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Abstract—An adaptive particle swarm optimization (APSO)
that features better search efficiency than classical particle swarm
optimization (PSO) is presented. More importantly, it can per-
form a global search over the entire search space with faster
convergence speed. The APSO consists of two main steps. First,
by evaluating the population distribution and particle fitness, a
real-time evolutionary state estimation procedure is performed to
identify one of the following four defined evolutionary states, in-
cluding exploration, exploitation, convergence, and jumping out in
each generation. It enables the automatic control of inertia weight,
acceleration coefficients, and other algorithmic parameters at run
time to improve the search efficiency and convergence speed. Then,
an elitist learning strategy is performed when the evolutionary
state is classified as convergence state. The strategy will act on
the globally best particle to jump out of the likely local optima.
The APSO has comprehensively been evaluated on 12 unimodal
and multimodal benchmark functions. The effects of parameter
adaptation and elitist learning will be studied. Results show that
APSO substantially enhances the performance of the PSO par-
adigm in terms of convergence speed, global optimality, solution
accuracy, and algorithm reliability. As APSO introduces two new
parameters to the PSO paradigm only, it does not introduce an
additional design or implementation complexity.

Index Terms—Adaptive particle swarm optimization (APSO),
evolutionary computation, global optimization, particle swarm
optimization (PSO).

I. INTRODUCTION

PARTICLE swarm optimization (PSO), which was intro-
duced by Kennedy and Eberhart in 1995 [1], [2], is one

of the most important swarm intelligence paradigms [3]. The
PSO uses a simple mechanism that mimics swarm behavior in
birds flocking and fish schooling to guide the particles to search
for globally optimal solutions. As PSO is easy to implement, it
has rapidly progressed in recent years and with many successful
applications seen in solving real-world optimization problems
[4]–[10].
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However, similar to other evolutionary computation algo-
rithms, the PSO is also a population-based iterative algorithm.
Hence, the algorithm can computationally be inefficient as
measured by the number of function evaluations (FEs) required
[11]. Further, the standard PSO algorithm can easily get trapped
in the local optima when solving complex multimodal problems
[12]. These weaknesses have restricted wider applications of
the PSO [5].

Therefore, accelerating convergence speed and avoiding the
local optima have become the two most important and appeal-
ing goals in PSO research. A number of variant PSO algorithms
have, hence, been proposed to achieve these two goals [8], [9],
[11], [12]. In this development, control of algorithm parameters
and combination with auxiliary search operators have become
two of the three most salient and promising approaches (the
other being improving the topological structure) [10]. However,
so far, it is seen to be difficult to simultaneously achieve both
goals. For example, the comprehensive-learning PSO (CLPSO)
in [12] focuses on avoiding the local optima, but brings in a
slower convergence as a result.

To achieve both goals, adaptive PSO (APSO) is formulated
in this paper by developing a systematic parameter adaptation
scheme and an elitist learning strategy (ELS). To enable adap-
tation, an evolutionary state estimation (ESE) technique is first
devised. Hence, adaptive parameter control strategies can be de-
veloped based on the identified evolutionary state and by mak-
ing use of existing research results on inertia weight [13]–[16]
and acceleration coefficients [17]–[20].

The time-varying controlling strategies proposed for the PSO
parameters so far are based on the generation number in the
PSO iterations using either linear [13], [18] or nonlinear [15]
rules. Some strategies adjust the parameters with a fuzzy system
using fitness feedback [16], [17]. Some use a self-adaptive
method by encoding the parameters into the particles and
optimizing them together with the position during run time
[19], [20]. Although these generation-number-based strategies
have improved the algorithm, they may run into the risk of
inappropriately adjusting the parameters because no informa-
tion on the evolutionary state that reflects the population and
fitness diversity is identified or utilized. To improve efficiency
and to accelerate the search process, it is vital to determine the
evolutionary state and the best values for the parameters.

To avoid possible local optima in the convergence state,
combinations with auxiliary techniques have been developed
elsewhere by introducing operators such as selection [21],
crossover [22], mutation [23], local search [24], reset [25], [26],
reinitialization [27], [28], etc., into PSO. These hybrid oper-
ations are usually implemented in every generation [21]–[23]
or at a prefixed interval [24] or are controlled by adaptive
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strategies using stagnated generations as a trigger [25]–[28].
While these methods have brought improvements in PSO, the
performance may further be enhanced if the auxiliary oper-
ations are adaptively performed with a systematic treatment
according to the evolutionary state. For example, the mutation,
reset, and reinitialization operations can be more pertinent
when the algorithm has converged to a local optimum rather
than when it is exploring.

Extending from the existing parameter setting techniques on
inertia weight [13]–[16] and acceleration coefficients [17]–[20],
this paper develops a systematic adaptation scheme. The PSO
parameters are not only controlled by ESE but also taking
the different effects of these parameters in different states into
account. In addition, departing from mutation [23], reset [25],
[26], or reinitialization [27], [28] operations, the ELS is pro-
posed in this paper to perform only on the globally best particle
and only in a convergence state. This is not only because
the convergence state needs the ELS most but also because
of a very low computational overhead. Further, the adaptive
ELS will maintain population diversity for jumping out of the
potential local optima. Moreover, tests are to be carried out on
various topological structures in the PSO paradigm to verify
the effectiveness of the APSO and to more comprehensively
compare with other improved PSO algorithms.

In Section II, the PSO and its developments are briefly
reviewed. Section III presents the ESE approach in detail. The
APSO algorithm is proposed in Section IV through the devel-
opments of an adaptive parameter control strategy and the ELS.
Section V experimentally compares the APSO with various
existing PSO algorithms using a set of benchmark functions.
Discussions and further investigations on the APSO are made
in Section VI. Finally, conclusions are drawn in Section VII.

II. PSO AND ITS DEVELOPMENTS

A. PSO Framework

In PSO, a swarm of particles are represented as potential
solutions, and each particle i is associated with two vectors,
i.e., the velocity vector V i = [v1

i , v2
i , . . . , vD

i ] and the posi-
tion vector Xi = [x1

i , x
2
i , . . . , x

D
i ], where D stands for the

dimensions of the solution space. The velocity and the position
of each particle are initialized by random vectors within the
corresponding ranges. During the evolutionary process, the
velocity and position of particle i on dimension d are updated as

vd
i = ωvd

i + c1randd
1

(
pBestdi − xd

i

)
+ c2randd

2

(
nBestd − xd

i

)
(1)

xd
i = xd

i + vd
i (2)

where ω is the inertia weight [13], c1 and c2 are the acceleration
coefficients [2], and randd

1 and randd
2 are two uniformly dis-

tributed random numbers independently generated within [0, 1]
for the dth dimension [1]. In (1), pBesti is the position with
the best fitness found so far for the ith particle, and nBest is
the best position in the neighborhood. In the literature, instead
of using nBest, gBest may be used in the global-version PSO,
whereas lBest may be used in the local-version PSO (LPSO).

