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In this paper, displaced geostationary orbits using hybrid low-thrust propulsion, a complementary 

combination of Solar Electric Propulsion (SEP) and solar sailing, are investigated to increase the capacity 

of the geostationary ring that is starting to become congested. The SEP propellant consumption is 

minimized in order to maximize the mission lifetime by deriving semi-analytical formulae for the optimal 

steering laws for the SEP and solar sail accelerations. By considering the spacecraft mass budget, the 

performance is also expressed in terms of payload mass capacity. The analyses are performed both for the 

use of pure SEP and hybrid low-thrust propulsion to allow for a comparison. It is found that hybrid low-

thrust control outperforms the pure SEP case both in terms of payload mass capacity and mission lifetime 

for all displacements considered. Hybrid low-thrust propulsion enables payloads of 255 to 487 kg to be 

maintained in a 35 km displaced orbit for 10 to 15 years. Adding the influence of the 2J  and 2,2J  terms of 

the Earth‟s gravity field has a small effect on this lifetime, which becomes almost negligible for small 

values of the sail lightness number. Finally, two SEP transfers that allow for an improvement in the 

performance of hybrid low-thrust control are optimized for the propellant consumption by solving the 

accompanying optimal control problem using a direct pseudospectral method. The first type of transfer 

enables a transit between orbits displaced above and below the equatorial plane, while the second type of 

transfer enables customized service for which a spacecraft is transferred to a Keplerian parking orbit when 

geostationary coverage is not needed. While the latter requires a modest propellant budget, the first type of 

transfer comes at the cost of an almost negligible SEP propellant consumption.  

Keywords: Displaced non-Keplerian orbits, Geostationary orbit, Solar sailing, Hybrid low-thrust 

propulsion, Trajectory optimization  

1 Introduction 
Since the first geostationary spacecraft was launched in 1964, Syncom-3, hundreds of communication and 

weather satellites have exploited the unique properties of the geostationary orbit (GEO). With a period 

equal to the Earth‟s rotational period, GEO spacecraft are stationary with respect to their ground station, 

allowing for a continuous downlink to Earth. However, with only one such unique orbit, the geostationary 

orbit has started to become congested over time. Ref. [1] reports the status of the geostationary orbit in 

terms of controlled and uncontrolled spacecraft in January 2009 and clearly shows its congestion, 

especially above the continents. The situation becomes even worse when considering the fact that, besides 

                                                   

* This paper was presented during the 61st International Astronautical Congress in Prague, Czech Republic 
†
 Corresponding author. Tel.:+44 141 548 5989. E-mail address: Jeannette.Heiligers@strath.ac.uk  

‡ Tel.:+44 141 548 2049. E-mail address: Colin.McInnes@strath.ac.uk   
§ Tel.:+44 141 548 2042. E-mail address: James.Biggs@strath.ac.uk   
** Tel.:+44 141 548 5726. E-mail address: Matteo.Ceriotti@strath.ac.uk    

mailto:Jeannette.Heiligers@strath.ac.uk
mailto:Colin.McInnes@strath.ac.uk
mailto:James.Biggs@strath.ac.uk
mailto:Matteo.Ceriotti@strath.ac.uk


  

Page 2 of 29 

  

these (un)controlled spacecraft, the geostationary orbit also contains fragmentation debris, rocket bodies 

and mission-related objects. 

In order to increase the capacity of the geostationary orbit, this paper investigates the use of displaced 

non-Keplerian orbits (NKOs). By applying a continuous acceleration to counterbalance the gravitational 

acceleration, the geostationary orbit can be levitated above or below the equatorial plane, thereby creating 

new geostationary slots [2]. The existence, stability and control of displaced NKOs have been studied for 

both the two- and three-body problem [3-4] and numerous applications have been proposed. The two-body 

problem applications include spacecraft proximity operations [5] and hovering above Saturn‟s rings for in-

situ observations [6]. NKOs displaced high above the ecliptic have been proposed in the Earth-Sun three-

body problem to enable imaging and communication satellites for high latitudes [7], while displaced 

NKOs in the Earth-Moon system have been studied for lunar far side communication and lunar south pole 

coverage [8-9].  

Solar sails have often been proposed as spacecraft propulsion system to maintain displaced NKOs [2, 4, 7-

8, 10]. Solar sails exploit the radiation pressure generated by photons reflecting off a large, highly 

reflecting sail to produce a continuous, propellant-less thrust [2]. This makes them seemingly suitable to 

maintain displaced NKOs. However, only recently solar sail technology was successfully demonstrated in 

space by the Japanese IKAROS spacecraft [11] and NASA‟s NanoSail-D mission [12]. Despite these 

advances, the Technology Readiness Level (TRL) of solar sailing as primary propulsion system on a 

reasonable sized mission is still rather low. That, in combination with a high Advanced Degree of 

Difficulty (AD
2
) and the inability to generate a thrust component in the direction of the Sun, poses severe 

limits on its applications and puts many solar sail applications in the far-future [2, 13]. Solar sails have 

also been proposed to make levitated geostationary orbits possible [14]. However only small 

displacements, still inside the geostationary station keeping box for near-future solar sails, appeared to be 

feasible and a residual in-plane sail acceleration caused the spacecraft to move with respect to its ground 

station.  

Solar Electric Propulsion (SEP) has also been considered as a means to maintain displaced NKOs [15]. 

SEP is highly efficient as it enables high specific impulses. It has flown on multiple missions including the 

NSTAR ion engines on Deep Space 1 (1998) and Dawn (2007), the PPS1350 Hall thruster on SMART-1 

(2003), the QinetiQ's T5 thrusters on GOCE (2009) and the Aerojet BPT4000 thruster on the Advanced 

Extremely High Frequency geostationary satellite (2010) [16-18]. This results in a high TRL and a low 

AD
2
. Nevertheless, the applications of SEP are limited due to a bound on the available propellant mass.  

Considering the advantages and disadvantages of solar sails and SEP, some authors are suggesting the use 

of hybrid low-thrust propulsion, a complementing combination of a solar sail and an SEP system. While 

the solar sail lowers the demand on the SEP propellant mass, the SEP system can provide the thrust 

component in the direction of the Sun that the solar sail cannot generate and lower the solar sail AD
2
 as 

only small solar sails are required. Hybrid low-thrust propulsion has been suggested to enable 

interplanetary transfers [19-20], to allow for periodic orbits in the vicinity of the Lagrange points in the 

Earth-Moon system for lunar communication purposes [21], and to generate artificial equilibria in the 

Earth-Sun three-body problem [22], for instance for an Earth-Mars communications relay during periods 

of solar occultation [23] and to enable an Earth pole-sitter [24]. All studies show to some extent an 

improvement for hybrid low-thrust propulsion over the use of pure SEP or pure solar sailing in terms of 

propellant mass consumption, required thrust magnitude levels and/or initial spacecraft mass. 

