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The dynamics of solar sails with a variable surface reflectivity distribution are inves-
tigated. When changing the reflectivity across the sail film, which can be achieved using
electro-chromic coatings, the solar radiation pressure forces and torques across the sail film
can be controlled without changing the attitude of the spacecraft relative to the Sun and
without using mechanical systems. The paper presents two approaches. First, a continuous
reflectivity distribution is presented to control the sail attitude under the influence of, for
example, gravity gradient torques in Earth orbit. The second approach assumes discrete
on/off reflectivity regions across the surface. Both concepts of ‘optical reconfiguration’ of
solar sails enable a more flexible steering of the spacecraft and minimize actuation effort.

I. Introduction

Using conventional solar sailing technology, the solar radiation pressure (SRP) force vector direction and
magnitude depend strongly on the sail attitude relative to the Sun, limiting the applicability of solar sails
compared to other low-thrust propulsion systems such as solar-electric propulsion. Furthermore, the SRP
force magnitude follows an inverse square law with solar distance, making the sail less efficient at large
distances from the Sun.1 In order to increase the flexibility of modulating the SRP forces and torques, and
to decrease the total mass of the spacecraft, we introduce the concept of variable optical properties for large
gossamer spacecraft. In particular, the attitude dynamics of a rigid, flat solar sail with a variable surface
reflectivity distribution are investigated. When changing the reflectivity coefficient across the sail film, the
SRP forces and torques acting on the sail can be controlled without changing the incidence angle relative to
the Sun and without using mechanical systems. The reflectivity can in principle be modified using electro-
chromic coatings, which consist of an electro-active material that changes its surface reflectivity according to
an applied electric potential.2 By assigning an appropriate reflectivity distribution across the sail area, the
center-of-pressure can be shifted optically relative to the center-of-mass (CoM), rather than mechanically,
as for example through the use of moving payload masses.
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The paper will demonstrate the potential of using distributed reflectivity for optical control of the sail
attitude. First, in section II, the reflectivity distribution ρ(s) is ideally assumed to be continuous across
the surface, with arbitrary values of ρ in the interval [0, 1]. Through this, the reflectivity can be modulated
continuously between diffuse and specular reflection. The concept is applied to counteract gravity gradient
torques in a planar Earth orbit. Subsequently, in section III, a more realistic approach is taken, using
discrete regions of activated and deactivated (on/off) reflectivity, separated by a variable boundary line.
When controlling the shape and position of the boundary line across the surface, a wide range of torque
vector directions in the sail-plane can be generated. This approach is demonstrated for two-axis attitude
control of the sail in a Sun-centered orbit. It will be shown that through a basic maneuver about two axes,
the sail can be brought to a Sun-pointing attitude from a chosen initial displacement. Since the SRP forces
acting on the sail vary with the sail’s attitude with respect to the Sun, an analytic method will be derived
to compute the required shape and position of the reflective regions in order to maintain a constant torque
during the maneuver. This can be achieved through the formulation of an inverse problem to the derived
torque equations.

II. Sail Attitude Control using Variable Reflectivity Distribution

In this first section, a continuous reflectivity distribution is used to control the planar attitude of a
solar sail in low Earth orbit (LEO). In particular, this steering method is applied to counteract the gravity-
gradient torques acting on a large rigid sail film. It will be shown that a constant Sun-pointing attitude
can be maintained along the orbit, using the proposed chosen concept. A square solar sail is modeled as a
rigid flat Kapton film of density δ = 1, 572 kg

/
m3,3,4 thickness d = 2.5× 10−6 m and edge length L = 50 m,

without assembly or payload masses, as shown in figure 1.

Figure 1. Square solar sail with continuous reflectivity distribution across the surface (left) and sail model
using infinitesimal electro-chromic elements (right).

