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 

Abstract—This paper presents a framework based on multi-layer 
bi-LSTM network (bidirectional Long Short-Term Memory) for 
multimodal sensor fusion to sense and classify daily activities’ 
patterns and high-risk events such as falls. The data collected in this 
work are continuous activity streams from FMCW radar and three 
wearable inertial sensors on the wrist, waist, and ankle. Each 
activity has a variable duration in the data stream so that the 
transitions between activities can happen at random times within 
the stream, without resorting to conventional fixed-duration 
snapshots. 

The proposed bi-LSTM implements soft feature fusion between 
wearable sensors and radar data, as well as two robust hard-fusion 
methods using the confusion matrices of both sensors. A novel 
hybrid fusion scheme is then proposed to combine soft and hard 
fusion to push the classification performances to approximately 
96% accuracy in identifying continuous activities and fall events. 
These fusion schemes implemented with the proposed bi-LSTM 
network are compared with conventional sliding window approach, 
and all are validated with realistic “leaving one participant out” 
(L1PO) method (i.e. testing subjects unknown to the classifier). The 
developed hybrid-fusion approach is capable of stabilizing the 
classification performance among different participants in terms of 
reducing accuracy variance of up to 18.1% and increasing 
minimum, worst-case accuracy up to 16.2%. 
 

Index Terms—Radar sensing, multimodal sensing, Recurrent 
Neural Network, human activity recognition, continuous activity 
pattern, hybrid fusion  

I. INTRODUCTION 

In many Western countries and China, the increasingly aging 
population causes additional challenges to provide healthcare 
for managing multiple chronical conditions (multimorbidity) 
and provide timely support in case of critical events such as a 
fall [1], [2]. Falls represent a leading cause for injuries and 
discomfort, both at a physical and psychological level, with life 
expectancy after the event correlated with the time to receive 
help. Beyond the detection of critical events, the continued 
analysis of daily routines and activity patterns is also significant 
to identify possible changes and anomalies that may be related 
to worsening health conditions. These might go unnoticed by 
the subjects themselves until the symptoms are too severe to 
require hospitalization and acute treatment. 
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To enable this continued and personalized healthcare 
monitoring in home environment, different sensing 
technologies have been suggested in recent years, in the context 
of human activity recognition and fall detection [3]. These 
include wearable sensors [4]–[6], image and video sensors [7], 
[8], ambient sensors [3], and radio frequency and radar sensing 
[9]–[12]. In particular, radar has attracted considerable interest 
in the sensing research community thanks to its contactless 
capabilities (whereby the end-user does not need to wear, carry, 
or interact with any additional device, which can help for 
acceptance and compliance), and to its lack of plain images or 
videos to be recorded (which can help for potential issues of 
privacy). Hence, numerous studies in the literature have 
investigated the use of radar sensing for human activities 
classification, personnel recognition, and presence sensing, 
even in through-the-wall conditions [10]–[16]. The radar 
information can be represented in a 3D space, containing range 
(physical distance), time, and velocity (measured through the 
Doppler effect), sometimes referred to as “radar cube” [17]. 
Among these different domains of radar information, micro-
Doppler is typically used, exploiting the small modulations on 
the received radar signal caused by “micro-motion” of 
individual body parts (e.g., limbs, torso, head) [18]. 

The radar information, particularly micro-Doppler data, can 
be degraded during the tangentially movement of target to the 
radar line-of-sight or out of the antenna beam. Therefore, the 
use of additional radar nodes (multistatic/distributed radar) or 
additional heterogeneous sensors avoid any data degradation in 
a multimodal framework [19]–[22]. This enables to exploit the 
complementary advantages of different sensing modalities, 
combine information at the most relevant level (e.g., at the 
signal, feature, or decision level), and capitalize on a plurality 
of sensors that are widely available in modern and smart living 
environments. 

