
University of Huddersfield Repository

Zhao, Ping, Gao, Nan, Zhang, Zonghua, Gao, F. and Jiang, Xiang

Performance analysis and evaluation of direct phase measuring deflectometry

Original Citation

Zhao, Ping, Gao, Nan, Zhang, Zonghua, Gao, F. and Jiang, Xiang (2018) Performance analysis and 
evaluation of direct phase measuring deflectometry. Optics and lasers in engineering, 103. pp. 24-
33. ISSN 0143-8166 

This version is available at http://eprints.hud.ac.uk/id/eprint/33957/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Performance analysis and evaluation of direct phase 

measuring deflectometry 

Ping Zhao1, Nan Gao1, Zonghua Zhang1,2,*, Feng Gao2, Xiangqian Jiang2 

1 School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130, China 

2 Centre for Precision Technologies, University of Huddersfield, Huddersfield, HD1 3DH, UK 

*Correspondence: zhzhang@hebut.edu.cn; zhzhangtju@hotmail.com  

Abstract: Three-dimensional (3D) shape measurement of specular objects plays an 

important role in intelligent manufacturing applications. Phase measuring deflectometry 

(PMD)-based methods are widely used to obtain the 3D shapes of specular surfaces because they 

offer the advantages of a large dynamic range, high measurement accuracy, full-field and 

noncontact operation, and automatic data processing. To enable measurement of specular objects 

with discontinuous and/or isolated surfaces, a direct PMD (DPMD) method has been developed to 

build a direct relationship between phase and depth. In this paper, a new virtual measurement 

system is presented and is used to optimize the system parameters and evaluate the system’s 

performance in DPMD applications. Four system parameters are analyzed to obtain accurate 

measurement results. Experiments are performed using simulated and actual data and the results 

confirm the effects of these four parameters on the measurement results. Researchers can therefore 

select suitable system parameters for actual DPMD (including PMD) measurement systems to 

obtain the 3D shapes of specular objects with high accuracy. 

Keywords: Error analysis; performance evaluation; simulation; direct phase measuring 

deflectometry; 3D shape measurement; specular object. 

1. Introduction 

Three-dimensional (3D) shape measurement techniques for diffuse objects have been widely 

used in manufacturing industries [1,2] in applications such as quality inspection and reverse 

engineering. Full-field fringe projection techniques [2-6] have been widely used to obtain the 3D 

shapes of these diffuse objects because they offer the advantages of noncontact operation, 

full-field acquisition, high accuracy, and fast, automatic data processing. Along with diffuse 

objects, specular surfaces also have a wide range of applications in various fields [7], including 

new energy generation, illumination, and aerospace and biomedical engineering. Therefore, to 

guarantee the technical performance and the visual appearance of specular products, it is essential 

to develop a method for measurement of specular surfaces. Phase measuring deflectometry (PMD) 

methods have been widely applied to provide accurate shape measurements because of advantages 

that include high dynamic range, full-field acquisition, noncontact operation, high accuracy and 

low cost [8-9].  

In general, PMD uses the phase information that is calculated from reflected fringe patterns 

to obtain the slope data of the specular objects to be measured. A 3D shape is then reconstructed 

using two-dimensional (2D) local slope integration. Su et al. [8,9] proposed a software-configurable 

optical test system for optical surface measurement and added an auxiliary lens to perform both 

mid- and high-spatial-frequency optical surface metrology. Huang et al [10] built a monoscopic 

fringe reflectometric system using only one liquid crystal display (LCD) screen and one digital 

camera to perform dynamic shape measurements. Tang et al. [11,12] measured the 3D shape of an 
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aspheric mirror using the reflected rays and a 'dummy paraboloid'. Xiao et al [13] proposed a 

flexible PMD system calibration method based on use of a markerless flat mirror. However, 

deviations during calculation of the slope will lead to error accumulation in the height calculations. 