Building upon these findings, we propose to use hybrid low-thrust propulsion to enable displaced 

geostationary orbits. This will allow spacecraft to be stationary with respect to their ground station and 

enable displacements well beyond the geostationary station keeping box, using relatively small, near-term 

solar sails. These solar sails could possibly also provide a solution to comply with the Inter-Agency Space 

Debris Coordination Committee (IADC) mitigation guidelines that request that spacecraft are removed 
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from densely populated orbital regions once they have reached their end of life, and as such prevent 

further congestion of the geostationary zone. The objective is to minimize the propellant consumption, 

thereby either decreasing launch mass, increasing payload mass or increasing the mission lifetime. To 

assess the performance of hybrid low-thrust control, its results are compared with results for the use of 

pure SEP control and the influence of the 2J  and 2,2J  terms of the Earth‟s gravity field is investigated. 

Finally, the optimization of two transfers that improve the performance of hybrid low-thrust control will 

be considered: a transfer between orbits displaced above and below the equatorial plane and a transfer 

between the displaced orbit and a Keplerian parking orbit to enable customized service.  

The structure of the paper is as follows. First the general theory underlying displaced geostationary orbits 

will be presented. Subsequently the performance of SEP and hybrid low-thrust control in terms of 

propellant consumption will be derived and a comparison between the two control strategies will be made. 

Then, the influence of the non-uniform Earth‟s gravity field on the propellant consumption will be 

investigated. A mass budget analysis will subsequently consider the performance of both types of control 

in terms of payload mass capacity. Finally, the analysis to optimize the two transfers that improve the 

performance of hybrid low-thrust control will be outlined and the results will be presented.  

2 Displaced geostationary orbits 
Displaced geostationary orbits, or displaced NKOs in general, can be found by seeking equilibrium 

solutions to the two-body problem in a rotating frame of reference. A transformation to an inertial frame 

will subsequently show that the spacecraft executes a circular orbit displaced away from the center of the 

central body [3]. The situation as it occurs in the displaced geostationary orbit is depicted in Fig. 1, 

indicating the rotating reference frame  , ,R R RR x y z  that rotates with constant angular velocity ˆ
Rω = z  

with respect to an inertial frame ( , , )I X Y Z . The figure shows that the geostationary orbit is levitated over 

a distance h  while keeping both the orbital radius and the orbital angular velocity equal to the orbital 

radius and orbital angular velocity in the geostationary orbit, GEOr  and   respectively, causing spacecraft 

in the (displaced) geostationary orbit to be stationary in the rotating frame. This case corresponds to a 

„Type I‟ NKO for which the thrust induced acceleration, a , required to maintain the NKO is at its 

minimum for a given radius of the NKO and which is stable for modest displacements [2]. Following the 

analysis in Ref. [3], the required direction (i.e, the pitch angle   (see Fig. 1)) and magnitude of this 

acceleration are: 

2

3

tan 0

GEO

h
a h

r








 
 (1) 

with   the gravitational parameter of the Earth. Eq. (1) shows that a thrust perpendicular to the displaced 

geostationary orbit is required and that the magnitude of the thrust is merely a function of the gravitational 

parameter, the displacement distance and the orbital radius. Note that for a geostationary orbit displaced 

above the equatorial plane ( 0h  ) the required acceleration is directed in positive Z  direction, while for 

orbits displaced below the equatorial plane ( 0h  ) the acceleration is directed in negative Z  direction.  

With the gravitational parameter and the orbital radius given, the only parameter that needs to be specified 

is the displacement distance, which is derived from the height of the geostationary station keeping box in 

order to prevent interference and collisions with spacecraft in the geostationary orbit. In terms of 

longitude, station keeping regulations currently require a station keeping box height of  = 0.05° ~ 0.1°, 

which equals 36.8 ~ 73.6 km [25-26]. Since the displaced geostationary spacecraft will be an actively 

controlled satellite, one could argue that the displacement distance would only have to be   such that the 
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spacecraft hovers exactly on top of the station keeping box. However, to ensure a similar station keeping 

box for the displaced spacecraft as for geostationary spacecraft, the displacement distance might have to 

be increased to 2  , leading to a range for the displacement distance of 36.8 ~ 147.2 km. This paper will 

therefore consider three different displacement distances, namely 35, 75 and 150 km both above and 

below the equatorial plane. 

 

Fig. 1: Definition of displaced geostationary orbit. 

3 Solar electric propulsion 
This section investigates the use of SEP to provide the continuous acceleration required to maintain the 

displaced geostationary orbit, see Eq. (1). Its performance in terms of propellant consumption can be 

assessed by integrating the following differential equation for the mass: 

0sp

T
m

I g
   (2) 

with T  the SEP thrust magnitude, spI  the SEP system specific impulse and 0g  the Earth gravity constant 

(9.80665 m/s
2
 at the surface of the Earth). The lifetime of the mission, L , is subsequently defined as the 

epoch at which a particular mass fraction  0 0 0f propm m m m m   is obtained, with 0m  the initial mass, 

fm  the final mass (i.e. the mass at lifetime L ) and propm  the propellant mass. The lifetime can be derived 

analytically from Eq. (2) as the required acceleration is constant. Substituting T a m   into Eq. (2) with a  

given by Eq. (1) and rearranging gives: 

0 0
0

f fm t

spm t

dm a
dt

m I g
    

Evaluating these integrals and setting 0t  0 yields the following lifetime for a particular mass fraction: 

00ln
sp

f
f

I gm
L t

m a

 
   

 
 

 

Fig. 2 shows the lifetimes for the three displacement distances determined in Section 2 and for a wide 

range of mass fractions and specific impulses (from current to near term and far-future technology). Note 

Y  

Z  

a    Displaced GEO 

Rz  

ω  

Rx  

GEO 
GEOr  

GEOr  

Ry  

h  

X  
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that an arbitrary value for the initial mass can be assumed and that, due to the symmetry of the problem, 

the results for orbits displaced above and below the equatorial plane are exactly the same. Finally, only 

lifetimes up to 15 years are considered. Fig. 2 shows that, for example, for a 35 km displaced 

geostationary orbit, a currently feasible specific impulse of 3200 s (e.g. as flown on the Hayabusa 

spacecraft [27]) and a mass fraction of 0.5, a lifetime of 3.7 years can be achieved. However, this lifetime 

degrades to 1.7 and 0.9 years when considering the larger displacements of 75 and 150 km, respectively.  

For current geostationary spacecraft, the lifetime is limited to 10 ~ 15 years, mainly due to the required 

costly station keeping. Fig. 2 shows that similar lifetimes can only be achieved for the smallest 

displacement of 35 km and either for low mass fractions (e.g. 0fm m  0.1 and spI  2600 s) or for far-

future specific impulses (e.g. 0fm m  0.45 and spI  7500 s). 

0h  35 km 0h  75 km 0h  150 km 

   

Fig. 2: Displaced geostationary orbits maintained with SEP control: mission time L  (maximum of 15 years) as 

a function of the specific impulse spI  (where the line indicates a currently feasible specific impulse of 3200 

s) and the mass fraction 0/fm m , for different values of the displacement distance h .  