Neural network-based classification methods, in particular, 
CNN (Convolutional Neural Network) and autoencoders have 
attracted a lot of attention and showed to generally outperform 
conventional classifiers in terms of classification accuracy, at 
the price of additional training complexity. H. Sadreazami et al. 
[23] proposed a CNN-based Capsule network to identify the fall 
accidents through ultra-wide band radar and the results 
indicated that it over performed SVM with different kernel 
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functions and regular CNN. F. Luo’s paper [24] also pointed 
that SVM plus 2-D PCA (Principle Component Analysis) and 
CNN (RadarNet) showed better performance than other 
classifiers in activity classification, subject recognition and 
outdoor localization. S. Gurbuz et al. [25] compared the 
walking pattern recognition of three different radar sensors and 
one sonar using a broad range of features. However, these 
research works focused on binary or small number of classes’ 
problem, and the human motions they collected and analyzed is 
a X-s observation rather than longer, continuous sequence data. 

In this paper, we propose a novel framework for information 
fusion of radar and wearable inertial sensors data based on a 
bidirectional Long Short-Term Memory (bi-LSTM) neural 
network. This expands our previous research in [22], [26] by 
considering more challenging and realistic continuous activities, 
i.e., activities that are performed one after another with random 
duration and transitions, rather than fixed-length, separated, 
snapshots for each activity. In this case, radar and wearable 
sensors data are processed within the recurrent LSTM neural 
network as a continuous-time series, the sequence of data, 
rather than as individual images, as typically done in 
convolutional neural networks. Rather than considering radar 
data [27] or wearable sensors data [28] in isolation, we 
investigate soft and hard fusion schemes for the data, as well as 
a novel hybrid approach that is shown to increase the overall 
accuracy while reducing the variance of the results across 
different test subjects. 

The remainder of this paper is organized as follows: Section 
II introduces the experimental setup and describes the 
continuous data collection. Section III discusses the data pre-
processing, feature extraction, and selection. Section IV 
presents the results of the considered classification approaches. 
Finally, section V summarizes the paper and draws conclusions 
touching on future work. 

II. EXPERIMENTAL SETUP AND DATA COLLECTION 

The data was collected with 15 male and 1 female 
participants aged 21-35 years in a common room at the 
University of Glasgow, as shown in Fig. 1. The participants 
were asked to simulate daily activities in the activity zone in 
front of the radar sensors, approximately 3m × 2.2m.   

 
Fig. 1. View of the experimental setup for recording data: common room at 
the University of Glasgow, with furniture and clutter nearby. 

An FMCW radar system and three wearable sensors were 
used to record the activity data; notably, the FMCW radar 
operating at 5.8GHz with 400MHz instantaneous bandwidth 

and 1ms duration and three wearable IMUs (Inertial 
Measurement Units) placed on the participants’ bodies with 
sampling rate at 50Hz. Each IMU is comprised of one tri-axial 
accelerometer, gyroscope, and magnetometer; it can provide 
nine degrees of freedom by simultaneously reading the target 
experienced acceleration, angular speed, and magnetic field 
variation. The three sensors were placed on the wrist, waist, and 
ankle of the subject with a flexible strap. 

The data collection trigger of each IMU sensor is 
synchronized through a bespoke Wi-Fi router to ensure 
simultaneous data collection of the three sensors; the radar data 
were also collected simultaneously, with a manual alignment of 
the radar trigger with respect to the wearable sensors using a 
MATLAB script. The data include six human activities, namely 
walking (A1), sitting on a chair (A2), standing up (A3), bending 
to pick up an object (A4), drinking a glass of water (A5) and 
simulating a frontal fall (A6). These activities are shown in the 
sketches in Fig. 2. The top row presents separate activities, 
collected as separate files with fixed durations and breaks in 
between. The following three rows show the continuous 
activities, performed one after the other with random duration 
and transitions. The overall duration of a single sequence of 
activities was 35 seconds, and three different types of sequences 
were considered, with a different order of the six activities, as 
shown in Fig. 2, to manage the classification of different 
transitions.  

For each of the 16 participants, the 3 different sequences of 
continuous activities were recorded, for a total of 48 radar 
recordings. The data for each recording have 28 degrees of 
freedom, as there are 3 IMUs (wrist, waist, ankle) with 3 sensors 
(accelerometer, gyroscope, and magnetometer), each with 3 
axis (X-Y-Z) data, plus the radar data.  

 
Fig. 2. Sketch of the human activities recorded - top: snapshot mode, bottom: 
continuous activity mode from sequence 1 to 3. 