A user-specified parameter V d
max ∈ �+ is applied to clamp

the maximum velocity of each particle on the dth dimension.
Thus, if the magnitude of the updated velocity |vd

i | exceeds
V d

max, then vd
i is assigned the value sign(vd

i )V d
max. In this

paper, the maximum velocity Vmax is set to 20% of the search
range, as proposed in [4].

B. Current Developments of the PSO

Given its simple concept and effectiveness, the PSO has
become a popular optimizer and has widely been applied in
practical problem solving. Thus, theoretical studies and per-
formance improvements of the algorithm have become impor-
tant and attractive. Convergence analysis and stability studies
have been reported by Clerc and Kennedy [29], Trelea [30],
Yasuda et al. [31], Kadirkamanathan et al. [32], and van den
Bergh and Engelbrecht [33]. Meanwhile, much research on per-
formance improvements has been reported, including parameter
studies, combination with auxiliary operations, and topological
structures [4], [5], [10].

The inertia weight ω in (1) was introduced by Shi and
Eberhart [13]. They proposed an ω linearly decreasing with the
iterative generations as

ω = ωmax − (ωmax − ωmin)
g

G
(3)

where g is the generation index representing the current number
of evolutionary generations, and G is a predefined maximum
number of generations. Here, the maximal and minimal weights
ωmax and ωmin are usually set to 0.9 and 0.4, respectively
[13], [14].

In addition, a fuzzy adaptive ω was proposed in [16], and
a random version setting ω to 0.5 + random(0, 1)/2 was ex-
perimented in [34] for dynamic system optimization. As this
random ω has an expectation of 0.75, it has a similar idea as
Clerc’s constriction factor [28], [29]. The constriction factor
has been introduced into PSO for analyzing the convergence
behavior, i.e., by modifying (1) to

vd
i = χ

[
vd

i + c1randd
1

(
pBestdi − xd

i

)
+ c2randd

2

(
nBestd − xd

i

)]
(4)

where the constriction factor

χ =
2

|2 − ϕ −
√

ϕ2 − 4ϕ|
(5a)

is set to 0.729 with

ϕ = c1 + c2 = 4.1 (5b)

where c1 and c2 are both set to 2.05 [29]. Mathematically,
the constriction factor is equivalent to the inertia weight, as
Eberhart and Shi pointed out in [35]. In this paper, we focus
on the PSO with an inertia weight and use a global version of
PSO (GPSO) [13] to denote the traditional global-version PSO
with an inertia weight as given by (3).

In addition to the inertia weight and the constriction fac-
tor, the acceleration coefficients c1 and c2 are also important
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parameters in PSO. In Kennedy’s two extreme cases [36],
i.e., the “social-only” model and the “cognitive-only” model,
experiments have shown that both acceleration coefficients are
essential to the success of PSO. Kennedy and Eberhart [1]
suggested a fixed value of 2.0, and this configuration has been
adopted by many other researchers. Suganthan [37] showed
that using ad hoc values of c1 and c2 rather than a fixed value
of 2.0 for different problems could yield better performance.
Ratnaweera et al. [18] proposed a PSO algorithm with linearly
time-varying acceleration coefficients (HPSO-TVAC), where
a larger c1 and a smaller c2 were set at the beginning and
were gradually reversed during the search. Among these three
methods, the HPSO-TVAC shows the best overall performance
[18]. This may be owing to the time-varying c1 and c2 that
can balance the global and local search abilities, which implies
that adaptation of c1 and c2 can be promising in enhancing the
PSO performance. Hence, this paper will further investigate the
effects of c1 and c2 and develop an optimal adaptation strategy
according to ESE.

Another active research trend in PSO is hybrid PSO, which
combines PSO with other evolutionary paradigms. Angeline
[21] first introduced into PSO a selection operation similar to
that in a genetic algorithm (GA). Hybridization of GA and PSO
has been used in [38] for recurrent artificial neural network
design. In addition to the normal GA operators, e.g., selection
[21], crossover [22], and mutation [23], other techniques such
as local search [24] and differential evolution [39] have been
used to combine with PSO. Cooperative approach [40], self-
organizing hierarchical technique [18], deflection, stretching,
and repulsion techniques [41] have also been hybridized with
traditional PSO to enhance performance. Inspired by biology,
some researchers introduced niche [42], [43] and speciation
[44] techniques into PSO to prevent the swarm from crowd-
ing too closely and to locate as many optimal solutions as
possible.

In addition to research on parameter control and auxil-
iary techniques, PSO topological structures are also widely
studied. The LPSO with a ring topological structure and the
von Neumann topological structure PSO (VPSO) have been
proposed by Kennedy and Mendes [45], [46] to enhance the
performance in solving multimodal problems. Further, dynam-
ically changing neighborhood structures have been proposed
by Suganthan [37], Hu and Eberhart [47], and Liang and
Suganthan [48] to avoid the deficiencies of fixed neighbor-
hoods. Moreover, in the “fully informed particle swarm” (FIPS)
algorithm [49], the information of the entire neighborhood is
used to guide the particles. The CLPSO in [12] lets the particle
use different pBest’s to update its flying on different dimen-
sions for improved performance in multimodal applications.

III. ESE FOR PSO

To more objectively and optimally control the PSO, this
section develops an ESE approach. During a PSO process, the
population distribution characteristics vary not only with the
generation number but also with the evolutionary state. For
example, at an early stage, the particles may be scattered in var-
ious areas, and, hence, the population distribution is dispersive.

As the evolutionary process goes on, however, particles would
cluster together and converge to a locally or globally optimal
area. Hence, the population distribution information would be
different from that in the early stage. Therefore, how to detect
the different population distribution information and how to use
this information to estimate the evolutionary state would be a
significant and promising research topic in PSO. The notion of
evolutionary states was first introduced in [50] and [51], where
a clustering analysis technique was used to determine the states.
This section extends this technique to systematic ESE with a
fuzzy classification option.

A. Population Distribution Information in PSO

In this section, the population distribution characteristics in
a PSO process are first investigated so as to formulate an ESE
approach. For this, a total of 12 commonly used test functions
[12], [53], [54] are adopted to later benchmark the perfor-
mance in this paper (including the tests in Section IV-B on
the effects of parameter adaptation, the benchmark experiments
in Section V, and the merit and sensitivity investigations in
Section VI). These functions are summarized in Table I, where
D represents the number of dimensions of the test function, and
Column 6 defines an “acceptance” value to gauge whether a so-
lution found by the nondeterministic PSO would be acceptable
or not.

