
University of Huddersfield Repository

Becker, Christoph, Betz, Stefanie, Chitchyan, Ruzanna, Duboc, Leticia, Easterbrook, Steve,
Penzenstadler, Birgit, Seyff, Norbert and Venters, Colin

Requirements: The Key to Sustainability

Original Citation

Becker, Christoph, Betz, Stefanie, Chitchyan, Ruzanna, Duboc, Leticia, Easterbrook, Steve,
Penzenstadler, Birgit, Seyff, Norbert and Venters, Colin (2016) Requirements: The Key to
Sustainability. IEEE Software, 33 (1). pp. 56-65. ISSN 0740-7459

This version is available at http://eprints.hud.ac.uk/id/eprint/26850/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Abstract— The critical role that software plays in society

demands a paradigm shift in the mindset of Software
Engineering. The focus of this shift begins in Requirements
Engineering.

Keywords— Software Engineering, Requirements,

Sustainability, Sustainability Design

I. INTRODUCTION
oftware systems are a major driver of social and economic
activity. Software Engineering (SE) tends to focus on the

technical elements - artificial systems with clear boundaries
and identifiable parts and connections, modules and
dependencies. But software systems are embedded in other
technical systems, and in socio-economic and natural systems.
This embedding is obvious when the interaction is explicit,
such as environmental monitoring or flight control software.
However, software-intensive systems have become such an
essential part of the fabric of social systems that the
boundaries and interactions of the resulting socio-technical
systems are often hard to identify. For example,
communication, travel booking or procurement systems
influence the socio-economic and natural environment through
far-reaching effects on how we form relationships, how we
travel, and what we buy. These effects are rarely made explicit
in the engineering process. The lack of visibility of these
effects makes it hard to assess the long-term and cumulative
impacts of a software system. Designing for sustainability is a
major challenge that can profoundly change the role of
software engineering in society. But what does it mean to
establish sustainability as a major concern in SE? We argue
that as software engineers, we are responsible for the long-
term consequences of our software irrespective of the primary
purpose of the system under design. In this paper, we focus on
requirements as the key leverage point for practitioners who
want to develop sustainable software-intensive systems. We
use a case adapted from a real-world software project to
provide examples for the changes needed in SE, and show
how considering sustainability explicitly will affect
requirements activities.

II. SUSTAINABILITY IN SOFTWARE ENGINEERING
Sustainability is the capacity to endure, so the sustainability

of a system describes how well this system will continue to
exist and function, even as circumstances may change.

Sustainability has often been equated with environmental
issues, but it is increasingly clear that it requires simultaneous
consideration of environmental resources, societal and
individual well-being, economic prosperity, and long-term
viability of technical infrastructure.

Sustainability of a technical system is very different from
the sustainability of a socio-economic system. Software
engineers tend to focus on the technical dimension of
sustainability, where it is simply a measure of the software
system’s longevity [1]. However, to understand broader
sustainability issues, we need to ask which system to sustain,
for whom, over which time frame, and at what cost [2]. Five
interrelated dimensions must be considered [3]:
• The individual dimension covers individual freedom and

agency (the ability to act in an environment), human
dignity and fulfillment. It includes the ability of
individuals to thrive, exercise their rights and develop
freely.

• The social dimension covers relationships between
individuals and groups. For example, this aspect covers
the structures of mutual trust and communication in a
social system and the balance between conflicting
interests.

• The economic dimension covers financial aspects and
business value. It includes capital growth and liquidity,
questions of investment, and financial operations.

• The technical dimension covers the ability to maintain
and evolve artificial systems (such as software) over time.
It refers to maintenance and evolution, resilience, and the
ease of system transitions.

• The environmental dimension covers the use of and
stewardship of natural resources. It includes questions
ranging from immediate waste production and energy
consumption to the balance of local ecosystems and
concerns of climate change.

Complex software-intensive systems can affect
sustainability in any of these dimensions. Changes in one
system, in one dimension, often have impacts in other
dimensions and other systems. For example, consider a
software system that is hard to maintain (technical
sustainability). Excessive maintenance costs affect the
financial liquidity of the owning company (a social and
economic system). This may limit its growth and even
threaten its survival (economic sustainability).