III. DATA PREPROCESSING AND FEATURE EXTRACTION 

A. Radar Signal Processing 

The motivation of the pre-processing is to generate low noise 
data for feature extraction and further classification. For radar, 
three steps were followed. First, a FFT (Fast Fourier Transform) 
was applied to the raw data matrix to convert it into Range-
Time domain. After that, a sharp notch filter was utilized to 
remove background static clutter such as furniture and walls, 
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assuming cut-off frequencies of ±0.0075Hz. This procedure 
also highlighted the range bins containing the target signature, 
on which Short-Time Fourier Transform (STFT) was applied 
with a 0.2s Hamming window and 95% overlapping to generate 
micro-Doppler signatures. 

B. Inertial Sensor Data Processing 

Some DC components exist in the inertial sensor data, for 
instance, the gravity effect when the accelerometer tries to 
measure the acceleration and the earth original magnetic field 
strength on top of the magnetic field strength changes due to the 
activities. Apart from this, noise from outside vibration and 
tilting could also influence the performance of inertial sensors. 
To address this, a simple bandpass filter was used to mitigate 
the DC components and human-induced vibrations. Prior to the 
filtering, a FFT was required to plot the spectrum for selecting 
the right cut-off frequencies, which were set at 0.1Hz for the 
lower frequency band and 25Hz for the higher band.  

C. Feature Extraction  
TABLE I LIST OF RADAR FEATURES 

Radar features 
Number 

of 
features 

Mean, standard deviation, skewness, and kurtosis of the 
centroid of the Doppler spectrogram 

4 

Mean, standard deviation, skewness, and kurtosis of the 
bandwidth of the Doppler spectrogram 

4 

Two-dimensional mean, standard deviation, skewness, 
and kurtosis of the whole segment of the spectrogram 

4 

Mean and standard deviation of the first left and right 
eigenvector of the SVD decomposition of the 

spectrogram 
4 

Sum of pixels of the entire left and right matrices 2 
Mean of the diagonal of the left and right matrices 2 

 
TABLE II LIST OF INERTIAL SENSOR FEATURES 

Time domain # Frequency domain  # 
Mean 

Variance 
Standard Deviation 

Skewness 
Kurtosis 

RMS* (Root Mean Square) 
MAD (Median Absolute Deviation) 

Inter-quadrature Range 
Range 

Minimum 
25th percentiles 
75th percentiles 

Autocorrelation(Mean,STD) 
Cross Correlation(Mean,STD) 

Average of the absolute value of 
each axis 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
1 

Spectral Power 
Coefficients Sum 
Spectral Entropy 

9 
3 
3 

Number of features 43 Number of features 15 

 For the radar data, features successfully used in our previous 
work were used [22], [26]and are listed in Table I. These 
include moments and statistical descriptors extracted from the 
centroid and bandwidth of the spectrogram matrix, as well as 
from its SVD (Singular Value Decomposition) form. 

For the inertial sensors, 58 features listed in Table II were 
used. These can be divided into time and frequency domains 
[29], where the former includes various statistical moments of 
the time series of wearable data, and the latter considers power 
spectral densities in different bands and cross-correlation across 

data from different axes (e.g., X and Y accelerometer). 

D. Feature Selection 

Fusing features from the radar sensor and the three wearable 
sensors yield 194 features (58 x 3 for the wearables, plus 20 for 
the radar). To decrease the computational load and select only 
the most relevant and informative features, feature selection is 
applied [30]. In particular, in this paper, we use Sequential 
Backward Selection (SBS) in conjunction with a quadratic 
SVM (Support Vector Machine) classifier, whereby the 
selection process starts with all available features and 
progressively drops some until this yields a performance 
improvement. A threshold of 50 remaining features was chosen 
as hard stop criterion for the algorithm, approximately 25% of 
the initial set. In Fig. 3 the classification accuracy as a function 
of the number of features dropped in the SBS process is shown. 
Approximately 93% accuracy is achieved by selecting 57 
features (i.e., dropping 137 features), where 46 features are 
from IMU, and radar contributes the remaining 11. The process 
yields an increase in accuracy of about 3.1% compared to using 
all features, and 60% saving in computational time. 

  
Fig. 3. Sequential backward selection for the continuous activity stream. 