To illustrate the dynamics of particle distribution in the PSO
process, we herein take a time-varying 2-D Sphere function

f1(x − r)=(x1 − r)2 + (x2 − r)2, xi∈ [−10, 10] (6)

as an example, where r is initialized to −5 and shifts to 5 at
the fiftieth generation in a 100-generation optimization process.
That is, the theoretical minimum of f1 shifts from (−5, −5) to
(5, 5) half way in the search process. Using a GPSO [13] with
100 particles to solve this minimization problem, the population
distributions in various running phases were observed, as shown
in Fig. 1.

It can be seen in Fig. 1(a) that following the initialization, the
particles start to explore throughout the search space without
an evident control center. Then, the learning mechanisms of the
PSO pull many particles to swarm together toward the optimal
region, as seen in Fig. 1(b). Then, the population converges to
the best particle [in Fig. 1(c)]. At the fiftieth generation, the
bottom of the sphere is shifted from (−5, −5) to (5, 5). It is
seen in Fig. 1(d) that a new leader quickly emerges somewhat
far away from the current clustering swarm. It leads the swarm
to jump out of the previous optimal region to the new region
[Fig. 1(e)], forming a second convergence [Fig. 1(f)]. From
this simple investigation, it can be seen that the population
distribution information can significantly vary during the run
time, and that the PSO has the ability to adapt to a time-varying
environment.

B. ESE

Based on the search behaviors and the population distribution
characteristics of the PSO, an ESE approach is developed in

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on October 2, 2009 at 10:06 from IEEE Xplore.  Restrictions apply. 



ZHAN et al.: ADAPTIVE PARTICLE SWARM OPTIMIZATION 1365

TABLE I
TWELVE TEST FUNCTIONS USED IN THIS PAPER, THE FIRST SIX BEING UNIMODAL AND THE REMAINING BEING MULTIMODAL

Fig. 1. Population distribution observed at various stages in a PSO process. (a) Generation = 1. (b) Generation = 25. (c) Generation = 49. (d) Generation = 50.
(e) Generation = 60. (f) Generation = 80.

this section. The distribution information in Fig. 1 can be
formulated as illustrated in Fig. 2 by calculating the mean dis-
tance of each particle to all the other particles. It is reasonable
to expect that the mean distance from the globally best particle
to other particles would be minimal in the convergence state
since the global best tends to be surrounded by the swarm. In
contrast, this mean distance would be maximal in the jumping-

out state, because the global best is likely to be away from
the crowding swarm. Therefore, the ESE approach will take
into account the population distribution information in every
generation, as detailed in the following steps.

Step 1: At the current position, calculate the mean distance
of each particle i to all the other particles. For

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on October 2, 2009 at 10:06 from IEEE Xplore.  Restrictions apply. 



1366 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 6, DECEMBER 2009

Fig. 2. PSO population distribution information quantified by an evolutionary factor f . (a) dg ≈ dpi exploring. (b) dg � dpi exploiting converging.
(c) dg � dpi jumping out.

example, this mean distance can be measured using
an Euclidian metric

di =
1

N − 1

N∑
j=1,j �=i

√√√√ D∑
k=1

(
xk

i − xk
j

)2
(7)

where N and D are the population size and the
number of dimensions, respectively.

Step 2: Denote di of the globally best particle as dg . Com-
pare all di’s, and determine the maximum and
minimum distances dmax and dmin. Compute an
“evolutionary factor” f as defined by

f =
dg − dmin

dmax − dmin
∈ [0, 1]. (8)

Take the time-varying f1 minimization process
shown in Fig. 1 as an example to illustrate the vari-
ations of f . The dynamics of f has been recorded
and are shown in Fig. 3(a). As can be seen, the
exploration phase (for about 6 generations) exhibits
a large f , followed by a rapidly decreasing f during
the exploitation phase (until about Generation 25),
and a vanishing f during the convergence phase until
the environment changes. When the search target
shifts at Generation 50, the PSO is seen to be able to
jump out, resulting in the largest value of f , followed
by exploration and exploitation again until another
convergence emerges.

For generality, this experiment was repeated on
f2, f4, and f7. Here, the unimodal functions f2 and
f4 are also time varying as (6). The results are also
plotted in Fig. 3, which shows similar patterns to
that from f1. It can be seen that the values of f , as
derived from the population characteristics, robustly
reveal the state that the PSO is in at run time.

Step 3: Classify f into one of the four sets S1, S2,
S3, and S4, which represent the states of explo-
ration, exploitation, convergence, and jumping out,
respectively. These sets can be simple crisp intervals
for a rigid classification. For example, referring to
Fig. 3, f =0.5∈ [0.5, 0.7) can be classified by S1 to
signal that PSO would be in the state of exploration.
However, analysis from Figs. 1–3 suggests that the
state transition would be nondeterministic and fuzzy,

and that different algorithms or applications could
exhibit different characters of the transition. It is,
hence, recommended that the fuzzy classification
be adopted. Therefore, sets S1, S2, S3, and S4 are
assigned the fuzzy membership functions depicted
in Fig. 4, which are derived from Figs. 1–3 and their
empirical studies. The key to fuzzy classification is
overlap memberships. The formulation for numeri-
cal implementation of the classification is as follows.

Case (a)—Exploration: A medium to large value of f repre-
sents S1, whose membership function is defined as

μS1(f) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 ≤ f ≤ 0.4
5 × f − 2, 0.4 < f ≤ 0.6
1, 0.6 < f ≤ 0.7
−10 × f + 8, 0.7 < f ≤ 0.8
0, 0.8 < f ≤ 1.

(9a)

Case (b)—Exploitation: A shrunk value of f represents S2,
whose membership function is defined as

μS2(f) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 ≤ f ≤ 0.2
10 × f − 2, 0.2 < f ≤ 0.3
1, 0.3 < f ≤ 0.4
−5 × f + 3, 0.4 < f ≤ 0.6
0, 0.6 < f ≤ 1.

(9b)

Case (c)—Convergence: A minimal value of f represents
S3, whose membership function is defined as

μS3(f) =

{ 1, 0 ≤ f ≤ 0.1
−5 × f + 1.5, 0.1 < f ≤ 0.3
0, 0.3 < f ≤ 1.

(9c)

Case (d)—Jumping Out: When PSO is jumping out of a
local optimum, the globally best particle is distinctively away
from the swarming cluster, as shown in Fig. 2(c). Hence, the
largest values of f reflect S4, whose membership function is,
thus, defined as

μS4(f) =

{ 0, 0 ≤ f ≤ 0.7
5 × f − 3.5, 0.7 < f ≤ 0.9
1, 0.9 < f ≤ 1.

