University

of Glasgow

Alhamed, M. and Storer, T. (2020) Playing Planning Poker in Crowds: Human
Computation of Software Effort Estimates. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 20-30 May 2021, (Accepted for
Publication).

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/234713/

Deposited on: 23 February 2021

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/234713/
http://eprints.gla.ac.uk/

Playing Planning Poker in Crowds: Human
Computation of Software Effort Estimates

Mohammed Alhamed
School of Computing Science
University of Glasgow
Glasgow, United Kingdom
Mohammed.Alhamed @glasgow.ac.uk

Abstract—Reliable cost effective effort estimation remains a
considerable challenge for software projects. Recent work has
demonstrated that the popular Planning Poker practice can
produce reliable estimates when undertaken within a software
team of knowledgeable domain experts. However, the process
depends on the availability of experts and can be time-consuming
to perform, making it impractical for large scale or open source
projects that may curate many thousands of outstanding tasks.
This paper reports on a full study to investigate the feasibility
of using crowd workers supplied with limited information about
a task to provide comparably accurate estimates using Planning
Poker. We describe the design of a Crowd Planning Poker (CPP)
process implemented on Amazon Mechanical Turk and the results
of a substantial set of trials, involving more than 5000 crowd
workers and 39 diverse software tasks. Our results show that a
carefully organised and selected crowd of workers can produce
effort estimates that are of similar accuracy to those of a single
expert.

I. INTRODUCTION

Reliable software task estimation remains a critical factor
in the success of software projects. The most recent edition
of the Standish Group’s CHAOS survey of software industry
practitioners to be made publicly available states that around
half of all software projects are delivered later than intended
[1]. In older work, Emam and Koru [2] found that around
17% of cancelled projects were over schedule and 28% were
over budget. Even worse, underestimation of effort may cause
developers to rush, potentially resulting in unreliable software
and increased error proneness [3].

Several authors have argued that reliable software task
estimation is just as important for open source software
(OSS) projects [4, 5]. For example, Koch [4] argues that
established OSS projects share many of the characteristics
of commercial developments that benefit from reliable task
estimations, such as project roadmaps, release schedules and
contributor onboarding activities. Separately, Asundi [6] notes
that OSS projects are often not developed in isolation from
commercial activities. Many organisations will release part or
all of their code base as OSS, or depend on a community
maintained OSS system. Obtaining reliable estimates for tasks
in these projects helps dependents to understand when new
features might be available or bugs fixed.

Tim Storer
School of Computing Science
University of Glasgow
Glasgow, United Kingdom
Timothy.Storer @ glasgow.ac.uk

The problem: As described by more than one study, effort
estimation is a challenging task in controlled and centrally
managed commercial software development houses [1, 2, 7].

Such difficulties originate from an interplay of factors
including software novelty, rapid changes in development
technologies, team competences and the need for creativity in
software development [6]. Generally, the amount of subjectiv-
ity and creativity make predicting the final form of the software
product difficult, and thus, complicate software development
planning and estimation.

This difficulty is exacerbated in OSS. Such projects typi-
cally adopt a ‘Bazaar’ development model, in which a large
number of different contributors may complete tasks at dif-
ferent points in time [8], joining and leave a project as their
interests change. Lee et al. [9] found that a substantial number
of OSS contributors on Github only submitted a single pull
request in the lifetime of a project. This fluidity and churn
makes the development of the necessary project stability and
expertise for reliable estimates difficult. For example, only
6.79% of the issues reported in Apache Foundation issue
tracker! has been annotated with estimated or actual efforts.
Without such information it becomes difficult to plan software
development work in these contexts [4, 10].

Describing the wider problem of task triage, Hooimeijer
and Weimer [11] note that the number of bug reports for
popular projects typically outstrip the time available from
domain experts to triage them. Reviewing the state (2019) of
some popular open source projects illustrates the scale of this
challenge. The Linux Kernel, Firefox Web Browser and JBoss
projects respectively have 6456, 11751 and 17032 new issues
to be investigated.

Our motivation: Software effort estimation (SEE) is at the
core of software planning, yet existing methods depend on the
availability of a stable group of project experts and are not well
suited to the dimensions of scale of open source projects.

Planning Poker [12] is an expert-based effort estimation
method used in Agile development methods, such as Scrum
[13], that has become a popular approach to effort estimation
for software tasks. The most recently published State of Agile
Report states that the practice is used by 61% of the software

Uhttps://issues.apache.org/jira/browse

teams surveyed [14]. Several studies in the literature have also
reported that planning poker can provide reliable estimates
[15, 16, 17] as compared with single expert estimation.

Similar to other ‘Delphi’ methods [18], conventional Plan-
ning Poker depends upon the availability of a team of experts
to produce estimates in an iterative consensus building process.
Running an expert estimation method such as planning poker
is therefore costly. It requires a meeting of a team of relevant
experts to be coordinated, which limit Planning Poker scalabil-
ity and efficiency. Cohn’s [19] description of Planning Poker
process suggests that a team should expect to spend between
five and ten minutes per task, allowing the team to estimate up
to ten stories over a one hour session. Applying this guideline
to the Linux Kernel backlog would require a Planning Poker
session of approximately half a year. Even if only a percentage
of these issues are prioritised for resolution, the dependency
on expert availability imposes significant scaling restrictions.

In a review of Surowiecki’s [20] keynote talk on the Wisdom
of the Crowds at Agile 2008, Grenning wrote:

“I was wondering how Wisdom of Crowds would
relate to people on agile teams doing estimation and
planning. I was specifically interested in how his
research applied to Planning Poker, a practice used
throughout the world on agile teams” [21]

Surowiecki’s thesis is that large numbers of relatively in-
expert workers can perform as well as small groups of ex-
perts, if the group activity is appropriately structured. Further,
crowdsourcing platforms, such as Mechanical Turk [22] have
significantly eased the task of recruiting large numbers of
workers at relatively low cost.

Several studies have demonstrated that crowds can perform
effectively on a variety of different types of software project
task, including requirements management [23], software devel-
opment [24], and testing [25]. This paper therefore explores
Grenning’s question to determine whether an inexpert crowd
(either hired as in crowdsourcing markets or volunteered as
in OSS projects) can produce reliable software task effort
estimates and address the scalability of expert based Planning
Poker. Since access to OSS community is limited, we opted
to used crowdsourcing market as a similar OSS environment.
We hypothesize that by designing a process that applies
human computation[26] to an expert estimation method we
can achieve effort estimation that is of comparable accuracy
to that of small-group Planning Poker, but at scale.

Proposed method: Given our focus on applying human
computation, we address the following research question:

RQ: Given a software task that required between half
a day and two weeks effort, are crowdsourced effort
estimates ofcomparable accuracy to those of experts?

To address this question, we have developed and evaluated
Crowd Planning Poker (CPP), an estimation practice that can
be performed by inexpert crowd workers. We implement the
orchestration of worker activity on the Mechanical Turk plat-
form. Each crowd worker is presented with initial information
about a task to be estimated and then asked to supply a

categorical effort estimate and a justification. Once sufficient
estimates are received, the consensus amongst the crowd is
calculated. If consensus has been achieved, the process ends.
Otherwise, a further round of estimation is undertaken, with
additional information concerning the range of responses and
justifications from the previous round provided to the workers.
The iterative process continues until the crowd reaches con-
sensus, or a limit on rounds is reached. CPP also incorporates
a mechanism for filtering low quality estimates based on
an evaluation of the behaviour of crowd workers and the
justifications that they supply for their estimates.

