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Abstract—Designing and tuning a proportional-integral-deriva-
tive (PID) controller appears to be conceptually intuitive, but can
be hard in practice, if multiple (and often conflicting) objectives
such as short transient and high stability are to be achieved.
Usually, initial designs obtained by all means need to be adjusted
repeatedly through computer simulations until the closed-loop
system performs or compromises as desired. This stimulates
the development of ‘“‘intelligent” tools that can assist engineers
to achieve the best overall PID control for the entire operating
envelope. This development has further led to the incorporation
of some advanced tuning algorithms into PID hardware modules.
Corresponding to these developments, this paper presents a
modern overview of functionalities and tuning methods in patents,
software packages and commercial hardware modules. It is seen
that many PID variants have been developed in order to improve
transient performance, but standardising and modularising PID
control are desired, although challenging. The inclusion of system
identification and “intelligent” techniques in software based PID
systems helps automate the entire design and tuning process to
a useful degree. This should also assist future development of
“plug-and-play” PID controllers that are widely applicable and
can be set up easily and operate optimally for enhanced produc-
tivity, improved quality and reduced maintenance requirements.

Index Terms—Patents, proportional-integral-derivative (PID)
control, PID hardware, PID software, PID tuning.

1. INTRODUCTION

ITH its three-term functionality covering treatment
Wto both transient and steady-state responses, propor-
tional-integral-derivative (PID) control offers the simplest and
yet most efficient solution to many real-world control problems.
Since the invention of PID control in 1910 (largely owning to
Elmer Sperry’s ship autopilot), and the Ziegler—Nichols’ (Z-N)
straightforward tuning methods in 1942 [34], the popularity
of PID control has grown tremendously. With advances in
digital technology, the science of automatic control now offers
a wide spectrum of choices for control schemes. However,
more than 90% of industrial controllers are still implemented
based around PID algorithms, particularly at lowest levels [5],
as no other controllers match the simplicity, clear functionality,
applicability, and ease of use offered by the PID controller
[32]. Its wide application has stimulated and sustained the
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development of various PID tuning techniques, sophisticated
software packages, and hardware modules.

The success and longevity of PID controllers were character-
ized in a recent IFAC workshop, where over 90 papers dedicated
to PID research were presented [28]. With much of academic re-
search in this area maturing and entering the region of “dimin-
ishing returns,” the trend in present research and development
(R&D) of PID technology appears to be focused on the integra-
tion of available methods in the form of software so as to get the
best out of PID control [21]. A number of software-based tech-
niques have also been realized in hardware modules to perform
“on-demand tuning,” while the search still goes on to find the
next key technology for PID tuning [24].

This paper endeavours to provide an overview on modern
PID technology including PID software packages, commercial
PID hardware modules and patented PID tuning rules. To begin,
Section II highlights PID fundamentals and crucial issues. Sec-
tion III moves to focus on patented PID tuning rules. A survey
on available PID software packages is provided in Section IV.
In Section V, PID hardware and tuning methods used by process
control vendors are discussed. Finally, conclusions are drawn in
Section VI, where some differences between academic research
and industrial practice are highlighted.

II. THREE-TERM FUNCTIONALITY, DESIGN AND TUNING

A. Three-Term Functionality and the Parallel Structure

A PID controller may be considered as an extreme form of
a phase lead-lag compensator with one pole at the origin and
the other at infinity. Similarly, its cousins, the PI and the PD
controllers, can also be regarded as extreme forms of phase-lag
and phase-lead compensators, respectively. A standard PID
controller is also known as the “three-term” controller, whose
transfer function is generally written in the “parallel form”
given by (1) or the “ideal form” given by (2)

1
G(S):KP‘I'KIg‘i‘KDS (1)
1
=Kp (1 +—+ TD3> (2)
T]S

where Kp is the proportional gain, K the integral gain, Kp
the derivative gain, 77 the integral time constant and, T the
derivative time constant. The “three-term” functionalities are
highlighted by the following.
* The proportional term—providing an overall control ac-
tion proportional to the error signal through the all-pass
gain factor.

1063-6536/$20.00 © 2005 IEEE
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e The integral term—reducing steady-state errors through

low-frequency compensation by an integrator.

e The derivative term—improving transient response

through high-frequency compensation by a differentiator.

The individual effects of these three terms on the closed-loop
performance are summarized in Table I. Note that this table
serves as a first guide for stable open-loop plants only. For op-
timum performance, Kp, Ky (or T7) and Kp (or Tp) are mu-
tually dependent in tuning.

The message that increasing the derivative gain, Kp,
will lead to improved stability is commonly conveyed from
academia to industry. However, practitioners have often found
that the derivative term can behave against such anticipation
particularly when there exists a transport delay [23], [28].
Frustration in tuning Kp has hence made many practitioners
switch off or even exclude the derivative term. This matter has
now reached the point that requires clarification, which will be
discussed in Section II-E.

B. Series Structure

A PID controller may also be realized in the “series form”
if both zeros are real, i.e., if T7 > 47Tp. In this case, (2) can
be implemented as a cascade of a PD and a PI controller in the
form [23]

G(s) = Kp(a+1ps) - (1 + oﬂl}s) 3)

where

4T
1+,/1- 42

7 > 0. “)

o =

C. Effect of the Integral Term on Stability

Refer to (2) or (3) for T # 0 and Tp = 0. It can be seen that,
adding an integral term to a pure proportional term will increase
the gain by a factor of

’1+ = J1+ >1, Yw (5)

ij[ w2T12

and will increase the phase-lag at the same time since

1
1 —_——
/(1 — -1 _«Tr ) ]
( +ijI> tan < 1 ) <0, Vw (6)

Hence, both stability gain margin (GM) and phase margin (PM)
will be reduced, i.e., the closed-loop system will become more
oscillatory or potentially unstable.

D. Integrator Windup and Remedies

If an actuator that realizes the control action has an effective
range limit, then the integrator may saturate and future correc-
tion will be ignored until the saturation is offset. This causes
low-frequency oscillations and may lead to instability. A usual
measure taken to counteract this effect is “anti-windup” [4], [8],
[29]. This is realized by inner negative feedback of some ex-
cess amount of the integral action to the integrator such that

TABLE 1
EFFECTS OF INDEPENDENT P, I, AND D TUNING

Closed- Rise Overshoot | Settling | Steady- | Stability
Loop Time Time State
Response Error
Increasing | Decrease Increase Small Decrease | Degrade
Kp Increase
Increasing Small Increase Increase Large Degrade
K1 Decrease Decrease
Increasing Small Decrease Decrease Minor Improve
Kp Decrease Change

saturation will be taken out. Nearly all software packages and
hardware modules have implemented some form of integrator
anti-windup protection.

As most modern PID controllers are implemented in digital
processors, they can accommodate more mathematical func-
tions and modifications to the standard three terms shown in (1)
to (3). A simple and most widely adopted anti-windup scheme
can be realized in software or firmware by modifying the inte-
gral action to

Ui(s) = 7o | KrBs) - TZED )
where U (s) represents the saturated control action and + is a
correcting factor. It is found that the range of [0.1,1.0] for ~y
results in extremely good performance if PID coefficients are
tuned reasonably [23].

It is also reported that, in the “series form,” the PI part may be
implemented to counter actuator saturation without the need for
a separate anti-windup action, as shown in Fig. 1 [4], [29]. When
there is no saturation, the feedforward-path transfer is unity and
the overall transfer from Upp(s) to U(s) is the same as the last
factor in (3).

E. Effect of the Derivative Term on Stability

Generally, derivative action is valuable as it provides useful
phase lead to offset phase lag caused by integration. It is also
particularly helpful in shortening the period of the loop and
thereby hastening its recovery from disturbances. It can have
a more dramatic effect on the behavior of second-order plants
that have no significant dead-time than first-order plants [29].