To remove the slope integration requirements, many methods have been developed to build a 

relationship between slope and depth. Petz et al. [14] proposed a deflectometry system using one 

camera and two reference grating planes for pointwise computation of the absolute 3D object 

coordinates, while Guo et al. [15] proposed a least-squares light incident-light tracking technique 

for specular surface measurement. During their measurement processes, both methods [14,15] need 

to shift their LCD screens to different positions to determine the orientation of the incident ray 

relative to the slope, which leads to instability and thus inaccurate measurement results. Knauer et 

al. [16] proposed a stereo deflectometry method to obtain the absolute slope and height based on 

calibration of the normals at the same point for two cameras. Feng et al. [17] built a dual-camera 

fringe projection system to reconstruct dynamic 3D shapes by combining standard three-step 

phase-shifting fringe patterns with a digital speckle image. However, calibration processes in 

dual-camera systems are complex. Recently, Huang et al. [18] presented a method for simultaneous 

estimation of the height and the slopes of a surface under test in PMD based on use of a 

mathematical model and optimization of the orientation of the screen geometry after 

pre-calibration of the PMD system. 

To solve the above problems and build a stable measurement system, a direct PMD (DPMD) 

system [19] has been developed to form a relationship between the phase and the depth directly 

without the need for a slope integration procedure. The proposed system consists of two LCD 

screens, one beam splitter (BS) plate and one charge-coupled device (CCD) camera. The 

measurement results and the system performance are affected by the arrangements of the relevant 

component locations and the ways in which the parameters are set in a 3D measuring system [20]. 

However, to the best of our knowledge, there are no published works in the literature on 

evaluation of system performance and analysis of the effects of the system parameters on the 

measurement results in PMD. While this paper analyzes the system parameters quantitatively for 

DPMD, the proposed method can be applied to general PMD systems. 

The next Section describes the principle and the configuration of the developed DPMD 

system. The simulated DPMD measurement system is introduced in Section 3. Section 4 provides 

an analysis of the effects of the system parameters on the measurement results. Experimental 

results when using the actual system are provided in Section 5 and some concluding remarks are 

given in Section 6. 

2. Principle of direct phase measuring deflectometry 

A schematic diagram of the developed DPMD system is shown in Fig. 1. This system 

consists of two LCD screens, a CCD camera, and a BS plate. LCD1' represents a virtual image of 

screen LCD1 via the BS. Screens LCD2 and LCD1' are both parallel to the reference plane R. h is 

the height of a given point on the tested surface, d is the distance between screen LCD1' (the 

virtual image of screen LCD1) and reference plane R, and ∆d is the distance between LCD1' and 

LCD2. θ' represents the angle between the normal vector of the reference plane and the incident 

ray from the camera,   represents the double gradient angle of the point that is tested on the 

measured surface, dL represents the physical size of a single pixel unit on the LCD screen, and 

'1r  ( 1r ) and '1m  (
1m ) denote the two different absolute phases on LCD1'. 2r  and 

2m  

denote the two different absolute phases on LCD2. Both the absolute phases '1r  and 
2r  are on 



the same incident ray that is reflected into the CCD camera from the mirror at the reference 

position. Both the absolute phases '1m  and 
2m  are on the same incident ray that is reflected 

into the CCD camera from the measured surface. ∆L1 represents the distance between phases '1r  

and '1m . 

Fringe patterns are generated using software and are displayed on the two LCD screens. The 

intensity distribution of a single displayed fringe pattern can be expressed as 

                      ],
π2

cos[,,, 00 yxx
P
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where ),(0 yx  is the phase shift term,  yxa ,  and  yxb ,  account for the background intensity 

and the fringe contrast, respectively, and P is the period of the displayed fringes. The fringe 

patterns that are displayed on screens LCD1 and LCD2 are reflected into the CCD camera via the 

surface under test and the mirror at the reference position to provide different viewpoints. After 

the absolute phase is calculated from the captured fringe patterns, the depth information can be 

obtained directly. 

