
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020 275

Transition to SDN is HARMLESS: Hybrid
Architecture for Migrating Legacy Ethernet

Switches to SDN
Levente Csikor , Márk Szalay, Gábor Rétvári , Gergely Pongrácz ,

Dimitrios P. Pezaros , Senior Member, IEEE, ACM, and László Toka

Abstract— Software-Defined Networking (SDN) offers a new
way to operate, manage, and deploy communication networks
and to overcome many long-standing problems of legacy network-
ing. However, widespread SDN adoption has not occurred yet
due to the lack of a viable incremental deployment path and the
relatively immature present state of SDN-capable devices on the
market. While continuously evolving software switches may alle-
viate the operational issues of commercial hardware-based SDN
offerings, namely lagging standards-compliance, performance
regressions, and poor scaling, they fail to match the cost-efficiency
and port density. In this paper, we propose HARMLESS, a new
SDN switch design that seamlessly adds SDN capability to legacy
network gear, by emulating the OpenFlow switch OS in a separate
software switch component. This way, HARMLESS enables a
quick and easy leap into SDN, combining the rapid innovation
and upgrade cycles of software switches with the port density
and cost-efficiency of hardware-based appliances into a fully
dataplane-transparent and vendor-neutral solution. HARMLESS

Manuscript received October 6, 2018; revised March 22, 2019, June 20,
2019, and September 9, 2019; accepted December 2, 2019; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor S. Mascolo. Date of
publication January 6, 2020; date of current version February 14, 2020.
The work was supported in part by the UK Engineering and Physical
Sciences Research Council (EPSRC) under Grant EP/N033957/1 and Grant
EP/P004024/1, in part by the European Cooperation in Science and Technol-
ogy (COST) Action CA 15127: RECODIS – Resilient communication and
services, and in part by the National Research, Development and Innovation
Office (NKFIH) under the research and development project in Hungarian-
Korean cooperation (project identifier: 2018-2.1.17-TÉT-KR-2018-00012),
and under research projects no. FK 128233 and PD 121201, financed under
the FK_18 and PD_16 funding schemes, respectively. (Corresponding author:
László Toka.)

L. Csikor was with the Department of Telecommunications and Media Infor-
matics, Budapest University of Technology and Economics, 1117 Budapest,
Hungary. He is now with the Department of Computer Science, National
University of Singapore, Singapore 119077 (e-mail: levente.csikor@
gmail.com).

M. Szalay is with the Department of Telecommunications and Media Infor-
matics, Budapest University of Technology and Economics, 1117 Budapest,
Hungary (e-mail: szalay@tmit.bme.hu).

G. Rétvári is with the MTA-BME Information Systems Research Group,
1117 Budapest, Hungary, with the TrafficLab, Ericsson Research, 1117
Budapest, Hungary, and also with the Department of Telecommunications
and Media Informatics, Budapest University of Technology and Economics,
1117 Budapest, Hungary (e-mail: retvari@tmit.bme.hu).

G. Pongrácz is with the TrafficLab, Ericsson Research, Ericsson AB,
1117 Budapest, Hungary (e-mail: gergely.pongracz@ericsson.com).

D. P. Pezaros is with the School of Computing Science, University of Glas-
gow, Glasgow G12 8QQ, U.K. (e-mail: dimitrios.pezaros@glasgow.ac.uk).

L. Toka is with the MTA-BME Network Softwarization Research Group,
1117 Budapest, Hungary, with the MTA-BME Information Systems Research
Group, 1117 Budapest, Hungary, and also with the Department of Telecom-
munications and Media Informatics, Budapest University of Technology and
Economics, 1117 Budapest, Hungary (e-mail: toka@tmit.bme.hu).

Digital Object Identifier 10.1109/TNET.2019.2958762

incurs an order of magnitude smaller initial expenditure for an
SDN deployment than existing turnkey vendor SDN solutions
while, at the same time, yields matching, or even better, data
plane performance for smaller enterprises.

Index Terms— SDN, migration, OpenFlow, switch design.

I. INTRODUCTION

SDN offers a radical break with traditional ways of build-
ing, operating and managing networks. By the physical

and logical separation of the network control plane from
the packet processing functionality, SDN exposes new levels
of abstraction to the operator, hiding the specifics of the
underlying data plane technologies from the network control
behind a standardized southbound interface, and unprece-
dented network and service programmability, since the net-
work is now controlled by an adaptable software functionality
via an open API. Migration to SDN architecture improves
network operations by eliminating the need for box-by-box
management and troubleshooting, eases to create network
functions and services due to the flexibility of global network
view in the centralized control plane, and allows operators
to easily buy into new models for network management
and operations, like automated orchestration, on-the-fly ser-
vice chaining, and multi-tenancy support in “as-a-service”
schemes [1]–[6].

Despite the fact that many large corporations (Google [7],
Microsoft [8], Amazon [9]) and telcos (Orange, Verizon,
Deutsche Telekom [10]) have already gained significant
foothold in SDN, smaller businesses, campus network oper-
ators, and service providers seem reluctant to adopt it
en masse [11]–[13]. In fact, enterprises without substantial
in-house expertise and select IT staff (“organizations that
aren’t called Google” [2]) face significant business, economic,
and technical deployment barriers, since migration to SDN
requires a nontrivial amount of forward planning, an extensive
investigation of vendor offerings and device options, and a
fairly radical change in the mental model, producing a typical
chicken and egg problem [1]–[6], [14].

First, there is a broad selection of SDN migration strategies
to choose from, each involving different cost, performance,
service availability, management, and security trade-offs that
need to be carefully assessed in advance [1]. Incremental
deployment strategies may offer the smoothest upgrade path
and the least interference with daily network operations [15],
yet managing heterogeneous network architectures may prove
challenging due to the nontrivial ways the legacy and SDN
control planes can interact [3], [4], [6]. Jumping outright to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1837-2158
https://orcid.org/0000-0003-0939-378X
https://orcid.org/0000-0002-5958-7817
https://orcid.org/0000-0002-5115-9973
https://orcid.org/0000-0003-1045-9205

276 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

Fig. 1. HARMLESS: SDN with an additional level of separation inside
forwarding elements.

full-blown SDN by swapping all legacy network gear to SDN-
capable devices overnight may mitigate this pain factor, but
greenfield migration is hardly an option for small businesses
due to the huge capital expenditure, the flag-day deployment,
the induced service downtime, and the amount of necessary
planning and testing. A lightweight SDN migration story that
would combine the smoothness and reversibility of incremen-
tal upgrades with the swiftness and transparency typical to
greenfield deployments is still largely missing [16], [17].

Second, there is the paradox of choice inherent to the
booming and immature state of the SDN market today,
with a breadth of vendor SDN offerings, turnkey solutions,
technology trends, and marketing hype, that a less informed
operator may find very challenging to explore and evaluate
[1], [10]. For a starter, to obtain an SDN-enabled appliance
a network operator has essentially two nontrivial choices:
buying commercial off-the-shelf (COTS) and white-box1

hardware switches or relying on, possibly already purchased
and deployed, general-purpose servers and running a virtual
software switch on top (e.g., Open vSwitch, OVS [18]). Thanks
to the use of special-purpose ASICs and network processors,
hardware SDN network gear has traditionally been praised for
providing high port density at a reasonable price, albeit noto-
rious for lacking standards-compliance, performance regres-
sions, and scalability [16], [17], [19]. Software SDN switches,
on the other hand, struggle to match the port density of hard-
ware switches due to the physical space limits of blades and
the steep price of multi-port NICs, but at the same time excel
at programmability, extensibility, and standards-compliance
[18]. While, thanks to recent advances in softswitch design
and implementation [18], [20]–[24] the performance tax of
software switching has greatly decreased, programmability
and port density are still competing, if not mutually exclusive,
goals in current SDN networking equipment.

We propose HARMLESS, a Hybrid ARchitecture for
Migrating Legacy Ethernet Switches to SDN, to foster SDN
migration for smaller enterprises. HARMLESS leverages the
current trend for “software-defined-everything”, but takes this
idea to the extreme: it applies an additional level of abstraction
on top of the conventional control plane–data plane separation
by further decoupling the packet processing hardware from
the switch’s operating system, which are today integrated
in COTS devices in a single box, and implementing the
OpenFlow (OF) OS in a dedicated software switch (see
Fig. 1). This makes it possible to add SDN capability to
plain Ethernet switches, or to any legacy network device,

1White-box switches are generically branded switches with no default
network operating system.

through bypassing the legacy switch OS. Thanks to the addi-
tional level of virtualization, HARMLESS realizes a delicate
sweet spot between hardware and software SDN switching.
In particular, it combines the advantages of software and
hardware switching, whereas the hardware component delivers
the high port density and raw packet processing functionality,
and the softswitch adds programmability, adaptability, and
standards-compliance. Using extensive measurements with a
HARMLESS prototype, we show that the benefits of HARM-
LESS are realized with no significant impact on raw packet
processing performance, latency, and dataplane transparency.2

From an economical point of view, HARMLESS offers
a viable migration strategy to smaller enterprises. Since
HARMLESS leverages the existing network infrastructure it
offers distinct price advantages over SDN alternatives available
on the market (see details in Sec. II). Crucially, in cases
where commodity switches and bare-metal servers for running
the OpenFlow (OF) component are readily available, like in
smaller private clouds, enterprise networks, research environ-
ments, HARMLESS makes it possible to get into SDN instantly,
incurring zero expenditure for a partial or even a complete
deployment. And even if equipment must be purchased anew,
HARMLESS can save up to an order of magnitude investment.
In a broader perspective, HARMLESS sheds a fresh new light
on the ages-old, and often highly contentious, “hard switch vs
softswitch” debate and presents an interesting new dimension
in switch architectures [25]–[30].