However, the derivative term is often misunderstood and mis-
used. For example, it has been widely perceived in the control
community that adding a derivative term will improve stability.
It will be shown here that this perception is not always valid.
In general, adding a derivative term to a pure proportional term
will reduce phase lags by

T
/(1 + jwTp) = tan~" “’TD c [0, g} . Ve (8)

which alone tends to increase the PM. In the meantime, however,
the gain will be increased by a factor of

1+ jwTp| =1/14+w?TE >1, Vw )

and, hence, the overall stability may be improved or degraded.
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Actuator model

1+als

Fig. 1. Anti-windup PI part of a “series form.”

To prove that adding a differentiator could actually destabilise
the closed-loop system, consider without loss of generality a
common first-order lag plus delay plant as described by

K —Ls
1+ 75"

G(s) = (10)
where K is the process gain; 1" is the process time-constant;
and L is the process dead-time or transport delay. Suppose that
it is controlled by a proportional controller with gain Kp and
now a derivative term is added. This results in a combined PD
controller as given by

Gpp(s) = Kp(1+1ps). (11)
The overall open-loop feedforward-path transfer function be-
comes

1 +jTDwe—jLw

G(jw)Gpp(jw) = KK 12
(jw)Grp(jw) P Tw (12)
with gain becoming
|G(jw)Grp(jw)| =KKp
T

> K K pmin <17D> (13)
where the inequality has been obtained because
V(U +T2w?)/(1 +T?w?) is monotonic with w. This

implies that the gain is not less than 0 dB if Tp < T and
KKp <lorTp > T and

T

T, > .
P=KKp

(14)

In these cases, the 0 dB gain crossover frequency w. is at infinite,
where the phase

/G (jw:)Gpp(jw.) = tan™* % — tan™? % - Lw,

T

=575 7 oo < —T.
Hence, by Bode or Nyquist criterion, there exist no stability mar-
gins and the closed-loop system will be unstable.

This phenomenon could have contributed to the difficulties
in the design of a full PID controller and also to the reason that
80% of PID controllers in use have the derivative part omitted
or switched off [21]. This means that the functionality and po-
tential of a PID controller is not fully exploited. Nonetheless,
it is shown that the use of a derivative term can increase sta-
bility robustness and can help maximize integral gain so as to
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Fig. 2. Increasing derivative gain could decrease stability margins and
destabilise the closed-loop system.
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Fig. 3. Time-domain effect of an increasing gain on the closed-loop
performance.
achieve the best performance [7]. However, care must be taken,

as it is difficult to tune the differentiator properly. An example is
given in Figs. 2 and 3 for plant (10) with K = 10, T = 1 s and
L = 0.1 s, which is initially controlled by a PI controller with
Kp = 0.644 and 17 = 1.03 s. It can be seen that if a differen-
tiator is added with T'p = 0.0303 s, both the GM and the PM
will be maximized while the transient response improves to the
best. However, if Tp is increased further to 0.1 s, the GM and
transient response will deteriorate. The closed-loop system can
even be destabilised if the derivative gain is increased to 20%
of the proportional gain. Hence, the derivative term should be
tuned and used properly.

F. Remedies on Singular Derivative Action

A pure differentiator is not “casual.” It does not restrict
high-frequency gains, as shown in (9) and demonstrated in
Fig. 2. Hence, it will results in a theoretically infinite high
control signal when a step change of the reference or distur-
bance occurs. To combat this, most PID software packages
and hardware modules perform some forms of filtering on the
differentiator.
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1) Averaging Through a Linear Low-Pass Filter: A
common remedy is to cascade the differentiator with a low-pass
filter, i.e., to modify it to

TDS

G’ = ——. 16
p(s) 1+T7Ds (16)

Most industrial PID hardware provides a 3 setting from 1 to
33 and the majority falls between 8 and 16 [72]. A second-order
Butterworth filter is recommended in [ 17] for further attenuation
of the high-frequency gains.

2) Modified Structure: The issue of improving transient per-
formance has recently become such a crucial one that atten-
tion of the fundamental unity negative feedback structure has
been proposed in the R&D of PID control [4]. In cascade con-
trol applications, the inner-loop often needs to be less sensitive
to set-point changes than the outer-loop. For the inner-loop, a
variant to the standard PID structure may be adopted, which
uses the process variable (PV) instead of the error signal, for
the derivative term [40], i.e.

u(t) = Kpe(t)+ Kr / e(r)dr — KD%y(t)
0

a7

where y(t) is the PV, e(t) = r(t) —y(t) and r(¢) is the reference
signal or set-point. It is also proposed that, in order to further
reduce sensitivity to set-point changes, the proportional term
may also be changed to act upon the PV, instead of the error
signal, i.e., [40]

t

u(t) ==Kpyt) + Ky [ e(r)dr - Kp (o).
0

(18)

Structure (17) is sometimes referred to as “Type B” (or PI-D)
control and structure (18) as “Type C” (or I-PD) control, while
structures (1) to (3) as “Type A” PID control. Note that, Types B
and C alter the foundations of conventional feedback control and
can make the PID schemes more difficult to analyze with stan-
dard techniques on stability and robustness, etc. For set-point
tracking applications, however, one alternative to using Type B
or C is perhaps a set-point filter that has a critically-damped
dynamics so as to achieve soft-start and smooth control [13].
Nevertheless, the ideal, parallel, series and modified forms of
PID structures can all be found in present software packages
and hardware modules. Readers may refer to Techmation’s Ap-
plications Manual [72] for a list documenting the structures em-
ployed in some of the industrial PID controllers.

3) Removal of Singular Action Through a Nonlinear Median
Filter: Another method is to use a median filter, which is
nonlinear and widely applied in image processing. It compares
several neighboring data points around the current one and
selects their median for a “nonsingular” action. This way,
unusual or unwanted spikes resulting from a step command
or disturbance, for example, will be filtered out completely.
Pseudocode of a three-point median filter is illustrated in Fig. 4
[23]. The main benefit of this method is that no extra parameter
is needed, though it is not very suitable for use in under-damped
processes.

derivative = (error fi previous_error) / sampling_period;
if (derivative > max_d)

new_derivative = max_d; // median
else if (derivative < min_d)

new_derivative = min_d; // median
else

new_derivative = derivative; // median

if (derivative > previous_derivative) {
max_d = derivative;
min_d = previous_derivative;
}else {
max_d = previous_derivative;
min_d = derivative;
}

previous_derivative = derivative;

Fig. 4. Three-point median filter to eliminate singular derivative action.

G. Tuning Objectives and Existing Methods

Preselection of a controller structure can pose a challenge in
applying PID control. As vendors often recommend their own
designs of controller structures, their tuning rules for a specific
controller structure does not necessarily perform well with other
structures. One solution seen is to provide support for individual
structures in software. Readers may refer to [16] and [22] for de-
tailed discussions on the use of various PID structures. Nonethe-
less, controller parameters are tuned such that the closed-loop
control system would be stable and would meet given objec-
tives associated with the following:

¢ stability robustness;

* set-point following and tracking performance at transient,
including rise-time, overshoot, and settling time;

» regulation performance at steady-state, including load dis-
turbance rejection;

* robustness against plant modeling uncertainty;

e noise attenuation and robustness against environmental
uncertainty.

With given objectives, tuning methods for PID controllers can
be grouped according to their nature and usage, as follow [4],
[13], [23].

* Analytical methods—PID parameters are calculated from
analytical or algebraic relations between a plant model
and an objective (such as internal model control (IMC) or
lambda tuning). These can lead to an easy-to-use formula
and can be suitable for use with online tuning, but the
objective needs to be in an analytical form and the model
must be accurate.