Contribution: As far as we are aware, Grenning never
followed up on his inquiry and we are unaware of any other
attempt in the literature, except for our own pilot study [27].
Our work is therefore a continuation of the work reported there
to investigate the application of crowdsourcing to software
development task estimation using Planning Poker. Unlike the
pilot study, the work includes full evaluation of the approach
on a diverse range of thirty-nine (39) issues, comprising
both feature requests and bug fixes. The issues are selected
from three different open source projects, JBoss, Spring and
Apache. In total, 80 Crowd Planning Poker rounds were
executed and 807 estimates were received. Actual effort for
task completion report in the issue repositories ranged from
half a day through to two weeks. The results of the evaluation
demonstrates that crowd workers can produce estimates of
comparable accuracy to those of experts. A replication pack
is available for inspection containing all the results generated
for the experiment?.

This paper is structured as follows. Section II reviews the
present research in the existing literature. Section III presents
the experimental design for investigating the efficacy of CPP.
The results of the experiments are then presented in Section
IV. Finally, Section V summarises our conclusions from the
study and our reflections on the next steps in the research.

II. RELATED WORK

Planning Poker has been the subject of a number of em-
pirical studies in the academic literature. Molgkken-@stvold
et al. [16] found that using Planning Poker to combine
estimates produced better results in comparison to unstructured
or mechanical methods. More recently, Mahnic and Hovelja
[15] found a similar result in a study of 13 teams of students
in a software engineering course. In both cases, the studies
found that diverse groups of estimators result in more accurate
estimates. Gandomani et al. [28] also conducted an empirical
study of Planning Poker, comparing it to Wideband Delphi
and expert estimation, and concluded that Planning Poker
performed marginally better. Gandomani et al. also noted that
both estimation methods were useful in reducing underestima-
tion.

Several studies have attempted to apply automated, statis-
tical or machine learning techniques to software task effort
estimation. Such methods are potentially attractive, since they

Zhttps://github.com/crowd-planning- poker/cpp-30-issue-replication-pack

could substantially reduce the cost of producing estimates,
compared with expert based approaches. Early approaches
such as Function Point analysis [29] and COCOMO [30, 31]
developed cost models based on empirical analysis of large
data sets of software projects. However, both these approaches
require considerable expert judgement in producing estimates.

More recently, several attempts have been made to apply
machine learning methods [32]. However, a comparison by
Usman et al. [17] suggested that expert estimation techniques
still outperform machine learning based approaches. Similarly,
Wen et al. [32] found only two studies [33, 34] that reported
that machine learning based approached outperform experts
and neither study compared machine learning techniques to
Planning Poker or other Delphi-like methods. Thus to date, a
scalable method for producing reliable software task estimates
remains elusive.

Apart from the pilot study [27], no previous research has
investigated the application of human computation to Planning
Poker. Human computation could present a solution to the
issue of scale, as several studies have demonstrated that the
technique can be applied to a wide variety of other software
engineering practices [35], including requirements elicitation
[23], source code implementation [24] and usability testing
[25].

A particular concern in the application of crowdsourcing,
however, is to ensure the quality of work produced by crowd
workers. Numerous methods have been investigated, including
using a Gold Standard [36], machine learning classifiers [37],
another crowd to assess the quality of the work [38], and
associated data such as worker behaviour [39]. None of these
approaches are entirely satisfactory in the context of software
task estimation. In general, there isn’t an oracle available for
generating a gold standard estimate for a software task. In
addition, crowd workers may not return to perform repeated
estimation tasks, making a quality analysis based on previous
performance more difficult. Finally, employing a further crowd
of workers to assess the quality of a submission while feasible,
increases the cost of an estimate.

Alternative approaches seek proxy information concerning
the quality of a submission, rather than the submission itself.
Of particular relevance, McDonnell et al. [40] and Kutlu
et al. [41] proposed that crowd workers be asked to supply
a rationale for their decision alongside the supplied value.
This work shows that obtaining rationales improves the quality
of judgements without a substantial increase in task time. In
addition, Dumitrache et al. [42] showed that rationales are
useful for uncovering the reasons for subjective disagreement
amongst crowd workers and reaching a subsequent consensus.

Separately, Rzeszotarski and Kittur [43] and Kazai and
Zitouni [44] report the analysis of logs of crowd worker
interactions with the task user interface in order to model their
behaviour and engagement with the task. In these approaches,
worker interactions with the computer interface are captured.
A machine learning classifier is trained to predict the quality
of a worker’s submission based on the captured behaviour.

III. EXPERIMENTAL DESIGN

In this section, we present our experimental design to com-
pare the performance of a crowd in producing software task
estimates with those produced by project expert estimation.

We explain the metric used to compare accuracy of esti-
mates between experts and crowds;

describe the software tasks that formed the experimental
objects of our study; rehearse the in-person Planning Poker
practice and describe our Crowd Planning Poker (CPP) adap-
tation; and our technique for filtering estimates provided by
the crowd workers based on the quality of an associated
justification and their behaviour. We also briefly describe the
outcome of an initial pilot study [27] that assisted in the design
of the CPP process.

A. Baseline and Ground Truth

The purpose of the experiment is to determine whether
the CPP practice performed by crowd workers can produce
estimates comparable to those of experts. Therefore, it was
necessary to obtain a set of software tasks that had been
annotated with both an expert estimated and actual cost
effort, providing an experimental baseline and ground truth,
respectively. Three open source projects JBoss, Apache and
Spring Integration were found to satisfy these criteria.

After searching the project’s issue tracker systems 419
issues were found to be annotated by an expert time estimate
and an actual spent time in person-hours. Although these com-
munities have published their issue reporting documentation,
the method for producing either the estimate or calculating
the actual time cost are not stated. The researchers attempted
to contact several members of the communities to determine
the exact estimation process. As explained by those who
responded, they rely on their experience to predict the issues
estimates. For example, one response was:

“We tried to experiment, but always fallen back
into “guts feeling” based on experience and only
sometimes challenge each other. Me as a tester
usually take into account time for: (a) learning about
issue and deployment needed * (b) deploy manually
first (¢) reproduce issue/fix (d) automate deployment,
create tests (e) whatever else is needed (f) extra time
buffer to mitigate unexpected problems (g) holidays
or people time-off should be taken into account as
well -> might be covered by f) already, but you have
to think about it

* This might take a long time, depending on
difficulty of environment (Setup LDAP, Kerberos,
DNS, Whatever service needs to support given prod-
uct/tool)”

Moreover, the issues history log confirms that costs have
been determined by one or more of the issue assignees.
Therefore, the estimated time cost reported by the development
team on the issue is referred to as an expert estimate in this
study.

Instead of using a literal person-hours, Planning Poker is
often used with a relative unit for cost estimation such as story

TABLE I
ADOPTED TIME-BASED CATEGORIES AND THEIR BOUNDARIES FOR A
SOFTWARE TASK EFFORT ESTIMATE.