4 Hybrid low-thrust propulsion 
To improve the performance of SEP control in terms of propellant consumption, this section will 

investigate the use of hybrid low-thrust propulsion to maintain the displaced geostationary orbit. To assess 

its performance, the equations of motion for a spacecraft in the displaced geostationary orbit are 

considered using the rotating reference frame given in Fig. 1: 

2 U   r ω r a   

with r  the position vector,  
T

R R Rx y zr , U  a potential that combines the gravitational potential of 

the central body and a potential representing the centripetal acceleration. The acceleration required to 

maintain the displaced geostationary orbit can be written as the sum of the acceleration generated by the 

SEP system, SEPa , and the acceleration produced by the solar sail, sa :  

SEP s a a a  (3) 

To maximize the lifetime of the spacecraft, the objective is to minimize the propellant consumption, or 

equivalently to minimize the magnitude of the acceleration required from the SEP system: 

   min minSEP sa  a a  (4) 
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The required acceleration, a , is given through Eq. (1), while the acceleration generated by an ideal (i.e. a 

perfectly reflecting) solar sail is given by: 

 
2

2
ˆ ˆ ˆS

s s

sr


 a n r n  

S  is the gravitational parameter of the Sun, sr is the Sun-sail vector and n̂  is the unit vector in the 

direction of the solar radiation pressure force. Note that for a perfectly reflecting solar sail as considered 

here, n̂  is directed normal to the sail surface. The magnitude of the Sun-sail vector is approximated by a 

constant Sun-Earth distance of 1 AU, leading to a maximum approximation error in sr  of 1.7 percent. 

Finally,   is the solar sail lightness number and can be defined as the ratio between the system loading, 

  (i.e. the ratio of the spacecraft mass to the solar sail area, / sm A  ) and the critical sail loading, 

*  1.53 g/m
2 

[2]: *   . The sail lightness number is therefore a function of the spacecraft mass. 

Since the mass of the hybrid low-thrust spacecraft will decrease due to the consumption of propellant by 

the SEP system, the parameter   increases according to 0 0m m  , where the subscript „0‟ indicates 

the start of the mission at time 0t  .  

Due to the tilt of the Earth‟s rotational axis with respect to the ecliptic plane, the direction of the Sun-sail 

vector sr  changes during the year. To model this variation, an Earth fixed rotating reference frame 

( , , )E E EE x y z
 
as shown in Fig. 3 is used. Centered at the Earth with the ( , )E Ex y  plane in the equatorial 

plane and the Ez  axis along the rotational axis of the Earth, this reference frame rotates with the same 

angular velocity as the orbit of the Earth, causing the unit vector ˆ
sr  to always be contained in the ( , )E Ex z  

plane. The angle   describes the time during the year (with   0 at winter solstice), while the angle   is 

defined as the angle between ˆ
sr  and the equatorial plane as a function of  . This angle is at its maximum 

at winter solstice ( (0) obli  ) and at its minimum in summer solstice ( ( ) obli    ) with obli  the obliquity 

of the ecliptic. The magnitude of   is therefore equal to the solar declination, but is opposite in sign: 

 1( ) sin sin cosobli    (5) 

Using this definition for   gives the orientation of the Sun-sail line as  ˆ cos 0 sin
T

s  r  in the 

reference frame ( , , )E E Ex y z .  

 

Fig. 3: Definition of reference frame and parameters used to model the seasonal variation of ˆ
Sr . 

Autumn 

ˆ
sr  

ˆ
sr  

ˆ
sr  

ˆ
sr  

Winter 

Spring 

Summer 

Ex  

Ex  

Ez  

Ez  Ez  

Ez  

Ey  

Ey  

  

ˆ
sr  

Ex  

Ez  

( )   

obli  

obli  



  

Page 7 of 29 

  

 

Fig. 4: Definition of solar sail and SEP pitch and yaw angles. 

The unit vector normal to the sail surface, n̂ , can be described using the same frame of reference, see Fig. 

4. Using the pitch angle s  and the yaw angle s , yields: 

sin sin

ˆ sin cos

cos

s s

s s

s

 

 



 
 

  
 
 

n

 

Substituting Eq. (1) and the expressions for ˆ
sr , n̂  and   into Eq. (3) and rearranging gives: 

20
, 0 2

20
, 0 2

20
, 03 2

       (cos sin sin sin cos ) sin sin

       (cos sin sin sin cos ) sin cos

(cos sin sin sin cos ) cos

E

E

E

S
SEP x s s s s s

s

S
SEP y s s s s s

s

S
SEP z s s s s

GEO s

m
a

m r

m
a

m r

mh
a

mr r


       


       


      

  

  

  

 (6) 

The SEP system thus needs to counterbalance the in-plane component of the solar sail acceleration and 

needs to augment the out-of-plane solar sail acceleration to obtain the required out-of-plane acceleration.

 Inspecting Eq. (6) shows that for a given value for m  and   (i.e. for a particular instant of time), the 

minimization problem in Eq. (4) is merely a function of the solar sail pitch and yaw angles and therefore 

reduces to finding the optimal solar sail pitch and yaw angles that minimize the acceleration required from 

the SEP system: 

 
 

 
,min ,max

* *

,

,

, arg min ( , )

s s s

s

s s SEP s sa
  

  

   
  
 

  (7) 

where the domain of s  is defined later in the paper. The solution to Eq. (7) can be found by setting the 

partial derivative of the SEP acceleration with respect to the sail pitch and yaw angles equal to zero: 

0SEP SEP

s s

a a

 

 
 

 
   (8) 

For this, the SEP acceleration is first written as: 

   
4 22 2 2 2 2

, , , 1 1 2 2
ˆ ˆ ˆ ˆ2 cos

E E ESEP SEP x SEP y SEP z s sa a a a c c c c       n r n r  (9) 

with 

Ex  

Ey  

Ez  

n̂  
s  

SEP  ˆ
SEPa  

SEP  
s  
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0
1 0 22 3

,   S

s GEO

m h
c c

m r r

 
   

Taking the first derivative of Eq. (9) with respect to the yaw angle yields: 

    4 22 2

1 1 2 2

1
ˆ ˆ ˆ ˆ2 cos 0

2

SEP

s s

s SEP s

a
c c c c

a


 

 
     

 
n r n r  (10) 

from which the following condition can be derived: 

     2

1 1 2
ˆ ˆ ˆ ˆ4 cos cos sin cos 0s s s s sc c c       n r n r   (11) 

For Eq. (11) to hold throughout the year and considering that 1 0c   and ˆ ˆ( ) 0s n r  (to generate a solar sail 

acceleration) the optimal yaw angle equals * / 2s   . Substituting this value into Eq. (6) shows that the 

Ey  component of the SEP thrust force is zero at all times. Considering the fact that the solar sail is unable 

to generate a thrust component in the direction of the Sun and recalling that the Ex  axis points away from 

the Sun at all times, the optimal yaw angle can be reduced to * / 2s  . This reduction also guarantees 

that 2 2/ 0SEP sa     such that the solution corresponds to a minimum rather than a maximum of 

( , )SEP s sa   . A similar analysis can be performed for the partial derivative with respect to the sail pitch 

angle. Substituting * / 2s s     gives the condition: 

2 2

1 1

cos sin
sin( ) 0

sin( ) 2 cos( )

s s
s

s s

c c

c c

 
 

   
   

 
  (12) 

An analytical solution for the optimal pitch angle was not found from this expression. A numerical method 

such as Newton‟s method (e.g. see Ref. [28]) is therefore applied to find *
s . To ensure that the optimal 

pitch angle does not generate a normal vector n̂  pointing towards the Sun, bounds are imposed on the 

optimum pitch angle. These bounds are a function of the angle   as is shown in Fig. 5 for three epochs 

during the year. Then, to ensure 2 2/ 0SEP sa    , these bounds are set even tighter depending on whether 

a displacement above or below the equator is considered: 