(9d)

Therefore, at a transitional period, two memberships will be
activated, and f can be classified to either state. For a final
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Fig. 3. Evolutionary state information robustly revealed by f at run time. (a) f from time-varying Sphere function f1. (b) f from time varying Schwefel’s
function f2. (c) f from time-varying Rosenbrock’s function f4. (d) f from multimodal function f7.

Fig. 4. Fuzzy membership functions for the four evolutionary states.

classification, either of the two most commonly used defuzzifi-
cation techniques, i.e., the “singleton” or the “centroid” method
[55], may be used here. The singleton method is adopted in this
paper, since it is more efficient than the centroid and is simple
to implement in conjunction with a state transition rule base.

Similar to most fuzzy logic schemes, the decision-making
rule base here also involves both the state and the “change
of state” variables in a 2-D table. The change of state is re-
flected by the PSO sequence S1 ⇒ S2 ⇒ S3 ⇒ S4 ⇒ S1 . . .,
as observed in Figs. 1–3. Hence, for example, an f evaluated
to 0.45 has both a degree of membership for S1 and another

degree of membership for S2, which indicate that the PSO is
in a transitional period between S1 and S2. Using the singleton
method alone without the rule base would classify f to S2, since
μS2(f) > μS1(f). However, with the rule base, the singleton
will single out S1 over S2 if the previous state is S4, because the
rule base (containing the change sequence) determines decision
making at defuzzification. If the previous state is S1, then f is
also classified to S1 for the sake of classification stability, that
is, not to excessively switch the state indicator. However, if the
previous state is either S2 or S3, then the singleton with the rule
table will classify f to S2.

IV. APSO

A. Adaptive Control of PSO Parameters

1) Adaptation of the Inertia Weight: The inertia weight ω in
PSO is used to balance the global and local search capabilities.
Many researchers have advocated that the value of ω should
be large in the exploration state and small in the exploitation
state [4], [13], [14]. However, it is not necessarily correct to
decrease ω purely with time [14]. The evolutionary factor f
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shares some characteristics with the inertia weight ω in that f
is also relatively large during the exploration state and becomes
relatively small in the convergence state. Hence, it would be
beneficial to allow ω to follow the evolutionary states using a
sigmoid mapping ω(f) : �+ �→ �+

ω(f) =
1

1 + 1.5e−2.6f
∈ [0.4, 0.9] ∀f ∈ [0, 1]. (10)

In this paper, ω is initialized to 0.9. As ω is not necessarily
monotonic with time, but monotonic with f , ω will, thus, adapt
to the search environment characterized by f . In a jumping-out
or exploration state, the large f and ω will benefit the global
search, as referenced earlier. Conversely, when f is small, an
exploitation or convergence state is detected, and, hence, ω
decreases to benefit the local search.

2) Control of the Acceleration Coefficients: Adaptive con-
trol can be devised for the acceleration coefficients based on the
following notion. Parameter c1 represents the “self-cognition”
that pulls the particle to its own historical best position, helping
explore local niches and maintaining the diversity of the swarm.
Parameter c2 represents the “social influence” that pushes the
swarm to converge to the current globally best region, helping
with fast convergence [4], [18]. These are two different learning
mechanisms and should be given different treatments in dif-
ferent evolutionary states [51]. In this paper, the acceleration
coefficients are both initialized to 2.0 and adaptively controlled
according to the evolutionary state, with strategies developed as
follows.

Strategy 1—Increasing c1 and Decreasing c2 in an Explo-
ration State: It is important to explore as many optima as
possible in the exploration state. Hence, increasing c1 and de-
creasing c2 can help particles explore individually and achieve
their own historical best positions, rather than crowd around the
current best particle that is likely to be associated with a local
optimum.

Strategy 2—Increasing c1 Slightly and Decreasing c2 Slightly
in an Exploitation State: In this state, the particles are making
use of local information and grouping toward possible local
optimal niches indicated by the historical best position of
each particle. Hence, increasing c1 slowly and maintaining a
relatively large value can emphasize the search and exploitation
around pBesti. In the mean time, the globally best particle does
not always locate the global optimal region at this stage yet.
Therefore, decreasing c2 slowly and maintaining a small value
can avoid the deception of a local optimum. Further, an ex-
ploitation state is more likely to occur after an exploration state
and before a convergence state. Hence, changing directions for
c1 and c2 should slightly be altered from the exploration state
to the convergence state.

Strategy 3—Increasing c1 Slightly and Increasing c2 Slightly
in a Convergence State: In the convergence state, the swarm
seems to find the globally optimal region, and, hence, the
influence of c2 should be emphasized to lead other particles
to the probable globally optimal region. Thus, the value of c2

should be increased. On the other hand, the value of c1 should
be decreased to let the swarm converge fast. However, extensive
experiments on optimizing the 12 benchmark functions given

TABLE II
STRATEGIES FOR THE CONTROL OF c1 AND c2

Fig. 5. End results of acceleration coefficient adjusting based on the evolu-
tionary state.

Fig. 6. Flowchart of ESE and the adaptive parameter control process.

in Table I revealed that such a strategy would prematurely
saturate the two parameters to their lower and upper bounds,
respectively. The consequence is that the swarm will strongly
be attracted by the current best region, causing premature con-
vergence, which is harmful if the current best region is a local
optimum. To avoid this, both c1 and c2 are slightly increased.

Note that, slightly increasing both acceleration parameters
will eventually have the same desired effect as reducing c1 and
increasing c2, because their values will be drawn to around 2.0
due to an upper bound of 4.0 for the sum of c1 and c2 (refer to
(12) discussed in the following section).

Strategy 4—Decreasing c1 and Increasing c2 in a Jumping-
Out State: When the globally best particle is jumping out of
local optimum toward a better optimum, it is likely to be far
away from the crowding cluster. As soon as this new region is
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TABLE III
MEAN FEs IN OBTAINING ACCEPTABLE SOLUTIONS BY VARIOUS PSOs WITH AND WITHOUT PARAMETER ADAPTATION

found by a particle, which becomes the (possibly new) leader,
others should follow it and fly to this new region as fast as
possible. A large c2 together with a relatively small c1 helps
to obtain this goal.

These four strategies are summarized in Table II, and the
likely variations of the acceleration coefficients with the evo-
lutionary state are illustrated in Fig. 5.

