim to
demonstrate how the SVM algorithm can be tailored to a real-
time sensing system to improve the performance and make
the sensors smarter and self-adaptive. This paper is organized
as follows: A brief state-of-the-art of the recently reported
wearable intelligent techniques, especially gesture sensing, are
discussed in Section II. System design and programming,
including the key elements of the microcontroller, visual
interface and hardware design are introduced in Section III.
A detailed discussion of SVM, SMO, DAG and their imple-
mentation is presented in Section IV. Finally, the key outcomes
of the prototype and SVM are provided in Section V.

II. STATE-OF-THE-ART

The idea of wearable intelligence has been widely
explored in the past decades. Various emerging techniques
and methodologies provide a lot of solutions to sup-
port people’s living, especially for old and disable peo-
ple [2], [4], [6], [21], [26]-[35]. Recent advances in sensing
techniques for wearable intelligent devices are summarized
in Table 1. Below is a comparison between the different types:

(1) Electromyography (EMG) signals has been widely used
in clinical diagnosis and biomedical applications. Recently,
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it also has been developed robot-assisted purposes. The work-
ing principle is that an electrode array is attached to the arm
as an armband to detect the electrical signal controlled by
the nervous system in muscle [22], [26], [32], [33]. These
signals contain information about muscle movement such as
contraction and relaxation, which is valuable in wearable
system.

(2) Another similar example is electroencephalo-
graph (EEQG). Instead, the measured signal is collected from
brain and the electrodes are attached on the head or even
implanted for better accuracy. The signal is more sophisticated
and noisier. With this, people can control something by
concentration or even thinking [30], [36].

(3) Eye movement is also detectable by computation vision.
However, a wearable eye movement dictation requires a tiny
size of the system including a camera. Therefore, the cost
would be high in wearable domain [34].

(4) In recent years, the cost of pulse detection is acceptable
compared with other advanced sensing technologies. Among
the methods of pulse detection, Photoplethysmography has
been widely used in health monitoring and robot-assisted
living due to their low-cost optical techniques. The frequency
and intensity of the pulse contains a lot of information about
the user’s physical health and activities [31], [37].

(5) Gesture recognition always plays an important role in
the wearables field. Current approaches of gesture recognition
can mainly be classified into two categories: movement-sensor-
based and camera-based [8], [9]. Movement-sensor-based ges-
ture recognition is concerned with attaching sensors to a
user’s body to measure the motion, while camera-based gesture
recognition is based on the recent advances in computer vision
that can extract gesture from the environment through image
processing algorithms. With the various algorithm, it is also
useful for understanding many kinds of human activities.
A prime example is Microsoft Kinect [8], [38], [39]. This
method is not wearable but more widely used because of its
excellent features in flexibility and stability [8]. It is also easy
to interact with games and other stationary machines to achieve
a more intuitive interaction. However, an obvious weakness
is that the working space is limited by the camera [8].
For wearable and portable gesture recognition, the traditional
approach is a movement-sensors-based method which means
that some sensors are attached to the user’s fingers, which is
low-cost and stable. It has not been widely adopted because
the attachments are not convenient for the user [8], [9].

(6) Recent investigations have been exploring potential
gesture sensing approaches [11]. WristFlex presents a resistive
pressure sensor array embedded in a wristband for wrist-
worn gesture sensing. This device performs a result model
when the threshold of gesture is pre-recorded [11]. Their
research indicated that machine learning is necessary for
further improvement. Moreover, Digits tactfully sets up a
tiny IR camera on a wristband to bring camera-based gesture
recognition into wearable scenario, which is costly and com-
putational intensive [40]. Xue et al. [41]’s research introduced
machine learning into their capacitive-based gesture sensing
glove. Their result shows the enhancement of the gesture
sensing system after applying machine learning.
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TABLE I
COMPARISON BETWEEN STATE-OF-THE-ART SMART WEARABLE SYSTEMS
Measured Wearable m q e Machine
Target Package Sensor Type Stability Size Flexibility Learning Cost Reference
EMG Armband Electrode Medium Medium Medium Possible Medium [18, 22,28, 29]
Implanted . . .
EEG Headgear ];Tgc?rlz)ge Low Big Low Possible Very High [26, 32]
Eye . . .
Movement Glass Camera Medium Medium Low Less Very High [30]
Pulse Watch or Optical Medium Small High Less Medium [27, 33]
wristband Devices
Gesture Glove Flex Sensor High Big High Less Low [7, 8]
Camera (Not | ) o Medium Big N/A Less High (34, 35]
wearable)
Wristband Pressure . .
(WristFlex) sensor Medium small High SVM Low [10]
Gesture Tiny camera . )
(up-to-date (Digits) Camera Medium small Low Less High [37]
research in Capacitive . . . Adaptive .
the labs) Glove pressure High Medium High DAG High [38]
Wristband Capacitive Medium small High SVM and Low This work
pressure DAG
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Fig. 2. (a) Equivalent circuit and simulation model of switched capacitor. (b) The change in Vi, when Cgen = 260 pf at frequency of 10°Hz for V4 and V1.