,min

,max

  0

0.5   0

0.5 0

0

s

s

h

h

h

h









 

 
 




 

 

 

Note that Fig. 5 clearly illustrates that the displaced geostationary orbit as presented in this paper cannot 

be maintained throughout the year using only solar sailing. For instance, in summer the shaded half-circle 

shows that the required thrust direction for a geostationary orbit displaced above the equatorial plane (i.e. 

a thrust along the positive Ez  axis) cannot be achieved by the solar sail. A similar reasoning holds for a 

geostationary orbit displaced below the equatorial plane in winter. Furthermore, in autumn and spring the 

required thrust direction for orbits displaced both above and below the equator lies on the edge of the 

shaded half-circle. The magnitude of the solar sail acceleration along the Ez  axis in that case becomes 

equal to zero as the Sun shines edge-on to the solar sail. Then, a solar sail acceleration along the Ez  axis 

can only be achieved by tilting the normal vector n̂  away from the Ez  axis resulting in an acceleration 
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component parallel to the equatorial plane, which has to be cancelled out by some other means such as an 

SEP system.  

 

Fig. 5: Definition of minimum and maximum solar sail pitch angles during the year where the shaded half 

circle indicates the direction in which the solar sail can provide a thrust force. 

Once the optimal sail pitch and yaw angles are found, the magnitude and direction of the required SEP 

acceleration can be computed. Note that the assumption is made that the solar sail and SEP system can 

steer independently of each other. Using Eq. (6) and the notation in Fig. 4, the pitch and yaw angles of the 

SEP acceleration can be computed: 

 

,1

, ,

cos

atan2 ,

E

E E

SEP z

SEP
SEP

SEP SEP x SEP y

a

a

a a






 

   
 
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 (13) 

as well as the magnitude of the required SEP thrust force:  

SEPT m a   (14) 

Previously it was already stated that , 0
ESEP ya   since * / 2s  . Substituting this known into Eq. (13) 

gives / 2SEP   .  

As mentioned before, the above holds for one instant in time, i.e. for a given value for m  and  . To find 

the variation of the controls, accelerations, thrust magnitude and mass as a function of time over multiple 

orbital periods, the displaced geostationary orbit is discretized into several nodes. When the node spacing 

is chosen small enough, a fair comparison with the analytical analysis in Section 3 can be made. The 

nodes are equally distributed over the orbit, leading to a constant time interval t  in between two 

consecutive nodes. At each node, i , the required SEP thrust magnitude can be approximated using Eq. 

(14) through ,i i SEP iT m a  . Assuming a constant thrust magnitude during the interval t , the mass at the 

end of the thi  interval can be approximated through: 

1
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i i
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m m t

I g
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At each node the optimum solar sail angles (and subsequently the SEP acceleration, thrust magnitude and 

thrust angles) can be computed. When changing from one node to the successive node, the change in   is 

computed using Eq. (5), while the mass at the start of the new interval is given by Eq. (15).  

The results after one year in a geostationary orbit displaced 35 km along the positive Ez  axis are shown in 

Fig. 6 and Fig. 7 (solid lines). A time interval of 0.005 dayt t   (with dayt  the length of a day) is adopted 

together with an initial mass of 1500 kg (the smaller class of geostationary spacecraft [29]) and a specific 

impulse of 3200 s. Four different values for the sail lightness number are used, 0  0.01, 0.05, 0.1 and 

0.2. Some discontinuities can be observed in the profiles of the SEP thrust angles for the largest value of 

0 , see Fig. 6a. This large value for 
0  causes the component of the solar sail acceleration along the 

positive 
Ez  axis to become larger than the required out-of-plane acceleration. This requires the SEP 

thruster to thrust along the negative 
Ez  axis to counterbalance the access out-of-plane acceleration, hence 

the switch in the SEP pitch angle from / 2SEP   to
 

/ 2SEP  . Fig. 6a furthermore shows that the turn 

rate of the solar sail, which can often lead to operational difficulties, is very slow and has a maximum of 

approximately 40 degrees per half year for 0  0.2. Another operational difficulty that may arise is the 

direction of the SEP thrust force with respect to the solar sail, which cannot be such that it lies in the plane 

of the solar sail. From the relative angle between the solar sail and SEP thrust forces, see Fig. 6b, it can be 

concluded that this is not the case for the displaced GEO.  

Fig. 7a furthermore shows the expected lower demand on the SEP system by using hybrid low-thrust 

control, which is directly translated into a larger final mass after 1 year in-orbit. Already a solar sail with 

0  = 0.01 provides a gain of 29 kg. Increasing 0  results in savings of 94, 130 and 161 kg for 0  = 0.05, 

0.1 and 0.2, respectively. 

a) b) 

  

Fig. 6: Optimal solar sail (solid lines) and SEP (dashed lines) pitch angles (a) and relative angle between the 

solar sail and SEP thrust forces (b) for a geostationary orbit displaced 35 km above the equatorial plane 

maintained with hybrid low-thrust control with different values for the solar sail lightness number 0 .  
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a) b) 

  

Fig. 7: 35 km displaced geostationary orbit maintained with hybrid low-thrust control for different values for 

the solar sail lightness number 
0 . Spacecraft mass (a) and required SEP thrust magnitude (b) assuming 

an initial mass of 1500 kg and a specific impulse of 3200 s. Solid lines indicate a year-long displacement 

along the positive 
Ez  axis. Dashed lines include a seasonal transfer between geostationary orbits displaced 

above and below the equatorial plane. 

Finally, considering the required thrust magnitude in Fig. 7b, another great advantage of hybrid low-thrust 

propulsion over SEP becomes evident as hybrid low-thrust propulsion lowers the required SEP thrust 

magnitude. Currently feasible maximum thrust levels are in the order of 0.2 N at maximum power (e.g. 

EADS/Astrium RIT-XT). Note that larger thrust levels can be achieved by clustering multiple SEP 

thrusters. However, since this requires a larger initial mass (and with that launch mass and launch cost), an 

increased complexity of the spacecraft and an increase in the amount of power required, the current 

research assumes the use of one SEP thruster. Note that this also implies the assumption that one single 

thruster can meet the required propellant throughput and operational lifetime.  

Fig. 7b shows that, while the thrust level required for a 1500 kg spacecraft with SEP control exceeds the 

value of 0.2 N, thrust levels smaller than 0.2 N throughout the year can be observed for 0   0.1 and 0.2. 

Even for 0   0.05 the thrust level remains well under 0.2 N during winter, but is too high during 

summer. This performance can be improved by transferring the spacecraft from a geostationary orbit 

displaced above the equatorial plane to an orbit displaced below the equatorial plane before summer. 

Then, the performance of the sail is no longer limited by the unfavorable obliquity of the ecliptic and can 

perform equally well in summer as it does in winter above the equatorial plane. When this so-called 

seasonal transfer is introduced in the model, results as presented by the dashed lines in Fig. 7 are obtained. 