Similar trade-offs occur across other dimensions. For
example, carbon offsets incentivize environmentally

Requirements: The Key to Sustainability
Christoph Becker, Stefanie Betz, Ruzanna Chitchyan, Leticia Duboc, Steve M. Easterbrook, Birgit

Penzenstadler, Norbert Seyff, and Colin C. Venters

S

sustainable behaviour through trade-offs with the economic
dimension. The triple bottom line perspective [4] requires a
business to account for social and environmental as well as
financial outcomes. The corresponding business practices have
led to a surge in the number of social enterprises, which
achieve survival rates above average for newly-founded
businesses [5].

Increasingly, software engineers need to understand the
effects by which decisions taken in the design of software
systems can enable or undermine sustainability of socio-
economic and natural systems over time (see sidebar 1). Since
the concept of sustainability is inherently multidisciplinary,
any effort to define sustainability involves concepts,
principles, and methods from a range of disciplines and makes
an integrated view crucial for an effective systems design
process. The notion of sustainability design brings these
concerns together using systems thinking principles (see
sidebar 2) [6].

III. REQUIREMENTS: A TALE OF TWO PROJECTS
The impact a software system will have on its environment

is often determined by how the software engineers understand
its requirements. The foundation of this impact is set in the
decisions on which system to build (if any at all); in the
choices of whom to ask and whom to involve, and in the
specification of what constitutes success.

The following example illustrates how requirements
activities are usually carried out. It describes a procurement
system that supports the process of purchasing products and
contracting services in a private company in the energy sector.
Products, services and suppliers must pass the company’s
approval process and be registered in the system prior to a
purchase. This approval considers the supplier’s reliability and
capacity to deliver, and in some cases, adherence to
international standards of environmental management, health
and safety management.

The example is inspired by a real-world case studied by one
of the authors [7]. The basis for our example is taken from this
case; the description is adapted to be representative of what
typically happens in software projects. Further below we show
how a commitment to sustainability changes the project.

A. As it often happens: System development without
sustainability design

The project purpose is to maximize the procurement
efficiency of the organization, increase financial return, and
ensure suppliers’ compliance with certain rules. The criteria
for selecting products and services focus on price, delivery
time and payment conditions. Using a stakeholder influence
matrix, the project leader focuses on those stakeholders who
can `stop the show'. The project scope is determined by a few
influential stakeholders early on, so that the project can focus
on minimal design scope in order to maximize project speed.
The project team moves swiftly to determine the boundaries
of the software to be, and the only scoping questions revolve
around the software’s interfaces with neighboring systems.

The success criteria for the project are to develop and

deliver the system within the given budget and time. The
question of feasibility centers on the expected amortization
period of the software project investment. Risk analysis
focuses on economic risks that could inhibit project
completion.

Sidebar 1: Classifying the systemic effects of software.

Many critical effects that occur in socio-technical systems play out over time,
so we need to consider not just immediate features and effects of our systems,
but longer-running, aggregate and cumulative impact. We distinguish three
orders of effects, adapted from [8]:
Immediate effects are direct effects of the production, use and disposal of
software systems. This includes the immediate benefit of system features and
the full lifecycle impacts, as would be included in a Life-Cycle Assessment
(LCA) approach, which evaluates the environmental impact of a product’s life
from the extraction of raw materials to its disposal or recycling.
Enabling effects arise from the application of a system over time. This
includes opportunities to consume more (or less) resources, but also other
changes induced by the usage of a system.
Structural effects represent “persistent changes observable at the macro
level. Structures emerge from the entirety of actions at the micro level and, in
turn, influence these actions” [8]. Ongoing use of a new software system can
lead to shifts in accumulation of capital, drive changes in social norms,
policies and laws, and alter our relationship with the natural world.
Consider the airbnb.com service. Its immediate effects include resources
consumed and jobs created during its development, energy consumed during
its deployment, and the room renting and booking services it offers. Its
enabling effects include changes in how its users make travel arrangements as
alternatives to hotel bookings, and how property owners rent out space. These
enabling effects (the so-called “sharing economy”) have been alternatively
praised and criticized for their far-reaching structural impacts. For example,
airbnb represents a substantial share of the buy-to-let market in major cities,
and the continuing price surges in the hot-spots of these cities have been
linked to the density of buy-to-let properties. Many of these exist only because
of the arbitrage provided by services such as airbnb: The system enables
transactions that provide higher return on investment than long-term rentals.
This has caused major concerns in several large cities.

