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K. Krishna and M. Narasimha Murty the data in an attempt to recover natural groups present in the data. In

this paper, we confine our attention to partitional clustering of a given
set of real-valued vectors, where the dissimilarity measure between
Abstract—n this paper, we propose a novel hybrid genetic algorithm  two vectors is the Euclidean distance between them.

(GA) that finds a globally optimal partition of a given data into a specified One of the important problems in partitional clustering is to find a
number of clusters. GA’s used earlier in clustering employ either an .. f the i ith ii f ol h
expensive crossover operator to generate valid child chromosomes from pa.\rtlltlc.)n of the glven. df"‘ta’ with a SPeF' ied number 0. ¢ l.JSters" that
parent chromosomes or a costly fitness function or both. To circumvent Minimizes the total within cluster variation (TWCV) (which is defined
these expensive operations, we hybridize GA with a classical gradient below). We address this problem, viz., minimization of TWCV, in the
descent algorithm used in clustering viz., K-means algorithm. Hence, the s asent paper. In general, partitional clustering algorithms are iterative
name genetic K-means algorithm (GKA). We define K-means operator, d hill climbi d v th t | | mini
one-step of K-means algorithm, and use it in GKA as a search operator 2Nd il climbing a_'n USUE_" Yy ) ey Cor.“/erge 0 ‘_"l oca m!n'mum'
instead of crossover. We also define a biased mutation operator specific Further, the associated objective functions are highly nonlinear and
to clustering called distance-based-mutation. Using finite Markov chain  multimodal. As a consequence, it is very difficult to find an optimal
theory, we prove that the GKA converges to the global optimum. Itis ob- partition of the data using hill climbing techniques. The algorithms

served in the simulations that GKA converges to the best known optimum based on combinatorial ontimization such as integer programmin
corresponding to the given data in concurrence with the convergence ! ! pumizat u Integer prog Ing,

result. It is also observed that GKA searches faster than some of the dynamic programming and, branch and bound methods are expensive
other evolutionary algorithms used for clustering. ever for moderate number of data points and moderate number of
Index Terms— Clustering, genetic algorithms, global optimization, clusters. A detailed discussion on clustering algorithms can be found
K-means algorithm, unsupervised learning. in [3].
The simplest and most popular among iterative and hill climbing
clustering algorithms is the K-means algorithm (KMA). As mentioned
. INTRODUCTION above, this algorithm may converge to a suboptimal partition. Since
Evolutionary algorithms are stochastic optimization algorithmstochastic optimization approaches are good at avoiding convergence
based on the mechanism of natural selection and natural geneticsfd]a locally optimal solution, these approaches could be used to
They perform parallel search in complex search spaces. Evolutiongind a globally optimal solution. The stochastic approaches used in
algorithms include genetic algorithms, evolution strategies and evoltlustering include those based on simulated annealing, genetic algo-
tionary programming. We deal with genetic algorithms in this papertithms, evolution strategies and evolutionary programming [4]-[11].
Genetic algorithms (GA's) were originally proposed by Holland [2]Typically, these stochastic approaches take a large amount of time to
GA'’s have been applied to many function optimization problems arénverge to a globally optimal partition. In this paper, we propose an
are shown to be good in finding optimal and near optimal solutiongigorithm based on GA, prove that it converges to the global optimum
Their robustness of search in large search spaces and their domgif probability one and compare its performance with that of some
independent nature motivated their applications in various fields ligg these algorithms.
pattern recognition, machine learning, VLSI design, etc. In this paper,Genetic algorithms (GA’s) work on a coding of the parameter
Manuscript received September 4, 1995; revised August 27, 1997 a%%t over which the search has to be performed, rather_than the
March 10, 1998. parameters themselves. These encoded parameters aresoalkiehs
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over generations During each generation, they produce a new Il. PARTITIONAL CLUSTERING
population from the current population by applying genetic operatorsthe main objective of the clustering algorithm under consideration
viz., natural selection, crossover, and mutatioBach solution in s to partition a collection of. given patterns, each pattern is a vector

the population is associated with a figure of merit (fitness valug} dimensiond, into K groups such that this partition minimizes the
depending on the value of the function to be optimized. The selectigQycy, which is defined as follows.