Note that the mission is assumed to always start in winter, i.e. above the equatorial plane. As expected, 

improvements both in terms of propellant consumption and required thrust levels can be observed. The 

mass savings mentioned before are now increased to 39, 129, 178 and 219 kg for 0   0.01, 0.05, 0.1 and 

0.2, respectively. Section 6.1 of this paper will show that transfers from above to below the equatorial 

plane and vice versa are possible and come at the cost of an almost negligible SEP propellant 

consumption. 
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 0h  35 km 0h  75 km 0h  150 km 

0  0.01 

   

0  0.05 

   

0  0.1 

   

0  0.2 

   

Fig. 8: Displaced geostationary orbits maintained with hybrid low-thrust control: mission time L  (maximum 

of 15 years) as a function of the specific impulse spI  (where the line indicates a currently feasible specific 

impulse of 3200 s) and the mass fraction 0/fm m , for different values of the solar sail lightness number 0  

and the initial displacement distance 0h . 
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While the results in Fig. 7 only hold for a mission of 1 year, it is interesting to investigate whether hybrid 

propulsion can enable missions lasting as long as current geostationary missions. Fig. 2 already showed 

that SEP control is unable to do so. Extending the mission lifetime for hybrid low-thrust control results in 

the graphs shown in Fig. 8 which include the seasonal transfer to optimize the performance of the 

displaced geostationary orbit. Again, an arbitrary initial mass can be assumed and the three displacement 

distances of Section 2 are considered. The notation 0h  is used rather than h  to indicate that the spacecraft 

starts at a particular displacement (always above the equatorial plane for the results in Fig. 8) but is 

transferred between displacements above and below the equatorial plane during its lifetime. Note that all 

results neglect the effects of eclipses on the performance of the solar sail. For the (displaced) GEO, 

eclipses only occur for a short period per day around the equinoxes. It is assumed that increased SEP 

thrust can compensate for the absence of thrust from the solar sail during these brief periods. 

Comparing Fig. 2 with Fig. 8 shows a dramatic improvement of the lifetime for hybrid low-thrust control 

compared to pure SEP control. Considering a 35 km displaced orbit, a mass fraction of 0.5 and a specific 

impulse of 3200 s shows an increase from 3.7 years for SEP control to 4.7, 9.7, >15 and >15 years for 

0   0.01, 0.05, 0.1 and 0.2, respectively. Similarly, the lifetime for a 150 km displaced orbit is increased 

from 10 months to 1.9 ~ 2.2 years, depending on the value for 0 . All in all, for hybrid low-thrust control, 

lifetimes of 10 ~ 15 years come into reach for the smallest displacement, while reasonable lifetimes are 

obtained for the larger displacements. 

 

4.1 Perturbations due to non-uniform Earth gravity field  
Up to this point, the analyses for the displaced GEO have assumed a radially symmetrical mass 

distribution for the Earth. However, it is well known that the Earth‟s actual gravity field does not abide by 

this simple gravitational law, since the mass density distribution changes in North-South and East-West 

directions. Spacecraft in geostationary orbit are heavily affected by this, which requires costly station 

keeping maneuvers. A similar effect can be expected for the displaced GEO. This section will therefore 

investigate the influence of the non-uniform Earth‟s gravity field on the lifetimes depicted in Fig. 2 and 

Fig. 8. 

For this, the two most dominant perturbing accelerations will be considered, namely the so-called 2J  term 

(or Earth‟s oblateness) and the 2,2J  term. While the first term considers deviations of the Earth‟s mass 

density distribution in North-South direction, the second term is considered with deviations in East-West 

direction. For most spacecraft orbiting the Earth the effect of the latter will average out over periods 

longer than a day, but because a (displaced) GEO spacecraft is constantly located above the same point on 

Earth, it experiences a constant acceleration from the 2,2J  term and is therefore strongly perturbed. 

Using a spherical reference frame with r  the distance from the center of the Earth,   the geographical 

longitude and   the geocentric latitude, the perturbing accelerations due to the 2J  term can be derived 

from Ref. [30] as : 
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with ER  the radius of the Earth. Eq. (16) shows that, while the 2J  perturbing acceleration for a GEO 

spacecraft is purely radial, for the displaced GEO a non-zero term in   direction exists. 

Similarly, for the 2,2J  term the accelerations are given by: 
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  (17) 

with 2,2  a coefficient related to the 2,2J  term. The accelerations in Eq. (16) and (17) can be added and 

transformed to the reference frame defined in Fig. 3. To determine the effect of the 2J  and 2,2J  terms on 

the performance of SEP and hybrid low-thrust propulsion for the displaced GEO, the resulting 

accelerations in Ex , Ey  and Ez  direction, denoted by , EJ xa , , EJ ya  and , EJ za , respectively, should be 

added to Eq. (6). This results in: 

20
, , 0 2

20
, , 0 2

0
, , 03 2

          (cos sin sin sin cos ) sin sin

          (cos sin sin sin cos ) sin cos

(cos sin sin sin cos )

E E

E E

E E

S
SEP x J x s s s s s

s

S
SEP y J y s s s s s

s

S
SEP z J z s s s

GEO s

m
a a

m r

m
a a

m r

mh
a a

mr r


       


       


     

  

  

    2 cos s

 (18) 

Eq. (18) shows that the minimization problem in Eq. (7) still holds: for a particular instant of time, the 

acceleration required from the SEP system can be minimized by finding the optimal solar sail pitch and 

yaw angles. However, because the additional terms , EJ xa  and , EJ ya  are not constant along the displaced 

GEO, the optimal sail yaw angle is also no longer constant. Therefore, applying the approach of Eq. (8) to 

solve for the optimum solar sail pitch and yaw angles would require a system of nonlinear equations to be 

solved rather than the single expression in Eq. (12). That is why the minimization problem is solved using 

a sequential quadratic programming (SQP) method implemented in the MATLAB
®
 function fmincon [31]. 

This function allows to define the bounds for the sail pitch angle s  as shown in Fig. 5 and include a 

constraint to ensure ˆ ˆ( ) 0s n r . As for the non-perturbed case, the displaced GEO is discretized into nodes 

with a time interval of 0.025t   days and at each node the minimization problem is solved. 

The results for a spacecraft positioned in a 35 km displaced GEO at a longitude of 0   and with 

spI  3200 s are provided in Fig. 9 and Fig. 10. In Fig. 9 the solar sail pitch and yaw angles are depicted to 

show their variation over one orbit due to the constantly changing , EJ xa  and , EJ ya  terms in Eq. (18). The 

actual influence on the spacecraft lifetime is shown in Fig. 10, which provides the loss in lifetime in 

percentage of the nominal, i.e. the unperturbed lifetime. The figure shows that the  2J  and 2,2J  terms have 

a small effect on the lifetime, which becomes almost negligible for the smaller values of the solar sail 

lightness number. For instance, for 0  0.01 the spacecraft reaches a lifetime of 15 years at a mass 

fraction of approximately 0.16. The corresponding percentage loss is 0.26 percent or 14 days. Note that 

the oscillating behavior for the case of hybrid low-thrust propulsion is introduced by the influence of the 
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seasonally changing Sun-sail line. Similar results can be obtained for the larger displacements of 75 and 

150 km since the magnitude of the perturbing acceleration does not change significantly.  

Note that, besides the perturbing accelerations due to the 2J  and 2,2J  terms more perturbing accelerations 

act on a spacecraft in the displaced GEO, including third body perturbations from the Sun and the Moon. 