A sail-fixed Cartesian coordinate frame (x,y, z) is used to describe the sail attitude along its orbit, where
the z-axis is constrained to be always perpendicular to the ecliptic plane. This allows only one degree of
rotational freedom, while rotation about the sail x and y axes is omitted. The mass moments of inertia of
the Kapton film are Ixx = 4093.8 kg m2 and Iyy = Izz = 2046.9 kg m2, with a total mass m = 9.83 kg. To
approximate a continuous reflectivity distribution, it is ideally assumed that the entire sail area A is covered
with stripes of infinitesimal electro-chromic coating elements that are able to change their reflectivity. The
additional mass and thickness of the elements is neglected throughout this preliminary study. When changing
the reflectivity of a surface element dA = L · ds on the sail, where s denotes the distance of the element
from the axis of rotation x, the difference in SRP force creates a torque TSRP,x about the CoM of the sail.
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For now, a constant reflectivity is assumed in x-direction such that no torque is generated about the sail
y-axis. The CoM is assumed to move on a circular LEO of 400 km altitude in the ecliptic plane, as shown
in figure 2, while air drag and solar eclipses are ignored for illustration. A constant sail cone angle α=0 deg
between the Sun-sail line RS and the sail plane normal is assumed.

Figure 2. Solar sail on Earth-centered circular LEO of 400 km altitude and constant Sun-pointing attitude.

The gravity-gradient torque along the orbit depends on the angle γ between the sail plane and the Earth
radial direction RE. It can be approximated using the standard relation

TGG,z = 3
µE

R3
CoM

sin γ cos γ (Ixx − Iyy) (1)

with µE being the gravitational parameter of the Earth and RCoM the radial distance of the sail’s CoM
from the Earth’s center.5 For example, the maximum gravity-gradient torque acting on the sail considered
here is of the order TGG,z = 4×10−3 Nm about the sail z-axis. A variable surface reflectivity distribution
0 ≤ ρ (s) ≤ 1 is now assumed to counteract this gravity gradient torque. The SRP force and torque about
the sail’s CoM are calculated using a simplified SRP model.1 It assumes that the sail surface is a perfectly
(specular) reflecting mirror, neglecting all other forms of optical interactions between the solar photons and
the sail surface such as scattering, absorption and thermal re-emission. The model also does not account for
wrinkles, and thus assumes a perfectly flat sail surface. Accordingly, the solar radiation pressure pSRP can
be written as

pSRP = p0 [1 + ρ(s)]

(
RS,0

RS

)2

cos2 α (2)

at a radial distance RS from the Sun and p0 = 4.563 × 10−6N
/

m2 being the solar radiation pressure at
RS,0 = 1 AU. In here, ρ(s)=1 represents the ideal mirror that experiences the maximum possible SRP load
pmax = 2p0 , while the minimum reflectivity ρ(s) = 0 reduces the effective SRP load to pmax/2 = p0, since
only the momentum of the incoming photons is applying a force to the surface. As a consequence, the solar
radiation pressure induced forces can be modified directly when changing the surface reflectivity. According
to figure 1, the incremental SRP force and torque acting about the CoM on a rectangular sail surface element
can now be written as

dFSRP = p0L [1 + ρ(s)]

(
R0

RS

)2

cos2 α ds (3a)

dTSRP,z = p0Ls [1 + ρ(s)]

(
R0

RS

)2

cos2 α ds (3b)
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Assuming a linear reflectivity function

ρ(s) = a0 + a1 · s (4)

the above equations can be integrated over the interval [−L/2, L/2], while constraining the sail surface to
be always perpendicular to the Sun-sail line, thus α = 0, and assuming that the solar distance RS = 1 AU
is constant on the Earth-centered orbit. The resulting SRP force and torque are found to be

FSRP = p0L

∫ L/2

−L/2

[1 + a0 + a1 · s] ds = p0L
2 [1 + a0] (5)

TSRP,z = p0L

∫ L/2

−L/2

[1 + a0 + a1 · s] sds =
1

12
p0L

4a1 (6)