operator selects a solution from the current population for the next| et {», i =1, 2, ---, n} be the set of. patterns. Let:;; denote
population with probability proportional to its fitness value. Crossovekn feature of,. Define fori = 1, 2, -+, n andk = 1, 2, - - -, K,
operates on two solution strings and results in another two stings.
Typical crossover operator exchange the segments of selected stings Wi = { 1, if ith pattern belongs téth cluster,
across a crossover point with a probability. The mutation operator ! 0, otherwise.
toggles each position in a string with a probability, called the
mutation probability For a detail study on GA, readers are referrednen, the matrixi?" = [w;;] has the properties that
to [12]. Recently, it has been shown that the GA’s that maintain the "
best discovered solution either before or after the selection operator w;; € {0, 1} and, Z wi; = 1. )
asymptotically converge to the global optimum [13]. =

There have been many attempts to use GA'’s for clustering [7], [8],

@)

[11]. Even though all these algorithms, because of mutation, magt the centroid of théth cluster bery, = (ck1, cro, -+, cka), then
converge to the global optimum, they face the following problems .

in terms of computational efforts. In the algorithms where the Z'u’ikl’ij

representation of chromosome is such that it favors easy crossover, P ’

the fitness evaluation is very expensive as in [7]. In the algorithms Cki = T - @)
where the fitness evaluation is simple, either the crossover operation Zwk

is complicated or it needs to be repeatedly applied on chromosomes i=1

to get legal strings [8], [11]. In this sense, selection and crossover &8 within-cluster variation ofth cluster is defined as
complementary to each other in terms of computational complexity. '

GA's perform most efficiently when the representation of the . n d .
search space under consideration has a natural structure that facilitates sOw) = > wi Y (wij = )’ (4)
efficient coding of solutions. Also, genetic operators defined on these =1 i=1
codes must produce valid solutions with respect to the problem. Thﬂﬁd the total within-cluster variation (TWCV) is defined as
in order to efficiently use GA'’s in various applications, one has to
specialize GA'’s to the problems under consideration by hybridizing K K d
them with the traditional gradient descent approaches. A hybrid GA Sy =>" S =33 wi 3 (@i, — ) ()
that retains, if possible, the best features of the existing algorithm, k=1 k=1 i=1 j=1
could be the best algorithm for the problem under consideration. . . .
Davis also made these observations in his handbook [14]. Since K menme; this |ialso c*allem]L.Jare-elrr.or.(SE) mgasgré’he objec-
. . . . . tive is to find aW™ = [w},] which minimizesS(W), i.e.,
is computationally attractive, apart from being simple, we chose this
algorithm for hybridization. The resulting hybrid algorithm is called S(W*) = min {S(W)}.
thegenetic K-means algorithfGKA). We use the K-means operator, w
one step of KMA, in GKA instead of the crossover operator used
in conventional GA’s. We also define a biased mutation operat%ri
specific to clustering, called distance based mutation, and use it 4 . : P : .
GKA. Thus, GKA combines the simplicity of the K-means algorithrqn ; briefly explain below one of its simple variant that will be used

d the rob f GA's. Using finite Mark hain th he development of GKA. KMA is an iterative algorithm. It starts
and the robust nature o s. Using finite Markov chain theory, Wiy, 4 random configuration of cluster centers. In every iteration, each

derllvi c”ondltlc_)ns lon th_e_ parameters of GKA for its convergence b%ttern is assigned to the cluster whose center is the closest center
a 3\/0 a ydoptlma p_artltlon. | he sianif  th to the pattern among all the cluster centers. The cluster centers in
e conduct experiments to analyze the significance of the operatgrs hq; jteration are the centroids of the patterns belonging to the