Other issues that can affect the performance of the hybrid propulsion system are solar sail and solar array 

degradation. It is expected, however, that these phenomena will have an even smaller influence on the 

lifetime of a spacecraft in the displaced GEO than the 2J  and 2,2J  terms and are therefore neglected in 

this paper. 

a) b) 

  

Fig. 9 Optimum solar sail pitch (a) and yaw (b) angles over one orbital period in winter when accounting for 

the perturbations due to the 2J  and 2,2J  terms of the Earth’s gravity field for a spacecraft located at 0 deg 

longitude in a 35 km displaced GEO and for different values of the solar sail lightness number 0 .  

 

 

Fig. 10 Loss in mission lifetime as percentage of the nominal mission lifetime when accounting for the 

perturbations due to the 2J  and 2,2J  terms of the Earth’s gravity field for a spacecraft located at 0 deg 

longitude in a 35 km displaced GEO and for different values of the solar sail lightness number 0 . 
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5 Mass budget 
The results in Fig. 2 and Fig. 8 provide the performance of both SEP and hybrid low-thrust control in 

terms of propellant consumption. However, the goal of the mission is to maximize the lifetime of a 

spacecraft while carrying a payload. It should therefore be investigated whether the mass fractions and 

specific impulses of Fig. 2 and Fig. 8 allow for a payload to be carried during the lifetimes shown in those 

figures. For this, the mass budget of the SEP and hybrid low-thrust controlled spacecraft are investigated. 

In this paper, the mass budget is based on what is proposed in Ref. [28]: 

0 pay prop tank SEP P gimbal sm m m m m m m m        

with 0m  the initial mass, paym  the payload mass and propm  the propellant mass that follows from the initial 

mass and the mass at lifetime L . Note that for the analysis in this section once again a radially 

symmetrical mass distribution for the Earth is assumed. tankm  is the mass of the tanks required to store the 

propellant, which is given through 0.1tank propm m  [32], and SEPm  is the mass of the SEP thruster. The 

SEP thruster mass is a function of the maximum power required by the SEP subsystem, ,maxSEPP , which on 

its own is a function of the maximum thrust required during the mission, maxT :  
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with SEPk  20 kg/kW [33] the specific performance of the SEP thruster and SEP  0.7 [34] its efficiency. 

Subsequently, Pm  
is the mass of the system that provides electrical energy to the SEP thruster. In case of 

SEP control a solar array with mass ,maxP SA SEPm k P  is assumed with 1 45SAk  kg/W the specific 

performance of the solar array [33]. In case of hybrid low-thrust control it is assumed that part of the solar 

sail is covered with thin film solar cells to provide the electrical power to the SEP system. The required 

area covered with solar cells can be computed from: 

,max
,maxcos

SEP
TF SEP

TF

P
A

W



  

with W  1367 W/m
2
 the energy flux density of the Sun at 1AU, TF  0.05 the efficiency of the thin film 

and 
maxSEP the angle between the Sun-sail line, ˆ

sr , and the solar sail acceleration vector, n̂ , when maxT T , 

see also Fig. 4 and Fig. 5. From this area the mass of the thin film P TF TFm A  can be computed with 

TF  100 g/m
2
 [35]. Note that the influence of the thin film solar cells on the performance of hybrid low-

thrust propulsion is neglected in this paper. Finally, 0.3gimbal SEPm m  [32] is the mass of a gimbal that 

ensures that the solar sail and SEP thruster can steer independently from one another and sm  is the mass 

of the sail that can be computed through s s sm A  with s   5 g/m
2
 [36-37] the mass per unit area of the 

solar sail and sA  the sail area, which is given by: 

0 0

*s TF

m
A A




   

Clearly, for an SEP controlled spacecraft, both gimbalm  and sm  are set to zero. At a given time and for a 

given specific impulse, the only unknowns for computing the payload mass are the initial mass and the 

maximum thrust required during the mission, which are related as the initial mass is bounded by the 
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maximum available SEP thrust, maxT . For SEP control, this maximum thrust occurs at 0t t  causing 

max 0T T . With the required acceleration to maintain the displaced geostationary orbit, a , given for a 

particular displacement distance, the maximum initial mass equals 0,max 0m T a . For hybrid low-thrust 

control, the maximum thrust does not necessarily occur at 0t t , but can also occur in autumn (when the 

seasonal transfer is taken into account as is done in this section) as shown in Fig. 7b. The resulting 

maximum initial masses for both SEP and hybrid low-thrust control are shown in Fig. 11 as a function of 

the maximum thrust magnitude and for each of the displacement distances used so far, for different sail 

lightness numbers and for a specific impulse of 3200 s. Also a reference thrust magnitude of 0.2 N is 

indicated. The figure shows that for this reference thrust magnitude and SEP control, maximum initial 

masses of 1074 and 251 kg are possible for displacement distances of 35 and 150 km, respectively. These 

initial masses increase by a factor 1.05 to 2.7 for hybrid low-thrust control, depending on the sail lightness 

number and the displacement distance. This is due to the reduced required SEP thrust magnitude for 

hybrid low-thrust propulsion compared to pure SEP control, which was already demonstrated in Fig. 7b. 

 

Fig. 11: Maximum initial mass as a function of the maximum thrust magnitude for a 35 km (solid lines) and 

150 km (dashed lines) displaced geostationary orbit for different values of the sail lightness number 0  

and for spI  3200 s.  

Using the maximum initial masses corresponding to a maximum thrust magnitude of 0.2 N in Fig. 11, the 

payload masses and lifetimes as depicted in Fig. 12 can be obtained. As a reference also the performance 

in terms of propellant consumption, as shown in Fig. 2 and Fig. 8, is depicted. The figure immediately 

shows that certain mass fractions considered in Fig. 2 and Fig. 8 do not allow for a payload mass to be 

carried on board the spacecraft. For example, for a 35 km displaced SEP controlled orbit and a mass 

fraction of 0.1, a lifetime of 12.3 years can be obtained from a propellant consumption point of view. 

However, looking at the corresponding payload mass, it becomes clear that this mass fraction does not 

allow for a payload, simply because the propellant mass and the mass of the tanks containing the 

propellant become too large. Note that the payload masses in Fig. 12 can be increased when a larger 

maximum thrust magnitude and therefore a larger initial mass is allowed. However, this will not increase 

the maximum lifetime (i.e. the time at which no payload mass remains) as all mass components scale 

linearly with the initial mass or equivalently with the maximum thrust magnitude. Non-zero payload 
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masses for longer lifetimes become possible when tuning spacecraft design parameters such as SEPk , SEP , 

SAk , TF , TF  and s .  

Overall, Fig. 12 shows that in almost all cases hybrid low-thrust control outperforms SEP control. Only 

for the largest value of 0  and a displacement of 150 km, the large required sail area (and with that the 

sail mass) becomes a disadvantage. Furthermore, the figure shows that only hybrid low-thrust control 

allows lifetimes of current geostationary spacecraft of 10 ~ 15 years while still enabling a considerable 

payload to be taken onboard. For example, for a 35 km displaced orbit, a sail lightness number of 0.1 and 

an initial mass of 2193 kg, payload masses of 487 kg and 255 kg can be maintained in the displaced 

geostationary orbit for 10 and 15 years, respectively.  

a) b) 

  

Fig. 12: Payload mass (solid lines) and mass fraction (dashed lines) as a function of the lifetime for a 35 km (a) 

and 150 km (b) displaced geostationary orbit for different values of the sail lightness number 0  and for 

spI  3200. 