Requirements elicitation requests input from the
stakeholders through structured forms to identify what they
want the system to do. Additionally, previous systems are
analyzed and business process documents consulted.
Requirements prioritization is determined by functional
requirements and economic constraints and completed
quickly, as the core stakeholder group has strong consensus.
The requirements specification is documented following the
IEEE 830 Requirements Specifications Template. System
measurement and monitoring uses indicators about
performance and availability. The system is completed on time
and within budget and shows a reasonably low rate of faults,
so the project is considered a success at completion.

B. As it can happen: System development practicing
sustainability design

Consider conducting the same project with a commitment to
treating sustainability as a first-class concern in line with the
principles of sustainability design (sidebar 2).

Sidebar 2: Sustainability principles for Software Engineering [6]
1. Sustainability is systemic; the system under consideration can never

be treated in isolation from its environment.
2. Sustainability is multi-dimensional; five key dimensions are

economic, social, environmental, technical, and individual
sustainability.

3. Sustainability is inter-disciplinary; sustainability design in SE
requires appreciation of concepts from other disciplines and must
work across multiple disciplines.

4. Sustainability transcends the purpose of the software; any software
that is intended to be used can impact the sustainability of its
containing socio-economic, sociotechnical, cultural and natural
environments.

5. Sustainability is multi-level; it requires us to consider at least two
spheres in the system design process: the system under design and its
sustainability, and the wider system of which it will be part.

6. Sustainability is multi-opportunity; it requires us to seek
interventions that have the most leverage on a system [9] and
consider the opportunity costs.

7. Sustainability is multi-timescaled; long-term thinking is required to
address the multiple timescales on which sustainability effects take
place.

8. Sustainability is non-zero-sum; changing the design of a system to
consider the long-term effects does not automatically imply making
sacrifices in the present.

9. System visibility is a necessary precondition and enabler for
sustainability design because only a transparent status of the system
and its context, made visible at different levels of abstraction and
perspectives, can enable informed responsible choices of system
designers.

See www.sustainabilitydesign.org and [6].

When the purpose of the project is discussed, the initial

project team discusses the company’s values and
responsibilities and identifies opportunities to support the
sustainable development of the company. For example, the
system can support sustainability in the supply chain by
making transparent the carbon footprint of purchases and
facilitate the selection of providers who apply sustainable
practices. This does not change the overall project objectives,
but influences subsequent steps.

The scope of requirements analysis starts with an inclusive
and integrated view of the procurement processes, material
flows into the company, and the social and political
environment of the local community. When defining possible
system boundaries, the team experiments with multiple
perspectives and works jointly with the procurement
department and others.

They expand the set of stakeholders and draw on
knowledge beyond the project team by using a stakeholder
impact analysis that considers enabling and structural effects
to identify those most affected by the project, including those
external to the company. Stakeholders include local supplier
representatives, service delivery organizations, process
analysts, the CTO, and the strategic planning and foresight
group.

To keep the number of stakeholders manageable, a
sustainability expert acts as a surrogate stakeholder for others
in the community and the further environment that may be
affected by the system. A team member is assigned to each of
the five sustainability dimensions, so that responsibility for
identifying possible effects is clear and effective
communication with additional stakeholders can take place.
These team members consult relevant experts in areas such as
supply chain sustainability, carbon accounting, socially
responsible procurement, and anthropologists analyzing and
interpreting current technological developments and its impact
on our societies.

The team agrees that the success criteria of the project are
not restricted to whether it is delivered on time and within
budget, but will be measured and monitored over a period of
36 months after project completion. In this period, a set of
indicators will be measured that cover the five dimensions of
sustainability. The team will attempt to measure technical
debt, social reputation and the improvement of relations with
the local community, individual aspects such as privacy
compliance and the satisfaction of those involved in the
procurement process, environmental aspects such as the total
carbon footprint of the products and services acquired, and
amortization of the project costs and improved cost-benefit
relations in procurement.