* Heuristic methods—These are evolved from practical ex-
perience in manual tuning (such as the Z-N tuning rule)
and from artificial intelligence (including expert systems,
fuzzy logic and neural networks). Again, these can serve
in the form of a formula or a rule base for online use, often
with tradeoff design objectives.

* Frequency response methods—Frequency characteristics
of the controlled process are used to tune the PID con-
troller (such as loop-shaping). These are often offline and
academic methods, where the main concern of design is
stability robustness.
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¢ Optimization methods—These can be regarded as a spe-
cial type of optimal control, where PID parameters are
obtained ad hoc using an offline numerical optimization
method for a single composite objective or using comput-
erised heuristics or an evolutionary algorithm for multiple
design objectives. These are often time-domain methods
and mostly applied offline.

* Adaptive tuning methods—These are for automated on-
line tuning, using one or a combination of the previous
methods based on real-time identification.

The previous classification does not set an artificial boundary
and some methods applied in practice may belong to more than
one category. An excellent summary on PID tuning methods
can be found in [4], [18], [26], and [28]. However, no tuning
method so far can replace the simple Z-N method in terms of
familiarity and ease of use to start with. Further, there exists a
lack of methods that are generic and can be quickly applied to
the design of onboard or onchip controllers for a wide range
of consumer electronics, domestic appliances, mechatronic sys-
tems and microelectromechanical systems (MEMS). Over the
past half century, search goes on to find the next key technology
for PID tuning and modular realization [24].

H. PIDeasy—A Software-Based Approach

During the past decade, the Intelligent Systems research
group at University of Glasgow has attempted to solve the PID
design problem systematically, using modern computational
intelligence technology. As a result, a design solution has been
obtained in the form of software, PIDeasy [23]. For simplicity
and reliability in PID applications, effort is made to maintain
the controller structure in the “standard form,” while allowing
optimal augmentation with simple and effective differentiator
filtering and integrator anti-windup. High-performance partic-
ularly that of transient response is offered through setting the
controller parameters optimally in a fraction of a millisecond,
as soon as changes in process dynamics are detected. The opti-
mality is multiobjective and is achieved by addressing existing
problems at the roots using modern computational intelligence
techniques.

The PIDeasy technology is targeted toward wider applica-
tions than the Z-N based and other techniques currently avail-
able, so as to offer the following:

e optimal PID designs directly from offline or online plant

response;

e generic and widest application to any first-order (and

higher order) delayed plants;
e “off-the-computer” digital controller code in C++ and
Java languages;

* o need for any follow-up refinements; and

e “plug-and-play” integration of an entire process of data
acquisition, system identification, design, digital code im-
plementation and online testing.

Time-domain performance of PIDeasy is seem much better
than existing methods, in all five criteria listed in Section II-G,
with or without actuator saturation [23]. A simple example has
been shown in Figs. 2 and 3. To verify the robustness, PIDeasy is
tested against an L /7 ratio ranging from 0.001 to 1000.0. The
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TABLE 11
GAIN AND PHASE MARGINS OF PIDEASY ON TEST EXAMPLES
GM (dB) PM Kp Ti(sec) | Tp(sec)
(degrees)
Gi(s), a=1 Infinity 102 92.1 1.0 0.00217
Gi(s), 0=2 Infinity 62.4 1.95 1.61 0.14
Gi(s), 0=3 26.8 60.7 1.12 2.13 0.28
Gi(s), 0=4 13.9 61 0.83 2.61 0.43
Gi(s), 0=8 9.05 58.9 0.50 4.31 1.01
Ga(s), 0=0.1 52.8 68.7 5.53 1.03 0.04
Go(s), 0=0.2 38.6 66.3 2.87 1.08 0.07
Ga(s), 0=0.5 19.1 62.6 1.19 1.36 0.17
Gs(s), 0=0.1 19.4 61.2 1.03 2.15 0.31
G3(s), 0=0.2 16.6 61.6 0.96 2.18 0.33
Gs(s), 0=0.5 13 62.4 0.79 2.23 0.39
Gs(s), 0=1 7.52 50.9 0.63 2.30 0.47
Gs(s), 0=2 7.45 58.6 0.48 2.39 0.57
G3(s), 0=5 2.69 40.4 0.36 2.58 0.72
Ga(s), 0=0.1 10.4 66 0.23 0.43 0.12
Gy(s), 0=0.2 10.4 65.8 0.30 0.59 0.17
Gy(s), 0=0.5 10.5 65.6 0.49 1.07 0.26
Gy(s), 0=2 15 62.4 1.04 3.49 0.49
Ga(s), 0=5 24.2 62.1 1.42 8.32 0.92
Gy(s), 0=10 32.8 62.1 1.65 16.35 1.59

resulting GMs and PMs are shown in Fig. 5, which confirms
that this tuning method is stable and robust with margins almost
uniformly around those that practitioners prefer. While in the
time-domain, fast response, no overshoot and no steady-state
error are achieved.

To further validate this software-based tuning method and to
provide a lookup table of parameter sets for many typical plants,
a batch of higher order plants proposed in [6] are tested

1
Gl(s):m7 (121,2,3,4,8 (19)
1
G =
2(5) (s+1)(14 as)(1 4+ a?s)(1 + a3s)
a=0.1,0.2,05 (20)
a _l-uas . . =
3(8) —m7 Oé—0.170.270.071727n) (21)
1
Gu(s) = ————e™, a=0.1,0.2,0.5,2,5,10. (22)

(1+ sa)?
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TABLE III
PATENTS ON PID TUNING
Year Patent Assignee / Title 1D Tuning Method
Number Method

1970 | US 3532862 | International Business Machines Corporation (Armonk, NY) E F
“Method for adjusting controller gain to control a process”

1973 | US 3727035 | Phillips Petroleum Company (Bartlesville, Okla.) E F
“Pulse test of digital control system”

1974 | US 3798426 | The Foxboro Company (Foxboro, MA) NE R
“Pattern evaluation method and apparatus for adaptive control”

1974 | US 3826887 | Phillips Petroleum Company (Bartlesville, Okla.) NE R
“Simplified procedure for tuning PID controllers”

1980 | US 4214300 | K.R. Jones (Liverpool, England) E (0]
“Three term (PID) controllers”

1982 | US 4346433 | Phillips Petroleum Company (Bartlesville, OK) E F
“Process control”

1983 [ US 4407013 | Leeds & Northrup Company (North Wales, PA) NE F
“Self tuning of P-I-D controller by conversion of discrete time model
identification parameters”

1984 | US 4441151 | Toyo Systems Ltd. (Tokyo, JP) E F
“Apparatus for tuning PID controllers in process control systems”

1984 | US 4451878 | Tokyo Shibaura Denki Kabushiki Kaisha (Kawasaki, JP) E F
“Process control apparatus”

1984 | US 4466054 | Tokyo Shibaura Denki Kabushiki Kaisha (Kawasaki, JP) NE F
“Improved proportional integral-derivative control apparatus™

1985 | US 4539633 | Tokyo Shibaura Denki Kabushiki Kaisha (Kawasaki, JP) E F
“Digital PID process control apparatus”

1985 | US 4549123 | NAF Controls AB (Solna, SE) E F
“Method and an apparatus in tuning a PID-regulator”

1986 | US 4563734 | Tokyo Shibaura Denki Kabushiki Kaisha (Kawasaki, JP) E F
“Multivariable proportional-integral-derivative process control
apparatus”

1986 | US 4602326 | The Foxboro Company (Foxboro, MA) NE R
“Pattern-recognizing self-tuning controller”

1987 | US 4669040 | Eurotherm Corporation (Reston, VA) E F
“Self-tuning controller”

1988 | US 4754391 | Yamatake-Honeywell Co. Ltd. (Tokyo, JP) E F
“Method of determining PID parameters and an automatic tuning
controller using the method”