Although the performance for a 35 km displaced orbit is highly promising, the performance of higher 

displaced orbits is not. Both the lifetime and the payload mass decrease significantly when larger 

displacements are considered. However, the performance of these larger displacements improves 

significantly if an increase in the maximum thrust magnitude is allowed. To show this improvement, a 

maximum thrust level of 1 N is assumed, which is considered reasonable for next generation SEP systems. 

Subsequently, requiring a payload mass of at least 200 kg, the results in Table 1 can be found for a 

displacement of 150 km and a specific impulse of 3200 s. Table 1 shows that a payload mass of 200 kg is 

indeed possible for reasonable values for the initial mass. The lifetime is, however, still rather short, just 

over 0.5 year. It can therefore be concluded that a 150 km displaced geostationary orbit is feasible using 

hybrid low-thrust control, be it for rather short periods of time. 150 km displaced geostationary orbits are 

therefore perfect for the concept of customized service using a mobile displaced geostationary platform. 

Then, the displaced geostationary orbit is only maintained for a relatively short period of time to provide 

additional coverage when needed (e.g. during major sporting events such as the Olympics or World Cup) 

and is transferred into a Keplerian parking orbit when inoperative. With only hours or days of coverage 
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needed, the 150 km displaced geostationary orbit can transform its rather short lifetime into multiple 

smaller missions extended over a much longer lifetime. To show the feasibility of this concept, the next 

section will investigate the transfer that is required to transfer the spacecraft from and to the Keplerian 

parking orbit. 

Table 1: Lifetime L , payload mass paym  and initial mass 0m  for a 150 km displaced geostationary orbit 

allowing maxT  1.0 N, requiring paym 
 
200 kg and using spI  3200 s. 

  0 = 0.01 0 = 0.05 0 = 0.1 

L , yrs 0.48 0.54 0.47 

paym , kg 206 200 202 

maxT , N 0.99 0.98 0.98 

0m , kg 1300 1550 1850 

6 Transfer orbits 
In the previous sections two types of transfers where mentioned to improve the performance of hybrid 

low-thrust control while maintaining the displaced geostationary orbit. This section will investigate these 

transfers.  

6.1 Seasonal transfer 
As mentioned in Section 4, the obliquity of the ecliptic causes hybrid low-thrust control for displaced 

geostationary orbits to perform best when a spacecraft is displaced above the equatorial plane in winter 

and below the equatorial plane in summer. To accomplish this, the spacecraft will have to be transferred 

from above the equatorial plane to below the equatorial plane and vice versa twice per year: once in spring 

(above to below) and once in autumn (below to above). This section will optimize this transfer for the SEP 

propellant consumption, which implies solving the accompanying optimal control problem. An optimal 

control problem is to find a state history ( ) xn
t x   and a control history ( ) un

t u  , 0 , ft t t    , subject to 

the dynamics: 

( ) ( ( ), ( ), )t t t tx f x u  

that minimize the cost function: 

   
0

0 0, , , ( ), ( ),

ft

f f

t

J t t L t t t dt  x x x u  (20) 

and satisfy the constraints ( , , ) 0t c x u . These constraints can include event constraints on the initial and 

final states and time, bounds on the state variables, control variables and time and path constraints. The 

first term on the right hand side of Eq. (20) is the endpoint (Mayer-type) cost function, which is only a 

function of the initial and final states and initial and final time, while the second term is the Lagrange cost 

function which is a function of time. To solve this optimal control problem the open source tool PSOPT is 

applied [38]. PSOPT implements a direct pseudospectral method to solve the optimal control problem. By 

discretizing the time interval into a finite number of nodes, the infinite dimensional optimal control 

problem is transformed into a finite dimension non-linear programming (NLP) problem. Pseudospectral 

methods use Legendre or Chebyshev polynomials to approximate and interpolate the time dependent 

variables at the nodes. The advantage of using pseudospectral methods is that the derivatives of the state 
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functions at the nodes are computed by matrix multiplication only and that any integral associated with the 

problem is approximated using well known Gauss quadrature rules.  

To optimize the seasonal transfer for the SEP propellant consumption, the cost function equals: 

fJ m   

with fm  the final mass of the spacecraft. The seasonal transfer is described using a spherical reference 

frame ( , , )C r   centered at the Earth, see Fig. 13. The in-plane angle   is measured in counter clockwise 

direction from the Cx  axis that coincides with the start of the transfer (i.e. for 0t  , 0  ) and the out-of-

plane angle   is measured from the ( , )C Cx y  plane that is parallel to the equatorial plane. For an SEP 

controlled spacecraft the state vector at any point in the trajectory then becomes: 

rr V V V m     x  

with rV , V  and V  the velocity in r ,  and   direction, respectively and m  the mass of the spacecraft. 

 

Fig. 13: Definition of spherical reference frame to describe the seasonal transfer. 

With the transfer starting and ending in a displaced geostationary orbit the initial, 0x , and final,
 fx , state 

vectors are given by: 

0 0 0 00 0 cos 0 ][
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with the final mass fm  free. The final in-plane angle f is restricted to: 

f GEO ft   

with GEO the angular velocity in the (displaced) geostationary orbit to ensure that the longitude of the 

spacecraft in the displaced geostationary orbit is unchanged after the transfer. Furthermore, 
1

0 0sin ( / )GEOh r   and 1sin ( / )f f GEOh r  . Correct signs for 0h  and fh  will ensure correct signs for 0  

and f .  
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Using a two-body model the equations that describe the motion of the spacecraft in the transfer become: 
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with rT T T 
   u  the control vector consisting of the Cartesian components of the SEP thrust 

acceleration. Note that the Cartesian thrust components are used rather than two thrust angles and the 

thrust magnitude as these may give rise to ambiguities [39]. However, using Cartesian components 

requires the following path constraint: 

2 2 2
maxrT T T T T      

Finally, the bounds on the state and control variables and the transfer time are set to: 
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with ER  the radius of the Earth and maxT  the maximum allowed thrust magnitude. Distances are provided 

in km, velocities in km/s and angles in radians. Eq. (21) shows that wide bounds are set on the state 

variables in order not to restrict the optimizer. For instance, the bounds on the components of the 

velocities are set far beyond the velocity in the displaced geostationary orbit and two full orbital 

revolutions are allowed for the transfer. Finally, a maximum transfer time of one day is assumed to limit a 

potential disruption in the downlink to Earth during the transfer. 

PSOPT requires a first guess to initialize the optimization. To obtain this first guess, a shape-based 

approach is used in which the shape of the transfer is fixed and the required controls to perform that 

transfer are sought for. For this, the transfer is considered in a rotating reference frame that rotates with 

respect to an inertial frame at constant angular velocity equal to the angular velocity of the (displaced) 

geostationary orbit. Within this rotating frame, spacecraft in the displaced geostationary orbits are 

stationary. The transfer between the orbits is assumed to be the shortest path possible in this reference 

frame and a parabolic velocity profile is adopted to ensure zero velocities at the start and end of the 

transfer. 