IV. CLASSIFICATION RESULTS FOR CONTINUOUS ACTIVITY 

PATTERN 

A. Sliding Window Method 

To process continuous data, a conventional sliding window 
method can be used to divide them into shorter segments for 
feature extraction and classification. For this, window sizes 
between 2s to 5s with a 0.5s interval and overlap from 0% to 
90% were tested, considering the feature fusion of FMCW radar 
plus each IMU sensor (wrist, waist, and ankle) separately. The 
highest overlapping was set at 90% not to increase too much the 
number of segments over which feature extraction and 
classification had to be performed. “Leave one participant out” 
(L1PO) cross-validation method was used, whereby the SVM 
classifier was trained with data from 15 participants and tested 
with data from the 16th unknown subject, with the process 
repeated 16 times for all available people and data, and 
averaged. This cross-validation method is much closer to the 
real-world application scenario compared to traditional ‘Hold 
out’ or ‘k fold’ partition methods because there is no 
opportunity for the classifier to be trained with data from the 
actual end-user. The results are reported in the heat maps in Fig. 
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4. For the radar-only case, the accuracy reaches 83.82% with a 
window size equal to 4s and 90% overlap, whereas the fusion 
of radar and wrist IMU features yields the best performance out 
of the three different combinations. The improvement is 
approximately 6% when using a 3.5s window and the same 
overlapping factor. Generally, it appears that the classification 
accuracy is proportional to the overlapping factor, and the 
optimal point is typically with a medium-sized window.  

Fig. 5 and 6 show the confusion matrices for the cases of the 
radar only, and radar plus wrist IMU fusion, where the column 
elements represent the predicted class and the row elements 
represent the true class. For the FMCW radar, the main 
misclassification is between ‘A4’ and ‘A5’, so that over 15% of 
the activity ‘picking up an object’ have been misclassified to 
‘drinking water,’ and vice versa. Besides that, the activity ‘A2’ 
and ‘A3’ do not have high sensitivity, and some minor errors 
occur between the most significant class ‘A6’ (fall) and other 
activities. Fig. 6 shows the improvement obtained by 
combining the IMU on the wrist and radar at the feature level. 
The sensitivity of all the classes shows an improvement from 
1.2% to 21.7%, and the misclassifications between activities are 
reduced to a lower level. However, there is still scope for 
potential improvement, such as the classification rate in class 
‘A2’ and ‘A4’, and the false alarms in ‘simulating fall A6’.  

B. Bi-LSTM-based Deep Neural Network 
LSTM [11], [12] is a type of recurrent neural network (RNN) 

known for the capability of modeling time-series of data. The 

basic component of the architecture is a simple LSTM cell [31] 
containing three gates, namely, input gate, forgot gate, and 
output gate. The “input gate” decides which information to 
remember, and the “forget gate” selects the information to drop. 
The “output gate” is a process to evaluate which input in the 
memory could become the output. The LSTM network can 
provide a prediction at each time unit, potentially generating 
predictions as the sensors are sampling and generating the data 
over time. 
 

 
Fig. 5. Confusion matrix of radar for a continuous activity pattern using a 
sliding window. 

  
Fig. 4.  The surface plot of the relationship between sliding window size, overlapping factor and classification accuracy (left above: radar-only, right above: radar 
and wrist IMU fusion, left below: radar and waist IMU fusion, right below: radar and ankle IMU fusion). 
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Fig. 6. Confusion matrix of wrist IMU and radar fusion for continuous activity 
stream using a sliding window. 

TABLE III THE HYPER-PARAMETERS OF LSTM NETWORK TRAINING 
Hyper-parameters  Radar Wearable Sensors 
Training: Validation: Test 14:1:1 14:1:1 
SGD Optimizer  Adam Adam 
Decay  0.9 0.9 
Initial Learning rate 1e-3 1e-3 
Learning rate drop period  200 100 
Number of input dimension  8 9 
Number of bi-LSTM layers 2 2 
Number of dropout layers 2 2 
Dropout probability  0.5 0.5 
Training epochs  400 200 
Validation frequency  Once per epoch  Once per epoch 