During risk analysis, the team considers internal and
external risks related to systemic effects in all five dimensions.
For example, considering the evolving regulations on
environmental accountability as a risk, the team develops a set
of transparency requirements for the system. They also
identify uncertainties about future shifts in procurement as
sustainable products become more competitive. As a result,
they include a feature to monitor these uncertainties.

During requirements elicitation, participatory techniques
are employed, and the inclusive perspective enables the
project to leverage contributions from a broader set of
stakeholders, including local service providers. In a series of
workshops, they use a sustainability reference goal model to
derive specific sustainability goals for their project and align
them with other system goals, while deriving extended usage
scenarios with the local community representatives.

The resulting requirements document is based on a
template that includes checklists for sustainability criteria and
standards compliance in all five dimensions. The document is
circulated among all stakeholders, and is shared with
regulatory agencies to demonstrate the project meets relevant
sustainability rules. As a result, it is also used more actively in
subsequent stages.

IV. SUSTAINABILITY DEBT
The system that results from this procurement project is

different when sustainability principles and therefore long-
term consequences are considered.

Focusing on sustainability design, software engineers have
to adopt a mindset quite different from the puzzle-solving
attitude often found in engineering and business. The objective
is to identify and understand “wicked problems”: problems
that are deeply embedded in a complex system with no
definitive formulation, and no clear stopping rule. In such
cases, every solution changes the nature of the problem, so
there is little opportunity for learning through trial and error
[10]. What is needed, instead, is an adaptive, responsive,
iterative approach that emphasizes shared understanding.

Figure 1 highlights selected direct, enabling and structural
effects of the procurement system in the five sustainability
dimensions. Consider a system feature that tracks the carbon
footprint of individual products. The feature enables users to
choose products with lower carbon footprints. The compound
structural effect in the economic dimension can benefit local

suppliers with environmentally sustainable production and
lead to an overall reduction of the carbon footprint.

The diagram serves as a visual aid to support interactive
collaboration among stakeholders to discover, document and
validate potential effects of the system. Not all effects will be

positive: For example, automating product selection rules to
minimize carbon footprint takes away the freedom of the
manager to take decisions in the procurement process [11].
This can reduce mutual trust between members of the
organization.

Figure 1. Selected systemic effects of the procurement system
The diagram also facilitates a conversation about

``sustainability debt'' [12]: the invisible effects of taking
decisions for the present that accumulate over time in each of
the five dimensions. When we increase energy consumption,
reduce individual privacy, impose technical barriers, or incur
additional financial costs, we incur debts in these dimensions
towards different stakeholders. Making these effects visible is
the first step to understanding and considering them in systems
design decisions.

V. REQUIREMENTS ARE THE KEY
In the tale of two projects, we have seen a series of decision

points in the process of designing a system. Many of these are
requirements engineering activities that will occur repeatedly
in all iterations throughout the project. Each decision
influences the decision space of subsequent choices and has a
profound impact on the system to be designed and the effects
it will have. Table 1 highlights how key activities change
when we consider sustainability design principles.

The leverage of requirements becomes clear when we

consider their relationships with engineering techniques. We
develop techniques in order to quantify, construct, and test
artifacts and to control whether the results fall within an
acceptable range. However, for design concerns such as
usability, performance, maintainability, or sustainability, such
technique are only applied once a need has been identified.
Without such a need, the engineering techniques will remain
unused, and hence have no effect on the project. For example,
techniques for increasing technical sustainability abound,
ranging from architectural design patterns to documentation
guidelines. Yet, since applying these techniques often involves
an upfront investment of effort, it is only done when a longer
life expectancy of a system is recognized and expressed. On
the other hand, a stated requirement for which no current
technique exists will lead to an identified gap in technological
ability. This means that in practice, systemic changes to the
activities in Table 1 will dominate the effects of whatever
techniques we develop to support these activities.

Requirement engineers therefore play a key role in
sustainability. As ``sustainability engineers'', they go beyond a

narrow system perspective and follow an interdisciplinary,
systems-oriented, stakeholder-focused approach, supported by
higher management and executives. Their task is to understand
the nature of software-intensive systems and the impact those

can have on their social, technical, economic and natural
environment and the individuals in that environment.