Category Low Middle High

One hour 0 1 1
Half a day 2 4 5
A day 6 8 10
Half a week 11 20 30
A week 31 40 60
Two weeks 61 80 120

points [12]. Cohn [19] states that approximate person-effort
categories are more appropriate because it is often unrealistic
to expect person-hour precision estimates to be accurate for
software tasks. Further, Cohn [19] argues that teams eventually
develop a tacit interpretation of the relationship between the
relative categorical estimate and actual person-time costs, as
the completed tasks are compared to the team’s available
person-hour budget over a number of sprints. In addition,
estimate categories often adopt a metaphor that suggests
increasing uncertainty with estimate magnitude. For example,
Grenning [12] suggests using a Fibonacci sequence to indicate
the margin of error between estimate sizes increases with
magnitude.

To map this approach to CPP it was necessary to employ
categorical units of which the crowd workers were likely to
have a shared understanding without prior communication.
Therefore, person-hour costs reported on the issues were trans-
lated into approximate person-day and person-week categories,
labelled as one hour, half a day, one day, half a week, one
week, two weeks and more than two weeks. The translation
followed the same scheme as in the community issue tracker
system (JIRA), where a working day is equal to 8 hours and
a working week equal to 40 hours. This enabled comparison
between CPP estimates and the person-hour costs reported on
the issues (Table I). To draw boundaries between the scale
categories a relative mid point between the two categories was
selected. Table I illustrates the low, middle, and high possible
person-hour for each category.

Before commencing with the experiment the set of issues
was filtered to avoid issues that:

« required less than 30 minutes or more than two weeks to
complete (119 issues);

o contained less than 20 words in the description (112
issues); or

¢ had received no comments and so were assumed to not
be of interest to the community (203 issues).

Some issues were removed due to more than one filter. After
the filtering step there were 126 issues left as candidates.
Thirty-nine (39) issues were randomly selected from the
filtered data set for use in the experiment. To ensure that
a diverse range of effort magnitudes were included, issues
were first organised into effort categories ranging from one
hour through to two weeks, as described above. Issues were
then selected randomly from these categories for inclusion in
the sample. URLs for the selected issues are included in the

TABLE II
COMPARISON OF ESTIMATION ERROR METRICS OF THE WHOLE
POPULATION (419 ISSUES), FILTERED SET OF ISSUES (126) AND
SELECTED SAMPLE (39).

Mean Median Mean
4 Absolute Magnitude =~ Magnitude
Error of Relative of Relative

(hours) Error Error
All 419 +29.3 128% 2475%
Filtered 126 +12.0 100% 773%
Sample 39 +10.5 90% 440%

replication pack. Issues selected were found to comprise a
mixture of bugs, feature requests and enhancements.

B. Accuracy Measurements

Following [32] and Usman et al. [17], the Magnitude of
Relative Error (MRE) and its mean (MMRE) and median
(MdMRE) are used to express the accuracy of the estimates
in the experiments. MRE is calculated as:

e—e¢e

MRE = |

| (D

where, e is the person-hour actual effort as recorded on the
issue tracker; and ¢’ is the person-hour effort estimate either
as recorded by the expert on the issue tracker or produced by
the crowd during the experiment.

MMRE and MdMRE are used to represent a summary of
the error for either crowd or expert estimates in the result
tables. However, before proceeding, it was necessary to check
whether the expert estimates for the selected issues were
representative of the whole data set. The selected sample
might represent an artificially low baseline if the estimates
they contain are less accurate than those for the population of
issues as a whole.

To do this, the mean absolute error, MMRE and MdMRE
were calculated for the three sets of issues (all estimated
issues, filtered issues, random sample), as shown in Table II.
For expert estimates the MRE was calculated directly from
the effort estimates reported in the respective project’s issue
tracker. For crowd workers, the categorical estimates from
individual estimates were translated back to person-hours at
the mid point for the category as shown in Table I.

The results show that the average estimation performance
by experts in the sample is slightly better than for the whole
or filtered set of issues. This assessment demonstrates that the
selected baseline (expert estimates in the sample) is suitable
for use in the study.

e

C. Crowd Planning Poker Workflow

Planning Poker [12] is an expert estimation technique,
similar to older methods such as Delphi [45] and popularly
associated with the Scrum software development process [13].
The objective of the method is to achieve consensus amongst a
group of experts, whilst minimising bias that might arise from
individual estimates and ensuring that conflicting opinions are
discussed and resolved.

Each member of the development team has a set of cards,
each labelled with a possible cost estimate. Different units
of costs can be used, including t-shirt size, person-hours or
story points. Cohn [19] proposes using story points as a
means of comparing relative user story complexity, rather than
producing an absolute estimate. In Cohn’s approach, story
point cards are labelled O, 1, 2, 3, 5, 8, 13. A final card
labelled with infinity can be used to signal that the task under
consideration is too complex to be reliably estimated.

Team members start estimating the effort for a task issue
individually, and pick the card with an appropriate label to
make an estimate. Then, the team members reveal their cards
simultaneously and check for estimation consistency. If there
is no consensus between the estimates, then the team members
explain their views to each other. In particular, the estimators
with the lowest and highest estimates are asked to explain their
reasoning. Additional rounds of estimation and discussion are
then performed until they reach a consistent estimation about
the issue. Cohn [19] recommends that if consensus hasn’t been
reached after three rounds of estimation then the team should
revisit the issue separately.

The adaptation of Planning Poker to crowdsourcing in our
CPP design is shown in the diagram in Figure 1. First, initial
information about the issue (title and description) is presented
to the crowd worker on a web based user interface. Additional
contextual information can be revealed by clicking on a
corresponding button. This information includes contextual
project details, such as definitions of ambiguous terms and ab-
breviations, or more information about project specific terms,
such as the name of a software component that appears in the
description. The crowd worker can also access comments that
were posted on the issue. Further information can be searched
by the developer using a search dialog provided on the user
interface.

Next, the worker is asked to select a category for their
estimate and provide an accompanying justification. The CPP
application collects this information, along with a log of
the worker’s behaviour on the CPP user interface. A quality
evaluation is then performed on the submitted information
according to the procedure summarized in Section III-E.
Submissions that are classified as low quality are eliminated
from any further use.

Once a sufficient number of estimates are received, the
consensus of the crowd worker estimates is calculated (Fleiss’
Kappa %) to determine if another round is required. If a further
round is required, the crowd workers are offered a summary
of the low, median and high, estimates from the previous
round, along with the justifications provided. The provision
of this supplementary information mimics the design of in-
person Planning Poker. We refer to the summary of previous
round as a seed answer that is fed back to the crowd workers,
in a similar way to the discussion that takes place in in-person
Planning Poker.

Crowd workers (the study subjects) were recruited from the
Amazon Mechanical Turk platform [22]. Only workers with
a self-declared experience of at least two years of software

engineering were permitted to participate. Each estimation
session employed a group of between 5 and 15 workers.

A custom web application has been developed to implement
the experiment, using the Mechanical Turk API to interact with
the market platform. All data, including worker interactions
with the user interface, the estimate and the justification are
captured using this application.

D. Pilot Study Summary

Having no prior literature to rely on, it was decided to
implement a small pilot study of CPP, prior to proceeding to
the full study [27]. The objective of the pilot study was to test
the design of the CPP workflow. It was also desirable to test
the selected size of the crowd to determine if the number of
crowd workers was sufficient to provide a reliable estimate and
to explore the quality of estimates and justifications provided
by workers.