The system presented in this paper is a combination of
sensing techniques and machine learning for wearable gesture
recognition. Compared with the other wearable smart devices
and gesture sensing system, this approach is low-cost, less-
attachment and pint-sized with acceptable accuracy. It is also
found to be more flexible and portable than camera-based
approach. People can use it to control a robot or device by
gesture [10]-[12], [40], [42]. For example, when a driver is
driving a car, he can easily switch the music by showing a
pre-recorded gesture.

III. SYSTEM DESIGN AND PROGRAMMING

To demonstrate the validity of the proposed models,
we designed a wearable capacitive sensor array embedded
in a PDMS based flexible and transparent substrate along
with its capacitance readout circuit and visual interface. The
sensors are commercial capacitive pressure sensors, whose
capacitance value indicates the pressure applied on the surface.
This section aims to introduce the system using the switched
capacitor method to measure the capacitance values [10].

A. Wearable Sensor Array and Switched Capacitor

In this paper, we designed five capacitive sensors as a sensor
array to measure the pressure distribution. The capacitive
sensor is more precise and able to capture the small pressure
difference [43]. However, since the changes in capacitance is

rather small, an accurate capacitance meter in the system is
essential.

To achieve that, we applied the switched capacitor method
on a high-speed microcontroller to acquire capacitance values.
Fig. 2(a) is a typical equivalent circuit of switched capacitor
in NI Multisim. Cgen is the capacitive sensor that needs to
be measured; Vg is the power source; Cin is a storage
capacitor which should be much larger than Cg,. During
each period, /) S1 is switched on firstly and Cgep, is charged
while Cjy; is disconnected, followed by 2) a reversal in
both S1 and S2. In this step, electricity is transferred from
Csen to Cipe to equalize the voltage [44]. After the two
steps, the voltage across the Cine (Vine) is slightly raised.
The time of the two steps is called Tsy. The electricity
is transferred during each time step, Qs/Tsw and Qint/Tsw,
can be approximated the same as the currents Iy and Ijy.
Therefore, the switches and Cgn, can be equivalent to a
resistor (Rgen) [44]. We have:

Is = Iint (1)
Qs _ Qinr (2)
Tsw Tsw
(Vs - Vsen) Csen _ (Vsen - Vim) Csen (3)
Tsw Tsw
(VS - Vsen) = (Vsen - int) (4)



LIANG et al.: WRIST-WORN GESTURE SENSING WITH WEARABLE INTELLIGENCE

Therefore,

T,
Csen =0 (5)

sen
The equivalent circuit is an RC circuit. During the Cip
and Cgep are charging and sharing, the Vi will exponentially
reach Vryg which is a value between GND and Vpp, and here
we take 0.68 Vpp. Eq. (8) shows the relationship between the
current ‘k’ value and Vin[44].

Vint — VDD(I _ef(kaw)/(Tsw/Csen)) (6)
Once the Vi, reaches VRy:
VRH — VDD(l_e_(kTszu)/(Tsw/Csen)) (7)
In(Vpp/(Vbp — VrH))
Csen = 8
sen k/ Cint ( )

As illustrated in Eq. (8), the Cin, Vpp and Vgy are
constant while k is the measured value so that the Cye,, can be
calculated [44]. It is worth noting that the Csep is not the actual
value of the capacitive sensor. It consists of the capacitive
sensor and parasitic capacitance (Cpy) that are introduced
by the circuit and microcontroller, which can be removed
by offsetting a particular value of Cp, at the testing stage.
However, it would not influence the result since the C is the
main variable indicating the change in force and the Cpy is a
constant [44].