The paper is organized as follows. In Sec. II, we discuss
recent market trends in SDN switching, in Sec. III we present
the HARMLESS architecture, in Sec. IV we provide a techni-
cal and economic evaluation, in Sec. V we summarize related
work, and finally in Sec. VI we conclude our work.

II. SDN SWITCHES: HARDWARE OR SOFTWARE?

The “hard vs softswitch” debate is one of the most disputed
one in networking realms and still seems far from concluded
[23], [25]–[29], [31]. Therefore, before digging into the archi-
tectural details, we give an overview on recent market trends
in SDN hardware and software switching appliances, and we
show a detailed price analysis to motivate HARMLESS.

On the surface, hardware switches seem unbeatable for
packet mangling; packet switching, being a massively par-
allel and repetitive process, can be accelerated to a large
extent using purpose-built ASICs and network processors,
while resorting to the CPU has always been considered
the “slow path” due to limited memory and I/O band-
width. Furthermore, a hardware switch can host 48 or even
96 high-speed ports in a single housing, while software
switches are limited to some NICs due to the specifics
of the form factor. Finally, a TCAM can do packet
classification much faster than a general purpose CPU,
especially in classification intensive workloads [28]–[30],
while software-based packet classification is still an active
research field [18], [24], [29], [32]–[34]. Software switches,
on the other hand, are easier to upgrade, program, and extend,
at shorter time scales than hardware switches, where the
developing and bringing a new ASIC to market is resource-
intensive and time consuming: requiring an average of four

2The performance is upper bounded by the used software switch.

CSIKOR et al.: TRANSITION TO SDN IS HARMLESS: HYBRID ARCHITECTURE 277

years [35]. Moreover, the performance of general purpose
CPUs increases each year, scaling with Moore’s law.

The state-of-the-art in SDN switching is more complex.

Standards-Compliance

Being a relatively new technology, the quality of SDN
support in COTS devices is variable at best. With many
vendors piggybacking OF capabilities on top of an already
established switch product line, users are widely complaining
about missing OF features (even as elementary as IP address
rewrite [16]), switch control plane performance and delays in
updating the data plane, atomic flow modification commands
not being applied atomically or at all [19], [36], etc. In
fact, the need to work around bugs, missing features, and
proprietary extensions in COTS SDN switches can lead to
operators being locked to a specific vendor. Softswitches,
on the other hand, are standards-compliant and rapidly evolve
with new standards, and receive bug fixes fast [18], [24].

Scalability

Deploying a new OF agent on a switch does not change
the forwarding hardware overnight. Since the TCAM space
available for packet classification is limited and since OF
rules consume more TCAM space than, say, IPv4 routing
table entries, COTS SDN switches rapidly run out of flow
table space as the workload increases [17]. Consequently,
most COTS switches that are affordable for smaller enterprises
support only a couple of hundred (1st gen. “rebranded”
devices) or thousand (2nd gen. devices with reasonable price)
flow entries in TCAM and, optionally, a handful of additional
flows in software (to supplement this imperfection to a certain
extent), subject to various intricate limitations on the number
of fields that can appear in a rule, rule length, etc. (See
Section IV for concrete examples.). Note that some newer
generation high performance OF switches [37]–[39] offering
high performance with up to 1 million flow rules are available
in the market, however not just their costs hinders smaller
enterprises to obtain one, but due to the way ASICs are
designed an arbitrary forwarding pipeline cannot be applied
without fulfilling certain requirements [40] (e.g., wire-speed
VLAN handling can only be done in table 0). Therefore, in this
work we focus on the great majority of 1st and 2nd generation
SDN switches.

Contrarily, softswitches have unlimited flow space in mem-
ory but only a subset, CPU caches, can be used efficiently [24].

Performance

The performance penalty of soft SDN switching has effec-
tively diminished recently, thanks to advances in user-space
network stacks [20], multi-threaded switch designs [21], [22],
hierarchical flow caching [18], and custom-compiled OF data-
paths [24]; a modern SDN softswitch easily handles 10G line
rate in a single core [29], even with minimum-sized packets
[24] profusely meeting the demands of smaller networks.
Moreover, as a hardware SDN switch runs out of limited
TCAM space it falls back to pure software-based packet
forwarding on the slow path, after which point softswitches,
designed for CPU-based forwarding from the outset, have clear
performance edge [16], [17], [19].

TABLE I

MINIMUM PRICES OF COTS/WHITE-BOX SWITCHES SUPPORTING
OPENFLOW VERSION 1.0 OR 1.3 AS OF 2019

Cost-Efficiency

Current network gear costs vary in a wide range, making
it challenging not only to compare actual prices but also
to predict future price tags. Worse yet, many vendors offer
significant discounts for even medium size bulk equipment
orders, which is difficult to take into consideration in a cost
model. This is the reason why many traditional vendors, e.g.,
Broadcom, Cisco, Extreme Networks, or NEC, either do not
publicly disclose list prices or offer only relatively high list
prices, which are then subject to discounts for bulk purchases.

In order to account for these unknowns, our cost model is
intentionally simplistic and conservative. In particular, we take
the position of a small enterprise that initiates a moderate sized
green-field network deployment. Correspondingly, our cost
model considers the lowest priced switches available at the
time of writing and we did not consider any vendor discounts.

The great majority of COTS and white-box SDN switch
market options come with 24 or 48 ports at 1G (or 10G),
supplemented with 2–4 uplink ports operating at 10G (or 40G,
respectively) in 1U or 2U form-factor. The least expensive
offers come at 2, 200 and 3, 900 at the moment; see a non-
exhaustive market survey in Table I.3 Based on these consid-
erations, the following formulas give a conservative estimate
for the CAPEX of a hardware switch deployment with a total
of x ports:

C1G
HW = $2200

⌈ x

48

⌉
, C10G

HW = $3900
⌈ x

48

⌉
.

In case of softswitches, the main CAPEX factor is purchasing
servers with a sufficient number of NICs and CPUs. We
consider x86-based 1U servers at a bulk price of $1, 400 on
average, including the motherboard with 1 CPU, 4×1G built-
in ports, 3 PCIe (3.0 ×8 or ×16) slots, memory, disk, power,
etc. A server can host up to 3 additional NICs, costing $100
for 4×1G (Intel i350), $400 for 4×10G (Intel X710), and $500
for 2×40G (Intel XL710), which total up to 16 ports per server
at 1G, 12 ports at 10G, and 6 ports at 40G. Note that when a
single server cannot provide the required port density another
server must be purchased. Furthermore, in most cases the third
PCIe slot is hardwired to the second CPU socket, therefore a
single CPU server can host up to 12 pieces of 1G (8 at 10G, 4
at 40G) ports; for more ports per server a second CPU must be
installed (hence the last negative term in the below formulas,
where the variable #extraCPU indicates in both the 1G and

3Sources: bm-switch.com, router-switch.com and whiteboxswitch.com.

278 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

10G cases whether the last server is sufficient to serve the rest
of the ports w/o an additional CPU). The price of a server CPU
ranges between $200 and $7, 000 depending on the CPU class,
cache size, clock rate, and power consumption; we calculate
with the price of a 6-core Intel E5-2620v3 CPU at $400.

With this in mind, the following formulas estimate the
CAPEX of a software switch deployment with x ports:

C1G
SW = $1400

⌈ x

16

⌉
+ $100

(⌈x

4

⌉
−

⌈ x

16

⌉)
+$400

(⌈ x

16

⌉
− #extraCPU1G

SW

)
C10G

SW = $1400
⌈ x

12

⌉
+ $400

⌈x

4

⌉
+$400

(⌈ x

12

⌉
− #extraCPU10G

SW

)

#extraCPU1G
SW =

{
1, if 0 < (x mod 16) < 13
0, otherwise

#extraCPU10G
SW =

{
1, if 0 < (x mod 12) < 9
0, otherwise

For the sake of simplicity, in the price analysis we do
not account for energy consumption, cooling, cabling, rack
space occupancy, etc., and we did not take into account the
forwarding and trunk port availability a typical COTS device
offers; we return to further CAPEX/OPEX issues later.

In summary, current market trends suggest that hard-
ware SDN switches provide high port density at moder-
ate prices but lag behind software switches in scalability,
standards-compliance and programmability. Next, we present
a new SDN switch design called HARMLESS a cost-efficient
middle-ground between the two extremes.

III. THE HARMLESS ARCHITECTURE

How to magically turn a legacy Ethernet switch into an
OpenFlow-speaking one? This would require to open up what
is traditionally a closed black box and substitute the legacy
switch OS with an SDN-capable one, something that has
proved notoriously difficult to do so far. Instead, in order
to preserve backward compatibility, we adopt a more viable
approach in HARMLESS by extending the “Tagging and Hair-
pinning” technique (also called anything-on-a-stick [41], [42],
distributed switch design [43], or VEPA [44]/VNTag [45]),
originally advocated for hypervisor switches by Cisco and HP,
to the general context of SDN [29].