The selected nine issues for the pilot experiment has an
average of 10 comments by different developers for each issue.
The Flesch-Kincaid readability scale grade for the description
averaged at 12. Overall, the design of the pilot study was
similar to the workflow described above. However, several
adjustments were made to simplify the conduct of the pilot
study. In particular, estimation took place over a fixed number
of three rounds for all trials. The fixed number of trials enabled
observation of the consensus forming process.

An early observation from the pilot study was that a
significant proportion (approximately 80%) of the submissions
were of low quality in terms of worker engagement with the
task and the justification supplied alongside an estimate. The
pilot also confirmed that estimation accuracy was correlated
with low submission quality.

To address this issue within the pilot we developed a quality
model for worker behaviour and used it to manually filter
out low quality estimates. The model was able to distinguish
between spammers, non-expert workers, and domain experts
using the quality model. In particular, we discovered that
crowd workers who provided good justifications for their
estimates wouldn’t necessarily spend much time reviewing
contextual information. We speculated that such workers had
reviewed similar issues before and therefore had less need for
additional information.

Table III shows the results of the pilot study once the
low quality estimates had been removed. The results were
encouraging. 301 estimates were received, of which 121 were
accepted for use in the estimation process. As a consequence,
crowd workers were able to predict the same estimate as
of the expert for seven issues out of nine. Crowd workers
also gave some insightful justifications for their estimates. On
the basis of the pilot study results, we proceeded to further
develop the CPP practice by incorporating an automated
quality assessment of worker behaviour, as summarized in
Section III-E below.

Software issue
information

Yes

Recruit Crowd IESIELD B Review Previous
Whers —>» Read Issue Info and Write No»| Estimates End
Justification
t Max: 3 rounds J
Fig. 1. General model of the crowdsourcing planning poker task
TABLE III

SUMMARY OF PILOT RESULTS, INCLUDING NUMBER OF ESTIMATES RECEIVED, ACCEPTED, AMBIGUOUS AND REJECTED, OUTCOME FOR EACH TRIAL
AND LEVEL OF AGREEMENT ACHIEVED WITHIN THE CROWD.

Estimates Actual Expert Crowd
Effort Estimate Estimate
Trial All Accepted Ambiguous Rejected Category Category MRE Category MRE
1 35 18 12 5 Half-day Half-week 300% One week 1150%
2 32 17 6 9 Half-day Half-day 0% One week 1233%
3 22 6 7 9 Half-day One hour 67% Half-day 90%
4 33 11 3 19 Half-week Two weeks 200% Half-week 40 %
5 34 11 4 19 Half-week Half-week 4% Half-Week 16%
6 40 16 9 15 Half-week Half-day 80% Half-Week 33%
7 37 17 9 11 Two Weeks >Two weeks 113% Half-Week 77 %
8 31 13 7 11 Two Weeks One week 17% Two Weeks 3%
9 37 12 13 12 Two Weeks >Two weeks 67% One Weeks 58%
Total 301 121 70 110
E. An Overview of Monitoring Quality Of Crowd Work On TABLE IV
Subjective Tasks SUMMARY OF ACTIONS USED FOR SCORING BEHAVIOUR
: : Event Target Properties ~ Weight
Based on t.he results of th§ pilot study [27] described Type Experience Field 5 words o
above, a multi-component quality model was developed for Click Extra Info Btn. _ 20
the quality of the workers’ submissions. The model combines Click Issue Comment Btn. - 10
a quality assessment of the workers’ justification for their gﬁzi gié“;t?if;“gg‘ Bin.) 18
estimate [40] with an evaluation of workers behaviour whilst Spend ExtJra info Stage' 25 second 10
working on the task, utilising a log trace of worker interactions Click Google Search Btn. - 10
with the CPP user interface [43, 44]. While previous research Type — Justification field 24 words 10
Spend Browser Window 3 min 10

take all the traced events into consideration, our model used
selected events from the trace of worker actions with pre-
defined weights, as summarised in in Table IV. Some of the
actions are binary, such as whether the worker clicked on the
button to reveal addition information or not. Other actions are
associated with particular properties, such as how long the
worker spent in total on the task. The values for these events
weights were based on observation of crowd behaviour during
the pilot study [27].

The justification provided by the crowd worker was evalu-
ated for the presence of four components: a task breakdown, a
time assignment for each working block, a general discussion
about the task topic, and an explanation of the estimation
process applied.

All the submissions from the pilot study [27] were processed
according to the model. The pilot submissions were then
manually labelled according to the following definitions.

o Accepted estimates: the crowd worker’s rationale contains
at least two justification components, e.g. a breakdown of

the required work with time specification for each block.
The weighted behaviour of the crowd worker behind the
submission is >75%.

o Ambiguous estimates: the crowd worker’s rationale con-
tain at least one justification component, and there is a
relationship to the estimation process, e.g. mentioning
the task in place. The weighted behaviour of the crowd
worker behind the submission is between 30% - 75%.

o Rejected estimates: the crowd worker’s rationale is com-
pletely unrelated to the task and issue topic. The weighted
behaviour of the crowd worker behind the submission is
<35%.

The labelling of pilot submission was undertaken by a team
of four researchers who first completed the task separately,
before reviewing each submission collectively to reach con-
sensus. The authors role was limited to explaining labelling
instructions and facilitating the labelling meetings. The model

Crowd Output

Crowd Input Working System

Ask——> OOO N :

Crowd
Assignment

Quality Classifier

Experience i i ‘ ‘ | i)
Question 1> <« HI s }““

H Crowd Workers "‘4{ } . :

: 5 : E—%

Justification % » 4 |

: Y8 Surveillance | F | [:] ‘ } 1

Question] Monitor ¥ T P G

E i - :

> Seed Answer “—{Quality Feedback *’{‘ J : ‘ [: i

A g R e — :

B5000000000000000000000004] ETTi0000000000000008000 B

Fig. 2. Crowd planning poker quality model

values and labelling of pilot submissions was then used to
train a random forest classifier from the scikit-learn library
[46] to automatically accept or reject submissions. Testing the
classifier resulted in an F-score of 0.935.

Figure 2 illustrates how the quality model was used within
the overall CPP process. During estimation, the surveillance
monitor implemented within the CPP user interface gathers in-
formation about the worker behaviour, which is then submitted
for the task along with the justification. The quality classifier
is then used to filter the received estimates. Accepted estimates
were forwarded to a further round of estimation if required,
whereas ambiguous and rejected estimates were removed by
this process. Both accepted and ambiguous estimates were paid
during the study, since both were considered to have engaged
with the assignment presented in Mechanical Turk. Workers
who were classified as ambiguous or disengaged automatically
received notifications that their submissions might be rejected,
giving the worker an opportunity to improve it by making
changes. Thus, the worker was engaged in an instant feedback
loop until reaching their submission reached the required
quality level or they decided to withdraw from the task. In both
cases, the burden of checking the quality of crowd submissions
was eliminated. However, as the classifier is not a 100%
accurate, rejected crowd workers were given an option to
appeal to ensure that crowd workers were treated fairly for
the purposes of the research.

IV. RESULTS AND EVALUATION

Thirty trials were conducted (one per selected issue), as
summarised in Table V. According to Munoz and Bangdiwala
[47] interpretation of Fleiss’ Kappa [48], all trials proceeded
until an ‘Almost Perfect’ level (>0.75) [49] of agreement had
been reached amongst the crowd workers, measured using
Fleiss” Kappa [48]. The crowd workers reached a consensus
within three rounds in all trials, with nine trials ending after
a single round, ten trials ending after two rounds and eleven
trials requiring three rounds of estimation.