From the geometric relations of the DPMP measuring system shown in Fig. 1, the following 

equations can be derived: 
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By combining Eqs. (2)–(7), h can be calculated as 
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Equation (8) demonstrates that ∆d and d affect the measurement results directly. Equation (1) 

shows that P influences the fringe pattern distribution and Eqs. (2)–(5) indicate that θ' affects the 

phase distances between 
1r  and 

2r , 
1m  and 

2m , and 
1r  and 

1m . Therefore, the 

measurement results will be related to and affected by all the system parameters, including ∆d, d, 

θ', and P. Because the angle θ between the optical axis of the camera and the normal vector of the 

reference plane is a special value of θ', which can be calculated easily from the calibration of the 
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Fig. 1. Schematic diagram of the DPMD system.  
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camera, θ' can be replaced with θ in the system parameter analysis process. Based on the 

mathematical model above, a simulated DPMD measurement system is constructed in the 

following section. 

3. Simulated DPMD measurement system  

The principle of the simulated specular measurement system is based on a combination of 

DPMD and a pinhole imaging model. It is therefore necessary to calculate not only the 

geometrical relationships between the two LCD screens and the specular surface but also that 

between the specular surface and the CCD camera. 

3.1 Projection of LCD2 screen to reference plane 

The purpose of calculating the projection of LCD2 to reference plane R is to calculate the 

imaging of the fringes on LCD2 in reference plane R. The geometry of the 3D imaging system is 

shown in Fig. 2. Plane LCD1' represents the virtual imaging plane of LCD1 through the plate BS, 

as shown in Fig. 1, and both planes LCD1' and LCD2 lie parallel to R. Planes LCD2' and LCD1'' 

represent the virtual imaging planes (via R) of screens LCD2 and LCD1', respectively. Plane S is 

the CCD plane. OOS represents the optical axis of plane S, and the line MSNS is the axis of 

symmetry of plane S. Line MN lies parallel to the x-axis of plane R, and both line M1'N1' on plane 

LCD1' and line M2N2 on plane LCD2 lie parallel to the x2-axis of plane LCD2. Three blue light 

rays are displayed and are then reflected into the CCD camera by R and two gray light rays are 

displayed and are reflected into the CCD camera by the test points on the plane under test. 

First, the location of the point O2(xo2,yo2,0) on the plane LCD2 is specified. Point O2 on plane 

LCD2 then projects light onto the point O(xo,yo,0) on plane R, and the line O2O passes through 

point O1'(xo1',yo1',0) on plane LCD1'. The light is then reflected by R and is subsequently projected 

onto point OS(XOS,YOS,0) on plane S. Points O and OS denote the center of plane R and the 

imaging center of plane S, respectively. Subsequently, assuming that any point AR2(x2,y2,0) other 
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Fig. 2. Geometry of the 3D imaging system. 



than point O2 on plane LCD2 is projecting light onto point AR(x,y,0) on plane R, the line AR2AR 

then passes through point AR1'(x1',y1',0) on plane LCD1'. The light is then reflected by plane R and 

is projected onto point ARS(XS,YS,0) on plane S. Points AR2'(x2',y2',0) and O2'(xo2',yo2',0) on plane 

LCD2' represent the virtual imaging points of points AR2 and O2 on plane LCD2, respectively. The 

LCD screen resolution is given by XLCD×YLCD, and the physical size of a single pixel unit on the 

LCD screen is given by dL×dL. 

 Assuming the displayed fringe patterns on LCD screen is vertical and y-axis is along the 

fringe direction, the height value only relates to x coordinate. Therefore, the measuring system can 

be simplified as 2D geometry, as shown in Fig. 3. Two blue light rays are displayed and are then 

reflected into the CCD camera by R and one gray light ray is displayed and reflected into the CCD 

camera by the test points on the plane under test. Plane H represents the plane under test. d and ∆d 

are the distance between planes LCD1' and LCD2 and the distance between planes LCD1' and R, 

respectively. L represents the distance between the CCD lens center and plane R. OSF is the focal 

length f of the camera lens. θ is the angle between OOS and the normal vector of plane R.   

represents the doubled value of the gradient angle of point ARH on plane H. h is the height of point 

ARH on plane H with respect to R.  