The essence of “Tagging and Hairpinning” is to offload
VM-to-VM communication from the hypervisor to the first
hop switch, i.e., to “outsource” (some parts of) the switching
mechanism to achieve highly improved performance. When
a VM sends a packet it is marked by a unique VLAN id
(“tagging”) and forwarded to the access switch, which will
then do a forwarding/policy lookup to decide whether to loop
the packet back to another VM, resident on the hypervisor,
in which case it is marked with the unique VLAN id of the
target VM (“hairpinning”), or send it further along the data
center fabric, or drop it right away. The rationale for this
technique is that packet processing is done on efficient special
purpose hardware at the first hop switch instead of a potentially
less powerful hypervisor switch, while the downsides are
doubling bandwidth utilization and increased latency. One

Fig. 2. HARMLESS: the strawman’s approach.

of the main contributions of this paper is the observation
that, when cast in the general context of SDN switching,
the “Tagging and Hairpinning” technique can be used to
provide SDN capability to legacy switches. Moreover, the way
HARMLESS implements this technique yields a uniquely
cost-efficient organization of packet processing functionality
and forwarding intelligence, and presents an appealing incre-
mental SDN deployment path. Last but not least, HARMLESS
preserves backward compatibility, which is an all-important
factor (not just for network operators) when evaluating viable
migration strategies.

A. High Level Overview

So how to achieve that the commodity switch still realize
the required forwarding program? The idea of HARMLESS
is to extend the “Tagging and Hairpinning” technique: let the
commodity switch tag each packet with a unique VLAN id
that identifies the access port it was received from, forward
the tagged packet to the software switch along the trunk-port–
softswitch interconnect (the uplink) to enforce the OpenFlow
forwarding and security policies, and send the packet back
to the commodity switch via another uplink “hairpinned”,
i.e., tagged with the unique VLAN id of the proper outgoing
port as per the specified flow table. (If the packet was already
VLAN-tagged, the commodity switch can use VLAN Q-in-Q
tunneling [46] or any other tagging scheme.) In order to
reach this, a strawman’s approach would suggest that the
controller needs to program a slightly modified flow table into
the software switch, whereas the “match on ingress port X”
rules are converted to “match on VLAN id X” rules and the
“output to port Y” actions are rewritten to “modify VLAN
id to Y and output to default port” actions; later, we show
transparent HARMLESS setups that make such modification
of the forwarding program unnecessary.

In our particular example (see Fig. 2), suppose that an
operator is given a manageable Layer-2 (L2) 802.1Q Ethernet
switch with free high-speed trunk ports, a general purpose
server that has spare NICs and available capacity to run an

CSIKOR et al.: TRANSITION TO SDN IS HARMLESS: HYBRID ARCHITECTURE 279

OpenFlow vswitch, and adequate cabling, backplane capac-
ity, or other means for interconnecting the switches’ trunk
ports with the softswitch NICs. Suppose further that a host
with IPv4 address 192.168.2.3 connected to port 5 on
the commodity switch wishes to send packets to another host
with address 192.168.0.1 connected to port 15 on the same
switch, and suppose that a security policy is in place according
to which these two hosts are permitted to exchange traffic
only between each other. Finally, suppose that the operator
wants to control the switch through OpenFlow and so wishes
to program the forwarding behavior as given by the Flow
table in Fig. 2 (disregarding the standard complexities of IP
forwarding, like TTL handling and MAC resolution, for now).
This would handle communication between the two hosts ade-
quately, except that it is impossible to control the commodity
switch through OpenFlow due to the black box nature of
legacy COTS appliances. However, upon receiving a packet
on port 5 from the first host, the commodity switch would tag
it with a unique VLAN id 5, and send it along the uplink. The
softswitch at Server 1 in turn identifies the original input port
based on the VLAN id and makes sure that the originating
host is allowed to communicate with the destination host by
matching the first flow entry in the modified flow table. Then,
the VLAN id is rewritten to 15, and the packet is looped back
to the commodity switch, which, after doing a VLAN-to-port
translation, forwards it to the destination host. Note that the
only requirements for the commodity switch are manageability
(to setup the VLANs on the access ports), support for 802.1Q
(to do the VLAN un/tagging), and free trunk ports to be
used for an uplink, which allows to use HARMLESS over
basically any legacy Ethernet switch on the market today [47],
[48]. One can observe that HARMLESS “consumes” the trunk
ports for providing the Openflow capability, hindering their
main purpose: providing uplink. To deal with the “loss” of
trunks, in HARMLESS servers can have additional NICs to
connect them directly (or via a spine switch) to provide inter-
switch communication; see an example between User A and
User C, and some additional basic flow rules in the modified
flow tables in Fig. 2, respectively. The limitation due to the
12-bit length of the VLAN field affects the number of ports
per commodity switch, not the total number of ports in the
HARMLESS system. In particular, in HARMLESS VLAN
tags are used to identify the physical ports of a commodity
switch, the number of which is 2 orders of magnitude less than
4096 as current switches have an average number of 48 ports
in one housing, requiring the same number of different VLAN
tags. Correspondingly, the usable VLAN tags’ domain is only
bounded to one physical device and can be freely reassigned
to another commodity switches’ ports.

B. High Port Density at Low Cost

Below, we argue that HARMLESS strikes a fine balance
between the cost-efficiency of COTS switches and the flexi-
bility of softswitches in terms of deployment costs, data plane
complexity, and performance.

HARMLESS Unifies the Advantages of Hardware and Soft-
ware Switches: Thanks to the decoupling of raw forward-
ing functionality from OpenFlow, HARMLESS realizes an
optimal separation of concerns, whereas the legacy hardware
switch does just what it is best at, providing the port density

and doing basic packet processing, i.e., VLAN manipulations
to interact with HARMLESS, while the software switch com-
ponent is again responsible for what it is ideal for, implement-
ing the packet processing intelligence in a clear and extensible
way. Observe that the softswitch does not need to match the
port density of the commodity switch effectively removing the
major cost component, NIC prices at the software switch.

HARMLESS Leverages the Existing and Deployed Com-
puting and Networking Infrastructure: The prerequisites of
deploying HARMLESS is an inventory of commodity switches
and a handful of spare bare-metal servers, readily available
in many prospective SDN deployments like SOHO networks,
small/medium-sized enterprises, private data centers, campus
networks and private clouds. For these use cases, HARMLESS
offers an instantaneous SDN transition path with zero initial
expenditure, apart from the usual practice of server relocation,
cabling, etc. Note, however, that the server running the Open-
Flow component and the commodity switches do not even
need to be co-located; in fact, the OpenFlow logic can be
virtualized at a remote site or even delegated to a public cloud
at the price of proper traffic forwarding and increased latency.

HARMLESS Is Cost-Efficient: Even in cases where spare
servers or Ethernet switches are not available, purchasing them
anew in a HARMLESS setup is still much less costly than
purchasing equivalent SDN network gear from commercial
suppliers. For the below CAPEX analysis, we assume that the
legacy 48×1G+4×10G (or 48×10G+4×40G at 10G access)
Ethernet switches are already on stock (if not, add another
couple of hundred USD per switch), so only bare-metal servers
for the OpenFlow components and 10G NICs (respectively,
40G) need to be purchased. We aggregate 12 access ports
to each trunk port, over-committing the uplink at a similar
rate as plain Ethernet networks [49], multiplexing up to 144
access ports (72 at 10G) to a single OpenFlow component.
Accordingly, the CAPEX for a HARMLESS (HL for short)
deployment with x ports are as follows:

C1G
HL = $1400

⌈ x

144

⌉
+ $400

⌈ x

48

⌉
+$400

(⌈ x

144

⌉
− #extraCPU1G

HL

)
C10G

HL = $1400
⌈ x

72

⌉
+ $500

⌈ x

24

⌉
+$400

(⌈ x

72

⌉
− #extraCPU10G

HL

)

#extraCPU1G
HL =

{
1, if 0 < (x mod 144) < 97
0, otherwise

#extraCPU10G
HL =

{
1, if 0 < (x mod 72) < 49
0, otherwise

Similar to software switches, the first term accounts for the
server, the second term for the NICs, and the third for
additional CPUs. HARMLESS is the most cost-efficient SDN
migration option, thanks to the high level of aggregation that
reduces the number of costly servers and NICs as compared
to pure softswitches, providing one order of magnitude more
economical option (later, in Sec. IV we show how the CAPEX
is affected when we deal with the “loss” of trunks).

HARMLESS Provides a Predictable and Arbitrarily Fine-
Grained SDN Deployment Path: HARMLESS can seamlessly

280 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

Fig. 3. Transparent HARMLESS: Software switch twice (S4).

convert wholesale legacy devices into SDN-enabled switches
instantly, but it can also be configured to handle only a subset
of the access ports or only a subset of the services/traffic,
and thereby fits smoothly into any greenfield or incremental
SDN deployment strategy. In a wider perspective, the associ-
ation between ports and the softswitch that manages them is
completely flexible in HARMLESS, that is, a single software
switch instance can handle any combination of ports from any
number of commodity switches (see Fig. 3 for an example).
Not just that HARMLESS can be enabled in arbitrarily fine-
grained steps, but it also allows to revert to any previous step in
the migration process at no cost if a regression is experienced,
by issuing a single management command to the commodity
switch to turn off the specific VLAN tagging on access ports.

HARMLESS Eliminates Vendor Lock-in by Opening Up the
Data Plane One Step Further: By leveraging commonplace
Ethernet switches and open software switches running on
commodity hardware, HARMLESS is vendor-neutral. In fact,
HARMLESS carefully works around the fixed legacy switch
OS and offloads forwarding intelligence to a dependable
softswitch, this way freeing operators from the trap of vendor-
specific OpenFlow extensions and proprietary management
interfaces. Furthermore, HARMLESS enables both parts to
evolve independently and distinct deployments could use dif-
ferent combinations of hardware/software processing.