This responsibility is reflected in the new UK Standard for
Professional Engineering Competence (UK-SPEC), which

Table 1 SE practices for sustainability
Task Standard current practice Future practice focuses on
Mindsetting The world is a puzzle, and we should

“solve the problem”
The world is complex, and we should first “understand the
dilemmas”.

Project objective,
System purpose
and boundary
scoping

Focus on the immediate business need
and key system features. Do not question
the purpose of the project or the purpose
of the system.

Emphasize the effects that the project can have on
sustainability in all dimensions. Strive to advance
sustainability in multiple dimensions simultaneously.
Experiment with different system boundaries to understand
the difference this might cause in its impact.

External
constraints
identification

See constraints as imposed by the direct
environment of the system and its
technical interfaces. Minimize the
constraints considered, but include legal,
safety, security, technical, and business
resources.

See constraints in each dimension as opportunities. Look for
constraints from additional sources, starting with company
Corporate Social Responsibility policies, legislation and
standards for sustainability.

Stakeholder
identification

Minimize the number of stakeholders
involved and focus on stakeholders who
have influence. Focus on internal
stakeholders and exclude unreachable
stakeholders.

Maximize stakeholder involvement in an inclusive
perspective integrating external stakeholders and involve
those who are affected. Assign a dedicated role to be
responsible for sustainability and introduce surrogate
stakeholders to represent outside interests.

Success criteria
definition

Focus on the financial bottom line at
project completion. Measure business
outcome and financial return on
investment.

Focus on advancing multiple dimensions simultaneously,
including financial aspects, and take into account that most
of the effects occur after project completion.

Requirements
Elicitation

Focus on the features and the immediate
effects the stakeholders want.

Help stakeholders to understand the enabling effects the
system will have. Use creativity techniques and long-term
scenarios to forecast potential structural impact.

Risk
identification

Identify risks that threaten timely project
completion within budget.

Include effects on the system’s wider environment. Include
enabling and structural effects and risks that can develop
over time.

Trade-off analysis View it as a prioritization and selection
problem and let the key stakeholders
decide.

Strive to transform sustainability trade-offs into mutually
beneficial situations. Make sure that sustainability trade-offs
are discussed by a wider range of stakeholders (or their
surrogates).

Go/No-Go
decision

Base the decision on feasibility, financial
cost/benefit and risk exposure to project
participants, i.e. internal stakeholders.

This continues to be an internal business decision, but is
documented to show to external audiences that sustainability
indicators and enabling effects were taken into account. The
decision is based on a consideration of positive and negative
effects on all five dimensions.

Requirements
validation

Let key stakeholders verify that their
interests are captured.

Ensure broad community involvement focused on
understanding effects.

Project
completion

Verify whether success criteria are met
on completion date. After that, focus on
maintenance and evolution.

Evaluate the effects on all five dimensions over a certain
timeframe after completion aligned with the expected
timescale of effects.

Requirements
documentation

Current templates ignore long-term
effects and sustainability considerations.

Templates require information about sustainability as a
design concern and support analysts with checklists.

	 	

explicitly defines the role of engineers such that they shall
``Act in accordance with the principles of sustainability, and
prevent avoidable adverse impact on the environment and
society.'' [13]. It is up to SE curricula developers to equip
future software engineers with the competences required to
simultaneously advance goals in all five dimensions, beyond

the technical and economic.
For a long time, concerns about such effects have taken a

backseat in SE, but this is changing as standards are being
adjusted. For example, the working group WG42 on ISO/IEC
42030 (Architecture evaluation) is discussing energy
efficiency and environmental concerns at the software

architecture level and the IEEE P1680.1 for Environmental
Assessment of PC products is being revised.

While this is an important step, a full consideration of all
five sustainability dimensions is needed on the level of quality
models, systems documentation templates, and the analysis of
systemic effects throughout system lifecycle stages. It will
often be the responsibility of the requirements engineers to
introduce relevant standards in each of the five dimensions
into the elicitation and specification process. To support this,
sustainability considerations related to quality attributes of
software systems in use should be integrated into revisions of
the ISO 25000 series, while ISO 29148 should acknowledge
the importance of system characteristics beyond the
interaction with human users and encourage consideration of
the systemic effects of software systems in RE.