First, the relationship between point AR2 on plane LCD2 and point AR on plane R is 

calculated. Points A2(x2,0,0), A(x,0,0), and AS(XS,0,0) are the projections of points AR2 to M2N2, 

AR to MN, and ARS to MSNS, respectively. Point A2'(x2',0,0) on plane LCD2' is the imaged point of 

point A2 on plane LCD2. Based on the geometric relationships shown in Fig. 3, ΔFAO is similar to 

ΔFA2'O2', d2=d+∆d, FO=L/cosθ, and FO2'=(L+d2)/cosθ, and thus the following equation is 

obtained. 

                        AO
L

dL
OA 


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d
'' 22                             (9) 

The number of pixels between point A2' and point O2' is given by  

                            
L

OA
d

OA
N

'' 22
'' 22
                              (10) 

Only the projected fringe areas on plane R are imaged on plane S, and thus R can be regarded 

as a discrete plane that consists of numerous points. The physical size of a single pixel unit on 

plane R is assumed to be denoted by dM×dM. Based on the geometric relationships of 

A2'O2'=dL×NA2'O2', AO=dM×NA2'O2' and Eq. (9), the following equation is obtained.  
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Fig. 3. Geometry of the 2D imaging system.  
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Because A2'O2' = (x2'−xo2')×dL and AO = (x−xo) × dM, then by combining Eqs. (9) and (11), 

the coordinate relationship between point A2' on plane LCD2' and point A on plane R can be 

obtained using the following equation. 

                             '' 22 oo xxxx                               (12) 

The coordinate relationship between point A2' on plane LCD2' and point A2 on plane LCD2 is 

                            '22 xXx LCD                                (13) 

The restriction that the fringe patterns must be parallel to the y-axis indicates that the test 

height is not dependent on the y value. Therefore, when the x2-coordinate value of point AR2 on 

plane LCD2 is obtained, the fringe pixel value of the point AR2' on plane LCD2' can also be 

calculated. 

3.2 Projection of LCD1 screen to reference plane 

Based on the geometric relationships, the angle γ between the line AAS and the plane R in Fig. 

3 can be obtained using the following equation. 

                            
AOL

L







tan
                             (14) 

Point A1' (x1',0,0) is the projection from the point AR1'(x1',y1',0) on plane LCD1' to the line 

M1'N1'. The coordinate relationship between point A1' on plane LCD1' and point A2(x2,0,0) on 

plane LCD2 is given by 

                               
Ld

d
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' 21
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When the x1'-coordinate value of point AR1'(x1',y1',0) on plane LCD1' is obtained, the fringe 

pixel value of the point AR1'' on plane LCD1'' can then be calculated. 

3.3 Projections of LCD1 and LCD2 to tested plane 

The purpose of calculating these projections of the LCD1 and LCD2 screens on the tested 

plane is to enable calculation of the imaging of the fringes on screens LCD1 and LCD2 in the plane 

under test. In Fig. 2, it is assumed that point ARH2(xH2,yH2,0) on screen LCD2 is projecting light 

onto point ARH(xH,yH,0) on plane H, and the line ARH2ARH then passes through point 

ARH1'(xH1',yH1',0) on plane LCD1'. This light is then reflected by plane H and is projected onto 

plane S. AH2(xH2,0,0) on screen LCD2, AH1'(xH1',0,0) on plane LCD1', and AH(xH,0,h) on plane H 

are the projections of ARH2(xH2,yH2,0) to M2N2, ARH1'(xH1',yH1',0) to M1'N1' and ARH(xH,yH,h) to 

AAS, respectively. The corresponding 2D geometric relationship between the planes LCD1' and 

LCD2 and the plane under test is shown in Fig. 3. 