It can be seen that the magnitude of the resulting SRP force is only a function of the absolute coefficient
a0. Furthermore, the SRP torque only depends on the slope a1 of the linear reflectivity function across the
film, thus the difference of SRP force on the left and right hand side of the sail. If the forces are equal on
both sides (a1 = 0), the torque on the sail is clearly zero, regardless of the absolute value of the SRP force,
as determined by a0. Equation (6) represents the SRP torque that must be generated in order to counteract
the gravity-gradient torque TGG,z along the orbit, thus TSRP,z must always be equal to TGG,z. Accordingly,
the coefficients ai of the linear reflectivity function ρ(s) can be calculated using the following equations

a1 =
12TGG,z

p0L4
, a0 =

FSRP

p0L2
− 1 (7)

Although a1 is always determined through the local TGG,z that needs to be compensated, a0 is in principle
only constrained by the maximum possible FSRP, max = 2p0L

2, for which a0 = 1 and also ρ(s) = 1 = const
across the surface. However, a reflectivity gradient a1 6= 0 is necessary to create a torque, while at the same
time ρ(s) ≤ 1 must be satisfied across the entire sail. Thus, the upper constraint is a0,max < 1. The lower
constraint is determined through the additional condition ρ(L/2) = 0 or ρ(−L/2) = 0 at the edge of the sail,
in order to fix the linear reflectivity curve across the film. Inserting this into the linear reflectivity function,
Eq. (4), while keeping a1 fixed, results in a0,min = ±a1L/2 as the lower limit, depending on the sign of the
torque that needs to be created. Figure 3 shows the resulting reflectivity distribution ρ(s) along the film as a

Figure 3. Minimum reflectivity distribution across flat sail film using continuous electro-chromic coating
elements.
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function of the sail attitude angle γ during one revolution along the orbit for the chosen sail configuration. It
can be seen that the necessary reflectivity to balance the gravity-gradient torque is relatively small compared
to the maximum reflectivity that can be achieved with currently developed electro-chromic devices, e.g. as
used on the IKAROS solar sail.6 According to the reference, a maximum ρmax = 0.6 is currently possible.
Accordingly, for the chosen application to counteract gravity gradient torques, the optical steering method
has not reached its full potential. The maximum control torque that can be achieved for the current sail,
assuming that one half of the sail is set to ρ = 1, while ρ = 0 for the other half, is TSRP,z = 0.143 Nm, thus
35 times higher than the maximum gravity gradient torque in LEO.

III. Sail Attitude Control using Discrete Reflectivity

In the following, we further demonstrate two-axis attitude control using discrete reflectivity regions on
the surface. Instead of varying ρ in the interval [0, 1], the electro-chromic coatings are now restricted between
two states, either ’on’ (ρmax = 1) or ’off’ (ρmin = 0). This is achieved by introducing a boundary line between
the ’on’ and ’off’ states, used to separate regions of high and low reflectivity, as shown in figure 4. When
distributing controlled regions of high and low reflectivity across the surface, a wide range of torques can be
generated in the sail-plane, however, torques perpendicular to the surface are not possible.

Figure 4. Square solar sail with discrete reflectivity region controlled by moving a boundary line between two
states, ’on’ (specular reflection) and ’off’ (diffuse reflection), and torques created about the in-plane sail axes

The on/off boundary-line is described through a linear function

yBL(x) = ax+ b (8)

in the (xy)-plane of the sail, with an arbitrary slope coefficient a and offset coefficient b, describing its
vertical offset from the sail x-axis. Furthermore, two geometrically mirrored on/off cases can be chosen
for the electro-chromic coatings above and below the boundary line. The first case represents an active
reflectivity above the boundary-line and inactive below (further named as the ’upper case’), or vice versa,
the second case indicates reflectivity ’off’ above yBL and ’on’ below (named as the ’lower case’). Switching
between the two cases only changes the sign of the torques, not their magnitude. The SRP torques now
depend on the two coefficients a and b, the local cone angle α (i.e. the current sail attitude), and the
considered on/off case. In x and y-components, the SRP torques are now written
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T x = −p0 cos2 α

∫ L/2

−L/2

∫ L/2

ax+b

y dydxx (9a)

T y = p0 cos2 α

∫ L/2

−L/2

∫ L/2

ax+b

xdydxy (9b)

when assuming the ’upper case’, thus only the electro-chromic coatings above the boundary-line are active.
When the RCDs are switched into the ’lower case’, the limits of the inner integral in y-direction need to be
inverted to [−L/2, ax+b], cf. figure 4, which is equivalent to changing the signs of the torques. As mentiones
above, when using this attitude control concept, no torques about the sail z-axis, normal to the surface, can
be generated.