1988 | US 4758943 | Hightech Network AB (Malmo, SE) E F
“Method and an apparatus for automatically tuning a process regulator”

1988 | US 4768143 | The Babcock & Wilcox Company (New Orleans, LA) NE F
“Apparatus and method using adaptive gain scheduling algorithm”

1989 | US 4814968 | Fischer & Porter Company (Warminster, PA) NE F
“Self-tuning process controller”

1989 | US 4855674 | Yamatake-Honeywell Company Limited (Tokyo, JP) E F
“Method and a process control system using the method for minimizing
hunting”

1989 | US 4864490 | Mitsubishi Denki Kabushiki Kaisha (Tokyo, JP) NE R
“Auto-tuning controller using fuzzy reasoning to obtain optimum
control parameters”

1989 | US 4881160 | Yokogawa Electric Corporation (Tokyo, JP) NE F
“Self-tuning controller”

1989 | US 4882526 | Kabushiki Kaisha Toshiba (Kawasaki, JP) E F
“Adaptive process control system”

1990 | US RE33267 | The Foxboro Company (Foxboro, MA) NE R
“Pattern-recognizing self-tuning controller”

1990 | US 4903192 | Hitachi Ltd. (Tokyo, JP) NE R
“PID Controller System”

1991 | US 5043862 | Hitachi Ltd. (Tokyo, JP) NE R
“Method and apparatus of automatically setting PID constants”

1992 | US 5126933 | Charles A. White III (Stamford CT) NE Self-learning
“Self-learning memory unit for process controller and self-updating memory unit
function generator”

1992 | US 5153807 | Hitachi Ltd. (Tokyo, JP) NE R
“Self-tuning controller apparatus and process control system”

1992 | US 5159547 | Rockwell International Corporation (Seal Beach, CA) NE R
“Self-monitoring tuner for feedback controller”

1992 | US 5166873 | Yokogawa Electric Corporation (Tokyo, JP) E F
“Process control device”

1992 | US 5170341 | Honeywell Inc. (Minneapolis, MN) E F
“Adaptive controller in a process control system and a method therefor”

1993 | US 5223778 | Allen-Bradley Company Inc. (Milwaukee, WI) E F
“Automatic tuning apparatus for PID controllers”
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1993 | US 5229699 | Industrial Technology Research Institute (Chutung, TW) E F
“Method and an apparatus for PID controller tuning”

1993 | US 5268835 | Hitachi Ltd. (Tokyo, JP) NE F
“Process controller for controlling a process to a target state”

1993 | US 5272621 | Nippon Denki Garasu Kabushiki Kaisha (Shiga, JP) NE R
“Method and apparatus using fuzzy logic for controlling a process
having dead time”

1994 | US 5283729 | Fisher-Rosemount Systems, Inc. (Austin, TX) E F
“Tuning arrangement for turning the control parameters of a controller”

1994 | US 5295061 Sanyo Electric Co. Ltd. (Osaka, JP) NE R
“Control parameter tuning unit and a method of tuning parameters for a
control unit”

1994 | US 5311421 | Hitachi Ltd. (Tokyo, JP) NE Neural network
“Process control method and system for performing control of a
controlled system by use of a neural network”

1994 | US 5331541 Omron Corporation (Kyoto, JP) E F
“PID control unit”

1994 | US 5335164 | Universal Dynamics Limited (CA) NE F
“Method and apparatus for adaptive control”

1994 | US 5355305 | Johnson Service Company (Milwaukee, WI) NE F
“Pattern recognition adaptive controller”

1995 | US 5394322 | The Foxboro Company (Foxboro, MA) E F
“Self-tuning controller that extracts process model characteristics™

1995 | US 5406474 | The Foxboro Company (Foxboro, MA) NE R
“Self-tuning controller”

1995 | US 5453925 | Fisher Controls International, Inc. (Clayton, MO) E F
“System and method for automatically tuning a process controller”

1996 | US 5535117 | Kabushiki Kaisha Toshiba (Kawasaki, JP) E F
“Method and apparatus for controlling a process having a control loop
using feedback control”

1996 | US 5568377 | Johnson Service Company (Milwaukee, WI) E F
“Fast automatic tuning of a feedback controller”

1996 | US 5587896 | The Foxboro Company (Foxboro, MA) NE R
“Self-tuning controller”

1997 | US 5625552 | A.K.Mathur and T. Samad (Minneapolis, MN) E Neural network
“Closed loop neural network automatic tuner”

1997 | US 5649062 | Motorola Inc. (Schaumburg, IL) NE (0]
“Auto-tuning controller and method of use therefor”

1997 | US 5691615 | Fanuc Ltd. (Yamanashi, JP) NE F
“Adaptive PI control method”

1997 | US 5691896 | Rosemount Inc. (Eden Prairie, MN) E F
“Field based process control system with auto-tuning”

1998 | US 5742503 | National Science Council (Taipei, TW) E F
“Use of saturation relay feedback in PID controller tuning”

1998 | US 5796608 | Hartmann & Braun A.G. (Frankfurt, DE) NE F
“Self controllable regulator device”

1998 | US 5805447 | Motorola Inc. (Schaumburg, IL) NE (0]
“Cascade tuning controller and method of use therefor”

1998 | US 5818714 | Rosemount Inc. (Eden Prairie, MN) E F
“Process control system with asymptotic auto-tuning”

1998 | US 5847952 | Honeywell Inc. (Minneapolis, MN) NE Neural network
“Nonlinear-approximator-based automatic tuner”

1999 | US 5971579 Samsung Electronics Co. Ltd. (Seoul, KR) NE Genetic
“Unit and method for determining gains of a PID controller using algorithm
genetic algorithm”

1999 | US 5974434 | Ralph E. Rose (San Jose, CA) NE (0]
“Method and apparatus for automatically tuning the parameters of a
feedback control system”

2000 | US 6076951 | National University of Singapore (SG) E F
“Frequency-domain adaptive controller”

2000 | US 6081751 | National Instruments Corporation (Austin, TX) E F
“System and method for closed loop autotuning of PID controllers™

2000 | US 6128541 | Fisher Controls International Inc. (Clayton, MO) E (0]
“Optimal auto-tuner for use in a process control network”

2001 | US 6253113 | Honeywell International Inc. (Morristown, NJ) E (0]
“Controllers that determine optimal tuning parameters for use in
process control systems and methods of operating the same”

2002 | US 6353766 | Siemens Aktiengesellschaft (Munich, DE) E Neural network

“Method for generating control parameters from a response signal of a
controlled system and system for adaptive setting of a PID controller”
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2002 | US 6438431 | National University of Singapore (SG) E F
“Apparatus for relay based multiple point process frequency response
estimation and control tuning”

1984 | JP 59069807 | Fuji Denki Seizo KK (JP) E F
“Auto-tuning system for parameter of PID adjustor”

1984 | JP 59153202 | Fuji Denki Seizo KK (JP) E F
“Auto-tuning system of parameter of PID adjustor”

1991 | JP 3118606 Yokogawa Electric Corp (JP) NE Neural network
“Adaptive controller”

1991 | JP 3265902 Yokogawa Electric Corp (JP) NE ARMA with
“Process controller” neural network

1992 | JP 4076702 Sanyo Electric Co. Ltd. (JP) NE R
“Automatic tuning PID control device”

1992 | JP 4346102 Hitachi Ltd (JP) E F
“PID parameter automatic tuning method”

1993 | JP 5073104 Hitachi Ltd (JP) E F
“Method for automatically tuning PID parameter”

1994 | JP 6095702 Hitachi Ltd (JP) E F
“Auto-tuning PID controller”

1995 | JP 7168604 Matsushita Electric Works Ltd (JP) E F
“Automatic tuning system for PID parameter”