The relationship between point ARH on plane H and point AR on plane R can be obtained 

using the iterative method given in [21]. This then allows the height, the gradient and the gradient 

angle of point ARH on plane H to be obtained. Based on the geometric relationship shown in Fig. 3,

  2π/' . The distance ∆L1 between points AH1' and A1' on plane LCD1' and the distance ∆L2 

between points AH2 and A2 on plane LCD2' can then be obtained using the following equations. 

                                 'tan'tan1   hdhdL                   (16) 
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The coordinate relationship between point ARH1' on plane LCD1' and point ARH on plane H 

and the additional coordinate relationship between point ARH2 on plane LCD2 and point ARH on 

plane H can be obtained using the following equations. 
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When the xH1' value of the point ARH1'(xH1',yH1',0) on plane LCD1' is obtained, the fringe pixel 

value of the same point ARH1'(xH1',yH1',0) on plane LCD1' in plane H can also be calculated. When 

the xH2 value of the point ARH2 (xH2,yH2,0) on plane LCD2 is obtained, the imaging fringe pixel 

value of the point ARH2 (xH2,yH2,0) on plane LCD2 in plane H can also be obtained. 

Because the x value of every point that is imaged in R and H can be calculated, the imaging 

of the fringe patterns in these two planes can be simulated using Eq. (1). 

3.4 Image capture  

The resolution of the CCD chip is XL×YL and the physical size of a single pixel unit on the 

CCD chip is dc×dc. The formula required to calculate the coordinates on the reference plane R 

based on the coordinates on the projection plane is deduced by the method described in [21]. 

Because the CCD camera has a similar optical framework to that of a digital light processing 

projector, the relationship between point AR on plane R and point ARS on plane S can be obtained 

using the following equations. 
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Because AO=(x−xo)×dM, AAS=(y−yo)×dM, and Eq. (20) can be rewritten as follows. 
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The coordinate relationship between R and S can be obtained using Eq. (21), and this means 

that the fringe patterns on plane S can be simulated using the interpolation method. 

4. Virtual experiments  

4.1 Virtual experimental verification 

To verify the validity of the simulated DPMD measurement system, the curved surface 

formed using a peak function is selected to perform the shape reconstruction process. The 

parameters related to the CCD camera are as follows: L=400 mm, θ=25°, XL×YL=2448×2050, 

dc×dc=3.45×3.45 µm, and f=35 mm. The parameters related to the LCD screens are as follows: 

d=100 mm, ∆d=40 mm, XLCD×YLCD=2048×1536, dL×dL=96×96 µm, and the point O2 is set as the 

center point of screen LCD2. The period P of the fringes is set at 25 pixels. The reference plane 

size is set at 100 mm×100 mm. 

The height distribution of the surface under test is illustrated in Fig. 4. The reflected fringe 

pattern images corresponding to the reference plane and to the test plane are shown in Fig. 5(a) 



and Fig. 5(b), respectively. The captured fringes by the simulated CCD camera that were reflected 

by plane R and plane H are shown in Fig. 6(a) and Fig. 6(b), respectively. It can be seen that the 

captured fringes gradually become wider and longer from left to right because of the inclination 

angle θ. To obtain the phase information from the captured images, a four-step phase-shifting 

algorithm is used to calculate the wrapped phase. The optimum three-fringe number selection 

method [22] is used to unwrap the wrapped phase by projection of a series of patterns that have 

fringe numbers of 81, 80, and 72. After calculation of the unwrapped phase, the height of the test 

surface can be calculated using Eq. (2). By comparing the calculated height shown in Fig. 7(a) 

with the preset height, the error distribution can then be obtained, as shown in Fig. 7(b). The root 

Fig. 7. Height and error distributions. (a) Test surface height distribution. (b) Error distribution. 
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Fig. 5. Simulated fringe patterns. (a) Reference plane. (b) Test surface. 