When integrating equation (9), seven torque cases have to be considered separately, depending on the
chosen reflectivity-line coefficients and thus, on the shape of the active region on the sail surface. Each case
is defined through the intersection of the reflectivity-line with the integration limits in x-direction, as can
be seen in figure 5. Accordingly, the following conditionals are introduced at the edges of the sail surface

yBL,low = −a
(
L

2

)
+ b ≶ ±L

2
(10a)

yBL,up = a

(
L

2

)
+ b ≶ ±L

2
(10b)

For example, if the coefficients of the boundary-line are chosen so that −L/2 ≤ yBL,low ≤ L/2 and −L/2 ≤
yBL,up ≤ L/2, the resulting torques are of the type ’case 1’, as shown in figure 5. After defining all seven
cases accordingly, analytic expressions for the sail torques can be found. In particular, a set of boundary
equations for a and b can be introduced to identify the torque case from a given reflectivity-line. As a result,
the sail torques are now fully determined by the following conditional scheme, given here for the ’upper case’,
when the sail region above the reflectivity-line is activated

Case 1 a ≥ 0 ∧ L/2(a− 1) ≤ b ≤ L/2(1− a) or a ≤ 0 ∧ −L/2(a+ 1) ≤ b ≤ L/2(a+ 1)

T x,upper = p0L
3 cos2 α

[
1

2

b2

L2
− 1

8
+

1

24
a2

]
x (11a)

T y,upper =
1

12
p0aL

3 cos2 α y (11b)

Case 2 a > 0 ∧ −L/2(a+ 1) < b < L/2(1− a) ∧ b < L/2(a− 1)

T x,upper = p0L
3 cos2 α

[
1

6

b3

aL3
+

1

4

b2

L2
− 1

8

b

aL
+

1

8

ab

L
− 1

16
− 1

24

1

a
+

1

48
a2

]
x (12a)

T y,upper = p0L
3 cos2 α

[
1

6

b3

a2L3
+

1

4

b2

a2L2
− 1

8

b

L
+

1

8

b

a2L
− 1

16
− 1

24
a+

1

48

1

a2

]
y (12b)

and the other cases can be derived in a similar way. Switching from the ’upper case’ to the ’lower case’
changes signs in the previous equations such as T x,lower = −T x,upper and T y,lower = −T y,upper.

In order to demonstrate the concept, a sample square sail configuration, with edge length L = 100 m
and total mass m = 200 kg, is now considered. The sail is ideally assumed to be rigid, with mass moments
of inertia Ixx = Iyy = 1.67 × 105 kg m2 and Izz = 3.34 × 105 kg m2. The achievable torques as a function
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Figure 5. Torque cases depending on the position of the boundary-line between specular and diffuse reflection
on the sail surface

of the reflectivity-line coefficients a, b and for increasing cone angle are shown in figure 6, with the electro-
chromic elements activated in the ’lower case’. As can be seen, this activation case creates a positive Tx

over the entire (a, b) domain, while the magnitude decreases for increasing cone angle. The maximum torque
is created for (a, b) = (0, 0), when all electro-chromic coatings on the lower half of the sail are active. In
y-direction, the achievable torques mainly depend on the slope a of the reflectivity-line and only to a very
limited extent on the coefficient b. In addition, also negative torques can be created, which is not possible
in the x-direction for the selected ’lower case’. The maximum torques about both sail axes are found to
be Tmax,x = Tmax,y =± 0.57 Nm,which occurs when all coating elements on one half of the sail are active.
For example, applying this torque on the given sample sail results in a full rotation of 360 deg in approx.
1900 s ≈ 32 min.