1998 | JP 10333704 | Toshiba Corp (JP) NE F
“Method and device for PID tuning”

1999 | JP 11161301 | Yaskawa Electric Corp (JP) NE R
“PID controller with automatic tuning function”

1994 | KR 9407530 | Korea Electronics Telecomm (KR) — —
“Tuning method of PID controller”

1997 | KR 9705554 | Samsung Aerospace Ltd. (KR) E R
“Method of gain control using puzzy technique”

1998 | WO9812611 | The University of Newcastle Research Associates Limited (AU) E F
“Method and apparatus for automated tuning of PID controllers”

2001 | WO0198845 | Fisher Rosemount Systems, Inc. (US) NE F
“Adaptive feedback/feedforward PID controller”
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TABLE 1V
PID SOFTWARE PACKAGES

Product Name (@ | (b) | (o) (d) (e) (f) Remarks
AdvaControl Loop - =1V - Microsoft Contact for | Select fast, normal or damped
Tuner [35] Windows and pricing closed-loop performance using

Advant OCS Dominant ~ Pole  Placement
system method extended with
Robustness Criteria (DPPM-RC)
IMCTune [41] x x x — Microsoft Freeware Using IMC tuning
Windows and
MATLAB
Model ID & PID v v - 3.5 Microsoft US$ 699 for | Using IMC tuning
Tuning Software [43] Windows single user
license
Robust PID Tuning 7 =] * — Microsoft Contact for | Select modified IMC/Lambda
[44] Windows pricing tuning or ratio of closed-loop to
open-loop response time for non-
integral process and closed-loop
response time for integral
process
INTUNE [45] v v | Vv 4.12 Microsoft Contactfor | Using advanced IMC based
Windows pricing tuning
Control Station [49] v x| x 3.0.1 Microsoft US$ 895 per | Select regulating or tracking
Windows year for performance using Lambda
single user | typing correlations
yearly
maintenance
license
§ DeltaV Tune [50] A 5.1 DeltaV Contact for | Select performance ranging from
£ workstation and pricing no overshoot to very aggressive
ﬁ DeltaV using either modified Z-N rules
= controller for PI, phase and gain margin
S running control N
=3 software rules for PID, Lambda tuning
= rules for PI, Lambda-Averaging
Z Level for PI, Lambda-Smith
Predictor or IMC tuning rule
EnTech Toolkit Tuner | v | — | ¥ — Microsoft Contact for | Using advanced Lambda tuning
Module [51] Windows pricing
pIDtune [54] v — | x 1.0.5 Microsoft Contact for | Using IMC tuning
Windows and pricing
MATLAB
ExperTune [55] v vvY — Microsoft Contact for | Select regulating or tracking
Windows pricing performance, quarter amplitude
damping, 10% overshoot and
Lambda (standard or level)
Easy PID Tuning [57] | v | — | — 2.0 Microsoft Contact for | Using pole placement method
Windows and pricing
MATLAB
Tune Plus [58] v =V — Microsoft Contact for | Using Lambda/IMC tuning
Windows pricing
Control Loop v x| x 1.0c Microsoft Contact for | Using Lambda tuning
Assistant [63] Windows pricing
TuneUp [64] I =Y - Microsoft Contact for | Using Optimisation/Lambda
Windows and pricing tuning
MATLAB
(optional)
TuneWizard [66] v | v | v | 252 Microsoft Contact for | Select either regulating or
Windows pricing tracking performance or IMC
(Lambda) tuning or surge tank
application
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MATLAB

RSTune [68] - Microsoft Contact for | Using ExperTune
Windows and pricing
Allen-Bradley
PLC-5, SLC 500
or ControlLogix
PLCs
ProTuner 32 [72] 6.04.01 Microsoft Contact for | Select fast, medium or slow
Windows pricing response to either regulating or
tracking performance using pole
cancellation with gain and phase
margin and closed loop damping
factor
Tune-a-Fish [73] - Microsoft Contact for | Using ExperTune
Windows and pricing
PROVOX
Controllers
EZYtune [74] 1.1.02 Microsoft US$ 199 per | Select performance based on
Windows copy closed-loop time constant and
10%-90% rise time
PIDeasy [23] 1.0 Microsoft Contact for | Using proprietary algorithm
Windows pricing
GRAPHIDOR [42] — Microsoft Contact for | Generate 3-D plot using P, I and
" Windows pricing error with objective to search for
32 minimum error
g Profit PID [56] - Honeywell Contact for Using  proprietary  min-max
= TPS/TDC pricing algorithm
5 Simple Analytical - Microsoft Contact for | Using proprietary algorithm
S | Tuning of Digital Windows pricing
‘€ | PI/PID Control for
2 | Fluid & Motion
< Systems [70]
VisSim/OptimizePRO 4.0 Microsoft Contact for | Using  generalised, reduced
[75] Windows and [ pricing gradient algorithm (GRG2)
Professional
VisSim 4.0
TOPAS [36] 1.2 Microsoft €000 for | Select regulating or tracking
Windows single user performance and tight and
average level control
WinREG-PID [37] —_ Microsoft Contact for | —
Windows and pricing
WinREG
SimAxiom (Off-line - Microsoft Contact for | Select desired closed-loop
tuning) [38] Windows pricing response time
DynAxiom (On-line - — Contact for | —
tuning) [38] pricing
PITOPS [39] — Microsoft Contact for | Select regulating or tracking
Windows pricing performance
BESTune [40] 4.4 Microsoft US$ 500 per | Select controller tightness
= Windows and copy
£ MATLAB
5 | CADET V12 [46] — Microsoft Contact for | —
2:: Windows pricing
=z Universal Process — Microsoft Contact for | —
2 | 1dentification for Windows | pricing
5 Advanced Process
Control (UPID) [47]
PEWIN Pro (48] 2.0 Microsoft Contact for | —
Windows pricing
Intelligent Tuner [52] — DEC OpenVMS | Contact for | —
VAX or pricing
OpenVMS AXP
series; PROVOX
or SRx
controllers
OvationTune [53] — Westinghouse Contact for | —
Process Control | pricing
DCS
RaPID [59] 1.2 Microsoft €3300  for | Select regulating or tracking
Windows and single user performance or both
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Commander — | v | v | 4141 Microsoft Contact for | —
Supervisory Software Windows pricing
[60]
Control System A 3.0 Microsoft Contact for | —
Tuning Package Windows and pricing
(CSTP) [61] MATLAB
JC Systems Toolbox - | = | = - Microsoft USS$ 495 per | —
[62] Windows and copy
LabVIEW
LabVIEW PID — | =V — Microsoft Contact for | —
Control Toolset for Windows and | pricing
Windows [65] LabVIEW
PIDS [67] S B — Microsoft US$18  per | Select performance based on
Windows copy ITAE, ITSE, ISE or IAE
PID Self-Tuner [69] — | = | v 5.0 Microsoft Contact for | —
Windows and pricing
S7-300/400
station
Controller Tuning V| x| x 3.0 Microsoft uss 11 - | —
101 [71] Windows Base price
GeneX [76] e el 2.0 Microsoft Contact for | —
Windows and pricing
MATLAB
CtrlLAB [77] x x x 3.0 Microsoft Freeware Select performance based on
Windows and ISE, ISTE, ISTE or Gain/Phase
MATLAB margins
Notes:

(a) Model-based tuning. Indicate software that matches the open/closed loop plant response data to a specific model.

(b) Support vendor specific PID structures. Indicate software that explicitly support vendor specific PID structures and
not those just support some different generic PID structures.

(¢) Support online operation. Indicate software that supports online operation like sampling of data, online tuning etc.

(d) Software version reviewed.

(e) Operating Systems and Hardware/Software Dependence.