The results of the optimization in PSOPT are given in Table 2 with the corresponding thrust profiles in 

Fig. 14. A maximum thrust magnitude of 0.2 N is assumed leading to the use of the initial masses as 

determined in Fig. 11. To consider the worst case scenario, the initial masses corresponding to 0  0.2 

are selected. The table shows a relatively worse performance for smaller displacements which can be 

explained by the higher initial mass that can be put in the orbit without exceeding the maximum thrust 
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level of 0.2 N while in-orbit. Table 2 furthermore shows that almost negligible amounts of propellant are 

needed to perform the seasonal transfer, which justifies the usage of this switch in Section 4 to improve 

the performance of hybrid low-thrust control. The reason for the extremely small amounts of propellant 

needed for the seasonal transfer can be found in the fact that the spacecraft falls into a Keplerian orbit 

when switching off the thrust in the displaced geostationary orbit. The start of this Keplerian orbit 

coincides with the apogee, while the perigee almost touches the displaced geostationary orbit on the other 

side of the equatorial plane [2]. Thus, only a tiny thrust force in the form of a bang-off-bang control is 

needed to overcome the small offset between the perigee of the Keplerian transfer orbit and the displaced 

geostationary orbit. 

Table 2: Required propellant mass for optimized seasonal transfer.  

0h , km 0m , kg
 propm , g 

±35 2912 2.60 
±75 1020 0.96 
±150 436 0.66 
 

 

Fig. 14: Thrust profile for optimized seasonal transfer. 

 

6.2 Transfer from and to parking orbit 
In Section 5 the concept of customized service by using a mobile displaced geostationary platform was 

introduced. Then, the spacecraft is transferred into a displaced geostationary orbit for a relatively short 

period of time to deliver any required coverage and is transferred back into a Keplerian parking orbit when 

the geostationary coverage is no longer needed. This parking orbit and the transfer that are involved in this 

concept are depicted in Fig. 15. The parking orbit thus lies inside the geostationary orbit where the 

distance between the parking orbit and the geostationary orbit equals the absolute value of the 

displacement distance. In this way, the parking orbit is as close to the displaced geostationary orbit as 

possible without interfering with either the geostationary or the displaced geostationary orbit. 

The investigation of this transfer is very similar to the method used for the seasonal transfer. The 

definition of the state and control variables is the same as are the equations of motion. Only the initial and 

final states differ. When the transfer from the parking orbit to the displaced geostationary orbit is 

considered, these become:  
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0 0[ 0  0  0 ( )  0 ]TGEO GEOr h r h m  x
 (22)

 

[      0 cos 0 ]Tf GEO f f GEO f fr r m   x
  (23)

 

with the final in-plane angle f  and final mass fm  free. Phasing between the parking orbit and the 

displaced geostationary orbit will have to ensure that the spacecraft is inserted into the displaced 

geostationary orbit at the correct longitude. Note that when the transfer from the displaced orbit to the 

parking orbit is considered, the initial condition equals Eq. (23) and the final condition becomes Eq. (22). 

 

Fig. 15: Definition of parking orbit and transfer for customized geostationary service.  

 

Also the optimization of the transfer is similar to the optimization of the seasonal transfer. The same 

objective function, bounds on the state and control variables and path constraint can be applied. Even the 

method to generate the initial guess is the same. The only slight difference is the fact that a somewhat 

larger transfer time is allowed.  

The results of the optimization are shown in Table 3, Fig. 16 and Fig. 17. Table 3 shows that, although the 

required propellant is a factor 100 larger than for the seasonal transfer, the transfer still requires only 

modest propellant budgets. Fig. 14 and Fig. 15 furthermore show that the transfer from the parking orbit to 

the displaced orbit requires a different thrust profile than the transfer from the displaced orbit to the 

parking orbit. The three thrust arc profile is mainly observed for the higher displaced orbits, which 

suggests that the required inclination change to go from the parking to the displaced orbit cannot be 

achieved in a two thrust arc strategy, while this is possible for the transfer in the opposite direction.  

Table 3: Required propellant mass in grams for the customized service transfer. a) Transfer from parking 

orbit to displaced geostationary orbit. b) Transfer from displaced geostationary orbit to parking orbit. 

a) b) 

fh , km 0m , kg
 propm , g  0h , km 0m , kg

 propm , g 

±35 2912 277.8 ±35 2912 292.0 
±75 1020 204.0 ±75 1020 208.9 
±150 436 173.7 ±150 436 176.1 
 

a) b) 

Displaced GEO 

Cz  

Cy  

Cx  

h  Parking orbit 

h  

GEO 



  

Page 24 of 29 

  

  

Fig. 16: Customized service transfer for a 150 km displaced geostationary orbit. a) Transfer from parking 

orbit to displaced geostationary orbit. b) Transfer from displaced geostationary orbit to parking orbit. 

a) b) 

  

Fig. 17: Thrust profile for a customized service transfer for a 150 km displaced geostationary orbit. a) 

Transfer from parking orbit to displaced geostationary orbit. b) Transfer from displaced geostationary 

orbit to parking orbit. 

7  Conclusions 
In this paper geostationary orbits displaced above and below the equatorial plane have been proposed to 

increase the capacity of the geostationary ring that is starting to become congested. To maintain the orbit, 

two types of control have been suggested, Solar Electric Propulsion (SEP) control and hybrid low-thrust 

control. Both types of control have been optimized for the SEP propellant consumption, thereby 

maximizing the mission lifetime and/or payload mass. SEP control appeared to enable lifetimes of a few 

months in a 150 km displaced orbit to a few years in a 35 km displaced orbit, the minimum to rise above 

the geostationary station keeping box. However, investigating the spacecraft mass budget showed that 

only for small displacements reasonable payload masses of a few hundred kilograms could be maintained 

for a few years. By adding a solar sail to the SEP system, thereby creating hybrid low-thrust control, the 

demand on the SEP system could be lowered significantly while enabling a mission that is impossible 

using only solar sailing due to the obliquity of the ecliptic. An even better performance was obtained by 
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alternating the displacement between above (autumn – spring) and below (spring – autumn) the equatorial 

plane during the year to make advantage of the seasonally changing Sun-sail line, introducing a so-called 

seasonal transfer. Optimizing this transfer for the SEP propellant consumption showed that this transfer 

comes almost for free. Employing this transfer showed that hybrid low-thrust control outperforms the pure 

SEP case both in terms of payload mass capacity and mission lifetime for all displacements considered. 

Hybrid low-thrust control provides lifetimes of 10 ~ 15 years (equal to current geostationary missions) for 

a 35 km displaced orbit and for considerable payload masses of 255 ~ 487 kg. Including the perturbing 

accelerations due to the 2J  and 2,2J  terms of the Earth‟s gravity field showed to have a small effect on 

this lifetime, which reduces to negligible values for small sail lightness numbers. Allowing a somewhat 

larger maximum thrust magnitude also resulted in reasonable payload masses of 200 kg for the higher 

displaced orbits, be it for relatively short periods of time. These orbits therefore appeared to be especially 

useful for the concept of customized service in which the spacecraft is only operative in the displaced orbit 

for relatively short periods of time (hours or days) to provide coverage when needed. When not 

operational, the spacecraft is transferred into a Keplerian parking orbit. Optimizing this transfer showed 

that only a modest propellant budget of approximately 200 g is required. 
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