Fig. 4. Height distribution of the test surface. 
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Fig. 6. Simulated captured fringe images. (a) Reference plane. (b) Test surface. 



mean square (RMS) surface error is 1.8077×10−5 mm, which demonstrates that the simulated 

measurement system is both reliable and highly accurate. 

4.2 Error analysis using system parameters 

Figure 7(b) indicates that the gradient of the surface under test influences the accuracy of the 

calibration result. When the test plane is a curved surface, the coordinate relationship between the 

reference plane and the test surface must be calculated via an iterative procedure. To remove the 

iteration stage, a plane with gradient angles that are all zero is used to simulate the system. The 

parameter settings of both the CCD camera and the LCD screens are the same as those used in 

Section 4.1. Point O2 is set as the center point of screen LCD2. The reference plane size is set at 

80×80 mm. The height of the test plane is set at 10 mm. Gaussian noise with a standard deviation 

of 3 is added to the gray scale of the original fringe patterns. The system parameters include the 

distance d between screen LCD1 and the reference plane, the distance ∆d between screen LCD1' 

and screen LCD2, the angle θ between the camera’s optical axis and the reference plane, and the 

fringe period P. To analyze the effects of these four parameters on the measurement results 

quantitatively, a standard system configuration was chosen as follows: d=100 mm, ∆d=40 mm, 

θ=25°, and P=25 pixels. When the effects of each individual parameter are evaluated, the other 

three parameters remain constant.  

4.2.1 Influence of d  

The distance d between screen LCD1 and the reference plane is varied from 100 mm to 330 

mm in increments of 30 mm. Using the simulated measurement system, the relationship between d 

and the RMS error is obtained as shown in Fig. 8. 

Figure 8 shows that with increasing d, the RMS error of the measurement results increases 

gradually. The main reason for this increasing trend is that when the test surface is a plane, the 

term  21 rr    should be equal to the term  21m m   in Eq. (8). When the term that includes d 

is not equal to zero, the error will then increase with increasing d. As d increases, both the distance 

between phases 
1r  and 

1m  and the distance between phases 
2r  and 

2m  increase, which 

improves the signal-to-noise ratio. Figure 8 shows that the error will increase at larger values of d. 

Therefore, a small d value should be used. In general, d should be no more than 130 mm. 

4.2.2 Influence of ∆d 

The distance ∆d between screen LCD1' and screen LCD2 is varied from 10 mm to 220 mm in 

increments of 30 mm. Using the simulated measurement system, the relationship between ∆d and 

the RMS error is then obtained as shown in Fig. 9. 

Figure 9 shows that with increasing ∆d, the RMS error of the measurement results gradually 

decreases, and when ∆d≥40 mm, the slope over the RMS error range tends to be gentle. The main 

reason for this trend is that with increasing ∆d, both the distance between phases 
1r  and 

2r  

and the distance between phases 
1m  and 

2m  increase, which again improves the 

Fig. 8. Relation between d and RMS error. 
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signal-to-noise ratio. Therefore, larger values of ∆d should be used. In general, ∆d should be no 

less than 40 mm. 

4.2.3 Influence of θ 

The angle θ between the optical axis of the camera and the reference plane is varied from 10° 

to 45° in increments of 5°. Using the simulated measurement system, the relationship between θ 

and the RMS error is obtained as shown in Fig. 10. 

Figure 10 shows that with increasing θ, the RMS error of the measurement results gradually 

decreases. The main reason for this decreasing trend is that with increasing θ, the distances 

between phases 
1r  and 

2r , phases 
1m  and 

2m , and phases 
1r  

and 
1m  all increase, 

which again greatly improves the signal-to-noise ratio. In other words, increasing the angle has the 

positive effect of inhibiting the noise. However, if the angle of incidence is too large, the camera 

cannot collect the reflected light. When the test conditions are taken into account, θ should be no 

less than 25°.  