Each round of CPP received between 10 and 5 estimates,
with an average of 8 estimates received in each round, resulting
in a total of between 5 and 30 estimates for each trial. Each
round was kept open until a minimum of five estimates of
sufficient quality had been received. Unlike the earlier pilot
study [27], the proportion of rejected estimates was much
lower, averaging 39% across all trials and reaching 50% in

Trial 11 and Trial 18. The reduction in low quality submission
is likely due to the automatic quality assessment and feedback
process summarized in Section III-E.

Table V also shows a comparison between the final aggre-
gate estimate produced by the crowd for each trial, the expert
(baseline) estimate and actual effort (ground truth) for the issue
as reported in the source project’s issue tracker. The category
(one hour, half day, etc.) of the final estimate and actual effort
are reported in all cases. Further, the MRE and Mean MRE
(MMRE) are shown for both the crowd and expert estimates
relative to the actual effort. The next two sections reviews
these results with respect to the original research questions.

A. Crowd Performance Compared with Experts

The research question for this work concerns the ability
of the crowds of in-expert workers to produce estimates of
a similar accuracy to those produced by single experts. The
results of the 30 trials conducted are reported in Table V.
The table reports the total number of rounds for each trial,
along with the number of accepted and rejected submissions.
The table also shows the actual categorical effort required
for the task concerned and the expert’s estimate, both as
reported on the issue tracker and converted to a category,
as well as the estimate produced by the crowd. Estimates
that are in bold indicate the estimate that was closest to the
reported effort (either expert or crowd, or both if the error
was equal). Estimates are underlined if the correct category
was also estimated.

As can be seen from the table, the crowd workers correctly
predicted the effort category for 7 of the 30 trials (14, 18,
25, 30, 31, 32, 36), as compared with fourteen of the issues
by the expert estimator (12, 13, 15, 16, 18, 21, 22, 23, 24,
30, 34, 36, 38, 39). By this comparison, expert estimators out
perform crowds. However, an alternative analysis would be to
consider which prediction (crowd or expert) was most accurate
for each of the issues. Here, the crowd workers produced the
same estimates as experts in 8 trials, crowd workers were more
accurate estimates in 10 trials, and experts more accurate in
12 trials. This suggests that the overall estimation performance
of crowd and experts were similar.

We further checked this comparison, by investigating
whether a statistically significant difference existed between
the distributions of MREs for both crowd and expert produced
estimates. First, we applied the Shapiro-Wilk test to both MRE
distributions to determine if either were normal. The result
of the test for crowds (W=0.60984, p=9.645e-08) and ex-
perts (W=0.57812, p=3.987¢-08) indicate that both were non-
normal. We therefore applied the Mann-Whitney U Test, since
both distributions are assumed to be independent. Applying
this test to the two distributions resulted in being unable to
reject the null hypothesis (W=497, p=0.4861), indicating that
there is no evidence of a statistically significant difference
between the MRE distributions and thus that the two effort
estimation techniques have similar accuracy.

In a final analysis, we compared the Mean MRE (MMRE) of
crowd estimates (239.83%) to the MMRE of expert estimates

TABLE V
SUMMARY OF TRIAL RESULTS, INCLUDING NUMBER OF ESTIMATES RECEIVED, ACCEPTED AND REJECTED, OUTCOME FOR EACH ROUND AND OVERALL
TRIAL AND LEVEL OF AGREEMENT ACHIEVED WITHIN THE CROWD. APRA AND SUA ABBREVIATIONS IN THE AGREEMENT COLUMN STANDS FOR:
ALMOST PERFECT AGREEMENT AND SUBSTANTIAL AGREEMENT ACCORDING TO MUNOZ AND BANGDIWALA [49].

Estimates Crowd Actual Expert Cr.owd
Agreement Effort Estimate Estimate
Trial nggziz()f All Accepted Rejected K(;}S;SS%) Category Category MRE Category MRE
10 1 6 5 1 APrA 76.19% A day Half a week 100% Half a day 50%
11 2 20 10 10 APrA 76.19% One Hour A day 500% A day 700%
12 3 26 15 11 APrA 76.19% One Hour One Hour 0% A day 700%
13 2 12 10 2 APrA 80.95% Half a day Half a day 0% A day 100%
14 1 10 5 5 APrA 79.17% One Hour Half a day 100% One Hour 0%
15 2 17 10 7 APrA 76.19% One Hour One Hour 0% Half a day 300%
16 1 7 5 2 APrA 79.17% Half a week Half a week 20% Half a day 80%
17 1 7 5 2 APrA 79.17% One Hour A day 700% Half a day 300%
18 3 30 15 15 SuA 66.67% Half a day Half a day 25% Half a day 0%
19 1 7 5 2 APrA 76.19% Half a day A day 50% A day 100%
20 3 26 15 11 SuA 66.67% One Hour Half a week 2300% Half a day 300%
21 1 8 5 3 APrA 79.17% One Hour One Hour 0% Half a day 300%
22 2 16 10 6 APrA 83.33% Half a week Half a week 20% A day 60%
23 2 18 10 8 APrA 79.17% Half a day Half a day 25% A day 100%
24 2 16 10 6 APrA 83.33% Half a week Half a week 20% Half a day 80%
25 2 22 10 12 APrA 79.17% One Hour Half a week 2300% One Hour 0%
26 2 24 10 14 APrA 76.19% Half a day One week 1100% Half a week 400%
27 2 14 10 4 APrA 83.33% Half a day Two weeks 1700% A day 100%
28 2 17 10 7 APrA 75.0% Half a day Half a week 300% A day 100%
29 3 21 15 6 APrA 79.17% One Hour Half a day 300% Half a week 1900%
30 3 19 15 4 SuA 70.83% Half a day Half a day 0% Half a day 0%
31 3 24 15 9 APrA 76.19% One Hour Half a day 200% One Hour 0%
32 1 9 5 4 APrA 83.33% Half a day A day 100% Half a day 0%
33 1 5 5 0 APrA 79.17% A day Half a week 200% Half a week 150%
34 3 26 15 11 SuA 71.43% One Hour One Hour 0% Half a day 300%
35 3 17 15 2 APrA 80.95% A day Half a week 100% Half a week 150%
36 3 23 15 8 SuA 66.67% Half a day Half a day 0% Half a day 0%
37 3 22 15 7 SuA 52.38% A day Half a week 100% Half a week 150%
38 3 27 15 12 SuA 66.67% One Hour One Hour 0% A day 700%
39 1 10 5 5 APrA 83.33% Half a day Half a day 0% One Hour 75%
Total 62 506 310 196

(342%) across all the issues and found that crowd workers
error is less than the experts by 102.2%. This suggests that
crowd workers are more likely to under-estimate by a category
as compared to experts who are more likely to over-estimate
using person hours. More research is required to investigate
this phenomenon. Overall, the results also demonstrate that
the CPP process can effectively discriminate between tasks of
different orders of magnitude, ranging from half a day through
to two weeks.