3) Bounds of the Acceleration Coefficients: As discussed
earlier, the above adjustments on the acceleration coefficients
should not be too irruptive. Hence, the maximum increment or
decrement between two generations is bounded by

|ci(g + 1) − ci(g)| ≤ δ, i = 1, 2 (11)

where δ is termed the “acceleration rate” in this paper. Ex-
periments reveal that a uniformly generated random value of
δ in the interval [0.05, 0.1] performs best on most of the test
functions (refer to Section VI-B). Note that we use 0.5 δ in
strategies 2 and 3, where “slight” changes are recommended.

Further, the interval [1.5, 2.5] is chosen to clamp both c1

and c2 [52]. Similar to Clerc’s constriction factor [29] and the
polarized “competitive learning” paradigm in artificial neural
networks, here, the interval [3.0, 4.0] suggested in [51] is used
to bound the sum of the two parameters. If the sum is larger
than 4.0, then both c1 and c2 are normalized to

ci =
ci

c1 + c2
4.0, i = 1, 2. (12)

The entire process of the ESE-enabled adaptive parameter
control is illustrated in Fig. 6.

B. Effects of Parameter Adaptation

To test its effect, parameter adaptation is applied in this sec-
tion to some well-known PSO algorithms, namely, GPSO [13],
LPSO [45], VPSO [45], and CLPSO [12]. Note that CLPSO
has only one acceleration parameter c, which is, hence, set to
2.0. These modified PSOs are then compared with their original
versions using multidimensional unimodal and multimodal test
functions.

Comparative tests have been performed using functions f1,
f2, f4, f7, f8, and f10 listed in Table I for a maximum of
2.0 × 105 FEs each. The results in terms of the minimum num-
ber of FEs that were required to reach the value of acceptance

are listed in Table III. They are the mean values of all such suc-
cessful runs over 30 independent trials. The reconfirmation that
GPSO converges faster than LPSO while VPSO has a medium
convergence speed [45] verifies that the tests are valid. The
most interesting result is that parameter adaptation has, indeed,
significantly speeded up the PSO, no matter for unimodal or
multimodal functions. For example, the GPSO with adaptive
parameters is about 16 times faster than GPSO without adaptive
parameters on f1, and the speedup ratio is about 26 on f8. The
speedup ratios in Table III have shown that efficiency is much
more evident for GPSO, whereas VPSO, LPSO, and CLPSO
rank second, third, and fourth, respectively. The mean values
and the best values of all 30 trials are presented in Table IV.
Boldface in the table indicates the best result obtained.

Note that, however, the results also reveal that none of the
30 runs of GPSO and VPSO with adaptive parameters suc-
cessfully reached an acceptable accuracy on f7 (Schwefel’s
function) by 2.0 × 105 FEs, as denoted by the symbol “−” in
Table III. This is because the global optimum of f7 is far away
from any of the local optima [53], and there is no jumping-
out mechanism implemented at the same time as parameter
adaptation that accelerates convergence. In the original GPSO,
for example, when the evolution is in a convergence state, the
particles are refining the solutions around the globally best
particle. Hence, according to (1), when nBest becomes gBest,
the self-cognition and the social influence learning components
for the globally best particle are both nearly zero. Further, its
velocity will become smaller and smaller as the inertia weight
is smaller than 1. The standard learning mechanism does not
help gBest escape from this local optimum since its velocity
approaches 0.

C. ELS

The failures of using parameter adaptation alone for GPSO
and VPSO on Schwefel’s function suggest that a jumping-out
mechanism would be necessary for enhancing the globality of
these search algorithms. Hence, an “ELS” is designed here and
applied to the globally best particle so as to help jump out of
local optimal regions when the search is identified to be in a
convergence state.

Unlike the other particles, the global leader has no exemplars
to follow. It needs fresh momentum to improve itself. Hence, a
perturbation-based ELS is developed to help gBest push itself
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TABLE IV
MEAN SOLUTIONS AND BEST SOLUTIONS OF THE 30 TRIALS OBTAINED BY VARIOUS PSOs WITH AND WITHOUT PARAMETER ADAPTATION

Fig. 7. Flowchart of ELS for gBest upon convergence state emerging.

out to a potentially better region. If another better region is
found, then the rest of the swarm will follow the leader to jump
out and converge to the new region.

The ELS randomly chooses one dimension of gBest’s his-
torical best position, which is denoted by P d for the dth dimen-
sion. Only one dimension is chosen because the local optimum
is likely to have some good structure of the global optimum,
and, hence, this should be protected. As every dimension has
the same probability to be chosen, the ELS operation can
be regarded to perform on every dimension in a statistical
sense. Similar to simulated annealing, the mutation operation
in evolutionary programming or in evolution strategies, elitist
learning is performed through a Gaussian perturbation

P d = P d +
(
Xd

max − Xd
min

)
· Gaussian(μ, σ2). (13)

The search range [Xd
min,Xd

max] is the same as the lower and
upper bounds of the problem. The Gaussian(μ, σ2) is a ran-
dom number of a Gaussian distribution with a zero mean μ
and a standard deviation (SD) σ, which is termed the “elitist

Fig. 8. Flowchart of the APSO algorithm.

learning rate.” Similar to some time-varying neural network
training schemes, it is suggested that σ be linearly decreased
with the generation number, which is given by

σ = σmax − (σmax − σmin)
g

G
(14)

where σmax and σmin are the upper and lower bounds of σ,
which represents the learning scale to reach a new region.
Empirical study shows that σmax = 1.0 and σmin = 0.1 re-
sult in good performance on most of the test functions (refer
to Section VI-C for an in-depth discussion). Alternatively, σ
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Fig. 9. Search behaviors of the APSO on Sphere function. (a) Mean value of the inertia weight during the run time showing an adaptive momentum. (b) Mean
values of acceleration coefficients c1 and c2 adapting to the evolutionary states.

may geometrically be decreased, similar to the temperature-
decreasing scheme in Boltzmann learning seen in simulated
annealing. The ELS process is illustrated in Fig. 7.

In a statistical sense, the decreasing SD provides a higher
learning rate in the early phase for gBest to jump out of a
possible local optimum, whereas a smaller learning rate in the
latter phase guides the gBest to refine the solution. In ELS, the
new position will be accepted if and only if its fitness is better
than the current gBest. Otherwise, the new position is used to
replace the particle with the worst fitness in the swarm.

D. Search Behaviors of APSO

The complete flowchart of the APSO algorithm with adaptive
parameters and ELS is shown in Fig. 8. Before applying the
APSO to comprehensive tests on benchmark functions, we first
investigate its search behaviors in unimodal and multimodal
search spaces.