(f) Prices. Please contact the manufacturer for updated prices on their products.

Legend:
v Support; X Does not support; ? Probably support; — Information not available
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TABLE V
COMMERCIAL PID CONTROLLER HARDWARE MODULES
Manufacturer __ Product Model @Ql |l | @] e | Description
ABB Bitric P v X x x 2000 [ Compact Single Loop Controller
Digitric 100 v x X X | 2001 | Versatile Single Loop Controller
COMMANDER 100 v X X X 1999 [ 1/8 DIN Universal Process Controller
COMMANDER 250 v x X X 1999 | 1/4 DIN Compact Process Controller
COMMANDER 310 v X x x 1999 [ Wall/Pipe-mount Universal Process Controller
COMMANDER 351 v v x x 2001 [ 1/4 DIN Universal Process Controller
COMMANDER 355 v v x v | 2001 | 1/4 DIN Advanced Process Controller
COMMANDER 505 v v x v | 2000 | 6x3 format Advanced Process Controller
COMMANDER V100 X x X X 1999 | 1/8 DIN Motorized Valve Controller
COMMANDER V250 X X x x 1998 | 1/4 DIN Motorized Valve Controller
ECAO06 v x x x 2000 | ECA Series — General Purpose Process
Controller
ECA60 v v x 2000 [ ECA Series — General Purpose Process
Controller
ECA600 v v v v' | 2000 | ECA Series — General Purpose Process
Controller
MODCELL™ 2050R v [ x x % | 2001 | Single Loop Controller
53SL6000 v x x x 2001 | Micro-DCI™ Instrumentation ~Single Loop
Controller
Foxboro 716C v x v X | 1996 | 1/16 DIN Temperature Controller
718PL, 718PR v x v % | 1996 | 1/8 DIN Process Controller with Local Set Point
(PL) and Remote Set Point (PR)
718TC, 718TS v x v X | 1996 | 1/8 DIN Temperature Controller with mA
Output (TC) and Servo Output (TS)
731C v x v x| 1996 | 1/4 DIN Digital Process Controller
743C v x v % | 1994 | Field Station MICRO® Controller
760C v x v x| 1985 | Single Station MICRO® Controller
761C v x v % | 1987 | Single Station MICRO® Plus Controller
762C v x v % | 1996 | Single Station MICRO® Controller
T630C v x v % | 2000 | Process Controller
Honeywell UDC100 x x x x 1999 | 1/4 DIN Universal Digital Temperature
Controller
UDC700 v x v % | 1996 | 1/32 DIN Universal Digital Controller and
Indicator
UDC900 v x v % | 1997 | 1/16 DIN Universal Digital Temperature
Controller
UDC1000, UDC1500 v x v x 2001 | Micro-Pro Series — Universal Digital Controllers
UDC2300 v X v x 1999 [ 1/4 DIN Universal Digital Controller
UDC3300 v v v x 1999 [ 1/4 DIN Universal Digital Controller
UDC5000 v X v X 1994 | Ultra-Pro Universal Digital Controller
UDC6300 v v v v | 1997 | Stand-Alone Process Controller and Process
Indicator
Yokogawa US1000 v v x v | 1998 | Process Controllers
UT320, UT350, UT420, UT450, v x x x 2000 | Enhanced Green Series Temperature Controllers
UT520, UT550, UT750
UP350, UP550, UP750 v x x x 2000 | Enhanced  Green  Series  Programmable
Controllers
YS150 v x v v | 1991 | High-Level Process Controllers
YS170 v v v v | 1991 | High-Level Process Controllers

Notes:

(a) On-Demand Auto Tune; (b) Gain-Scheduling; (c) Adaptive Control; (d) Feedforward Control; (¢) Year of release

Legend:
Please refer to Table IV

Again, PIDeasy provides optimal parameters within a mil-
lisecond. The results on the GM and PM are shown in Table II,
confirming the software-based PIDeasy approach is stable and
robust against model variations. Therefore, this software-based
approach has a wide applicability and should provide a useful
engine for onboard or onchip controller design. It also provides
an excellent starting point for higher order and nonlinear plants
to swiftly tune a network of PID controllers ad hoc [10].

III. PID PATENTS
A. Patents Filed

This section focused on the currently patented tuning
methods that are often adopted in industry for PID design tools
and hardware modules. A range of patents on PID tuning are
being studied and analyzed, which are chronologically listed in
Table III. There are 64 such patents filed in the United States
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(US), 11 in Japan (JP), 2 in Korea (KR) and 2 by the World
Intellectual Property Organization (WO). Note that a Korean
patent (KR 9407 530) is not included in the following analysis
as it is not available in English. Readers may refer to [12] and
[30] for detailed information on each patent.

B. Identification Methods for Tuning

Most of the tuning methods patented rely on an identification
of plant dynamics, using an excitation (E) or nonexcitation (NE)
type of method. The excitation type can be broken down further
into time- or frequency-domain method.

Excitation is often used during plant set-up and commis-
sioning in order to set initial PID parameters. Time-domain
excitations are usually a step or pseudorandom binary sequence
(PRBS) applied in an open-loop fashion. This is a classical
and the most widely practised method. It is often adopted for
model-based tuning methods. Frequency-domain excitations
usually use a relay-like method, where the plant will undergo
a controlled self-oscillation. This type of identification does
not normally require a parametric model in tuning a PID con-
troller, which is the main advantage over time-domain based
identification.

Generally, nonexcitation type of identification is preferred by
industry due to safety reasons, particularly during normal oper-
ations, as this does not upset the plant. An increasing number of
patents are now filed on nonexcitation identification, as seen in
Fig. 6.

C. Tuning Methods Patented

Most of the identification and tuning methods patented are
process engineering oriented and appear rather ad hoc. Shown
in Table III, patented tuning methods are mostly formula-based
(F), rule-based (R), and optimization-based (O). Formula-based
methods first identified the characteristics of the plant and then
perform a mapping (similar to the Z-N formula). These are
often used in on-demand tuning for responsiveness. Rule-based
methods are often used in adaptive control, but can be quite
complex and ad hoc. These can be expert systems, including
simple heuristics and fuzzy logic rules. Optimization-based
methods are often applied offline or on very slow processes,
using a conventional (such as least mean squares) or an uncon-
ventional (such as genetic algorithms [13]) search method.

Fig. 7 shows that formula-based tuning methods are still the
most actively developed, while other methods receive an in-
creasing attention. However, most do not yield global or multi-
objective optimal performance and their applicability is, hence,
often limited.

IV. PID SOFTWARE PACKAGES

A. Software Packages

Due to the lack of a simple and widely applicable tuning
method, a need for the development of easy to use PID tuning
software has therefore arisen. This allows a practitioner with
some control knowledge or plant information to be able to tune a
PID controller efficiently and optimally for various applications.
It is hoped that such software tools will increase the practising

30
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Fig. 6. Type of identifications used in patents from 1971 to 2000.
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Fig. 7. Type of tuning methods used in patents from 1971 to 2000.
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Fig. 8. ABB-CEM measurements [2].

company’s system performance and, hence, production quality
and efficiency without needing to invest a vast amount of time
and manpower in testing and adjusting control loops.