B. CPP Efficiency

In this section a brief discussion of the CPP running costs.
Whether employed in a commercial or open source setting,
measuring the costs in terms of worker time is necessary to
assess scalability. The total amount of time that crowd workers
took to produce an estimate through CPP ranged from 17 and
76 minutes, including idle time. Unsurprisingly, the number
of rounds in a trial had a significant influenced on the time
taken, with Trial 17 requiring just a single round and lasting

just four minutes, for example. These results suggest that
producing an estimate from a crowd takes some additional
time, compared with a Planning Poker process conducted by
a group of experts as described in Section I. Expert estimation
may also be considerably faster when the expert group already
has a good understanding of the task to be estimated and can
rapidly achieve consensus without the need for discussion.
Nevertheless, the results demonstrate that crowds can produce
estimates relatively quickly and on demand. In addition, the
work demonstrates that CPP can estimate multiple tasks in
parallel, as compared with in-person Planning Poker, where
only one issue can be considered at a time.

Conducting the experiment trials results in an average cost
of $1.99 to produce a final estimate for one issue. (again, this
figure is influenced by the number of rounds taken in a trial).
This cost would appear to compare very favourably with the
cost of running a Planning Poker session within a software
team. Assuming a team of five developer with an average
hourly salary of $40 (excluding other costs) can estimate 10

tasks in hour, then the average cost per estimate would be
$20. Thus, the results of the trials demonstrate the potential
for a significant cost saving in the context of playing CPP in
a Commerical software development houses.

C. Beyond Estimates - Crowd Insights

An additional benefit of requesting a rationale from crowd
workers when they supply their estimate is that further insight
and analysis of the task to be estimated can be obtained.
Many of the workers provided useful information about how
to approach the task. Such advice and guidance was often very
detailed, for example, on a task concerning the creation of a
preview mode for sites using the Apache Maven site plugin
(MSITE-68), a crowd worker wrote:

“This seems like a good case for building at the
DOM level, to “implement” the changes in parallel
for the previews. If that is in fact the case, it
would probably take about a day to get a working
prototype. If not...then a day would also probably be
enough to know that this simply cannot be done.”

The crowd worker provides a suggestion that the resolution
of the issue can be done by monitoring a page’s DOM for
changes to create a preview. They also include a suggestion
that a prototype should be created first to determine whether
the feature is feasible.

For another issue, concerning the implementation of a new
indexing mechanism for a JBoss workspace, the crowd worker
provides a detailed breakdown of the work to be done:

“l. how to determine, and what is the most
efficient and accurate query for nodes and necessary
information?

2. Initial testing for viability of indexing nodes
(no lost data, consistency, etc)

3. Deeper testing incl. stress testing at higher
node counts, ensure all threads are deleted, etc.”

In particular, the crowd worker emphasises the importance
of different types of testing, noting that non-functional testing
should be treated separately from the design and functional
testing of the feature.

These examples were intriguing, as we hadn’t anticipated
that crowd workers would provide insights with significant do-
main specific knowledge. These suggestions and explanations
have the potential to be of significant assistance to a team
during the wider triage process for a software task that occurs
alongside estimation. Further work is needed to understand the
extent to which this expertise can be leveraged and focused.

D. Threats to Validity

A limitation of the study is employing issues created for
open source projects. This decision was necessary as the
experiment required a source of software tasks that could
be provided to anonymous crowd workers and that had been
annotated with expert estimated and actual work cost. This
meant there was a risk that the crowd workers could access
the issue trackers themselves and simply supply the actual

reported cost, creating a threat to validity of the reliability
results.

This risk was mitigated in several ways. First, the issue
identifiers were not supplied to the crowd workers and issues
were selected from issue trackers that required user registra-
tion. This created an additional step to deter workers. Second,
workers were asked for a categorical submission, rather than
an absolute person-hour value, creating an additional step if the
source issue was accessed. Finally, workers were encouraged
to supply their estimate and it was clear that payment was not
contingent on supplying the correct result. Consequently there
is no evidence in the behaviour logs that the workers accessed
project issue trackers, although this may have occurred outside
the CPP user interface.

A second, external, threat to validity concerns the steps
taken to filter the selected issues from the open source projects
as described in Section III-A. Our results are therefore limited
to assessing the estimation performance of crowd planning
poker on issues that met our filtering criteria. Further, the
analysis in II showed that the Mean and Median MRE for the
expert estimates (the experimental baseline) were significantly
lower in our filtered sample compared with the unfiltered sam-
ple. This suggests that experts perform worse when making
estimates on issues that were ‘lower’ quality according to the
filtering critiera. Therefore the baseline for evaluating crowd
planning poker for these issues would be lower, compared with
the filtered issues. However, we are unable to determine within
the scope of the current work how each the filters might impact
estimate accuracy for crowd workers. We briefly discuss future
experimental work connected with this in the next section.

V. CONCLUSIONS

This paper has presented the first study of the application of
crowdsourcing to Planning Poker for the production of soft-
ware task estimates, answering Grenning’s speculation more
than a decade ago. The work demonstrates that crowd workers,
organised in a Crowd Planning Poker process, can reliably
produce software task estimates compared to experts; and at
substantially reduced cost compared to small teams of domain
experts. The crowd workers were able to discriminate between
tasks of varying complexity and provide useful insights as to
the resolution of the task.

These results therefore present several opportunities for
future research directions. First, an observed benefit of CPP
compared to in-person Planning Poker is the ability to obtain
results on demand, rather than needing to wait for a team’s
regular planning session. In addition, we noted that the crowd
workers often provided useful insights as to how the best
approach to take to resolve the issue and the sub-tasks that
this might involve. Therefore, CPP could be used by a software
team to obtain an initial estimate for a task along with some
initial guidance, prior to the task being triaged by a team
member. Alternatively, CPP could be used to quickly flag
issues that lack sufficient information for an accurate estimate
to be made, either within a crowd or by experts. We plan

further studies to understand how a software team could
incorporate crowd estimates within existing triage workflows.

Related to this possibility, is the need to assess the extent to
which software teams can publish software project tasks to a
crowd for estimation when the issues may contain potentially
sensitive or private information. To date, our research has
focused on estimation of tasks as issues drawn from open
source projects that are not affected by this concern, but do
have large backlogs of unresolved issues. Conversely, small
software teams working in a commercial setting may be
reluctant to publish the full details of an issue to be resolved
for fear of releasing commercially sensitive information, such
as product directions.

As a further work in this direction, we intend to investigate
the extent to which issues can be obfuscated to address
this concern, without reducing the reliability of the estimate.
Similarly, we are investigating the possibility of measuring
the specificity of an issue, as issues that concern less project
specific activities may be less sensitive for a project.

An alternative approach would be to consider other sources
of recruitment of the crowd workers. Large software organisa-
tions may host multiple projects and employ many hundreds
or thousands of developers. Similarly, successful OSS projects
attract similar numbers of volunteers. Rather than employing
crowd workers on sites such as Mechanical Turk, such devel-
opment efforts might leverage the resources available within
their own organisations. Such an approach might also further
enhance the accuracy of estimates.

REFERENCES

[1] The Standish Group, “The CHAOS report 2015,” 2015.

[2] K. E. Emam and A. G. Koru, “A replicated survey of IT
software project failures,” IEEE Software, vol. 25, no. 5,
pp. 84-90, September/October 2008.