1) APSO in Unimodal Search Space: The search behavior
of the APSO in a unimodal space has been investigated on
the Sphere function (f1 in Table I). In a unimodal space, it is
important for an optimization or search algorithm to converge
fast and to refine the solution for high accuracy. The inertia
weight shown in Fig. 9(a) confirms that the APSO maintains
a large ω in the exploration phase (for about 50 generations),
and then a rapidly decreasing ω follows exploitation, leading to
convergence, as the unique global optimum region is found by
a leading particle, and the swarm follows it.

Fig. 9(b) shows how the ESE in APSO has influenced the
acceleration coefficients. The curves for c1 and c2 somewhat
show good agreement with the ones given in Fig. 5. It can be
seen that c1 increases while c2 decreases in the exploration and
exploitation phases. Then, c1 and c2 reverse their directions
when the swarm converges, eventually returning to around
2.0. Then, trials in elitist learning perturb the particle that
leads the swarm, which is reflected in the slight divergence
between c1 and c2 that follows. The search behavior on the
unimodal function indicates that the proposed APSO algorithm

has indeed identified the evolutionary states and can adaptively
control the parameters for improved performance.

2) APSO in Multimodal Search Space: Here, the APSO is
tested again to see how it will adapt itself to a multimodal space.
When solving multimodal functions, a search algorithm should
maintain diversity of the population and search for as many
optimal regions as possible. The search behavior of the APSO is
investigated on Rastrigin’s function (f8 in Table I). To compare
the diversity in the search by the APSO and the traditional PSO,
a yardstick proposed in [56] is used here, called the “population
standard deviation,” which is denoted by psd as

psd =

√√√√√
⎡
⎣ N∑

i=1

D∑
j=1

(
xj

i − xj
)2

⎤
⎦

/
(N − 1) (15)

where N , D, and x are the population size, the number of di-
mension, and the mean position of all the particles, respectively.

The variations in psd can indicate the diversity level of the
swarm. If psd is small, then it indicates that the population
has closely converged to a certain region, and the diversity
of the population is low. A larger value of psd indicates that
the population is of higher diversity. However, it does not
necessarily mean that a larger psd is always better than a
smaller one because an algorithm that cannot converge may
also present a large psd. Hence, the psd needs to be considered
together with the solution that the algorithm arrives at.

The results of psd comparisons are plotted in Fig. 10(a) and
those of the evolutionary processes in Fig. 10(b). It can be
seen that the APSO has an ability to jump out of the local
optima, which is reflected by the regained diversity of the
population, as revealed in Fig. 10(a), with a steady improve-
ment in the solution, as shown in Fig. 10(b). Fig. 10(c) and
(d) shows the inertia weight and the acceleration coefficient
behaviors of the APSO, respectively. These plots confirm that,
in a multimodal space, the APSO can also find a potential
optimal region (maybe a local optimum) fast in an early phase
and converge fast with a rapid decreasing diversity due to the
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Fig. 10. Search behaviors of PSOs on Rastrigin’s function. (a) Mean psd during run time. (b) Plots of convergence during the minimization run.
(c) Mean value of the inertia weight during the run time showing an adaptive momentum. (d) Mean values of acceleration coefficients c1 and c2 adapting to
the evolutionary states.

adaptive parameter strategies. However, if the current optimal
region is local, then the swarm can separate and jump out.
Hence, the APSO can appropriately increase the diversity of
the population so as to explore for a better region owing to
the ELS in the convergence state. This behavior with adaptive
population diversity is valuable for a global search algorithm to
prevent from being trapped in the local optima and to find the
global optimum in a multimodal space.

V. BENCHMARK TESTS AND COMPARISONS

Further experimental tests with benchmark functions are
carried out in this section to validate the proposed APSO
techniques and to compare the APSO with existing PSOs.

A. Benchmark Functions and Algorithm Configuration

The twelve benchmark functions listed in Table I are used
for the experimental tests here. Seven existing PSO algorithms,
as detailed in Table V, are compared with the APSO. The first
three PSOs (GPSO [13], LPSO with ring neighborhood [45]
and VPSO with von Neumann neighborhood [45]) are regarded
as standard PSOs and have widely been used in PSO applica-
tions. The FIPS [49] is a “fully informed” PSO that uses all the

TABLE V
PSO ALGORITHMS USED IN THE COMPARISON

neighbors to influence the flying velocity. In FIPS, the URing
topology structure is implemented with a weighted FIPS based
on the goodness (wFIPS) algorithm for higher successful ratio,
as recommended in [49]. HPSO-TVAC [18] is a “performance-
improvement” PSO by improving the acceleration parame-
ters and incorporating a self-organizing technique. Dynamic
multi-swarm PSO (DMS-PSO) [48] is devoted to improve the
topological structure in a dynamic way. Finally, in Table V,
CLPSO offers a comprehensive-learning strategy, which aims
at yielding better performance for multimodal functions [12].
The parameter configurations for these PSO variants are also
given in Table V, according to their corresponding references.

In the tests, the algorithm configuration of the APSO is as
follows. The inertia weight ω is initialized to 0.9, and c1 and c2

to 2.0, same as the common configuration in a standard PSO.

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on October 2, 2009 at 10:06 from IEEE Xplore.  Restrictions apply. 



ZHAN et al.: ADAPTIVE PARTICLE SWARM OPTIMIZATION 1373

TABLE VI
SEARCH RESULT COMPARISONS AMONG EIGHT PSOs ON 12 TEST FUNCTIONS

These parameters are then adaptively controlled during the run.
Parameter δ in (11) is a random value uniformly generated in
the interval [0.05, 0.1], whereas the parameter σ in (13) linearly
decreases from σmax = 1.0 to σmin = 0.1.

For a fair comparison among all the PSO algorithms, they are
tested using the same population size of 20, a value of which is
commonly adopted in PSO [4]. Further, all the algorithms use
the same number of 2.0 × 105 FEs for each test function [54].
All the experiments are carried out on the same machine with a
Celeron 2.26-GHz CPU, 256-MB memory, and Windows XP2
operating system. For the purpose of reducing statistical errors,
each function is independently simulated 30 times, and their
mean results are used in the comparison.

B. Comparisons on the Solution Accuracy

The performance on the solution accuracy of every PSO
listed in Table V is compared with the APSO. The results are
shown in Table VI in terms of the mean and SD of the solu-
tions obtained in the 30 independent runs by each algorithm.
Boldface in the table indicates the best result among those
obtained by all eight contenders. Fig. 11 graphically presents
the comparison in terms of convergence characteristics of the
evolutionary processes in solving the 12 different problems.

An interesting result is that all the PSO algorithms have
most reliably found the minimum of f5. It is a region rather
than a point in f5 that is the optimum. Hence, this problem
may relatively be easy to solve with a 100% success rate. The
comparisons in both Table VI and Fig. 11 show that, when solv-
ing unimodal problems, the APSO offers the best performance

on most test functions. In particular, the APSO offers the
highest accuracy on functions f1, f2, f3, f4, and f5, and ranks
third on f6.