 
In terms of the time-dependent classification task, both past 

and future input features for a specific period can be useful 
information. Hence, the bi-LSTM layers proposed by Graves 
[32], [33] are chosen, as they can learn the backward and 
forward long-term dependencies between small timestamps of 
the data sequence. Bi-LSTM network is comprised of a 

sequence input layer, multiple bi-LSTM layers and one soft-
max layer. It takes sequence data (e.g. continuous speech 
signals, real-time human motions) as inputs, the input 
dimension is x×τ, where x is the sensor data with different 
degrees of freedom, and τ is the time bin (in our case, 1741-time 
bins from 35s human motions data). The output dense layer, 
also referred as a soft-max function, turns the output vector 
from the network into an equal-length probability matrix. The 
class yielding the highest probability is chosen to be the 
prediction label. This numbers in this matrix are also known as 
scores or confidence levels of the classifier.  In our application, 
this type of network is potentially more effective than regular 
RNNs to deal with different orders of the same activities in a 
given data frame to classify.  

To address the limitation of the conventional sliding window 
method and increase the classification performance, a double 
layer Bi-LSTM network architecture is utilized to classify 
continuous activities patterns and validated with L1PO method. 

In the previous section, we have shown that the IMU on the 
wrist provides the most accurate results when used with radar. 
Thus, this is selected, and the other two IMUs (waist and ankle) 
discarded. A validation dataset for the Bi-LSTM networks is 
also selected to support the training process. This contains all 
the sequences of activities from one participant, and it is used 
to search optimal hyper-parameters and to fine-tune after the 
initial training. To follow L1PO approach, the data from 14 
subjects are used for training and the data from the remaining 
16th subject for testing, with the process repeated for all subjects 
(training to testing ratio 14:1). The other hyper-parameters are 
listed in Table III for the radar and the wearable network, 
respectively. The initial training rate is fixed at 0.001, and the 
learning rate automatically drops to 10% of the original value 
when the training iterations reach half of the total. Each bi-
LSTM layer is followed by a dropout layer with 0.5 dropping 
rate for preventing overfitting.  

 
Fig. 7.  Training progress of IMU and radar using double-layer bi-LSTM (top-left: training and validation accuracy of inertial sensor, top-right: training and 
validation accuracy of radar, bottom-left: training and validation loss calculated by cross entropy for inertial sensor, bottom-right: training and validation loss 
for radar. 
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Fig. 8. (a). The confusion matrix for a bi-LSTM network using radar (b).using 
wrist IMU (c). using equal weight fusion. 

 
The features used as inputs of the proposed Bi-LSTM are 

metrics extracted from the original radar spectrograms and 
wearable data as a function of time. For the radar sensor, 
Doppler centroid and bandwidth are considered, together with 
upper and lower envelopes, mean, standard deviation, 
skewness, and kurtosis calculated for each time bin of the 
spectrogram [34], [35]. For the Wrist IMU, the data include 9 
features with the X, Y, and Z axes data of accelerometer, 
gyroscope, and magnetometer. Fig. 7 shows the training and 
validation accuracy and loss curves as a function of epochs. The 
network processing IMU data converged more rapidly (about 

200 epochs) than the corresponding network processing radar 
data (400 epochs). The validation accuracy achieved 90% in 
both cases, whereas the IMU training accuracy was almost 
100% and radar one was around 98%. 

Fig. 8 (a)-(b) present the confusion matrices of using radar 
and wearable IMU separately, where the average accuracy for 
‘leaving one participant out’ method is 88.9% and 89.1%, for 
radar and wrist IMU respectively. The main misclassification 
for radar is between ‘picking up an object’ and ‘drinking water,’ 
whereas 10% of ‘sitting’ patterns are misclassified to ‘walking’ 
and 8.6% ‘standing’ are misclassified to ‘sitting.’ For the IMU 
network, approximately 15.7% of fall events are not correctly 
detected, and about 10.3% of other activities trigger false 
alarms. It appears that the current activity can be often confused 
with the last and next activities, as a consequence of using a bi-
directional LSTM based network where the prediction is 
influenced by the “memory” of previous and successive events. 
This causes an offset in the sequence of predicted activities with 
respect to the ground truth, or in other words, an offset 
prediction of the position of the transition between activities. 