HARMLESS Preserves Full Functionality: HARMLESS
does not confine the forwarding functionality in any way and,
as shall be shown, multiple real-world use cases can easily be
realized. Since the whole forwarding logic is defined in Open-
Flow and each packet is processed by the software switch, all
OF programs are supported (e.g.,in case of multicast/broadcast
messages, the softswitch can easily duplicate packets with
different VLAN IDs). In case of a failure, furthermore, it can
also be realized at the softswitch by noticing PORT_DOWN
event for the physical port.

HARMLESS Provides Competent Performance: HARM-
LESS imposes extra load on the backplane fabric since, for
supporting inter-port communication, traffic has to traverse the
uplink port of the switch twice. Note that this extra load only
manifests itself for intra-switch communication, but traffic
between different HARMLESS switches managed by different

HARMLESS servers induces no extra load at all since traffic
goes through each element only once (see the orange dot-
dashed line in Fig. 2). HARMLESS by default uses the same
aggregation ratios as Ethernet (12 access ports per uplink), but
one can easily leverage the flexibility of HARMLESS to avoid
packet loss due to over-committing the uplinks, by reassigning
access ports to uplinks so that the expected peek load never
exceeds the uplink capacity and the load is evenly balanced
across uplinks (we consider this later in Sec. IV).

HARMLESS Introduces Small Additional Latency: The
additional softswitch in the loop entails increased latency
irrespective to intra-, or inter-switch communication. In the
next section, we show strong empirical evidence that latency
introduced by HARMLESS is close to that of COTS and
software-based SDN switches. We acknowledge, however, that
the additional delay can be a drawback for delay-sensitive
applications; obviously, HARMLESS was designed to support
small-scale SDN deployments and it is not adequate for
extremely high-performance and latency-critical workloads.

C. Transparent HARMLESS Architecture

Here we show that HARMLESS exposes a transparent view
of the data plane to the controller. In the above strawman’s
setup the controller needs to tediously adapt the flow table for
the offloaded forwarding setup by mapping ports to VLAN ids
and vice versa. To avoid tailoring controller programs to the
underlying HARMLESS layer, we introduce two transparent
HARMLESS setups, where the idea is to install an OpenFlow
Translator Component (OTC) between the controller and the
software switch as an adaptation layer [50], [51].

In the Proxy HARMLESS , (consider an OTC translating the
OpenFlow messages between the softswitch and the controller
in Fig. 2), the OTC component acts as a proxy, disguising itself
as a switch towards the controller and as a controller towards
the softswitch, and rewrites all passing rules that match the
input port (in_port) to match the corresponding VLAN id
instead (dl_vlan), and output actions to appropriate VLAN
rewriting rules (out_port → mod_vlan).

OTC, on the other hand, as depicted in Fig. 3 can be
realized by an additional softswitch (denoted by SS_1), which
is connected to the OF component configured by the con-
troller (noted by SS_2) with as many patch ports as the
number of managed access ports of the hardware appliance
and dispatches packets to and from patch ports based on the
VLAN ids (see Fig. 3). Therefore, this setup is called the
Software Switch Twice (S4) configuration. There are two main
advantages of this latter approach compared to the Proxy setup:

• as the software switch managed by the SDN controller
has the same number of ports the hardware switch will
use as OF-enabled ports, the control plane does not
require any special attention to management capabilities,
such as per port statistics, per port VXLAN assignment,
etc.;

• it does not require any special application (e.g., proxy),
just another instance of the same softswitch.

Due to these advantages, next we discuss S4 in detail.
In order to set up the S4 architecture, we developed

HARMLESS Manager [52], an easy-to-use and freely available

CSIKOR et al.: TRANSITION TO SDN IS HARMLESS: HYBRID ARCHITECTURE 281

application built on top of Python and BASH.4 HARMLESS
Manager runs on the bare-metal server intended to materialize
the software switch components and it automatically manages
and queries the legacy Ethernet device itself via NAPALM
(Network Automation and Programmability Abstraction Layer
with Multivendor support5), the de-facto standard library in
Python to interact with different router vendors’ devices (e.g.,
Arista EOS, Juniper JunOS, Cisco IOS) via a unified API.
Note, however, when a device is not supported by NAPALM,
the simple requirements of HARMLESS can be easily done
manually (by CLI/management interface).

Next, we discuss in detail how the HARMLESS Manager
works. Consider again the example depicted in Fig. 3, where
the hardware switch is intended to use only its first ten 1G
ports (marked by the blue OF-labeled frame) and one 10G
trunk port as an OpenFlow component leaving the rest of its
ports to operate in the traditional way henceforward (denoted
by the Legacy network elements connected to the switch). To
this end, the network operator defines her needs in a simple
configuration file (denoted by Topology req.) indicating the
connection details to access the legacy device (e.g., manage-
ment IP and port, username, password), the desired ports to use
(e.g., Ethernet0, Ethernet10), and the details of the softswitch
components (e.g., NIC port(s) for the incoming traffic, number
of cores to isolate for packet processing, indicating the utiliza-
tion of DPDK, controller details). Accordingly, HARMLESS
Manager connects to the device and, in order to preserve
the current functionality, it downloads and stores its running
configuration, and automatically configures the device. In
particular, it assigns different VLANs for the ten forwarding
ports (in the example above, the VLANs are in range of
[101, 110]) and, at the same time, configures the 10G uplink
port to be used as a trunk port.

Let us summarize how the HARMLESS Manager sets up
the software components. First it reads the configuration file
parsing all parameters, e.g., the number of ports intended to be
used on the hardware switch. Then the two desired software
switches (SS_1 and SS_2) are instantiated and the physical
port of the server connected to the hardware switch’s trunk port
is bound to one of them (SS_1). Next, according to the used
number of ports on the hardware switch, the adequate number
of logical port-pairs are added to the software switch instances,
and get connected. Then the manager assembles and adds the
corresponding flow rules to the switch that acts as the OTC
(SS_1). In particular, the switch captures all VLAN tagged
packets, removes the tags, and forwards them towards the other
software switch (SS_2) via the logical links. The manager also
assembles the flow rules for the packets coming back from the
software switch managed by the controller application. When
packets are received back through one of the logical ports,
the corresponding VLAN tags are pushed onto them, and they
are going to be sent out via the physical interface.

Once the two software switch instances are up and running,
the controller will receive a connection request from an
OpenFlow switch having 10 ports (materialized by SS_2). In
case of the need to revert back to the previous operation,
HARMLESS Manager can easily reset the hardware device
using the dumped configuration.

4https://github.com/muuurk/HARMLESS
5https://github.com/napalm-automation/napalm

These modifications render HARMLESS data plane trans-
parent enabling to write controller programs ignoring the fact
that the underlying data plane is realized with HARMLESS,
to make controller programs portable between deployments,
and to allow to invoke higher-level languages and policies to
setup the data plane [53], [54].

IV. EVALUATION

We evaluated practical aspects of HARMLESS and com-
pared it against alternatives. We show the data plane perfor-
mance in diverse use cases taken from practical networking
applications and under different workloads, and we present
the results side by side with the SDN migration cost analysis
for each possible SDN switch option (softswitch, COTS and
white-box switches, and HARMLESS). First, we describe our
testbed and the measurement methodology, then we present the
specific use cases, and finally we list the evaluation results.

A. Testbed and Methodology

Our testbed includes two IBM x3550 M5 servers with Intel
Xeon E5-2620v3 processors and 64GB of memory running
Debian Linux Jessie 8.0/kernel 4.9, each server equipped
with an Intel X710 NIC (10G) and Intel XL710 (40G)
NIC, respectively. The setup also contains two commodity
switches, a Cisco 3750X (24×1G + 4×10G) and an
Arista 7048T (48×1G + 4×10G), three COTS Open-
Flow switches, an HP 3500 (24×1G), an Extreme X440
(28×1G + 2×10G), and a Brocade ICX6610 (28×1G +
4×10G), and two white-box switches (Quanta T1048 and
Edge-Core AS4610) all supporting OpenFlow v1.3. The
COTS switches represent the state-of-the-art in COTS SDN
switching as of 2015, while the white-box switches are from
the low-end market of 2016. The switches have the following
flow table size limitations:

• HP 3500: 1 flow table in TCAM with max. 1500 rules,
and 4 further logical tables (processed in software);

• Extreme X440: 1 flow table in TCAM with max. 255
flow rules, assuming each has limited length in terms
of match fields, and another table for MAC and VLAN
matching rules (also in TCAM); it does not receive flow
mods in passive mode, i.e., without a controller.

• Brocade ICX6610: 1 flow table with max. 3000 rules
in TCAM (half if rules match on both L2 and L3 headers),
and no further tables.

• Quanta T1048: 1 flow table in TCAM with roughly
2000 flow rules and 6 logical tables for tens of thousands
of flow rules and different layer matching (e.g., matching
on both source and destination MAC address can only be
implemented in a logical table).

• Edge-Core AS4610: supports multiple flow tables,
one of them containing actions, carrying maximum only
3840 flow rules in TCAM (plus 24, 576 and 32, 768 flow
rules for exact matching on destination MAC address and
destination IP address, respectively).

In each experiment, one of the servers was configured to
run NFPA [55], an Intel DPDK pktgen-based benchmarking
tool, back-to-back with the system-under-test (SUT). For the
software switch evaluations the SUT was provisioned on the
other IBM server, running a stable version of OVS (v2.7.0)

282 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

Fig. 4. Use cases in a service provider network.

and ESwitch6 [24], both compiled with the recent stable Intel
DPDK v16.11.1. The hardware switch option was evaluated
on each of the COTS switches available in the testbed,
while for HARMLESS the OpenFlow component was again
configured on the IBM server running OVS (HARMLESS-
OVS) or ESwitch (HARMLESS-ESwitch), connected to one of
the commodity switches. Our HARMLESS setup implements
the S4 setup discussed in Sec. III.