The APSO also achieves the global optimum on the opti-
mization of complex multimodal functions f7, f8, f9, f10, and
f12. Although CLPSO outperforms APSO and others on f11

(Griewank’s function), its mean solutions on other functions are
worse than those of the APSO. Further, the APSO can success-
fully jump out of the local optima on most of the multimodal
functions and surpasses all the other algorithms on functions
f7, f8, and f9, where the global optimum of f7 (Schwefel’s
function) is far away from any of the local optima [53], and the
globally best solutions of f8 and f9 (continuous/noncontiguous
Rastrigin’s functions) are surrounded by a large number of local
optima [12], [44]. The ability of avoiding being trapped into
the local optima and achieving global optimal solutions to mul-
timodal functions suggests that the APSO can indeed benefit
from the ELS (cf. Table IV with respect to the much improved
performance over the original GPSO and VPSO on f7).

C. Comparisons on the Convergence Speed

The speed in obtaining the global optimum is also a salient
yardstick for measuring the algorithm performance. Table VII
reveals that the APSO generally offers a much higher speed,
which is measured by either the mean number of FEs or by the
mean CPU time needed to reach an acceptable solution. The
CPU time is important to measure the computational load, as
many existing PSO variants have added extra operations that
cost computational time. Although the APSO needs to calculate
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Fig. 11. Convergence performance of the eight different PSOs on the 12 test functions. (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f) f6.

the mean distance between every pair of particles in the swarm,
the calculation costs negligible CPU time.

In solving real-world problems, the “FE” time overwhelms
the algorithm overhead. Hence, the mean number of FEs needed
to reach acceptable accuracy would be much more interesting
than the CPU time. Thus, the mean FEs are also explicitly
presented and compared in Table VII. For example, tests on
f1 show that the average numbers of FEs of 105695, 118197,
112408, 32561, 30011, 91496, and 72081 are needed by the
GPSO, LPSO, VPSO, FIPS, HPSO-TVAC, DMS-PSO, and
CLPSO algorithms, respectively, to reach an acceptable solu-
tion. However, the APSO only uses 7074 FEs, whereas its CPU

time of 0.11 s is also the shortest among the eight algorithms. In
summary, the APSO uses the least CPU time and the smallest
number of FEs to reach acceptable solutions on 9 out of 12 test
functions (f1, f2, f3, f4, f5, f7, f8, f9, and f11).

D. Comparisons on the Algorithm Reliability

Table VII also reveals that APSO offers a generally highest
percentage of trials (reaching acceptable solutions) and the
highest reliability averaged over all the test functions. The
APSO reaches the acceptable solutions with a successful ratio
of 100% on all the test functions except function f11. Note that
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Fig. 11. (Continued.) Convergence performance of the eight different PSOs on the 12 test functions. (g) f7. (h) f8. (i) f9. (j) f10. (k) f11. (l) f12.

HPSO-TVAC and CLPSO did not converge on functions f6 and
f3, respectively. For the mean reliability of all the test functions,
APSO offers the highest reliability of 97.23%, followed by
FIPS, CLPSO, GPSO, HPSO-TVAC, VPSO, DMS-PSO, and
LPSO.

According to the theorem of “no free lunch” [57], one
algorithm cannot offer better performance than all the others on
every aspect or on every kind of problem. This is also observed
in our experimental results. The GPSO outperforms LPSOs,
including LPSO, VPSO, and FIPS with the U-Ring structure, on
simple unimodal functions f1, f2, and f3. However, on difficult

unimodal functions (e.g., Rosenbrock’s function f4) and the
multimodal functions, LPSO and FIPS offer better performance
than GPSO. FIPS achieves the highest accuracy on function
f10, whereas CLPSO and DMS-PSO perform best on f11 and
f12, respectively, but these global algorithms sacrifice perfor-
mance on unimodal functions. However, APSO outperforms
most on both unimodal and multimodal functions, owing to
its adaptive parameters that deliver faster convergence and
to its adaptive ELS that avoids local optima. Further, such
outperformance has been achieved with the highest success rate
on all but Griewank’s function (f11).
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TABLE VII
CONVERGENCE SPEED AND ALGORITHM RELIABILITY COMPARISONS (SPEED BEING MEASURED ON BOTH THE MEAN NUMBER OF FEs

AND THE MEAN CPU TIME NEEDED TO REACH AN ACCEPTABLE SOLUTION; RELIABILITY “RATIO” BEING THE PERCENTAGE OF

TRIAL RUNS REACHING ACCEPTABLE SOLUTIONS; “−” INDICATING NO TRIALS REACHED AN ACCEPTABLE SOLUTION)

To depict how fast the algorithms reach acceptable solutions,
accumulative percentages of the acceptable solutions obtained
in each FE are shown in Fig. 12. The figure includes the
representative unimodal functions (f1 and f4) and the complex
multimodal functions (f7 and f8). For example, Fig. 12(c)
shows that while optimizing the function f7, we have the
following: 1) the APSO, the CLPSO, and the HPSO-TVAC
manage to obtain acceptable solutions in all the trials, but the
APSO is faster than the CLPSO and the HPSO-TVAC; 2) only
about two-thirds of the trails in the GPSO and the FIPS ob-
tain acceptable solutions (with a medium convergence speed);
3) the VPSO succeeds in about 40% of the trials; and 4) the
DMS-PSO and the LPSO converge slowest and only succeed in
about one-sixth of the trails.

E. Comparisons Using t-Tests

For a thorough comparison, the t-test [53], [58] has also been
carried out. Table VIII presents the t values and the P values
on every function of this two-tailed test with a significance
level of 0.05 between the APSO and another PSO algorithm.
Rows “1 (Better),” “0 (Same),” and “−1 (Worse)” give the
number of functions that the APSO performs significantly

better than, almost the same as, and significantly worse than
the compared algorithm, respectively. Row “General Merit”
shows the difference between the number of 1’s and the num-
ber of −1’s, which is used to give an overall comparison
between the two algorithms. For example, comparing APSO
and GPSO, the former significantly outperformed the latter
on seven functions (f2, f3, f4, f6, f7, f8, and f9), does as
better as the latter on five functions (f1, f5, f10, f11, and
f12), and does worse on 0 function, yielding a “General Merit”
figure of merit of 7 − 0 = 7, indicating that the APSO generally
outperforms the GPSO. Although it performed slightly weaker
on some functions, the APSO in general offered much improved
performance than all the PSOs compared, as confirmed in
Table VIII.