“se‘?' in GKA and the performance of GKA on dlffe_rent d(_s\ta sets a'&%rresponding clusters. The algorithm is terminated when there is no
varying sizes of search spaces. We show through simulations that ey, signment of any pattern from one cluster to another or the SE

if many duplicates_ c_)f KMA s_tartin_g with different !nitial partitions_aremeasure ceases to decrease significantly after an iteration. A major
run, the best partition obtained is not necessarily a global optimug}yhiem with this algorithm is that it is sensitive to the selection of
whereas almost every run of GKA eventually converge to a globallyiia| nartition and may converge to a local minimum of SE if the
optimal partition. We also_compare the performance _of GKA Wlt.h_]itial partition is not properly chosen.

that of some of the algorithms based on GA, evolution strategies

and evolutionary programming, which possibly converge to a global

optimum, and show that GKA is faster than them. In the next section, lll. GENETIC K-MEANS ALGORITHM

the statement of the problem under consideration along with a briefAs in GA, GKA maintains a population of coded solutions. The
description of KMA is given. The proposed algorithm is explained ipopulation is initialized randomly and is evolved over generations;
Section IV. In Section V, the conditions on the parameters of GK#e population in the next generation is obtained by applying genetic
are derived which ensure its convergence to the global optimum. Téyeerators on the current population. The evolution takes place until a
algorithm is tested on British town data (BTD) and German town datearminating condition is reached. The genetic operators that are used
(GTD). Details of simulations and results are presented in Section V. GKA are the selection, the distance based mutation and the K-
We conclude with a summary of the contributions of this paper imeans operator. In this section we explain GKA by specifying the
Section VII. coding and initialization schemes and, the genetic operators.

n

KMA is the most popularly used algorithm to find a partition that
nimizes SE measure. There are many variations of the KMA [3].
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1) Coding: Here the search space is the space o¥fdlmatrices above mutation may result in the formation of empty clusters with
that satisfy (2). A natural way of coding suék into a string,si», a nonzero probability. It may be noted that smaller the number of
is to consider a chromosome of lengthand allow each allele in the clusters, larger the SE measure; so empty clusters must be avoided.
chromosome to take values frofd, 2, ---, K'}. In this case, each A quick way of detecting the possibility of empty cluster formation
allele corresponds to a pattern and its value represents the cluigecheck whether the distance of the datafrom its cluster center
number to which the corresponding pattern belongs. This is possible, ;) is greater than zero. It may be noted that, ;) = 0 even
because [refer to (1)] for all, w;x = 1 for only onek. This type in the case of nonsingleton clusters wherein the data point and the
of coding isstring-of-group-numbers encodir{§]. GKA maintains center of the cluster are the same. Thus, an allele is mutated only
a population of such strings. whend,, ; > 0. The strings that represed{ nonempty clusters

2) Initialization: The initial population’P(0) is selected ran- are calledlegal strings otherwise, they are calledlegal strings
domly. Each allele in the population can be initialized to a clustétach allele in a chromosome is mutated as described above with
number randomly selected from the uniform distribution over th& probability P,,,, called mutation probability. We call this mutation
set{1, ---, K}. In this case, we may end up wiiliegal strings DBML in the sequel. It will be shown in Section V that this mutation
strings representing a partition in which some clusters are emphglps in reaching better solutions. A pseudo-code of the operator is
with some nonzero probability. This is avoided by assigninghe given below.
greatest integer which is less thajp /', randomly chosen data points
to each cluster and the rest of the points to randomly chosen clusters. Mutation(sw)

3) Selection: The selection operator randomly selects a chromo- {for i=1ton
some from the previous population according to the distribution given {if (drand() < Pn)

by { Calculate cluster centers;’s,
. F(s) corresponding ta v ;
P(si) = N ®) forj=1to K, d; = d(=:, ¢;);
> F(s)) it (dsy (i) > 0)
=1 { dmax = max{di, d2, - -+, di }

for j=11to K, )
Pi = (ot = ;) T (Conunas — i)
sw (i) = a number, randomly selected from
{1, 2, .--, K'} according to the
distribution{p1, p2, -+, pr };

whereF (s;) represents fitness value of the stringn the population
and is defined in the next paragraph. We use the roulette wheel
strategy for this random selection.