4.2.4 Influence of P 

 

The period P of the fringe is varied from 10 pixels to 45 pixels in increments of 5 pixels. 

Using the simulated measurement system, the relationship between P and the RMS error is 
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Fig. 9. Relation between ∆d and RMS error.  
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obtained as shown in Fig. 11. 

Figure 11 shows that with increasing P, the RMS error of the measurement results gradually 

increases. The main reason for this trend is that with increasing P, the distance between the 

adjacent phase fringes on the LCD screen increases, which then improves the signal-to-noise ratio. 

Figure 11 also shows that while the reduction of P has an inhibitory effect on the noise overall, 

this effect is not obvious. Consequently, the value of P is reasonable when it is no more than 25 

pixels. 

4.2.5 Influence of parallelism 

The inclination angle α1 between the reference plane and the two LCD screens are varied 

from 0.05 degrees to 0.25 degrees in increments of 0.05 degrees. Using the simulated 

measurement system, the relationship between α1 and the RMS error is obtained as shown in Fig. 

12. The same procedure has been applied to the inclination angle α2 between the two LCD screens. 

Figure 13 shows the relationship between α2 and the RMS error.  

Figures 12 and 13 show that with increasing inclination angles α1 and α2, the RMS error of 

the measurement results increases gradually. The main reason for this trend is that with the 

increasing α1 and α2, the deviation between the two measured parameters d, ∆d and the true value 

is larger along x direction. Therefore, a small inclination angle α1 and α2 value should be 

guaranteed in actual measurements. In general, both of them should be no more than 0.15 degrees. 

5. Actual experiments and discussion 

5.1 Hardware system 

To verify the simulated results, actual experiments were performed. To simplify the 

experimental process while also ensuring the measurement accuracy, the realization of two 

parallel LCD screens is dependent on moving one of the LCD screens to two different positions 

using a linear translation stage. The experimental system is shown in Fig. 14, and includes a CCD 

camera, an LCD screen, three linear translation stages and a mirror. The camera is model 

eco655CVGE from SVS (Bremen, Germany) and has a resolution of 2448×2050 px. The LCD 
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screen is model LP097QX2 from LG (Seoul, Korea) and has a resolution of 2048×1536 px. The 

three automatic translation stages, which have model numbers of GCD-203300M, GCD-203300M 

and GCD-203200M, are all from Daheng New Epoch Technology Inc (Beijing, China) and have 

the same accuracy of 1 µm. The LCD screen, the reference mirror and the CCD camera were fixed 

on the first, second and third automatic translation stages, respectively. 

5.2 Experimental process and results 

First, the imaging system hardware was positioned accurately using the given parameters. 

When the LCD screen was in the first position, the deformed fringe pattern that was reflected by 

the mirror that was used as the reference surface was then captured by the CCD camera. Second, 

the mirror was moved by 10 mm using the second stage and was then used as the test surface. The 

deformed fringe pattern that was reflected by the mirror was then captured by the CCD camera. 

Third, the LCD screen was moved by ∆d to the second position by the first stage. The deformed 

fringe pattern that was reflected by the mirror was again captured using the CCD camera. Fourth, 

the mirror was moved back to its original position and was then used as the reference surface. The 

deformed fringe pattern that was reflected by the mirror was again captured by the CCD camera. 

The distance between the mirror that was used as the reference surface and the mirror that was 

used as the test surface was 10 mm, and thus the height of the test surface was 10 mm. When the 

test surface height was obtained, the RMS error could then be calculated. The standard 

configuration for the actual measurement system was chosen to be d=102.5 mm, ∆d=40 mm, 

θ=24.9°, and P=25 pixels. When the effects of each individual parameter were evaluated, the other 

three parameters remained unchanged. The experimental results are shown in Fig. 15. 