VI. ANALYSIS OF PARAMETER ADAPTATION

AND ELITIST LEARNING

The APSO operations involve an acceleration rate δ in (11)
and an elitist learning rate σ in (13). Hence, are these new
parameters sensitive in the operations? What impacts do the
two operations of parameter adaptation and elitist learning
have on the performance of the APSO? This section aims to
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Fig. 12. Cumulative percentages of the acceptable solutions obtained in each FE by the eight PSOs on four test functions. (a) f1. (b) f4. (c) f7. (d) f8.

answer these questions by further testing the APSO on three
unimodal (f1, f2, and f4) and three multimodal (f7, f8, and
f10) functions.

A. Merits of Parameter Adaptation and Elitist Learning

To quantify the significance of these two operations, the
performance of APSO without parameter adaptation or elitist
learning is tested under the same running conditions as in
Section V. Results of the mean values on 30 independent trials
are presented in Table IX.

It is clear from the results that with elitist learning alone
and without adaptive control of parameters, the APSO can still
deliver good solutions to multimodal functions. However, the
APSO suffers from lower accuracy in solutions to unimodal
functions. As algorithms can easily locate the global optimal
region of a unimodal function and then refine the solution,
the lower accuracy may be caused by the slower convergence
speed to reach the global optimal region. On the other hand,
the APSO with parameter adaptation alone but without ELS
can hardly jump out of the local optima and, hence, results
in poor performance on multimodal functions. However, it can
still solve unimodal problems well.

Note that both of the reduced APSO algorithms generally
outperform a standard PSO that involves neither adaptation
parameters nor elitist learning. However, the full APSO is the
most powerful and robust for any tested problem. This is most
evident in the test results on f4. These results together with the
results in Section IV-B confirm the hypothesis that parameter
adaptation speeds up the convergence of the algorithm and
elitist learning helps the swarm jump out of the local optima
and find better solutions.

B. Sensitivity of the Acceleration Rate

The effect of the acceleration rate, which is reflected by
its bound δ, on the performance of the APSO is investigated
here. For this, the learning rate σ is, hence, fixed (e.g., σmax =
σmin = 0.5), and the other parameters of the APSO remain the
same as in Section V-A. The investigation consists of six test
strategies for δ, the first three being to fix its value to 0.01, 0.05,
and 0.1, respectively, and the remaining three being randomly
to generate its value using a uniform distribution within [0.01,
0.05], [0.05, 0.1], and [0.01, 0.1], respectively. The results
are presented in Table X in terms of the mean values of the
solutions found in 30 independent trials.
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TABLE VIII
COMPARISONS BETWEEN APSO AND OTHER PSOs ON t-TESTS

TABLE IX
MERITS OF PARAMETER ADAPTATION AND ELITIST LEARNING ON SEARCH QUALITY

It can be seen that APSO is not very sensitive to the ac-
celeration rate δ, and the six acceleration rates all offer good
performance. This may be owing to the use of bounds for the
acceleration coefficients and the saturation to restrict their sum
by (12). Therefore, given the bounded values of c1 and c2 and
their sum restricted by (12), an arbitrary value within the range
[0.05, 0.1] for δ should be acceptable to the APSO algorithm.

C. Sensitivity of the Elitist Learning Rate

To assess the sensitivity of σ in elitist learning, six strategies
for setting the value of σ are tested here using three fixed
values (0.1, 0.5, and 1.0) and three time-varying values (from
1.0 to 0.5, from 0.5 to 0.1, and from 1.0 to 0.1). All the other
parameters of the APSO remain as those in Section V-A. The
mean results of 30 independent trials are presented in Table XI.

The results show that if σ is small (e.g., 0.1), then the learning
rate is not enough for a long jump out of the local optima, which

is evident in the performance on f7. However, all other settings,
which permit a larger σ, have delivered almost the same excel-
lent performance, particularly the strategy with a time-varying
σ decreasing from 1.0 to 0.1. It is seen that a smaller σ con-
tributes more to helping the leading particle refine, whereas a
larger σ contributes more to helping the leader move away from
its existing position so as to jump out of the local optima. This
confirms the intuition that long jumps should be accommodated
at an early phase to avoid local optima and premature conver-
gence, whereas small perturbations at a latter phase should help
refine global solutions, as recommended in this paper.

VII. CONCLUSION

In this paper, PSO has been extended to APSO. This progress
in PSO has been made possible by ESE, which utilizes the in-
formation of population distribution and relative particle fitness,
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TABLE X
EFFECTS OF THE ACCELERATION RATE ON GLOBAL SEARCH QUALITY

TABLE XI
EFFECTS OF THE ELITIST LEARNING RATE ON GLOBAL SEARCH QUALITY

sharing a similar spirit to the internal modeling in evolution
strategies. Based on such information, an evolutionary factor
is defined and computed with a fuzzy classification method,
which facilitates an effective and efficient ESE approach and,
hence, an adaptive algorithm.

As shown in the benchmark tests, the adaptive control of
the inertia weight and the acceleration coefficients makes the
algorithm extremely efficient, offering a substantially improved
convergence speed in terms of both number of FEs and CPU
time needed to reach acceptable solutions for both unimodal
and multimodal functions. Together with an acceleration bound
control similar to competitive learning in artificial neural net-
works, an acceleration rate control is also developed to assist a
gradual parameter change in APSO.

Further, a Gaussian perturbation-based ELS is developed to
lead the swarm to jump out of any possible local optima and
also to refine converging solutions. A time-varying learning
rate that shares a similar spirit to neural network training or
Boltzmann learning in simulated annealing is developed to
further assist the delivery of the two-folded learning goal. The
substantially improved global solution accuracy as a result of
the ELS is evident in the benchmark tests.

The ESE-based parameter adaptation technique departs from
the existing parameter variation schemes, which are passively
based on the generation number alone. This technique and the
elitist learning technique also make the improved PSO algo-
rithm very reliable in solving both unimodal and multimodal
problems, as evident in the t-test results detailed in Table VIII
and in the comparisons detailed in Table IX. While the APSO as
a whole introduces two new parameters to the PSO paradigm,
i.e., the acceleration rate and the learning rate, they are easy to
set and add no burden to program design or implementation.
Hence, the APSO is still simple and almost as easy to use as
the standard PSO, whereas it brings in substantially improved
performance in terms of convergence speed, global optimality,
solution accuracy, and algorithm reliability.

It is expected that APSO will make an impact on the ap-
plications of PSO to real-world optimization and search prob-
lems. Further work includes research into adaptive control of
topological structures based on ESE and applications of the
ESE technique to other evolutionary computation algorithms.
Results will be reported in due course.
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