VI. SOFTWARE ENGINEERING IN SOCIETY
The critical role that software plays in society demands a

paradigm shift in the mindset of SE. Sustainability design
emphasizes an appreciation of ‘wicked problems’ over a focus
on puzzles and pieces; systems thinking over computational
problem solving; and an integrated understanding of systems
over a divide-and-conquer approach to systems analysis.

While these are challenging shifts that do not come easy,
taking such perspectives provides an opportunity to stand out,
an invitation to innovate, and an occasion for software
engineers and companies to distinguish themselves with a
unique selling point in a competitive market. We also have an
opportunity to help shape broader sustainability policy. A shift
to a sustainable society requires both large-scale change in
government policy and a change in engineering and business
practice; neither on their own will suffice. But regulatory
change is much easier if it builds on established best practice,
so software practitioners need to lead the way.

If you agree that we, as software engineers, have a
responsibility for the long-term impacts of the systems we
design, the principles of sustainability design provide an
opportunity to get started. We can and should start now, and
practitioners can lead the way: We need to collect experiences
in applying sustainability principles in software engineering
and learn from the process. An important way to make this
vision of software as a force for sustainability a reality is by
cooperation between industry and academia.

Successful collaborations to integrate sustainability
concerns into established practices can have significant impact
on the long-term effects of the systems we design. To facilitate
this, we must:

• Identify and tackle causes of unsustainable software
design. For this, industry can invite academics to
research, analyze, and re-engineer their current
development processes and practices for improved
sustainability;

• Develop a number of exemplar case studies that
demonstrate the benefits of sustainability design in
software engineering. For this, early-adopter industrial
collaborators can partner with academics to apply

research findings such as those summarized in Table 1
and report on longer term results;

• Build competencies in the theory and practice of
sustainable design into the training of all software
engineers. Industry can make the demand for software
practitioners trained in sustainability principles explicit
by requiring specific competences from potential
employees. Researchers and educators should develop
improved curricula that incorporate sustainability
principles and ensure that future software professional
possess the competences needed to advance
sustainability goals through SE.

Let's get started.

VII. ACKNOWLEDGMENTS
This work is supported by DFG EnviroSiSE (PE2044/1-1),
FAPERJ (210.551/2015), CNPQ (14/2014), NSERC

(RGPIN-2014-06638), the European Social Fund, Ministry of
Science, Research and the Arts Baden-Württemberg, and
WWTF through project BenchmarkDP (ICT2012-46).

Special thanks to our friend and colleague Sedef Akinli
Kocak, PhD researcher at Ryerson University in Toronto, for
her contributions to this article.

HIGHLIGHTS

• The critical role that software plays in society
demands a paradigm shift in the mindset of Software
Engineering.

• Sustainability design favors integrated understanding
over a divide-and-conquer approach to systems
analysis.

• Sustainability Design requires an appreciation of
‘wicked problems’ in Requirements Engineering.

• Integrating sustainability concerns can significantly
impact the long-term effects of the systems we
design.

• Sustainability design provides an opportunity for
software companies to stand out with a unique value
proposition.

REFERENCES
[1] H. Koziolek, “Sustainability evaluation of software architectures: a

systematic review,” in Proc. of QoSA-ISARCS‘11. ACM, 2011, pp. 3–
12.

[2] J. A. Tainter, “Social complexity and sustainability,” Ecological
Complexity, vol. 3, no. 2, pp. 91–103, 2006.

[3] B. Penzenstadler, A. Raturi, D. Richardson, and B. Tomlinson, “Safety,
security, now sustainability: The nonfunctional requirement for the 21st
century,” IEEE Software, vol. 31, no. 3, pp. 40–47, 2014.

[4] J. Elkington, “Enter the triple bottom line,” The triple bottom line: Does
it all add up, pp. 1–16, 2004.

[5] E3M, “Who Lives the Longest? Busting the Social Venture Survival
Myth.” [Online]. Available: http://socialbusinessint.com/wp-
content/uploads/Who-lives-the-longest_-FINAL-version2.pdf

[6] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler, N.
Seyff, and C. C. Venters, “Sustainability Design and Software: The
Karlskrona Manifesto,” in Proc. 2015 Int’l Conf. Software Eng.
(ICSE’15), 2015.