The simulation result is shown in Fig. 2(b). The two pulse
voltage generators are used to generate the square signals
to control the two switches. Their configuration is a key to
this simulation. They should have the same frequency and
duty cycle but different phase by 180 degrees, to achieve
taking turns to switch. As can be seen in Fig. 2(b), The Vjy
increases at each time step and the frequency is the same as the
frequency of switches. By moving the nonius, we can get the
time of raising the Vi, to 2v (Tr) is 5.606ms. By changing
the Cgepn to 200 pF, the measured Tr’ is 5.833ms.

The Tr is related to the counter k in Eq. (8). As the period
of the switches is 0.01ms, The k value:

Tr 5.606ms

Period - 0.01ms
Tr _ 5.833ms

~ Period _ 0.0lms
According to the Eq. (8), we have:

—Vop —Vop
’ ln(VppvaH) ln(VDD*VRH)

ACsen = Csen - Csen = k - I

Ci’“ Cint

=588

=62pF

Where Vpp =3.3v; Cint = 1uF; Vrg =2V. Therefore,
the simulating result is almost the same as the actual value.

To implement the switched capacitor in a system to mea-
sure the capacitive sensor array, a microcontroller is used to
control the procedure we have described above. According to
the requirements, the microcontroller should have a superior
performance in terms of following parameters and they are
mentioned as; /) fast system clock to control the charging and
sharing, 2) small input leakage current to minimize the effect
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of unwanted charging and 3) the number of analogue input
pins. In addition, we will need at least two digital pins and
one analogue pin for each sensor.

B. Hardware Design

The hardware design of this prototype mainly includes a
wristband and circuit design. The wristband is vital for overall
performance and stability [10]. The design of wristband should
ensure the sensor array is properly attached to user’s body and
offer mechanical support to the sensors. The photo in Fig. 6(a)
shows a Polydimethylsiloxane (PDMS) based wristband with
five embedded sensors as the main body of the current proto-
type, which is low-cost, flexible, and commercially available.
It is an implementation of the simplified switched capacitor
circuit as an intermedia between microcontroller and sensor
array on a PCB [14], [21], [45].

C. Software Design

The software design consists of microcontroller and visual
interface. Due to the requirements of high-speed charging and
sharing electricity between the Cjy and Cgep, the microcon-
troller should be programmed by operating the register directly
instead of the library function. The code implements the
algorithm of the switched capacitor as described in Section II,
which is shown in Table II.

The visual interface is built for debugging and visualiz-
ing the performance of the switched capacitor method and
machine learning which is explained in detail in the next
section. In the current version, the interface is developed on
LabVIEW, a graphical programming platform from National
Instrument Company [46]. The Fig. 3 shows the user interface
which is developed under a Producer/Consumer structure that
mainly consists of five parts: initialization, serial communi-
cation, data processing, capacitance calculation and gesture
classification. The number of time step of charging and sharing
of each capacitor is read out from the microcontroller through
serial communication, followed by a mean filter before the
values are used to calculate capacitance. Afterwards, SVM
module will be called for gesture recognition. In order to train
the system by SVM, a set of gesture data need to be stored
as a labelled sample. Therefore, a calibration step where the
user will be required to show a certain number of gestures is
necessary to collect labelled samples before using it.

IV. MULTICLASS SUPPORT VECTOR MACHINE

After the system receives the values that represents the
pressure level at which they are attached, finding the relation
between the gesture and its corresponding pressure values is
the last step. Due to the concern that the tendon movement is
small and different from person to person, it is not practical
to find a fixed model for every user [10]. Even the same user
would have different result when the wristband is re-worn
or slightly moved [10].