All seven torque cases over the selected (a, b)-domain are visible in figure 7 through the use of colored
regions, showing both torque components for a sail cone angle of α = 0 deg and an active ’upper case’
reflectivity distribution. The solid lines indicate Tx and the dashed lines indicate Ty. From the figure, the
feasible torques for each chosen reflectivity line in terms of a and b can be obtained. It is visible that no
arbitrary torques about both sail axis can be generated, even when staying below Tmax for a chosen sail
configuration.
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(a) Torque in sail x-direction

(b) Torque in sail y-direction

Figure 6. In-plane sail torques over reflectivity-line coefficients a and b and as function of sail cone angle α
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Figure 7. In-plane Sail torques Tx (solid lines) and Ty (dashed lines) as function of reflectivity-line coefficients
a and b and sail cone angle α = 0 deg, with colored regions indicating the torque case

A. Sail Attitude Maneuvers using Discrete Reflectivity

The described attitude control concept of employing discrete reflectivity regions across the sail surface is now
applied to change the attitude of a sail in a Sun-centered orbit from a chosen initial attitude towards Sun-
pointing, using combined torques Tx and Ty in the sail plane. The attitude dynamics of the sail are described
using Euler’s Equation in quaternion notation.5,7 In the present analysis, it is assumed that attitude changes
are not affecting the sail’s Sun-centered orbit, thus the orbit and attitude motion are decoupled. Choosing
quaternions for attitude representation is beneficial compared to other attitude descriptors such as Euler
angles, since quaternions have one redundant parameter (no singularities) and offer a lower computational
effort (no trigonometric functions).8,9 Accordingly, the governing differential equation system (DES) of the
rotational motion of a rigid body can be written as

˙̄q =
1

2
q̄ ⊗ ω̄ (13)

representing the first derivative of the attitude quaternion q̄ due to the angular velocity ω̄. Furthermore, the
second derivative of the quaternion due to an external torque T about the body axes follows as

¨̄q = ˙̄q ⊗ q̄−1 ⊗ ˙̄q +
1

2
q̄ ⊗ ˙̄ω with ˙̄ω =

(
0

[I]−1(T − ω × [I]ω)

)
(14)

with [I] the mass moments of inertia tensor and ⊗ representing the quaternion product.8 The upper (̄ )
denotes a quaternion vector

q̄ = q1 + q = cos

(
θ

2

)
+ a · sin

(
θ

2

)
(15)

with rotation angle θ and axis of rotation a with respect to a defined reference frame. Throughout this
work, the so called ecliptic reference frame (xE, yE, zE) is used, centered in the sail’s CoM, as can be seen in
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figure 4. The zE axis is oriented towards the Sun, the yE component is always in the ecliptic plane of the
sail’s Sun-centered orbit, and xE completes the right-handed coordinate system.

The above DES represents a system of second order differential equations and is formulated as an initial
value problem of the form

¨̄q =f
(

˙̄q, q̄, ˙̄ω, t
)
, q̄(t = t0) = q̄0, ˙̄q(t = t0) = ˙̄q0, ˙̄ω(t = t0) = ˙̄ω0 (16)

The system is solved using a Runge-Kutta Nyström (RKN) integration scheme.10 A constant torque will
be used to rotate the sail from its initial to final attitude (bang-bang control). Halfway during the maneuver,
when the sail attitude has rotated over an angle θ/2, the sign of the torque is inverted to decelerate the motion
until the final attitude is reached. After selecting the required sail torques (Tx, Ty)req, the corresponding
reflectivity-line coefficients as a function of current sail attitude can be found through the formulation of an
inverse problem approach.

B. Inverse Problem Approach for Reflectivity-Line Control

When re-writing the torque equation (11) and (12) for the coefficients a and b, the reflectivity-line can be
expressed as a function of the (required) torques and the current cone angle α. Given here for torque case 1
only, the inverse problem results in

Case 1 a ≥ 0 ∧ L/2(a− 1) ≤ b ≤ L/2(1− a) or a ≤ 0 ∧ −L/2(a+ 1) ≤ b ≤ L/2(a+ 1)

a = 12
Ty,lower

p0L3 cos2 α
(17a)

b = ±L
2

√
1 +

8Tx,lower

p0L3 cos2 α
−

48T 2
y,lower

(p0L3)2 cos4 α
(17b)

with the following conditions on the two torque components

− 1

12
≤ Ty,lower ≤ 0 (18a)

−1

8

(
cos2 α− 48

cos2 α
T 2

y,lower

)
≤ Tx,lower ≤ 3Ty,lower +

48

cos2 α
T 2

y,lower (18b)

Consequently, after selecting the required torques that satisfy the maximum achievable limits for a given sail
and the previous conditions of equation 18, the shape and position of the reflectivity-line in order to create
these torques can now be found for a sail attitude towards the Sun, or cone angle, respectively.