We used synthetic traffic traces, specially tailored to each
use case (see below) to contain a configurable number of flows.
The used packet trace was crafted in a way to simulate a
48-port switch setting by randomly tagging the packets with
VLAN tags in the range of [1,48]. Note that packets were never
dropped intentionally, instead the OpenFlow pipelines contain
default catch-all rules to forward unmatched/dropped packets
to the external port; our aim was to measure raw throughput
and not whether the switches can filter traffic adequately (they
can). With this configuration, packet loss only occurs when
the SUT becomes a physical bottleneck and therefore the
packet rate received at the packet generator is representative
of the raw performance. Packets were minimum-sized (i.e.,
64 bytes) and Receive Side Scaling (RSS) was turned on in
multi-core setups [56], [57]. All measurements were conducted
at 40G for at least 60 seconds [58]. At first the packet
rates were measured in a single-core setup; note that the
attainable throughput using a single core and PCIe x8 v3 bus
speed is 15 Gbps (22 Mpps) with 64-byte packets; multi-core
scalability is studied in a separate measurement round.

B. Use Cases

We considered 4 realistic use cases, from private data
centers to telco gateways. All scenarios will be cast in a
single hypothetical service provider’s legacy network (see
Fig. 4). The setup contains a smaller data center (DC) with
4 racks connected into a CLOS topology [59] with separate
L2 domains at the leaves and an L3 domain as the spine
[60], [61], an industrial-scale load-balancer [62], and a telco
access gateway [63] that aggregates subscribers located behind
Customer Endpoints (CEs) [64].

L2: The lower layer of the DC topology represents the L2
use case, with each top-of-rack (ToR) switch provisioned as a
separate L2 domain; a sample L2 traffic flow is marked with
orange in Fig. 4. While certain data centers may differ in the
configuration of L2/L3 domains [65] this use case describes

6We thank L. Molnar et al. for providing us with the ESwitch source code
as it is not open-source yet.

Fig. 5. L3 pipeline.

large L2 networks illustratively, to be migrated from traditional
802.1 to SDN with the aim of eliminating dependency on
spanning trees and benefiting from centralized control [49],
[66]–[68]. The OpenFlow pipeline consists of a single static
MAC table containing a configurable number of entries; the
synthetic traffic traces include as many flows (different MAC
addresses) as the number of entries in the flow table.

L3: The L3 use case embodies the upper layer of the CLOS
network interconnecting the L2 islands, a common setup in
DCs [60]; a sample traffic is marked with cyan in Fig. 4. In
this setup the OpenFlow pipeline consists of multiple tables
(see Fig. 5); after matching the input port in table 0, non-IP
packets are sent to the controller (table 2) then in table
10 IP lookup is performed with the corresponding actions
diffused to 10 next-hop groups that do standard L3 packet
processing. Again, different workloads were configured by
setting different number of IP prefixes in table 10 and a
matching number of L3 flows in the synthetic traces.

Load Balancer and Access Control List: This use case cap-
tures the functionality of a web frontend, balancing incoming
web traffic (TCP port 80) for different web services, each
available at a unique IP address (see Fig. 4). The pipeline
is given in Fig. 6; internal traffic is forwarded to the external
port unconditionally, while ingress packets first take table
1 that filters web traffic then table 2 that distributes packets
across backends based on the first bit of the source IP address.
We set the number of web services to 100. Traffic traces were
crafted so that 70% of packets go to a randomly chosen web
service while the rest is filtered at the ACL.

Access Gateway: The telco access gateway consists of a
Virtual Provider Endpoint (VPE) that serves Internet access
to subscribers located behind CEs (see Fig. 4). For brevity,
we identify CEs with the MAC address and we assume that
the operator sets 10 CEs, each serving 20 users provisioned
with a private IP address that is unique within the CE. The
OpenFlow pipeline is given in Fig. 7. Table 0 separates

CSIKOR et al.: TRANSITION TO SDN IS HARMLESS: HYBRID ARCHITECTURE 283

Fig. 6. Load balancer and ACL pipeline.

user-to-network traffic on a per-CE basis from network-to-
user traffic; user-to-network traffic goes to per-CE flow tables
(table 11, etc.) that match the source IP address to identify
the user and rewrite the source address to a unique public
IP address (realizing a NAT), and finally to the IP routing
table (table 200) that contains 10K random IP prefixes;
packets from yet unseen users will in turn be forwarded to the
controller to perform admission control and allocate a unique
IP address. Network-to-user traffic, on the other hand, goes to
table 110 that matches on the destination IP to identify the
user and the CE, swaps the destination IPs back to the private
IP addresses, and then sends packets to the proper CE.

C. Measurement Results

Scalability and Standards-Compliance: Configuring the use
cases on COTS and white-box switches proved far from trivial,
due to the prohibitive flow table sizes and subtle restrictions
on flow matching rules. The hardware switches support only
a single flow table in TCAM and may or may not provide
additional tables in software. Thus, multi-table OpenFlow
pipelines had to be tediously collapsed into a single table by
hand; in case of the white-box devices their software, e.g.,
Pica8 PicOS on Quanta and ONL+Indigo on EdgeCore,
do this automatically. Unfortunately, even then the switches
rapidly run out of TCAM space because of the flow-state
explosion effects for which table collapsing is notorious [18].
In the access gateway use case for instance a separate
flow entry must be created for every (user, CE, IP prefix)
tuple, yielding so many entries that none of the hardware
offerings could implement this use case. Current COTS/white-
box switches do not scale beyond small and medium work-
loads, and even in that case may require hand-tweaking the
OpenFlow pipeline, while software switches and HARMLESS
support even very large deployments. Furthermore, one has
to take into account the ramifications of the chip in each
individual switch, e.g., the HP switch does not support static
matching on MAC addresses, the Brocade switch does not
support MAC rewrite, the EdgeCore switch cannot modify
IP fields, only on slow-path.

Performance: Table II compares the raw packet rate mea-
sured in the L2, L3, load balancer and access gateway use
cases with the hardware switches, the software switches, and
the S4 configuration of HARMLESS. Recall that due to the
attainable packet rate of a single CPU core the maximum
accessible performance is up to 22 Mpps. Note that for each
use case results are reported only for the hardware switches
that could handle the use case. Our observations are as
follows. First, as long as hardware OpenFlow switches manage

Fig. 7. Access gateway pipeline.

to forward packets purely in the fast path they perform at
wirespeed. However, as soon as a hardware switch runs out
of TCAM space and forwarding falls back to the software
slow path performance plummets. Note, however, that among
the devices providing logical tables (HP and Quanta) only
HP can use TCAM and logical tables simultaneously for all
examined use cases. Furthermore, Quanta installs as many
flow rules in its TCAM as it can (2K), and silently ignores the
rest without notifying the controller. For instance, in the L2
use case the Extreme switch could handle 100 flows at line
rate (1K and 2K flows with the Brocade and the Quanta,
respectively) but could not tackle 1K flows at all (10K for the
Brocade and the Quanta). On the other hand, all hardware
switches can support the relatively small flow table of the load
balancer use case adequately (even though the HP proved to
be slower).

Meanwhile the ESwitch-based OpenFlow softswitch per-
forms close to line rate at small and medium sized workloads
and only becomes worse at very large flow tables. Depending
on the workload, the HARMLESS-ESwitch combination attains
a performance very close to that of the TCAM-based fast path
of hardware switches and the best softswitches, in the majority
of the cases reaches up to 90–95% and it robustly outperforms
the hardware’s slow-paths and the HP switch.

Results with OVS are much worse, but then again the
HARMLESS-OVS mix is very close to pure OVS. This
suggests that the performance of HARMLESS is eminently
conditioned on the OpenFlow softswitch component; here,
the HARMLESS-ESwitch combination seems very appealing.

We measured throughput on multiple CPU cores (Fig. 9)
under the larger workloads (namely, in the L3/100K and
LB/10K use cases); this time, we use 128-byte packets as
the Intel XL710 NIC cannot be saturated with smaller pack-
ets [69]. The results indicate that HARMLESS scales to
multiple cores linearly, however the HARMLESS-ESwitch
mix already achieves its maximum performance (which is
much higher than OVS can attain with 6 cores) with only
4 cores.

CAPEX: Fig. 8a compares the CAPEX of a greenfield
deployment in the CLOS-based telco DC (the L2 and L3
use cases combined) as the function of access port density
supported in ToR switches. Note that due to the different

284 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

TABLE II

THROUGHPUT MEASUREMENT RESULTS IN Mpps

Fig. 8. CAPEX at different deployment scales for (a) a full CLOS topology
that integrates the L2 and L3 use cases, and (b) the access gateway (x in
logscale). In the legend, SW: software switches, HW: hardware switches,
HL: HARMLESS.

form factors the spine layer scales differently: purchasing four
48×10G hardware switches for the spine incurs a huge initial
investment but can then scale to 48 leaf switches economically;
in case of software switching, one leaf switch, offering similar
aggregation ratios as a typical hardware device provides,7

mounts 12×1G + 1×10G, thus we need one server with
12×10G capacity as the spine resulting in a small CLOS
topology (providing 144 access ports at the most). Observe
in Fig. 8a that in contrast to COTS devices and HARMLESS,
where we are given 4 spine switches (the most expensive
parts of the CLOS topology), the necessity of only one spine
server is the reason why software switches involve less initial
investment.