To address this issue, a calibration step is essential to
adapt to different users and improve the accuracy. The recent
development in machine learning provides some useful
methods to train the system to classify the gestures. Support
Vector Machine is especially good at limited samples,
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TABLE II

ALGORITHM OF SWITCHED CAPACITOR FOR
CAPACITANCE MEASUREMENT

Pin states

Circuit state Action

D1 D2 AIN
1. Initialize - - - Initiation
2.Discharge LOW LOW input | Discharge

High-Z | High-Z | input | Avoid crowbar current
3. Charging

HIGH | High-Z | input | Charge

High-Z | High-Z | input | Avoid crowbar current
4. Sharing

High-Z | LOW input | Charge Csen and Cint
5. Comparing | High-Z | High-Z | input | If Vint<Vgy, go to step 3
6. Calculate LOW LOW input | Calculate Csen

Reconstruct result

| Five capacitance values

Wrist-worn Gesture Sensing System
Xiangpeng Liang

Microelectr: Group, University of Glasgow

Gesture
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| Support Vector Machine |
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.;| 03]
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Fig. 3. Front panel of the user interface developed on LabVIEW.
nonlinear and high dimensional pattern recogni-

tion [16], [17], [24], [47]-[49]. This project applies SVM
on binary gesture classification. Next, several binary SVM
classifier is organized by DAG to fulfil real-time multiclass
classification.

A. Support Vector Machine

SVM is a supervised machine learning model invented by
Vapnik [17]. It is widely used and has good performance in
less sample, non-linear and high-dimensional classification.
Creating a hyperplane that separates samples into two group
which are labelled as positive (4+1) and negative (—1) accord-
ing to their labels is its mechanism, at which the number
of dimensions depends on the number of features of the
target [17]. The main challenge is to find the support vectors
(samples with nonzero Lagrange multiplier) and optimal the
hyperplane and maximize the margin between the support
vectors of the two classes [24]. A two-dimensional hyperplane
and support vectors are shown in Fig. 4.

In this prototype, the number of dimensions is five since
there are five sensors attached. The classification of gesture
can be considered as a collection of binary classification of
each two gestures. Assuming that the training data set has

IEEE SENSORS JOURNAL, VOL. 19, NO. 3, FEBRUARY 1, 2019

Optimal hyperplane

Suppo‘rt Vectors

Support Vectors

Fig. 4. Two-dimensional SVM and its hyperplane.

P=50 labelled samples for five gestures (10 for each) and
each sample is donated by a vector X ; G =1, ..., P) which
consists of 5 sensor values. As an example of 5 recognizable
gestures, we have a training data sets (X;, Y;) where Y; is
their labels Y; € (1, ..., 5). When we are creating a classifier
that separates ‘class 1’ and ‘class 2°, named ‘ClassifierlV2’
by SVM, the two classes firstly should be assigned into two
poles, for example ‘class 1’ to ‘“+1’ and ‘class 2’ to ‘—1°,
then we have (X, y;) where x; € (1, ..., p) and y; € (+1, -1).
Here we take p =20 since there 2 set of gesture. Meanwhile,
suppose the hyperplane is:

WiX+b=0 )
And the classification function is:

f(X)=sgn(W'X +b=0) (10)
where X is the coming data in real-time operation, W7 is
the normal and b is a bias. They should also satisfy the
condition [17], [24]:

1—yi (WX +bp) <0 (1)

Therefore, we need to find a W and its corresponding b
maximizing the margin p in Fig. 4 [17], [24]. Assuming the
optimal W and b is W, and b, the margin between the support
vectors and hyperplane is:

2
[[Woll

p=2r (12)

Thus, the aim now is to minimize Wo under the constrain
of (7). Minimising ||W]| is equivalent to minimise 1/2 [|W]|2.
Create an equation:

1 1
OW)==|IW|*=-W'W
(W) =SIIWII" =7
The constrain (11) is remained. To deal with the opti-
mization under a certain constrain, Lagrangian multiplier is
introduced to this equation:

13)

1 P . p
L(W.b,o) = WI'W = W'D aiyizi+ > i (14)

i=1 i=l1
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(a) Flowchart of DAG SVM for 5 classes classification. Each dark circle represents a binary classifier created by SVM. The classification result will

be obtained by this procedure, which is part of (b) the data flowchart for implementing SVM in a real-time system.

Partially derivative the Eq. (14) with respect to W and b,
and equal to 0, we have:

P
W= ayixi (15)
i=1
P
D aiyi =0 (16)
i=1
Then
W(a) = L(W,b,a)
= Z Zzala]}ﬁ}’j(xz) X] (17)
i=1 i=1 j=I

Here we also need to take Karush-Kuhn-Tucker (KKT)
condition into consideration and introduce slack variables &
and regularization parameter C to weight the effect of those
support vectors that may be error and cannot satisfy the KKT
conditions [17], [18], [24]. The constrain now are:

0<a;<C
p
> iy =0
i=1

Therefore, the problem now is to find the optimal «; to
minimize the W(a).