Solutions in the current population are evaluated based on their
merit to survive in the next population. This requires that each
solution in a population be associated with a figure of merit or a fithess t
value. In the present context, the fitness value of a solution string }
sw depends on the total within-cluster variati®i{}’). Since the . 1
objective is to minimize5 (W), a solution string with relatively small 1 . o
square error must have relatively high fitness value. There are many ( drand(.) reuns a uniformly distributed random
ways of defining such a fitness function [12]. We usedkeuncation number in the rangf9, 1)
mechanism for this purpose. Let(sw) = —S(W), g(sw) =
f(sw) — (f —¢- o), wheref ando denote the average value and,
standard deviation of (sw ) in the current population, respectively.
is constant between 1 and 3. Then, the fitness valugiyof F(s ),
is given by

5) K-Means Operator: The algorithm with the above selection

nd mutation operators may take more time to converge, since the

initial assignments are arbitrary and the subsequent changes of the

assignments are probabilistic. Moreover, the mutation probability is

forced to assume a low value because high value®,pflead to

Flsw) = {g(sw), if g(sW:) >0 % oscillating behavior of the algorithm. To improve this situation, a
0, otherwise. one-step K-means algorithm, named K-means operator (KMO), is

4) Mutation: Mutati h llel lue d i ¢ introduced. Letsy, be a string. The following two steps constitute
) Mutation: Mutation changes an allele value depending on MO on sy which yields s :

distances of the cluster centroids from the corresponding data point, . . .

It may be recalled that each allele corresponds to a data point ang) calcullate cluster centers using (3) for the.glven maltrix

its value represents the cluster to which the data point belongs. Anz) reassign each data pgjnt to the cluster with the nearest cluster
operator is defined such that the probability of changing an allele center and thus form¥.
value to a cluster number is more if the corresponding cluster cenfdtere is a penalty to be paid for the simplicity of this operator. The
is closer to the data point. To apply the mutation operator to th@sulting stringsy; may represent a partition with empty clusters,
allele sy (i) corresponding to patters;, let d;, = d(x:, c;) be the i.e., KMO may result in illegal strings. We convert illegal strings to
Euclidean distance between andc,. Then, the allele is replaced l€gal strings by creating desired number of new singleton clusters.

with a value chosen randomly from the following distribution: ~ This is done by placing in each empty cluster a patterinom the
clusterC with the maximum within-cluster variation [refer to (4).

pi=Prsw(i) =j} = — (8) is the farthest from the cluster center of the clugterSince KMO
and DBML1 are applied again and again on these strings, it should not
Z (C7ndn1ax’ - dl) " . )
— matter how the splitting is done. We chose to do as above because this
_ 7 technique is found to be effective and computationally less expensive.
where ¢, is a constant usualll and dpax = max; {d;}. In 6) GKA: A pseudo-code for GKA is given in Fig. 1. To start
case of a partition with one or more than one singleton clusters, thh, the initial population is generated as mentioned above and the

Le,, is introduced because, in Section IV, we ngedto be nonzero for subsequent populations are obtained by the application of selection,

all j to prove the convergence of GKA. This forces to be strictly greater DBM1 and KMO over the previous population. The algorithm is
than 1. terminated when the limit on the number of generations is exceeded.

Cmdmax — dj
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Fig. 1. GKA with and without K-mean pass on BTD.
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Hence{P(t)}+>0 is a Markov chain. Also, the transition probabilities
are independent of the time instant, i.e., if

pi;i(t) = Pr{P(t) =p;|P(t—1) = p;}

then p;;(s) = pi;(t) for all p;, p;, € S and for all s, + > 1.
Therefore,{P(¢)}+>0 is a time-homogeneous finite Markov chain.
Let P = (p:;) be thetransition matrixof the process{P(¢)}i>0.
The entries of the matri¥ satisfy p;; € [0, 1] and Z"i'] pij =
1Vi e S. Any matrix whose entries satisfy the above conditions is
called astochastic matrixSome definitions are given below which
will be used in the rest of this section.

1) Definition 1: A square matrixA: m x m is said to bepositive
if a;j > 0Vi, j €{1,2,---, m} and, is said to berimitive, if there
exists a positive integet such thatA* is positive. A square matrix
is said to becolumn-allowablegif it has at least one positive entry in
each column. O

In the following theorem, it is required thRt be a primitive matrix.