C. Soft Fusion with Radar and Wearable IMU using LSTM  

Fusion at decision level between the results of the radar and 
wrist IMU networks is then considered to improve results 
further. Each classifier yields a scoring matrix as output of the 
Softmax layer in terms of posterior probabilities to characterize 
the confidence level that the network chooses a specific class as 
the correct output class. Soft fusion [26], [36] is a process to 
generate the new prediction label by incorporating the scores 
from separate sensors, in this case, radar and wrist IMU. The 
following Eq. 1 summarizes the weighted combination of the 
two sensors’ scores mathematically, where WR denotes the 
weight on radar and WI is the weight related to the inertial 
sensor. Radar and wrist IMU are set initially to the same weight 
(WR=WI). SR (τ, c) is the radar score matrix for prediction 
corresponding to time bin τ and class c, whereas SI (τ, c) and SF 

(τ, c) are for the inertial sensor and fusion respectively.  

          ( , ) ( , ) ( , )F R R I IS c W S c W S c           (1)  

 Soft fusion benefits from a low computational load and can 
still provide significant improvement. In our case, as shown in 
the confusion matrix in Fig. 8(c), the average classification 
accuracy increases to 94.7%, compared to using wrist IMU or 
radar individually, with an improvement of approximately 
5.5%. The performance of each class is boosted by the fusion, 
especially the fall detection rate, where the gain is around 
10.9%.  Apart from that, the misclassified events between two 
neighbour classes are in general reduced. Hence, soft fusion 
appears to increase the capability of recognizing the transitions 
between activities. 

D. Hard Fusion with Radar and Wearable IMU using LSTM 

Hard fusion [37] uses the prediction results from radar and 
wrist IMU directly, rather than combining and weighting their 
confidence levels. Typical hard fusion approaches include 
majority voting (MV), recall combiners (RC), and Naïve Bayes 
(NBC) combiners [26], [37]–[39], where majority voting works 
well only when there is an odd number of classes to avoid 
decision clashes. Recall combiner is an optimal combiner, 
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where the possibility of a certain class being selected as the true 
class P(Ck|d) is derived by the Eq. (2). The sensitivity of the 
class of interest is separated from the confusion matrix, and the 
remaining classes are considered as one ‘united class’. 
Meanwhile, it is assumed that the misclassification is shared 
equally among those remaining classes. To conclude, the output 
probability of RC depends on the sensitivity or recall level of 
each classifier. 

   
1

( | ) ( )
1k k

mk
k k mk

m M m M

p
P C d P C p

C
  


  

     (2) 

Assume that a classifier ensemble contains N distinct 
classifiers and the number of class to be identified is equal to C. 
k is an integer index between 1 to C   to indicate the class of 
interest (e.g., C1 is class 1). P(Ck) denotes the number of 
classifiers which support class Ck as the true class in terms of a 
supporting rate. 𝑀ା

௞  represents the classifier ensemble which 
support class Ck, whereas 𝑀ି

௞ denotes the classifier ensemble 
which support other classes, m is the classifier ID. If the 
classifier supports class Ck, then the output will be the product 
of P(Ck) and the confusion matrix element pmk (classifier m, row 
and, column k). Hence in this case, pmk is the recall of this class, 
otherwise, P(Ck) is multiplied with the shared misclassification 
ଵି௣೘ೖ

஼ିଵ
. 

RC has a prominent limitation, i.e., the fact that the 
misclassification probability is divided equally to each class, 
whereas in real testing scenarios, the misclassification always 
varies for each class. In other words, the contributions of 
different classes to the total classification error are not equal. 
To address this, a robust Naïve Bayes combiner is exploited to 
consider the actual misclassification rates for each class. The 
output possibility of every class is associated with the recall of 
the interested class and the misclassification between the class 
chosen by the classifier and the class of interest; it is shown in 
Eq. 3. 

 

, ,
1

( | ) ( )
m

N

k k m C k
m

P C d P C p


    (3) 

The output is the product of the classifier supporting rate and 
the element of the confusion matrix (classifier m, row Cm and 
column k), where Cm refers to the prediction label of classifier 
m.  

Theoretically, RC and NBC are all optimal combiners. The 
performance of the RC is proportional to the number of classes 
and number of classifiers, whereas the gain of NBC is not as 
high as RC. Besides that, NBC is not suitable for high noise 
level data, and the computational intensity in terms of the 
number of parameters per observation for NBC (N*C2+C) is 
much higher than RC (N*C+N) [37].   

E. Proposed Soft and Hard Fusion Integration Method 

In addition to the soft and hard fusion schemes described in 
the previous two sections, a novel approach is proposed and 
used in this paper to leverage the strengths of both. This method 
uses the soft fusion results as an ‘additional classifier’ for the 
basic architecture of the recall and Naïve Bayes combiners. 