Table IV analyzes and summarizes currently available
commercial PID software packages, grouped by the methods
of their tuning engines whenever known. Note that Adva-
Control Loop Tuner (Advant OCS system), DeltaV Tune
(DeltaV workstation), Intelligent Tuner (Fisher-Rosemount
PROVOX controller), OvationTune (Westinghouse DCS),
Profit PID (Honeywell TPS/TDC system), PID Self-Tuner
(Siemens SIMATIC S7/C7) and Tune-a-Fish (Fisher-Rose-
mount PROVOX controller) are for ad hoc systems. Note
also that Tune-a-Fish has been discontinued since 2 April
2002 and ExperTune Inc. now handles support and upgrade.
IMCTune and CtrlLAB are suitable for learning and testing of
generic controller designs, they are also listed in Table IV for
information.
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TABLE VI
ABB—ITAE EFORMULA MAPPING
Mode Action Equation
P K,
P I 1.084
2.04K| —
T
71 (sec.) 0
Tp (sec.) 0
PI K
P 1\
1.164K| —
T
T1 (sec.
1 (sec.) T*60(L 0.68
4044\ T
Tp (sec.) 0
PID Kp I\
0.7369K(—j
T
T (sec.
i (sec.) T%60 £0.738
51.02\ T
Tp (sec.
D (sec.) T+60 £0.995
157.5\T
PDf Kp 1\
0.5438K(—)
T
Ti (sec.) 0
Tp (sec.
D (sec.) T*60 £0.995
157.5\T

+ Empirical estimates not based on ITAE method

SMART calculates PID values for
optimal set point approach and

Measured decreased overshoot
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Fig. 9. Foxboro—SMART adaptive self-tuning [14].
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Fig. 11.  Functional block diagram of Yokogawa SUPER CONTROL modes 2
and 3 [33].

B. Tuning Methods Adopted

Within the “Analytical Methods” group in Table IV, it is
seen from the “Remarks” column that the IMC or lambda
tuning method is the most widely adopted tuning method in
commercial software packages. Almost all these packages
require a time-domain model before the controller can be set.
The adopted model is the one given by (10). The pIDtune
method by EngineSoft is the only one that uses an ARX (Auto
Regressive with eXternal input) model instead of the model
given by (10). On design, “Type C” (or I-PD) structure is
strongly recommended in BESTune [40]. Note that ExperTune
is embedded in RSTune and Tune-a-Fish.

It is almost impossible to name a software package to be the
best as there is no generic method to set the PID controller op-
timally to satisfy all design criteria and needs. However, most
of the software packages studied in Table IV provide a tuneable
parameter set for the user to determine an overall performance
that is best suited to an ad hoc application.

C. Operating Systems and Online Operation

Based on the information summarized in Table IV, Microsoft
Windows is currently the most supported platform. Meanwhile,
MATLAB is a popular software environment used in offline
analysis.

Quite a few software packages in Table IV do not support
online operations, such as, real-time sampling of data, online
tuning, etc. The common nonvendor specific interfaces sup-
ported for online operations are Microsoft Windows dynamic
data exchange (DDE) and OLE for process control (OPC)
[27] based on Microsoft object linking and embedding (OLE),
component object model (COM) and distributed component
object model (DCOM) technologies.

OPC is an industry standard created with the collaboration of
a number of leading worldwide automation and hardware/soft-
ware suppliers working in cooperation with Microsoft Inc. The
standard defines a method for exchanging real-time automa-
tion data among PC-based clients using Microsoft operating
systems. Thus the aim of OPC is to realize possible interoper-
ability between automation and control applications, field sys-
tems and devices, and business and office applications. There
are currently hundreds of OPC Data Access servers and clients
available.
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D. Modern Features

Remedial features such as differentiator filtering and inte-
grator anti-windup are now mostly accommodated in a PID
software package. Now the trend is to provide some addi-
tional features, such as diagnostic analysis, which prove to
be very helpful in practice. An example is highlighted by
ExperTune, which includes a wide range of fault diagnosis
features, such as valve wear analysis, robustness analysis, au-
tomatic loop report generation, multivariable loop analysis,
power spectral density plot, auto and cross correlations plot,
and shrink-swell (inverse response) process optimization, etc.
Other additional features seen in commercial PID packages
include user-friendly interfaces, support of a variety of con-
troller structures and allowing more user-defined settings in
determining PID parameters when necessary.

V. PID HARDWARE MODULES
A. Hardware and Auto-Tuning

Many PID software features are now incorporated in hard-
ware modules, particularly those used in process control. A
range of these are available from the four dominant vendors,
namely, ABB, Foxboro, Honeywell and Yokogawa, as listed
in Table V. Hardware brands from Elsag Bailey, Kent-Taylor
Instruments, Hartmann & Braun and Alfa Laval have been
acquired by ABB. The following brands have been acquired
under Emerson Process Management Group, namely, Brooks
Instrument, Daniel, DeltaV, Fisher, Intellution, Micro Motion,
PROVOX, Rosemount, RS3 and Westinghouse Process Con-
trol. Invensys Production Management Division consists of
APV, Avantis, Esscor, Eurotherm, Foxboro, Pacific Simulation,
Triconex, and Wonderware. Readers may refer to [3], [4], [9],
[19], [20], [25], and [31] for more information on commercial
PID controllers.

Based on a survey carried out by Control Engineering in 1998
[11], single-loop models account for 64% of the controllers,
while multiloop, 36%. It also reveals that 85% of the loop con-
trollers are used for feedback control, 6% for feedforward con-
trol, and 9% for cascade control. The most important features
that are expected from a loop controller are, in order of im-
portance, PID function, start-up self-tuning, online self-tuning,
adaptive control and fuzzy logic.

Many PID controller manufacturers provide various facilities
in their products that allow easy tuning of the controller. As seen
in PID patents and software packages, most of the hardware
systems also adopt a time-domain tuning method, while a mi-
nority rely on open-loop relay experiments. Some modules offer
gain-scheduling capabilities and, hence, can cover a large op-
eration envelope. Some are more adaptive, using online model
identification or rules inferred from online responses.

Automated tuning is mainly implemented through ei-
ther “tuning on demand” with upset or “adaptive tuning.”
Some manufacturers refer ‘tuning on demand’ with upset as
“self-tune,” “auto-tune” or “pretune,” while “adaptive tuning”
is sometimes known as “self-tune,” “auto-tune” or ‘“adaptive
tune.” There exists no standardization in the terminology.

“Tuning on demand” with upset typically determines the PID
parameters by inducing a controlled upset in the process. This

allows measurements of the process response so as to calculate
the appropriate controller parameters. “Adaptive tuning” aims
to set the PID parameters without inducing upsets. When a con-
troller is utilising this function, it constantly monitors the PV
for any oscillation around the set-point and, hence, closed-loop
identification can be as effective as in “tuning on demand.” This
type of tuning is ideal for processes where load characteristics
change drastically while the process is running. If there is any
oscillation, the controller adjusts the PID parameters in an at-
tempt to eliminate them. It cannot be used effectively, however,
if the process has externally induced upsets for which the con-
trol could not possibly be tuned out.

B. ABB Controllers

ABB controllers offer two auto-tuning options, namely,
quarter-wave and minimal overshoot. They also come with a
manual fine-tuning option called control efficiency monitor
(CEM). As shown in Fig. 8, six “key-performance” parameters
labeled are measured and displayed, allowing the user to vary
the PID settings to match the process needs and to fine-tune
manually.

ABB also offers another tuning algorithm for its Micro-DCI
series, the Easy-Tune. The Easy-Tune algorithm approximates
a process by a first-order plus delay model, as shown in (10). It
uses a typical graphical method, where the step changes are ap-
plied so as to measure the gain, delay and rise-time and, hence,
the time-constant. These are then used to map the controller pa-
rameters through formulae shown in Table VI [1], which are op-
timized for the integral of time-weighted absolute error (ITAE)
performance index.

It is unclear, unfortunately, whether the three plant parame-
ters are continuously identified so as to vary the PID parameters
online. If they are, however, Micro-DCI series should be very
powerful in dealing with changing plant dynamics through con-
tinuously scheduled optimal PID settings.

C. Foxboro Series

Foxboro 716C, 718, and 731C series use a proprietary self-
tuning algorithm SMART. During start-up and control, SMART
continuously monitors the PV and automatically adjusts the PID
parameters according to the response of the PV, as shown in
Fig. 9. The advantage of SMART is its ability to operate without
injecting any artificial change into the system.