7Recall that a certain amount of over-subscription ratio is implied by the
design of the hardware switches (e.g., 48×1G vs. 4×10G).

Fig. 9. HARMLESS Multi-core scalability: throughput (Gbps) with ESwitch
and OVS (128-byte).

Since in case of HARMLESS the trunk ports of the
legacy devices are used to provide the OpenFlow capability,
special attention is needed in order to preserve the non-
blocking 1:1 over-subscription ratio of the CLOS topology.
Therefore, in HARMLESS a spine switch is comprised of a
48×10G+4×40G commodity switch plus a server with two
4×10G NICs for the softswitch component, and 2x100G NIC8

with an additional CPU for compensating the inherent “loss”
of uplink ports resulting in a sum of $3,900 per spine switch.
On the other hand, a legacy leaf switch of 48×1G + 4×10G
only requires a HARMLESS server with two 4×10G NICs
resulting in an average price of $2,200 per leaf switch.

Fig. 8b gives the CAPEX for a telco access gateway
greenfield SDN deployment in a simple tree topology (Fig. 4)
with a depth of 3, consisting of 48×1G forwarding ports at
the leafs, 48×10G aggregation switches in the middle, and
one switching gear with 40G forwarding ports as the core
(we considered the average price of $20,000 USD) offering an
overall 1:1 over-subscription ratio. One can observe that when
relying merely on software switches, expenses can easily reach
high even for fewer number of ports. On the other hand, in case
of the hardware devices and HARMLESS the steep cost steps
arrive at 576 forwarding ports: those indicate the price of
the 32×40G OpenFlow-enabled core switch, and the three
2×100G NICs for HARMLESS, respectively. Crucially, in all
cases HARMLESS is the most cost-efficient option, supporting
roughly the same performance at the fraction of the price:
on average HARMLESS is 2–4 times less expensive than a
softswitch-, a COTS-, or a white-box-based deployment, but

8We considered the average price of a Mellanox ConnectX-5 NIC of $1,300.

CSIKOR et al.: TRANSITION TO SDN IS HARMLESS: HYBRID ARCHITECTURE 285

TABLE III

LATENCY OVER IN A BRIDGE AND IN THE L2/1K USE CASES WITH AND
WITHOUT 10 Gbps BACKGROUND TRAFFIC

TABLE IV

POWER CONSUMPTION AND RACK SPACE DEMAND

the price difference can even reach to an order of magnitude.
Our cost analysis assumes that legacy switches for HARM-
LESS are in stock; if not, HARMLESS is still 1.5–3 times
cheaper due to the low price of commodity Ethernet switches;
however, if Ethernet switches and spare servers are available
in adequate number then, recall, HARMLESS incurs zero cost.

One might propose that since hardware switches can achieve
higher throughput than their software-based counterparts,
in the cost analysis their prices should be normalized cor-
respondingly. However, the datasheets of the hardware appli-
ances are neither comprehensive nor comparable: packet size is
missing from the performance indicators, or the optimal packet
sizes are different from switch to switch. In order to avoid any
distortion in the results we did not consider this methodology.

Latency: In order to check whether the additional softswitch
in the loop increases the latency of HARMLESS prohibitively,
we conducted a series of latency measurements in various
setups. The latency was measured by the Linux ping command
and Table III gives the average and standard deviation results
of 1000 measurements for a single port-forwarding rule in the
OpenFlow pipeline and for the L2/1K workload. We have mea-
sured the delay with no (for baseline) and with 10 Gbps back-
ground traffic. ESwitch’s delay is around 230 µsec without
background traffic reliably, with HARMLESS only 10% more
thanks to that the underlying plain Ethernet switch is very
fast (adding roughly 30–50 µsec to the softswitch latency).
This performance difference also can be observed in the case
of the 10 Gbps load in the background. VLAN untagging
and tagging in the software switch does not induce apparent
delay, and the computation overhead also seems negligible.
The results indicate that the additional softswitch does not
introduce prohibitive latency in HARMLESS , accordingly,
it seems sufficient for anything but the most delay-critical
applications. Note that by baseline we mean the latency of
a pure software switch that could be used to realize the
HARMLESS architecture. Note, since the use cases implied
L2 and L3 synthetic traffic for measurements, the throughput
is not impacted by the end-to-end/packet processing latency.

OPEX: Our cost analysis so far has accounted for the
CAPEX component only, the operational costs were not con-
sidered at all even though OPEX can constitute a significant
factor in the total spending. Table IV shows an evaluation of
two important OPEX components. The energy consumption is
estimated from the datasheets of the switches and the CPUs
(note that the legacy Ethernet switch used in HARMLESS

consumes less power than a full-scale SDN switch). The
rack space occupancy is normalized for the standard 48×1G
form factor: 1U for a hardware switch, 3U for the three
16×1G servers needed for a 48-port software switch, and
for HARMLESS 1U for the legacy 48×1G switch and 1U
for the 12×10G server, but the latter can handle 2 additional
commodity switches as well which gives 1.3U normalized to
48 ports overall. Cabling might be more difficult though, since
some high-speed uplinks that could otherwise be used for
aggregation are allocated for HARMLESS; yet, the flexibility
of access port assignment in HARMLESS may be exploited
to optimize cabling costs. Note, that most of the cabling can
remain the same: HARMLESS only requires to reuse the trunk
ports (e.g., 4×10G) for the OF component, but at the same
time, the HARMLESS server is accompanied with additional
NICs (e.g., a NIC with 4×10G ports) to replace the otherwise
lost trunk ports. Accordingly, only a little bit of rewiring is
imposed by HARMLESS; the bulk of cabling that connects
end devices to core switches does not need to be moved.

Overall, the costs for operating HARMLESS are at the same
level as that of the alternatives.

V. RELATED WORK

We group the related work we cite around 4 topics.
SDN Control and Data Planes: Disruption-free updates

are a key primitive to effectively operate SDN networks and
maximize the benefits of their programmability. In [70] the
authors study how to implement this primitive safely (with
respect to forwarding correctness and policies), efficiently
(in terms of consumed network resources) and robustly to
unpredictable factors, such as delayed message delivery and
processing. From the HARMLESS design perspective max-
imizing reliability and minimizing the latency induced by
control plane actions are key, as the data plane forwarding is
charged with an extra delay from the legacy hardware switch
to the HARMLESS server. Striving towards the same goal,
another major work, presented in [71], introduces a system
that uncovers forwarding problems due to hardware or soft-
ware failures in switches, by verifying that the data plane
corresponds to the view that an SDN controller installs via
the control plane. The control plane of a HARMLESS network
is exposed to the same dangers as ordinary software-defined
networks. As the presented work focuses on the migration
itself, making traditional networks into SDN ones, we regard
these challenges to be orthogonal to our study.

SDN Migration: The new levels of abstraction, pro-
grammability, and logically centralized control are important
motivators for deploying SDN in operational networks [1], like
enterprise networks [72], DC fabrics [68], transport networks
[73], [74], WANs [5], [7], [75], and Internet exchanges [76].
Most of the deployments, however, involve the complete
and irreversible overhaul of the existing legacy networking
infrastructure. Incremental deployment strategies [15] seek
to find a smoother migration path than a flag-day greenfield
upgrade [1]–[4], [6]. Managing such a heterogeneous network
however can become rather unwieldy due to the potential
interference between coexisting legacy and SDN control
planes; for instance, forwarding loops may be formed due to
the legacy control plane masking certain forwarding decisions
from the SDN controller [6]. Due to its dataplane trans-

286 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

parency, vendor-neutrality, and fine-grained upgradeability,
HARMLESS easily fits into any of these SDN migration paths.

Hybrid SDN: Perhaps closest to HARMLESS is the hybrid
SDN scheme Panopticon [3], which connects legacy device
ports to SDN-capable switches using VLAN tagging similarly
to HARMLESS. Yet, the objective of Panopticon is different:
guaranteeing that each forwarding path traverses at least one
SDN switch that can exert control over the traffic along that
path. This requires the careful optimization of network policies
for waypoint enforcement, which introduces path stretch; fur-
thermore, Panopticon needs a nontrivial number of newly pur-
chased SDN switches. In contrast, HARMLESS is completely
dataplane transparent being able to accommodate any SDN
policy without special tweaking. Furthermore, HARMLESS
can introduce the existing legacy network infrastructure under
SDN control and hence is more economical.

Fibbing is similar in this vein to HARMLESS [5], [74]:
it endues a legacy network, employing a distributed routing
protocol, with SDN control by the use of clever “lies”, whereas
certain network nodes are commanded by the controller to
announce false routing information into the IGP. Fibbing,
however, is bounded by the limitations of destination-based
routing, while HARMLESS opens up the full power of SDN to
realize any forwarding and security policy in a transparent,
verifiable, and debuggable framework.

The authors’ aim in LegacyFlow [77] is to provide a virtual
OF datapath to the legacy appliances for translating only a
set of OF actions into vendor specific configurations, this
way creating a hybrid network. LegacyFlow requires more
feature/capability from the HW device than HARMLESS and
cannot support all OF operations (e.g., number of packets
matched on a certain flow rule). Furthermore, a virtual switch
controller is limited to handle just one legacy device at a time.