Furthermore, the classification results of weighted soft fusion 
are used to implement more “virtual classifiers” for the hard 
fusion, where the information ratio of radar and IMU in these 
classifiers is varied from 1:0.1 to 0.1:1. The “virtual classifiers” 
are used to leverage performance advantages of different fusion 
ratios with data from the original two classifiers (for radar and 
wrist IMU), but saving training and computation time and effort 
that new real classifiers would require. 

Table IV summarizes the number of classifiers used together 
as an ensemble at the input of the hard fusion. The conventional 
hard fusion using the predictions from the radar and wrist IMU 
classifiers has length 2. The proposed method A adds the soft 
fusion results as the third classifier, hence increasing L to 3. The 
proposed methods B and C includes additional “virtual 
classifiers” by adding more soft fusion results calculated with 
different ratios of weights for the two sensors. In the former 
case (B), the step in changing this ratio is 0.2. Hence, 10 
additional classifiers are added for a total of 13. In the latter 
case (C), the step in changing the soft fusion ratio is 0.1. Hence, 
18 additional classifiers are added for a total of 21 in the hybrid 
fusion approach. The number of joint classifiers is listed in 
Table IV.  The ratio needs to be chosen carefully, attempting to 
reach an optimal balance between covering all the necessary 
fusion ratios to leverage on information from radar and wrist 
IMU, but without generating too many additional classifiers 
that may not be providing useful information. The values of 0.1 
and 0.2 were selected through a series of empirical tests.  

Fig. 9 shows the average classification performance with 
respect to the number of different classifiers used as inputs of 
the hard fusion, as shown in Table IV; note that the X axis is in 
logarithmic scale. The results are generated using 'leaving one 
participant out' (L1PO) cross validation. It can be seen that the 
Naïve Bayes combiner outperforms the recall combiner for all 
cases, even if the difference in absolute terms is small. The 
optimal fusion result is the proposed method B (see table IV) 
with NB combiner, yielding approximately 95.8% accuracy. 
There is no further gain in increasing the number of classifiers 
beyond 13, but the most significant improvement is obtained 
when adding the soft fusion to the classifier ensemble (i.e., 
number of classifiers for hard fusion increased from 2 to 3), 
with approximately +0.94% for NBC and +1.2% for RC in 
terms of accuracy increase. 

TABLE IV NUMBER OF CLASSIFIERS USED AS INPUT OF THE PROPOSED 

HARD FUSION SCHEME 
Classifier ensemble length Inputs of the combiner 

L=2 
(Normal hard fusion) 

Radar, wrist IMU 

L=3 
(Proposed method A) 

Radar, wrist IMU, normal soft fusion 

L=13 
(Proposed method B) 

Radar, wrist IMU, normal soft fusion, 
weighted soft fusion with 10 different 
ratios 

L=21 
(Proposed method C) 

Radar, wrist IMU, normal soft fusion, 
weighted soft fusion with 18 different 
ratios 

The confusion matrix for the best fusion approach is shown 
in Fig. 10. Compared to the equal-weighted soft fusion, whose 
confusion matrix was shown in Fig. 10, the proposed fusion B 
yields an improvement in accuracy of about 2.9% and 2.7% for 
classes 'A2' and 'A3', whereas the sensitivity of fall detection 
also increases by 0.7%.   
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Fig. 9. Number of classifiers versus classification accuracy for the proposed 
hybrid fusion scheme. 

To further analyze the performance of the proposed 
approaches, Fig. 11 shows statistics of the classification results, 
namely the mean, median, 25th and 75th percentiles, maximum, 
minimum, and standard deviation across all the “leave one 
person out” classifications. Note that the standard deviation 
values have been linearly transformed by f(STD) to make their 
values comparable to the other metrics for easier visualization 
discussed in the previous section, but here it can be noted that 
the minimum values, as the worst-case scenarios across 
different subjects, are also increased from 74% to 
approximately 86%. Equally, the distance between 25th and 75th 
percentiles and the standard deviation across cases of different 
subjects also decreased with the proposed hybrid fusion, 
showing that the classification performances become more 
stable and robust across participants “unknown to the 
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Fig. 10. The confusion matrix of proposed hybrid fusion method B. 