[3] T. Furuyama, Y. Arai, and K. Tio, “Analysis of fault gen-
eration caused by stress during software development,”
in Achieving Quality in Software. Springer, 1996, pp.

14-28.
[4] S. Koch, “Effort modeling and programmer
participation in open source software projects,’

Information Economics and Policy, vol. 20, no. 4,
pp- 345-355, Dec. 2008. [Online]. Available:
https://doi.org/10.1016/j.infoecopol.2008.06.004

[51 E Qi, X.-Y. Jing, X. Zhu, X. Xie, B. Xu, and
S. Ying, “Software effort estimation based on open
source projects: Case study of Github,” Information and
Software Technology, vol. 92, pp. 145-157, Dec. 2017.
[Online]. Available: https://doi.org/10.1016/j.infsof.2017.
07.015

[6] J. Asundi, “The need for effort estimation models for
open source software projects,” in Proceedings of the
fifth workshop on Open source software engineering
- 5-WOSSE. ACM Press, 2005. [Online]. Available:
https://doi.org/10.1145/1083258.1083260

[7] K. Molgkken and M. Jgrgensen, “A review of surveys
on software effort estimation,” in 2003 International

Symposium on Empirical Software Engineering (ISESE
2003), 30 September - 1 October 2003. Rome, Italy.
IEEE Computer Society, 2003, pp. 223-231. [Online].
Available: https://doi.org/10.1109/ISESE.2003.1237981

[8] E. Raymond, “The cathedral and the bazaar,” Knowledge,
Technology & Policy, vol. 12, no. 3, pp. 23-49,
Sep. 1999. [Online]. Available: https://doi.org/10.1007/
$12130-999-1026-0

[9] A. Lee, J. C. Carver, and A. Bosu, “Understanding the
impressions, motivations, and barriers of one time code
contributors to FLOSS projects: a survey,” in Proceed-
ings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017, S. Uchitel, A. Orso, and M. P. Robillard,
Eds. IEEE / ACM, 2017, pp. 187-197.

[10] G. Robles, J. M. Gonzilez-Barahona, C. Cervigon,
A. Capiluppi, and D. Izquierdo-Cortazar, “Estimating
development effort in free/open source software projects
by mining software repositories: a case study of
OpenStack,” in Proceedings of the 1I1th Working
Conference on Mining Software Repositories - MSR
2014. ACM Press, 2014. [Online]. Available: https:
//doi.org/10.1145/2597073.2597107

[11] P. Hooimeijer and W. Weimer, “Modeling bug report
quality,” in 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2007), November
5-9, 2007, Atlanta, Georgia, USA, R. E. K. Stirewalt,
A. Egyed, and B. Fischer, Eds. ACM, 2007, pp. 34—
43. [Online]. Available: https://doi.org/10.1145/1321631.
1321639

[12] J. Grenning, “Planning poker or how to avoid analysis
paralysis while release planning,” Hawthorn Woods: Re-
naissance Software Consulting, vol. 3, pp. 22-23, 2002.

[13] K. Schwaber and M. Beedle, Agile software development
with Scrum. Prentice Hall Upper Saddle River, 2002,
vol. 1.

[14] CollabNet VersionOne, “13th annual state of agile re-
port,” https://www.stateofagile.com, May 2019.

[15] V. Mahnic and T. Hovelja, “On using planning poker
for estimating user stories,” Journal of Systems and
Software, vol. 85, no. 9, pp. 20862095, 2012. [Online].
Auvailable: https://doi.org/10.1016/j.jss.2012.04.005

[16] K. Molgkken-@stvold, N. C. Haugen, and H. C.
Benestad, “Using planning poker for combining expert
estimates in software projects,” Journal of Systems and
Software, vol. 81, no. 12, pp. 2106-2117, 2008. [Online].
Available: https://doi.org/10.1016/j.jss.2008.03.058

[17] M. Usman, E. Mendes, F. Weidt, and R. Britto,
“Effort estimation in agile software development:
a systematic literature review,” in The 10th
International Conference on Predictive Models in
Software Engineering, PROMISE 14, Torino, Italy,
September 17, 2014, S. Wagner and M. D. Penta,
Eds. ACM, 2014, pp. 82-91. [Online]. Available:
https://doi.org/10.1145/2639490.2639503

[18] R. D. Stutzke, Estimating Software-Intensive Systems:

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Projects, Products, and Processes, ser. SEI Series in
Software Engineering. Addison-Wesley Professional,
2005.

M. Cohn, Agile estimating and planning.
Education, 2005.

J. Surowiecki, The Wisdom of Crowds: Why the Many
Are Smarter Than the Few. Abacus, March 2005.

J. Grenning, “Agile 2008 - wisdom of crowds
keynote and planning poker,” https://blog.wingman-sw.
com/archives/20, August 2008.

Amazon Web Services, “Amazon mechanical turk
developer guide,” https://docs.aws.amazon.com/
AWSMechTurk/latest/ AWSMechanical TurkRequester/,
January 2017.

S. L. Lim, D. E. Damian, and A. Finkelstein,
“Stakesource2.0: using social networks of stakeholders
to identify and prioritise requirements,” in Proceedings
of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA,
May 21-28, 2011, R. N. Taylor, H. C. Gall, and N. Med-
vidovic, Eds. ACM, 2011, pp. 1022-1024. [Online].
Auvailable: https://doi.org/10.1145/1985793.1985983

T. D. LaToza and A. van der Hoek, “A vision of
crowd development,” in 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 2, A. Bertolino,
G. Canfora, and S. G. Elbaum, Eds. IEEE Computer
Society, 2015, pp. 563-566. [Online]. Available: https:
//doi.org/10.1109/ICSE.2015.194

Pearson

C. Schneider and T. Cheung, “The power of
the crowd: Performing usability testing using
an on-demand workforce,” in Information Systems
Development, Reflections, Challenges and New

Directions [Proceedings of ISD 2011, Heriot-Watt
University, Edinburgh, Scotland, UK, August 24 -

26, 2011], R. Pooley, J. Coady, C. Schneider,
H. Linger, C. Barry, and M. Lang, Eds.
Springer, 2011, pp. 551-560. [Online]. Available:

https://doi.org/10.1007/978-1-4614-4951-5_44

A. J. Quinn and B. B. Bederson, “Human computation:
a survey and taxonomy of a growing field,” in
Proceedings of the International Conference on Human
Factors in Computing Systems, CHI 2011, Vancouver,
BC, Canada, May 7-12, 2011, D. S. Tan, S. Amershi,
B. Begole, W. A. Kellogg, and M. Tungare, Eds.
ACM, 2011, pp. 1403-1412. [Online]. Available:
https://doi.org/10.1145/1978942.1979148

M. Alhamed and T. Storer, “Estimating software task
effort in crowds,” in 2019 IEEE International Conference
on Software Maintenance and Evolution, ICSME 2019,
Cleveland, OH, USA, September 29 - October 4,
2019. 1EEE, 2019, pp. 281-285. [Online]. Available:
https://doi.org/10.1109/ICSME.2019.00042

T. J. Gandomani, K. T. Wei, , and A. K. Binhamid, “A
case study research on software cost estimation using
experts’ estimates, wideband delphi, and planning poker

[31]

[35]

[36]

technique,” International Journal of Software Engineer-
ing and Its Applications, vol. 8, no. 11, pp. 173-182,
2014.