Figure 15(a) shows the influence of the measurement errors for four different values of d: 

102.5 mm, 132.5 mm, 152.5 mm, and 177.5 mm. With increasing d, the RMS errors of the 

measurement results increase gradually, which is the same trend as in the simulated results 

described earlier. Therefore, small values of d should be applied.  

Figure 15(b) similarly demonstrates the influence of the measurement errors for four different 

values of ∆d: 10 mm, 25 mm, 40 mm, and 75 mm. With increasing ∆d, the RMS errors of the 

measurement results gradually decrease, which is the same trend as in the simulated results 

described earlier. Therefore, a large value of ∆d should also be applied.  

Figure 15(c) demonstrates the effects of the measurement errors for four values of θ: 16.7°, 

19.1°, 24.9°, and 28.1°. With increasing θ, the RMS errors of the measurement results gradually 

decrease, which is again the same trend as in the simulated results described earlier. A small value 

of θ should thus be applied accordingly. Additionally, it should be guaranteed that the reflected 

LCD Screen 

The first translating stage  

CCD Camera 

Mirror 

The second translating stage  The third translating stage  

Fig. 14 Hardware setup for the measurement system. 



light can be collected by the camera. 

Figure 15(d) demonstrates the influence of the measurement errors for four different values 

of parameter P: 20 pixels, 25 pixels, 32 pixels, and 41 pixels. With increasing P, the RMS error of 

the measurement results gradually increases, which is the same trend as in the simulated results 

given above. Therefore, a small value of P should be used. In general, P should be no more than 

25 pixels. Additionally, to maintain the sinusoidal topography of the fringes and guarantee that the 

camera can distinguish these fringes, P should also be no less than 16 pixels. 

Another evaluation experiment was performed by measuring a manufactured artificial step 

with multiple discontinuous specular surfaces, as shown in Fig. 16(a). When the influence of the 

system parameters on the measurement results was taken into account, d = 102.5 mm, ∆d = 40 

mm, θ = 25°, and P = 25 pixels. The step is shown with projected red fringes in Fig. 16(b). The 

absolute phase map and the measured 3D shape data are shown in Fig. 16(c) and 16(d), 

respectively. 

To evaluate the measurement system accuracy quantitatively, the actual distance between 

neighboring steps was measured using a coordinate measurement machine (CMM). To calculate 

the distances between neighboring steps, all measured points on a single step surface were fitted 

into a plane. The measured distance between neighboring steps was calculated using the average 

distance value for all points obtained on the other step surface to the fitted plane. The actual 

distance, the measured distance, the absolute error (i.e., the absolute difference between the 

measured average distance and the actual distance) and the standard deviation are all listed in 

Table 1. The maximum absolute error and the maximum RMS error are 0.023 mm and 0.023 mm, 

respectively. These experimental results demonstrate that the proposed measurement system can 

obtain the required depth data with high precision and high reliability. 

(b) 

Fig. 15. Relationships between parameters and RMS error. (a) d and RMS error, (b) ∆d and 

RMS error, (c) θ and RMS error, and (d) P and RMS error. 
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6. Conclusions  

A novel virtual measurement system has been developed based on a direct phase measuring 

deflectometry (DPMD) technique. The effects of the four system parameters on the measurement 

results have been analyzed and the performance of the proposed measurement system was 

evaluated. Simulated and actual experiments were carried out. The results showed that with 

increasing distance ∆d between the two LCD screens, the angle θ between the camera’s optical 

axis and the reference mirror, the RMS errors of the measurement results decrease gradually. 

However, with increasing distance d between the LCD1' screen (virtual image of screen LCD1) 

and the reference mirror, the period P of the fringe pattern, the RMS error of the measurement 

results gradually increase. Therefore, suitable system parameters can be selected for the actual 

DPMD measurement system to obtain the 3D shape of a specular object with high accuracy. 
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