(18)

19)

B. Sequential Minimal Optimization

SMO is an efficient algorithm to solve the duality of
Lagrange [23], [24]. As known from above, after each iteration
we will have an improved hyperplane and according to KKT
conditions, three kinds of x; which are (/) samples that have
been correctly classified by the current hyperplane (a; =0 and
yi (WIX 4+bo) > 1), (2) support vectors (0 < o; < C
and y; (WTX +b0) = 1) and (3) samples between the two
borders (a; = C and vy; (WTX +b0) = 1). However, there
might be some samples do not satisfy the KKT conditions,
which means they need to be adjusted. There might be many
o; need to be adjusted. The idea of SMO is that select two
of them (aj and ay) by heuristic selection and adjust them
according to their old value and margin, whilst the other a;
remain unchanged [23], [24]. From Eq. (16) we can obtain the
relationship between the new and old values:

old old

ai®’yr +ayyr = afy1 + a3y, =€ (20)

Where € is a constant. We can replace aj®’ with aj¢"
in W(a), followed by taking the derivative of a5°* and equal
to 0. We can find the optimized a5**:

Ey—-E
gew = agld — M (1)
n
Where E; = WI' X 4 b,y — y; and 5= 2x1x> — 52— 52
The range of a5*" is:
if yi #y2 L =max (0 agld ai’ld) ,
ld _ _old
H = min(C, C + a3 ai"®) 22)

if yi =y» L =max (0, agld + a{)ld —
H = min(C, a”ld +a?ld)

C),

ew new

After getting a%°”, aj*” can be calculated easily without
considering the range which has been done for a;“. The
next step is to update the normal W with Eq. (15). However,
we have two new ‘b’ because there are two new KKT
constrains with updated a. Respectively, we choose (/) by if
0 < af® < C and (2) by if 0 < a5 < C. Otherwise
take their average. So far, a SMO cycle is completed. Keep
running it until all samples satisfy KKT. The outcome of the
SMO operation is a W and b. Put them into Eq. (10) we will
have a classifier [23], [24].

Additionally, it is worth noting that we always
mention Kernel function and non-linear classification in
SVM [17], [18], [24]. SVM has a good performance in
non-linear classification by mapping the non-linear date into
high-dimensional feature space, where they can be linearly
separated, using suitable kernel function such as polynomial

.o L———d . .
kernels (K(x;,x;) = (x;x; +1) ) and the Gaussian radial

- -2
basis function (K(xj, x;) = exp(—%)) [24]. To imple-
ment it, we can replace each multiplying x vector, such
as Xx1X», with kernel function, instead [23]. However,
the experiment shows that the wrist-worn gesture data can be
classified linearly in their space without mapping, and extra
computation is required for kernel.

C. DAG SVM

A single SVM is only able to do binary classification. How-
ever, in this project, we need multi-class classifier since there
are a certain number of gestures that need to be recognized.
The general idea is to create several binary classifiers and
realise multi-class classification by organizing their relation.
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This section introduces a solution named Directed Acyclic
Graph Support Vector Machines (DAG SVM) [24], [25].
Fig. 5(a) illustrates the fundamental structure of DAG for
5 gestures classification. Each circle represents a classifier
created by SVM, and it is a Boolean function indicating the
closest side of the current data is closer. When the system is
doing classification, the route depends on the last result. The
number of classifiers is (N(N-1)/2) and (N-1) of them have
been called, where N is the number of categories [25]. This
method is fast and has no overlap and unclassified situation.
The disadvantage is the incorrect classification cannot be
corrected. For example, if the first classifier does not work
properly, the route will never go back, and this mistake will
be continued [25].