The way to adopt SDN is for each host to have a software
switch, so the commodity hardware switch does not need to
change: this is how companies install SDN in datacenters.
HARMLESS offers an SDN adoption technique that requires
to i) add a number of software switch instances to the network
that is equal or less than the number of commodity switches
present there, ii) connect the commodity switches’ uplink ports
with the servers that run those software switches, iii) set
VLAN tags to the managed ports of the commodity switches.
Installing software switches on each and every server, the num-
ber of which is generally at least an order of magnitude higher
than that of the switches interconnecting them, might be a
tedious work. Therefore we argue that HARMLESS is in fact
the easier way for companies to adopt SDN.

The seminal work [60] on the softwarization of data cen-
ter networks proposes to compute forwarding states in the
controller and to deploy the corresponding flow entries into
network hypervisors running on the data center servers inter-
connected with legacy network devices. In this so-called Net-
work Virtualization Platform (NVP) the underlying commodity
hardware switches do not need to change at all, instead the
overlay connectivity required for the data paths among multi-
tenant VMs is provided by virtual switches on the servers
based on the tenants’ configurations and the actual VM loca-
tions within the data center. The difference between HARM-
LESS and NVP are two-fold. First, the application domain we
aim for is enterprise [78] and wide-area [79] networks instead

of multi-tenant data centers, which completely changes the
requirements from the ability of mapping virtual data paths on
the physical network to the ability of controlling the network
itself. Second, by moving the goal so, in HARMLESS the
implementation of the logical network does not necessitate to
install a software switch on each and every server, only the
network devices have to be softwarized, which is done by at
most one software switch per commodity hardware switch.

Hard vs. Softswitches: Lately, there has been significant
research in hardware switch architectures (RMT [80], packet
transactions [31], P4 [81], TCAM caches [25]) and software
switch design (multi-threaded switches [21], [22], OVS [18],
ESwitch [24], PISCES [23]), but the debate still seems far
from concluded [27]–[30]. Bridging the gap between the two
extremes has been a recurring theme for long [26], e.g., recent
trends for NIC offloading [29], switchdev [82], similar
ideas in hybridization for load balancing [62]. Nevertheless,
we see HARMLESS rather as an architectural leap than
another hybrid hardware-software design; nothing in HARM-
LESS enforces that the commodity switch be a hardware device
and the OpenFlow component be a softswitch, it is just that
this setup realizes a particularly cost-effective combination.

VI. CONCLUSION

SDN has grown out of the “niche status” and found impor-
tant use in communication networks. However, there still exist
areas it has not penetrated, mainly service provider networks
and smaller businesses with less technically savvy IT staff.
In this paper we presented HARMLESS, a new SDN design
to offer an attractive deployment path for such cases.

The main idea in HARMLESS is opening traditional black-
box network gear and virtualizing the switch OS in a separate
softswitch component. HARMLESS allows an operator to start
experimenting with SDN instantaneously: by connecting the
trunk port of a legacy Ethernet switch to a spare x86 server
an operator can immediately engage with OpenFlow controller
programs with zero initial investment. Later, any combina-
tion of legacy ports and switches can be connected to the
HARMLESS software switch to incrementally reach a full
SDN deployment. Thanks to transparency, the developed con-
troller programs are portable between deployments.

HARMLESS realizes an appealing combination of hardware
and software switching, with the hard switch providing the port
density and the softswitch delivering programmability. Our
comprehensive CAPEX analyses on realistic SDN migration
scenarios indicate that HARMLESS attains the most economic
SDN migration strategy today, with performance close (90–
95%) to, and in some cases even higher than, that of the
alternatives. HARMLESS is exempt from the dataplane quirks
and performance regressions experienced with COTS Open-
Flow appliances. With the continuous evolution of software
switching and general-purpose packet processing solutions,
achievable throughput with HARMLESS will further improve.

REFERENCES

[1] A. Bhalgat et al., “SDN migration considerations and use cases,” ONF
Solution Brief, Open Netw. Found., Palo Alto, CA, USA, Tech. Rep.
ONF TR-506, 2014.

[2] M. McNickle, With Hybrid SDN Deployment, no Need for Network
Forklift. Newton, MA, USA: Tech Target Search SDN, 2013.

CSIKOR et al.: TRANSITION TO SDN IS HARMLESS: HYBRID ARCHITECTURE 287

[3] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann,
“Panopticon: Reaping the benefits of incremental SDN deployment in
enterprise networks,” in Proc. ATC, 2014, pp. 333–345.

[4] K. Poularakis, G. Iosifidis, G. Smaragdakis, and L. Tassiulas, “One
step at a time: Optimizing sdn upgrades in isp networks,” in Proc.
INFOCOM, May 2017, pp. 1–9.

[5] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central control
over distributed routing,” in Proc. SIGCOMM, Aug. 2015, pp. 43–56.

[6] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” ACM Comput.
Commun. Rev., vol. 44, no. 2, pp. 70–75, Apr. 2014.

[7] S. Jain et al., “B4: Experience with a globally-deployed software
defined WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 3–14, 2013.

[8] A. Gonsalves, Microsoft SDN Stack to Challenge Cisco, VMware.
Newton, MA, USA: Techtarget, 2016.

[9] C. Ma. (2014). SDN Secrets of Amazon and Google. [Online]. Available:
https://bit.ly/2OPkpZi

[10] S. Ong, “Migrating to SDN: Planning for a smooth transition,” Brocade,
San José, CA, USA, White Paper, Jul. 2014.

[11] N. Computing. (2017). SDN: Time to Move On, Gartner Says. Gartner
Report. [Online]. Available: https://ubm.io/2LmrLBu

[12] A. Lerner. (2014). The State of SDN Adoption. Gartner Blog Network.
[Online]. Available: https://gtnr.it/33NlCVo

[13] R. Chua. (2018). State of SDN and NFV Hype or Reality. SDxCentral.
[Online]. Available: https://bit.ly/2OOy4jn

[14] L. Csikor and D. P. Pezaros, “End-host driven troubleshooting
architecture for software-defined networking,” in Proc. GLOBECOM,
Dec. 12017, pp. 1–7.

[15] M. K. Mukerjee et al., “Understanding tradeoffs in incremental
deployment of new network architectures,” in Proc. CoNEXT, 2013,
pp. 271–282.

[16] I. Pepelnjak. (2016). Q&A: Vendor OpenFlow Limitations. [Online].
Available: https://bit.ly/2RmBs6G

[17] I. Pepelnjak. (2016). Table Sizes in OpenFlow Switches. [Online].
Available: https://bit.ly/385gGhV

[18] B. Pfaff et al., “The design and implementation of Open vSwitch,” in
Proc. NSDI, 2015, pp. 117–130.

[19] M. Kuźniar, P. Perešíni, and D. Kostić, “What you need to know about
SDN flow tables,” in Proc. PAM, 2015, pp. 347–359.

[20] Guide: Data Plane Development Kit for Linux, Intel, Santa Clara,
CA, USA, 2015.

[21] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy,
“Towards high performance virtual routers on commodity hardware,” in
Proc. CoNEXT, 2008, p. 20.

[22] M. Dobrescu et al., “RouteBricks: Exploiting parallelism to scale
software routers,” in Proc. SOSP, 2009, pp. 15–28.

[23] M. Shahbaz et al., “PISCES: A programmable, protocol-independent
software switch,” in Proc. SIGCOMM, 2016, pp. 525–538.

[24] L. Molnár et al., “Dataplane specialization for high-performance open-
flow software switching,” in Proc. SIGCOMM, 2016, pp. 539–552.

[25] M. Casado, T. Koponen, D. Moon, and S. Shenker, “Rethinking packet
forwarding hardware,” in Proc. HotNets, 2008, pp. 1–6.

[26] D. Moon et al., Bridging the Software/Hardware Forwarding Divide.
Berkeley, CA, USA: Univ. California, Berkeley, 2010.

[27] K. Argyraki et al., “Can software routers scale,” in Proc. PRESTO, 2008,
pp. 1–6.

[28] G. Pongrácz, L. Molnár, Z. L. Kis, and Z. Turányi, “Cheap silicon:
A myth or reality? Picking the right data plane hardware for software
defined networking,” in Proc. HotSDN, 2013, pp. 103–108.

[29] J. Gross, A. Lambeth, B. Pfaff, and M. Casado, “The rise of soft
switching,—Part I, II, III,” Netw. Heresy, 2011. [Online]. Available:
https://networkheresy.wordpress.com/

[30] G. Ferro, Soft Switching Fails at Scale. EtherealMind, 2011. [Online].
Available: https://etherealmind.com/soft-switching-fails-at-scale/

[31] A. Sivaraman et al., “Packet transactions: High-level programming for
line-rate switches,” in Proc. SIGCOMM, 2016, pp. 15–28.

[32] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eugster,
“SAX-PAC (scalable and expressive packet classification),” in Proc.
SIGCOMM CCR, Aug. 2014, vol. 44, no. 4, pp. 15–26.

[33] L. Csikor et al., “Tuple space explosion: A denial-of-service attack
against a software packet classifier,” in Proc. CoNEXT, 2019,
pp. 292–304.

[34] L. Csikor, C. Rothenberg, D. P. Pezaros, S. Schmid, L. Toka, and
G. Rétvári, “Policy injection: A cloud dataplane DoS attack,” in Proc.
SIGCOMM (Demo), 2019, pp. 147–149.

[35] J. Maddison. (2016). Why Networks Need ASICs. Fortinet Blog.
[Online]. Available: https://ubm.io/33RRyrw

[36] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D. Kostic, “A SOFT
way for openflow switch interoperability testing,” in Proc. CoNEXT,
2012, pp. 265–276.