A.J. Albrecht, “Measuring application development pro-
ductivity,” in Proceedings of the Joint Share Guide IBM
Application Development Symposium, Monterey, Califor-
nia, USA., October 1979, pp. 83-92.

B. W. Boehm, B. Clark, E. Horowitz, J. C. Westland,
R. J. Madachy, and R. W. Selby, “Cost models for
future software life cycle processes: COCOMO 2.0,”
Ann. Software Eng., vol. 1, pp. 57-94, 1995. [Online].
Available: https://doi.org/10.1007/BF02249046

B. W. Boehm, Software Engineering Economics, ser.
Advances in computing science & technology series.
Upper Saddle River, NJ 07458, USA: Prentice-Hall,
October 1981.

J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic
literature review of machine learning based software
development effort estimation models,” Information &
Software Technology, vol. 54, no. 1, pp. 41-59, 2012.
[Online]. Available: https://doi.org/10.1016/j.infsof.2011.
09.002

S. G. MacDonell and M. J. Shepperd, “Combining
techniques to optimize effort predictions in software
project management,” Journal of Systems and Software,
vol. 66, no. 2, pp. 91-98, 2003. [Online]. Available:
https://doi.org/10.1016/S0164-1212(02)00067-5

H. Park and S. Baek, “An empirical validation of a neural
network model for software effort estimation,” Expert
Systems with Applications, vol. 35, no. 3, pp. 929-937,
2008.

K. Mao, L. Capra, M. Harman, and Y. Jia, “A
survey of the use of crowdsourcing in software
engineering,” Journal of Systems and Software, vol.
126, pp. 57-84, 2017. [Online]. Available: https:
//doi.org/10.1016/j.js5.2016.09.015

P. Donmez, J. G. Carbonell, and J. Schneider, “Efficiently
learning the accuracy of labeling sources for selective
sampling,” in Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining. ACM, 2009, pp. 259-268.

S. Zhu, S. K. Kane, J. Feng, and A. Sears,
“A crowdsourcing quality control model for tasks
distributed in parallel,” in CHI Conference on Human
Factors in Computing Systems, CHI 12, Extended
Abstracts Volume, Austin, TX, USA, May 5-10, 2012,
J. A. Konstan, E. H. Chi, and K. HOo60k, Eds.
ACM, 2012, pp. 2501-2506. [Online]. Available:
https://doi.org/10.1145/2212776.2223826

Y. Baba and H. Kashima, “Statistical quality estimation
for general crowdsourcing tasks,” in The 19th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2013, Chicago,
IL, USA, August 11-14, 2013, 1. S. Dhillon,
Y. Koren, R. Ghani, T. E. Senator, P. Bradley,
R. Parekh, J. He, R. L. Grossman, and R. Uthurusamy,

[39]

[40]

[41]

[42]

[43]

[44]

Eds. ACM, 2013, pp. 554-562. [Online]. Available:
https://doi.org/10.1145/2487575.2487600

T. Goyal, T. McDonnell, M. Kutlu, T. Elsayed, and
M. Lease, “Your behavior signals your reliability:
Modeling crowd behavioral traces to ensure quality
relevance annotations,” in Proceedings of the Sixth AAAI
Conference on Human Computation and Crowdsourcing,
HCOMP 2018, Ziirich, Switzerland, July 5-8, 2018.,
Y. Chen and G. Kazai, Eds. AAAI Press, 2018, pp.
41-49. [Online]. Available: https://aaai.org/ocs/index.
php/HCOMP/HCOMP18/paper/view/17924

T. McDonnell, M. Lease, M. Kutlu, and T. Elsayed,
“Why is that relevant? collecting annotator rationales for
relevance judgments,” in Proceedings of the Fourth AAAI
Conference on Human Computation and Crowdsourcing,
HCOMP 2016, 30 October - 3 November, 2016, Austin,
Texas, USA., A. Ghosh and M. Lease, Eds. AAALI Press,
2016, pp. 139-148. [Online]. Available: http://aaai.org/
ocs/index.php/HCOMP/HCOMP16/paper/view/14043

M. Kutlu, T. McDonnell, Y. Barkallah, T. Elsayed,
and M. Lease, “Crowd vs. expert: What can
relevance judgment rationales teach us about assessor
disagreement?” in The 41st International ACM SIGIR
Conference on Research & Development in
Information Retrieval, ser. SIGIR *18. New York, NY,
USA: ACM, 2018, pp. 805-814. [Online]. Available:
http://doi.acm.org/10.1145/3209978.3210033

A. Dumitrache, O. Inel, L. Aroyo, B. Timmermans,
and C. Welty, “Crowdtruth 2.0: Quality metrics for
crowdsourcing with disagreement (short paper),” in
Proceedings of the 1st Workshop on Subjectivity,
Ambiguity and Disagreement in Crowdsourcing, and
Short Paper Proceedings of the Ist Workshop on
Disentangling the Relation Between Crowdsourcing
and Bias Management (SAD 2018 and CrowdBias
2018) co-located the 6th AAAI Conference on Human
Computation and Crowdsourcing (HCOMP 2018),
Ziirich, Switzerland, July 5, 2018., ser. CEUR Workshop
Proceedings, L. Aroyo, A. Dumitrache, P. Paritosh, A. J.
Quinn, C. Welty, A. Checco, G. Demartini, U. Gadiraju,
and C. Sarasua, Eds., vol. 2276. CEUR-WS.org, 2018,
pp- 11-18. [Online]. Available: http://ceur-ws.org/Vol-
2276/paper2.pdf

J. M. Rzeszotarski and A. Kittur, “Instrumenting the
crowd: using implicit behavioral measures to predict
task performance,” in Proceedings of the 24th Annual
ACM Symposium on User Interface Software and
Technology, Santa Barbara, CA, USA, October 16-19,
2011, J. S. Pierce, M. Agrawala, and S. R. Klemmer,
Eds. ACM, 2011, pp. 13-22. [Online]. Available:
https://doi.org/10.1145/2047196.2047199

G. Kazai and I Zitouni, “Quality management
in crowdsourcing using gold judges behavior,”
in Proceedings of the Ninth ACM International

Conference on Web Search and Data Mining, San
Francisco, CA, USA, February 22-25, 2016, P. N.

Bennett, V. Josifovski, J. Neville, and F. Radlinski,
Eds. ACM, 2016, pp. 267-276. [Online]. Available:
https://doi.org/10.1145/2835776.2835835

N. Dalkey and O. Helmer, “An experimental application
of the delphi method to the use of experts,” Management
science, vol. 9, no. 3, pp. 458-467, 1963.

scikit-learn, “‘scikit-learn random forest classifier,’
https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html, December 2019.
S. R. Munoz and S. I. Bangdiwala, “Interpretation of
kappa and b statistics measures of agreement,” Journal
of Applied Statistics, vol. 24, no. 1, pp. 105-112,
Feb. 1997. [Online]. Available: https://doi.org/10.1080/
02664769723918

J. L. Fleiss, “Measuring nominal scale agreement among
many raters.” Psychological bulletin, vol. 76, no. 5, p.
378, 1971.

S. R. Munoz and S. I. Bangdiwala, “Interpretation
of kappa and b statistics measures of agreement,’
Journal of Applied Statistics, vol. 24, no. 1, pp.
105-112, 1997. [Online]. Available: https://doi.org/10.
1080/02664769723918