D. Implementation

Fig. 5(b) illustrates the procedure and structure of machine
learning in the current system. Firstly, the pre-recorded
labelled samples are collected in calibration step at which the
user will be required to show a certain number of gestures
and system will store the corresponding data. In the current
prototype with five attached sensors, the maximum amount
of recognizable gesture is five whilst three is much more
stable and accurate. Put these samples into SVM algorithm
and calculate a W and b for every two gestures and use
Eq. (10) to create decision hyperplane which is a classifier.
The DAG consists of (N-1)/2 classifiers from SVM. When
there is a new X representing the real-time value comes
to the DAG flowchart, it will be classified to its most
likely type. With this, the gesture is reconstructed and can
be used to control something like prosthesis hand in this
paper.

V. RESULTS AND DISCUSSION

Experiments were carried out in terms of the performance
of pressure sensing and machine learning. We implemented
the switched capacitor method on ATSAM3XSE to mea-
sure the capacitance. The fastest charging and sharing fre-
quency it can achieve is 10° Hz with register programming,
while 26,315Hz with Arduino library. The error regarding
a change in capacitance can be kept within 0.3 pF at sta-
tic state for a 230 pF capacitor with 25Hz sampling rate.
We attached five capacitive pressure sensors on the wrist and
applied pressure. The five pressure sensors are commercially
available, with the range of 230 pF - 235.5 pf. However,
the indicators in the system show that the values and ranges
are much larger than the rated value in the manual when
they are attached to a wrist and applied pressure (around
320 pF -360 pF). The reasons are sphygmus, small hand
movement and the parasitic capacitor from the circuit and
human skin. This issue does not have unsatisfied effect as
long as the stability and repeatability of the sensors’ output
is acceptable because the SVM algorithm will adjust itself to
the new range automatically. Subsequently, we can see a clear
difference in the five capacitance values between each gesture
(Fig. 6(b) and Fig. 6(c)). Following that we put these data into
SVM along with their labels. The samples are five-dimensional
since there are five sensors, but the five-dimensional data
is non-displayable in the three-dimensional world. Therefore,
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Fig. 6. (a) The five capacitive sensors on the human body, and (b) The five
capacitance values change by changing gesture over time. (c¢) The change in
gesture results in the capacitances variations over time.

we map them to three-dimension space to display them in the
figures. Fig. 7(a) shows a classifier created by SVM algorithm
and the two set of labelled samples. The gap between the
two sample groups is considerably large for hyperplane to
ideally separate them, which means the theoretical accuracy
can reach 100%. Based on this, three classifiers are created
for every two gestures, as shown in Fig. 7(b). Subsequently,
the logical relationship of the three classifier and data flow has
been organised according to the DAG structure (Fig. 5(a)).
With the current proof-of-concept prototype and the selected
gestures, the accuracy of classification is approximately 90%
with 25Hz refresh rate for three gestures classification.
As can be seen in the Fig. 6(c), the first half of the
third gesture (rock) performs a relatively slow drop and
leads to a short misclassification due to the retraction after
stretch of PDMS substrate, which is a shortcoming of the

porotype.
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Both of the related works, WristFlex in [11] and
Xue et al. [41]’s glove in, perform high accuracy (>80% and
>95% respectively) while this prototype reaches 90%. Under
the acceptable accuracy, the significant merit of this work
is the combination of less on-body attachment and machine
learning. Moreover, Xue et al.’s device with intensive signal
processing, data fusion and adaptive DAG comprises of a
glove, wristband, EMG device etc. The main difference
between this work and WristFlex is the capacitive pressure
sensor that is more sensitive to human skin and real-time DAG
are applied in this work. On the other hand, the drawback of
the current prototype is the limited number of recognizable
gestures and the design of mechanical support (wristband)
compared with the related works.

VI. CONCLUSION AND OUTLOOK

This work has successfully shown a complete system with
accurate capacitance measurement and real-time multiclass
classification. This prototype has unique potential in the
wearable system domain. It also demonstrates how recent
advances in machine learning make a sensing system smarter
and provide further functionality in comparison to traditional
sensing systems. It could be a good interface between humans
and smart devices such as smartphones, watches, smart homes,
high-tech sports equipment, etc.

However, the main drawback is that the performance highly
relies on the stability and repeatability of the wristband which
is easy to break. Therefore, future work is required to explore
different materials for flexible pressure sensors, which could
be embedded into a flexible substrate along with their circuit.
On the other hand, we will also investigate applying Principal
Component Analysis (PCA) algorithms on the labelled sam-
ples to remove the less-relevant features in order to reduce the
samples’ dimension and save computing resource further.
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