[7] C. Bomfim, W. Nunes, L. Duboc, and M. Schots, “Modelling
sustainability in a procurement system: An experience report,” in Proc.
2014 Requirements Engineering (RE’14). IEEE, 2014, pp. 402–411.

[8] L. M. Hilty and B. Aebischer, “ICT for sustainability: An emerging
research field,” in ICT Innovations for Sustainability. Springer, 2015,
pp. 3–36.

[9] D. H. Meadows, Leverage points: Places to intervene in a system.
Sustainability Institute Hartland, VT, 1999.

[10] J. A. Klein, “A reexamination of autonomy in light of new
manufacturing practices,” Human Relations, vol. 44, no. 1, pp. 21–38,
1991.

[11] S. Betz, C. Becker, R. Chitchyan, L. Duboc, S. M. Easterbrook, B.
Penzenstadler, N. Seyff, and C. C. Venters, “Sustainability debt: A
metaphor to support sustainability design decisions,” in Proc. RE4SuSy
2015. http://ceur-ws.org/Vol-1416/, 2015.

[12] UK Standard for Professional Engineering Competence (UK-SPEC).
The Engineering Council, 2014.

Christoph Becker is an Assistant
Professor at the University of Toronto,
where he leads the Digital Curation
Institute, and a Senior Scientist at the
Vienna University of Technology in
Austria. His research focuses on
sustainability in software engineering and
information systems design; digital
curation and digital preservation; and

digital libraries. Becker received his PhD in computer science
from the Vienna University of Technology. Contact him at
christoph.becker@utoronto.ca.

Stefanie Betz is a senior research scientist
at the Department of Applied Informatics
and Formal Description Methods,
Karlsruhe Institute of Technology,
Germany. Her research is centered on
sustainable software and systems
engineering, particularly from the
perspective of requirements engineering

and business process management. Betz received her PhD in
Applied Informatics at Karlsruhe Institute of Technology.
Contact her at stefanie.betz@kit.edu.

Ruzanna Chitchyan is a lecturer at the
Department of Computer Science,
University of Leicester, UK and a member
of the Centre for Landscape and Climate
Research. Her research is centred on
requirements engineering and architecture
design for software-intensive socio-
technical systems engineering and

sustainability. Chitchyan received her PhD in Software
Engineering from the Lancaster University, UK. Contact her
at rc256@leicester.ac.uk.

Leticia Duboc Leticia Duboc is a lecturer at the State

University of Rio de Janeiro, Brazil and an
Honorary Research Fellow at the University
of Birmingham, UK. Her research focuses
on sustainability and scalability of software
systems, particularly from the perspective
of requirements engineering and early
analysis of software qualities. Duboc

received her PhD in computer science from the University
College London UK. Contact her at leticia@ime.uerj.br.

Steve M. Easterbrook is a professor at
the University of Toronto and a member
of Centre for Environment and Centre for
Global Change Science. His research
focuses on climate informatics, and more
specifically, the applications of computer
science and software engineering to the

challenge posed by global climate change. Easterbrook
received his PhD in Computing from Imperial College,
London. Contact him at sme@cs.toronto.edu.

Birgit Penzenstadler is an Assistant
Professor of software engineering at the
California State University, Long Beach.
Her research focusses on software
engineering for sustainability and
resilience and she leads the Resilience Lab
at CSULB. Penzenstadler received her
PhD and a habilitation degree from the

Technical University of Munich, Germany. Contact her at
birgit.penzenstadler@csulb.edu.

Norbert Seyff is a professor at the
University of Applied Sciences and Arts
Northwestern Switzerland and a senior
research associate at the University of
Zurich. His current research focus on
requirements engineering and software
modeling. He has a particular interest in
empowering and supporting end-users

participation in system development. Seyff received his PhD
in computer science from Johannes Kepler University Linz,
Austria. Contact him at norbert.seyff@fhnw.ch.

Colin C. Venters is a senior lecturer in
Software Systems Engineering at the
University of Huddersfield, UK. His
current research focuses on sustainable
software systems engineering from a
software architecture perspective for pre-
system understanding and post-system
maintenance and evolution. Venters
received his PhD in computer science from

the University of Manchester, UK. Contact him at
c.venters@hud.ac.uk.