 
Fig. 12. The accuracy improvement for each participant with different fusion methods. 

       
Fig. 11.  Statistical parameters of individual sensor and different fusion 
methods. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

9

classifier.” This is because soft fusion with different 
information weights is capable of recognizing distinctive 
activities, whereas the proposed hard fusion scheme maximizes 
the overall ‘fusion gain’ by exploiting the available information 
in the perspective of a probability combiner. (essentially a 
multiplication by 3 and then plus 0.55). All proposed fusion 
schemes increase the average accuracy as  

Fig. 12 shows the improvement in classification accuracy for 
each participant, from the baseline case of only using a 
wearable sensors (blue), to the different proposed fusion 
schemes. The proposed scheme B appears to the best 
information fusion method, where 13 out of 15 participants 
obtain a further performance improvement upon the proposed 
fusion A. The results displayed in Fig. 12 confirms the 
observations made for Fig. 11, as to the overall reduction of 
accuracy variability (standard deviation) across participants 
thanks to the proposed fusion schemes. 

Finally, Fig. 13 presents an example of input data for three 
sequences of continuous activities performed by one participant 
and the corresponding “activity tracking” provided by the 
developed classifiers. The top row shows the radar 
spectrograms with the amplitude displayed in logarithmic scale. 
The middle row shows the corresponding data for the wearable, 
as the absolute value (out of the X-Y-Z tri-axial information) 
for the accelerometer, gyroscope, and magnetometer. A spike 
due to the sudden change corresponding to the final fall activity 
can be seen in all three cases. The bottom row shows the 
“activity tracking” provided by the wrist IMU only (blue) vs. 
the best fusion scheme with wearable and radar (red), compared 
with the ground truth (dashed yellow). The proposed fusion 
scheme appears to correct the majority of the misclassification 
events occurring when only one sensor is used. 

V. CONCLUSION 

This paper discussed a framework based on multi-layer bi-
directional LSTMs to implement multimodal fusion for sensing 
and to classify human activities. Continuous sequences of 
activities with random transitions were considered in this work, 
rather than conventional separated activity data with a fixed 
duration. Bi-LSTM networks allowed to avoid manual 
segmentation and limitations of using sliding windows, while 
at the same time enabling the implementation of information 
fusion schemes, in particular, a novel hybrid approach of soft-
hard combination fusion. The bi-LSTM framework and the 
proposed fusion schemes were validated on data from FMCW 
radar and wearable sensors, corresponding to sequences of six 
human activities performed by 16 participants. Leave one 
person out validation approach was followed throughout, to 
demonstrate the approaches’ performances when dealing with 
data of subjects “unknown to the classifier.” The proposed 
hybrid approach is shown to yield an average classification 
accuracy of approximately 96% while improving performances 
and robustness across all participants (an increase of minimum 
value accuracy and a reduction of standard deviation). 

Future work will seek to validate the method in a wider 
cohort of participants and activities, including a larger set of 
measurement environments, aspect angles with respect to the 
radar, and span of age and physical conditions of the 
participants. In terms of the implementation of the neural 
networks, deeper architectures can be considered with more 
data collected, as well as customization to the structure and 
hyper-parameters to avoid overfitting while managing the 
diversity of data for each participant and scenario. The format 

 
(a)                                                   (b)                                                 (c) 

Fig. 13. The activity pattern 'tracking' (first row: radar Doppler spectrogram for activity sequence 1, 2 and 3 in (a), (b) and (c), second row: absolute value of 
X, Y and Z axis of the inertial sensor data, third row: prediction label of using IMU-only and proposed fusion B, as well as ground truth. 
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of the input data also has scope for further work, considering, 
for example, radar data from the range-time domain as 
complementary or alternative to spectrograms, and other 
sensing modalities if available. Besides that, testing the 
classification model with different sensors (e.g. training with 
radar and three IMUs and evaluate with only radar data or cross 
frequency testing on different radar dataset) is very worth to 
explore in terms of evaluating the capability of the classifier 
under more complex condition and for cross-modality learning.  
Furthermore, particular interest is in the implementation of the 
hybrid algorithms on embedded platforms and in real-time, 
moving towards more realistic deployment conditions.    
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