C. Sample Sail Attitude Maneuver

The inverse problem solution is now applied to perform a basic sail maneuver. Initially, the sail is chosen to
be tilted over a cone angle αinit = 40 deg and clock angle δinit = 52 deg, as shown in figure 8. This translates
into a rotation angle θx = 38 deg and θy = 12 deg about the sail x and y-axis. After the maneuver, the sail
shall be Sun-pointing, thus αfinal = 0. From the quaternion approach, it follows that the axis of rotation is
a = (−0.3,−0.1, 0). This axis can be obtained from the initial attitude quaternion that is calculated from the
initial displacement angles θx and θy. Therefore, a constant torque pair of Tx = −0.3 Nm and Ty = −0.1 Nm
is selected so that the total torque vector matches the initial displacement of the sail with respect to the
ecliptic reference frame. Since the torque Tx is negative, the ’upper case’ distribution needs to be used,
according to figure 7. For the selected initial cone angle, the achievable torques over the (a, b)-domain of
the reflectivity-line are visible in figure 9, for an active ’upper case’ reflectivity distribution. The solid lines
again indicate Tx and the dashed lines indicate Ty. Red points identify the two feasible (a, b)-sets for the
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Figure 8. Maneuver sequence for selected initial sail attitude αinit= 40 deg and clock angle δinit= 52 deg
towards final Sun-pointing attitude

selected torques, as calculated from the inverse problem in section III B. They both require the same slope
of the reflectivity-line, however, a positive or negative offset in y-direction can be chosen. Furthermore, from
Equation (17) of the inverse problem, the reflectivity-line coefficients are now fully determined as a function
of the local cone angle during the maneuver, as shown in figure 10. When adapting the reflective region
across the surface during the maneuver according to the derived control law for the reflectivity-line, the
in-plane torques acting on the sail can be kept constant, although the light incidence angle (cone angle) and
thus the SRP forces are varying during the rotation. The sail attitude is now computed through the DES
of rotational motion, equation (14), using the integration method described in equation (16). The resulting
time history of the cone angle and angular rates ωx and ωy of the sail about the in-plane body axes are
shown in figure 11, together with the applied bang-bang torque profile. The total maneuver time to rotate
the sail into Sun-pointing attitude is 1216 s ≈ 20 min.
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Figure 9. In-plane sail torques Tx (solid lines) and Ty (dashed lines) as function of reflectivity-line coefficients
a and b and sail cone angle α = 40 deg. Red dots indicate feasible sets (a,b) = (0.45,±9.59) for the required
maneuver torques

(a) (b)

Figure 10. Controlled reflectivity-line coefficients a and b as function of sail cone angle α for selected maneuver
towards Sun-pointing attitude

IV. Conclusions

A variable reflectivity distribution across the surface of a solar sail film has been proposed to investi-
gate flexible steering for solar sails without the use of mechanical systems. The surface reflectivity can be
manipulated when distributing electro-chromic elements across the sail film that change their reflectivity
according to an applied electric potential. First, a continuous linear reflectivity function was employed to
control the attitude of the sail in low Earth orbit under the influence of gravity-gradient torques. It was
shown that a constant Sun-pointing attitude can be maintained along the orbit, while only a very low value
of the reflectivity is needed. This is beneficial, since currently developed electro-chromic coatings are not
yet capable of adapting their optical properties arbitrarily between diffuse and fully specular reflection.
Furthermore, a discrete concept using controlled regions of active reflectivity across the surface has been
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