[37] NoviFlow. (2019). NOVISWITCH—Swithing Made Smarter. [Online].
Available: https://noviflow.com/noviswitch/

[38] CORSA. (2019). SDN Done Right. For the Physical Network. [Online].
Available: https://www.corsa.com/

[39] “The world’s fastest & most programmable networks,” Barefoot
Netw., Santa Clara, CA, USA, White Paper, 2016. [Online]. Avail-
able: https://www.barefootnetworks.com/resources/worlds-fastest-most-
programmable-networks/

[40] A. Pavlidis et al., Overview of SDN Pilots Description and Findings:
Part A, document Deliverable D7.1, 2017.

[41] N. Gaur, Fundamentals of VLANs: Router on a Stick. Sydney, NSW,
Australia: CCENT/CCNA R&S Study Group, 2014.

[42] Network Address Translation on a Stick. document 6505, Tech. Study,
Cisco, 2008.

[43] A. Lunn, V. Didelot, and F. Fainelli, “Distributed switch architecture,”
in Proc. Netdev 2.1, Tech. Conf. Linux Netw., 2017, pp. 1–7. [Online].
Available: https://netdevconf.info/2.1/session.html?lunn_didelot_fainelli

[44] P. Congdon. (2008). Virtual Ethernet Port Aggregator—Standards Body
Discussion. [Online]. Available: https://bit.ly/2Pg6JFx

[45] J. Pelissier. (2013). VNTag 101. [Online]. Available: https://bit.ly/
3611Zuh

[46] IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks, Amendment 4: Provider Bridges. Stan-
dard 802.1ad-2005, 2005.

[47] Campus Network for High Availability Design Guide, Design Guide,
Cisco, San Jose, CA, USA, 2008.

[48] Campus Networks Reference Architecture, Juniper, Sunnyvale, CA,
USA, 2010.

[49] H. Hudson, Extending Access to the Digital Economy to Rural and
Developing Regions. Cambridge, MA, USA: MIT Press, 2002.

[50] M. Kuzniar, P. Peresini, and D. Kostić, “Providing reliable FIB update
acknowledgments in SDN,” in CoNEXT, 2014, pp. 415–422.

[51] P. Perešíni, M. Kuzniar, and D. Kostic, “Rule-level data plane moni-
toring with monocle,” in Proc. SIGCOMM CCR, 2015, vol. 45, no. 5,
pp. 595–596.

[52] M. Szalay, L. Toka, G. Rétvári, G. Pongrácz, L. Csikor, and
D. P. Pezaros, “HARMLESS: Cost-effective transitioning to SDN,” in
Proc. SIGCOMM Posters Demos, 2017, pp. 91–93.

[53] N. Foster et al., “Frenetic: A network programming language,” in Proc.
ICFP, Sep. 2011, pp. 279–291.

[54] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN programming with pyretic,” USENIX Mag., vol. 38, no. 5,
pp. 40–47, 2013.

[55] L. Csikor, M. Szalay, B. Sonkoly, and L. Toka, “NFPA: Net-
work function performance analyzer,” in Proc. NFV-SDN, Nov. 2015,
pp. 15–17.

[56] T. Herbert. (2016). Scaling in the Linux Networking Stack. Linux
Documentation. [Online]. Available: https://goo.gl/MRldGX

[57] Microsoft. (2016). MSDN: Introduction to Receive-Side Scaling.
[Online]. Available: http://goo.gl/BpoErm

[58] S. Bradner and J. McQuaid, Benchmarking Methodology for Network
Interconnect Devices, document RFC 2544, 1999.

[59] M. Al-Fares, M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,
commodity data center network architecture,” in Proc. SIGCOMM, 2008,
pp. 63–74.

[60] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”
in Proc. NSDI, 2014, pp. 203–216.

[61] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. IMC, 2010, pp. 267–280.

[62] R. Gandhi et al., “Duet: Cloud scale load balancing with hardware and
software,” in Proc. SIGCOMM, 2014, pp. 27–38.

[63] Intel. Network Function Virtualization: Virtualized Bras With Linux and
Intel Architecture. Accessed: Dec. 20, 2019. [Online]. Available:
https://docplayer.net/5271505-Network-function-virtualization-
virtualized-bras-with-linux-and-intel-architecture.html

[64] S. K. N. Rao, “SDN and its USE-CASES-NV and NFV,” NEC Technol.
India Ltd., New Delhi, India, White Paper NEAD-WP-001, 2014.

[65] Cisco. (2011). Cisco Data Center Infrastructure 2.5 Design Guide.
[Online]. Available: https://goo.gl/kW78VM

288 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

[66] C. Kim, M. Caesar, and J. Rexford, “Floodless in seattle: A scalable
Ethernet architecture for large enterprises,” in Proc. SIGCOMM, 2008,
pp. 3–14.

[67] S. Halabi, Metro Ethernet. Indianapolis, IN, USA: Cisco Press, 2003.
[68] R. N. Mysore et al., “PortLand: A scalable fault-tolerant layer 2

data center network fabric,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 39, no. 4, pp. 39–50, 2009.

[69] Intel Ethernet Converged Network Adapters XL710 10/40 GbE, Intel
Corporation, Datasheet, Santa Clara, CA, USA, 2015.

[70] S. Vissicchio and L. Cittadini, “Safe, efficient, and robust SDN updates
by combining rule replacements and additions,” IEEE/ACM Trans. Netw.,
vol. 25, no. 5, pp. 3102–3115, Oct. 2017.

[71] P. Peresini, M. Kuzniar, and D. Kostic, “Dynamic, fine-grained data
plane monitoring with monocle,” IEEE/ACM Trans. Netw., vol. 26, no. 1,
pp. 534–547, Feb. 2018.

[72] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,
“Towards programmable enterprise WLANS with Odin,” in Proc.
HotSDN, 2012, pp. 115–120.

[73] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ‘one big
switch’ abstraction in software-defined networks,” in Proc. CoNEXT,
2013, pp. 13–24.

[74] M. Chiesa, G. Rétvári, and M. Schapira, “Lying your way to better traffic
engineering,” in Proc. CoNEXT, 2016, pp. 391–398.

[75] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” in Proc. SIGCOMM, 2013, pp. 15–26.

[76] A. Gupta et al., “SDX: A software defined Internet Exchange,” in Proc.
SIGCOMM, 2014, pp. 551–562.

[77] F. Farias, I. Carvalho, E. Cerqueira, A. Abelém, C. E. Rothenberg,
and M. Stanton, “Legacyflow: Bringing openflow to legacy network
environments,” OFELIA Summer School, to be published.

[78] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” in Proc. SIG-
COMM, 2007, pp. 1–2.

[79] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” in Proc. SIGCOMM, 2013, pp. 3–14.

[80] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in Proc. SIGCOMM,
2013, pp. 99–110.

[81] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[82] S. Feldman, “Rocker: Switchdev prototyping vehicle,” in Proc. Netdev,
2015, pp. 1–17.

Levente Csikor received the M.Sc. and Ph.D.
degrees from the Budapest University of Technol-
ogy and Economics, in 2010 and 2015, respec-
tively. He is currently a Senior Research Fellow
with the National University of Singapore. Before
joining NUS, he was a Research Associate with
INTRIG, University of Campinas, in 2018, and
with the School of Computing Science, Univer-
sity of Glasgow, in 2017. His interests include
data plane performance of different software-based
network functions, network programmability, and
denial-of-service attacks.

Márk Szalay is currently pursuing the Ph.D. degree
with the HSNLab, Budapest University of Tech-
nology and Economics. His main research inter-
ests include hardware (router/switch/NIC) design,
network programming, software-defined networking,
and network function virtualization.

Gábor Rétvári received the M.Sc. and Ph.D.
degrees in electrical engineering from the
Budapest University of Technology and Economics
in 1999 and 2007, respectively. He is currently
a Senior Research Fellow with the HSNLab and
a Visiting Professor with the Ericsson Research,
Hungary. He maintains several open source scientific
tools written in Perl, C, and Haskell. His research
interests include all aspects of network routing and
switching, the programmable data plane, and the
networking applications of computational geometry
and information theory.

Gergely Pongrácz graduated from the Budapest
University of Technology and Economics in 2000.
In 2004, he became a Research Engineer at Eric-
sson. He is currently an Expert with the Ericsson
Research in the area of programmable dataplane.
He is working on NFV and SDN topics, especially
in the programmable networking area. His projects
resulted in well received articles and demos, such as
an article at ACM SIGCOMM in 2016 or demos at
the Mobile World Congress in 2015 and 2017.

Dimitrios P. Pezaros (S’00–M’04–SM’14) received
the B.Sc. and Ph.D. degrees in computer science
from Lancaster University. He is currently a Profes-
sor of computer networks and the Founding Direc-
tor of the Networked Systems Research Laboratory
(netlab), School of Computing Science, University
of Glasgow. He has published widely in the areas
of computer communications, network and service
management, and resilience of future networked
infrastructures, and has received significant funding
for his research in the above areas from public

funding agencies and the industry. He is a Senior Member of the ACM. He
is a Chartered Engineer.

László Toka received the Ph.D. degree from Tele-
com ParisTech in 2011. He worked at Ericsson
Research from 2011 to 2014. Then, he joined the
academia with research focus on software-defined
networking, cloud computing, and artificial intelli-
gence. He is currently an Assistant Professor with
the Budapest University of Technology and Eco-
nomics, the Vice-Head of the HSNLab, and a mem-
ber of both the MTA-BME Network Softwarization
and the MTA-BME Information Systems Research
Groups.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