Foxboro 743C, 760C, 761C, 762C, and T630C controllers
use another patented self-tuning algorithm, expert adaptive
controller tuning (EXACT). EXACT does not use a parametric
model, but adjusts the controller based on pattern recognition
results of the actual current process. When it senses a process
upset, it immediately takes corrective action for the pattern
recognition. The user can choose the threshold levels of desired
damping and overshoot-to-load changes, as shown in Fig. 10.
EXACT needs to have a good initial PID parameter set to
start with in order to achieve satisfactory performance. Thus,
the initial PID parameters are determine by introducing a
small perturbation to the process and use the resulting process
reaction curve to calculate. To start up the control system, engi-
neers must determine an anticipated noise-band and maximum



574 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 13, NO. 4, JULY 2005

wait-time of the process. The noise-band is a value repre-
senting expected amplitude of noise on the feedback signal.
The maximum wait-time is the maximum time that EXACT
algorithm will wait for a second peak in the feedback signal
after detecting a first peak. These two settings are crucial in
order for the EXACT algorithm to have optimal performance
but can be quite tricky to determine.

All Foxboro’s controllers studied here are rule-based, instead
of model-based but do not support feedforward control. If they
support gain scheduling, however, they will be very effective for
the entire operating envelope, as gain-scheduling can be more
useful than continuous adaptation in most situations [3].

D. Honeywell Tuners

Honeywell offers a “tuning on demand” controller, Autotune,
which is not adaptive or continuous. They also offer an adaptive
tuner, Accutune, which uses a combination of frequency and
time response analysis plus rule-based expert system techniques
to identify the process continually. An enhanced version of this
is, Accutune II, which incorporates a fuzzy logic overshoot
suppression mechanism. It provides a “plug-and-play” tuning
algorithm, which will starts at the touch of a button or through
an input response data set identify and tune for any processes
including integrating processes and those with a dead-time.
This speeds up and simplifies the startup process and allows
retuning at any set-point in an “automatic mode.” The fuzzy
logic overshoot suppression function operates independently
from Accutune tuning as an add-on. It does not change the
PID parameters, but temporarily modifies the control action to
suppress overshoot. Although this makes the control system
more complex and difficult to analyze, it allows more aggressive
action to co-exist with smooth process output. It can be disabled,
depending on the application or user requirements, and should
be unnecessary if the PID controller is set adaptively optimally.

E. Yokogawa Modules

Yokogawa first introduced its SUPER CONTROL module
over a decade ago. Similar to Honeywell’s Accutune I, it also
uses a fuzzy logic based algorithm to eliminate overshoots,
mimicking control expertise of an experienced operator. It
consists of two main parts, namely, the set-point modifier and
the set-point selector.

The set-point modifier models the process and functions as
an “expert operator” by first considering that a PID controller
is difficult to tune to deliver both a short rise-time and a low
overshoot. It thus seeks a knowledge base about the process, its
dynamics, and any nonlinearity of the process (including load
changes). Then it leads the system into performing perfectly by
feeding artificial target set-points into the PID block through the
set-point selector.

In particular, SUPER CONTROL operates on three modes.
Mode 1 is designed for overshoot suppression by observing the
rate of change when the process output approaches a new target
set-point. It installs “subset points™ as the process output ap-
proaches set-point to insure overshoot does not occur. Mode 2
is for ensuring high stability at the set-point while sacrificing
some response time to a set-point change. Mode 3 is for a faster
response than Mode 2 to a set-point or load change with some

compromise in stability when a new set-point is entered and as
the process output approaches that change. The process block
is simply the first-order lag time with gain model and it simu-
lates the PV without any inherent dead time. A functional block
diagram for Modes 2 and 3 is shown in Fig. 11. If Mode 2 or
3 observes any phase shift that has changed from normal oper-
ating conditions, it uses the process model to compute a calcu-
lated process variable (CPV) and attempts to suppress PV from
hunting. The compensation model switches between the mea-
sured PV and CPV while the control function block performs
the normal PID computation. It is unclear how the three modes
are switched between, but it would be advantageous if this is
scheduled automatically.

F. Remarks

Many PID hardware vendors have made tremendous efforts
to provide a built-in tuning facility. Owing to their vast expe-
rience on PID control, most manufacturers have incorporated
their knowledge base into their algorithms. Current PID con-
trol modules provide “tuning on demand” with upset or “adap-
tive tuning” or both, depending on the model and user settings.
Either technique has its advantages and disadvantages. For ex-
ample, if using “tuning on demand” only, the controller needs
to be retuned periodically and whenever changes occur in the
process dynamics. This can be quite tedious and sometimes
under-performance can be too late to notice. Therefore, “tuning
on demand” coupled with “gain-scheduling” could provide an
advantage.

If relying on an “adaptive tuner” only, the range of changes
that can be covered is rather limited and a classical step-response
model is still needed for determining initial PID settings. Be-
fore normal operations may begin, these systems generally re-
quire a carefully supervised start-up and testing period. Further,
the more controller parameters the operator needs to select, the
more difficult it is to adjust for optimal performance and the
longer it takes to prepare for the operation. Nevertheless, once
the controller is correctly configured, it can constantly monitor
the process and automatically adjust the controller parameters
to adapt to changes in the process.

The second effort made by many PID hardware vendors ap-
pears to be incorporating an overshoot suppression function in
their onboard algorithms. In order to meet multiple objectives
highlighted in Section II-G, they have also added other func-
tions to a standard PID algorithm or allowed the user to switch
between modes. However, these features are not commonly seen
in commercial software packages (see Table IV).

VI. CONCLUSION

PID, a structurally simple and generally applicable control
technique, stems it success largely from the fact that it just works
very well with a simple and easy to understand structure. While
a vast amount of research results are published in the literature,
there exists a lack of information exchange and analysis. This
can lead to some misunderstanding between academia and in-
dustry. For example, there exists no standardization of a generic
PID structure for control engineering practice. This is partic-
ularly evident with analogue PID controllers being replaced by
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digital ones, where flexibility in software permits ad hoc patches
for some local optimality. It has led to unnecessary complication
and extra learning curve in tuning PID controllers. This problem
becomes severe when there are multiple control loops and dif-
ferent brands or models of PID controllers involved in one appli-
cation. These may explain why the argument exists that academ-
ically proposed tuning rules do not work well on industrial PID
controllers, while it is desired that years of research results help
industrial practice more for improved quality and profitability.

Many PID patents filed so far focus on automatic tuning for
process control. This starts from conventional or “intelligent”
system identification and is more resembled to hardware mod-
ules. Software packages are mainly focused on offline simula-
tion and have thus a different objective. While automatic tuning
is offered in many commercial PID products for multiple op-
timality, timeliness continues to pose a challenge. The major
difficulty appears in delivering an optimal transient response,
due to difficulties in setting an optimal derivative term. Hence,
modifications to the easy-to-understand PID structure have been
made through the use of artificial intelligence so as to suppress
overshoots. In order to meet multiple objectives, switching be-
tween different functional modes has also been offered in PID
hardware modules.

The present trend in tackling PID tuning problem is to be able
to use the standard PID structure to meet multiple design objec-
tives over a reasonably range of operations and systems. Stan-
dardization or modularization around this structure should also
help improve cost-effectiveness of PID control and its mainte-
nance. This way, robustly optimal tuning method can be devel-
oped, as evident in PIDeasy. With the inclusion of system identi-
fication techniques, the entire PID design and tuning process can
be automated and modular building blocks can be made avail-
able for timely online application and adaptation. This would
be particularly suited to “system-onboard” or “system-on-chip”
integration for future consumer electronics and MEMS.
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