The output of the algorithm is the best solution encountered duriRg, first we investigate the conditions on the operators which make

the evolution of the algorithm.

IV. ANALYSIS

It has been shown using finite Markov chain theory that tr\?/hereK

the matrixP primitive. The probabilistic changes of the chromosome
within the population caused by the operators used in GKA are
captured by the transition matriR, which can be decomposed in
a natural way into a product of stochastic matridés= K - M - S,

M, andS describe the intermediate transitions caused by

canonical genetic algorithms converge to the global optimum [l?il'-means, mutation and selection operators respectively.

We prove the global convergence of GKA along similar lines by 2) Proposition 2: Let K, M, andS be stochastic matrices, where
deriving conditions on the parameters of GKA that ensure the globg} ;¢ positive ands is column-allowable. Then the produkt- M - §

convergence.
Consider the procesgP(t)}.>0, WwhereP(t) represents the pop-

is positive.
Since every positive matrix is primitive, it is therefore, enough to

ulation maintained by GKA at generatign The state space of this find the conditions which maka&f positive andS column-allowable.

process is the space of all possible populatiSnand the states can

be numbered from 1 t¢S|. As mentioned earlier, the state space
is restricted to the populations containing legal strings, i.e., string:f:

3) Conditions on Mutation: The matrixM is positive if any string
€ S can be obtained from any another string on application of
e corresponding mutation operator. The mutation operator (DBM1)

5

representing partitions with™ nonempty clusters. From the def'mt'ondefined in the previous section does not ensure this because the alleles

of GKA, P(t + 1) can be determined completely B(¢), i.e.,

PH{P(t) =pe|P(t — 1) = pt—1, -+, P(0) = po}
=Pr{P(t) =p|P(t—1) = psr_1}

GeneticK-Means Algorithm
Input :
Mutation Probability,P,,;
Population size)V;
Maximum number of generatiod/ AX GEN;
Output : Solution string,s™*;
{ Initialize the populationp;
geno = MAX_GEN,
s* = P1; (P; is theith string inP)
while (geno > 0)
Calculate Fitness values of stringsh
P = Selection  (P);
for i=1to N,P; =Mutation (P;);
for i=1to N, K-Means(P;);
s = string inP such that the corresponding weight
matrix W, has the minimum SE measure;
if (S(We+) > S(Ws)), s" =s;
geno = geno — 1;
}

outputs™;

are not mutated i, (;y = 0. DBML1 is slightly modified to make the
corresponding transition matrid positive. The modified operator is
referred to as DBM2. DBM2 changes each allele, irrespective of the
value ofd,,, ), according to the distribution in (8). This may result
in an illegal string, with some small nonzero probability, in the cases
whered, . ;; = 0. If this operation results in an illegal string, the
above procedure is repeated till we get a legal string,..Ifin (8) is
strictly greater than one then all;’s are strictly greater than zero.
This implies that DBM2 can change any legal string to any other
legal string with nonzero probability. Hence, the transition mahdix
corresponding to DBM2 is positive.

4) Conditions on SelectionThe probability of survival of a string
in the current population depends on the fitness value of the string;
so is the transition matrix due to selectiof, Very little can
be said aboutS if the fitness function is defined as in (7). The
following modification to the fitness function will ensure the column-
allowability of S. Let

F(SVV) = Cg - Smax - S(I/Vv) (9)

whereSmax is the maximum square error that has been encountered
till the present generation and > 1. Then the fitness values of
all the strings in the population are strictly positive and hence the
probability of survival of any string in the population after selection
is also strictly positive. Therefore, the probability that selection does
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not alter the present state,;, can be bounded as follows: 185 . . . ; .
F(s1) F(sw) 180 4

N N
ZF(S,) ZF(S() 175 §
=1 =1

N 170 4
[IFGo
=1

=5 - >0VieS

N
(Z F(é’l))
=1

Sii >

165 H E

Square Error

155 H / Without Mutation -

wheres; is thelth string in the population under consideration. Even || |

though this bound changes with the generation, it is always strictly | / With Mutation

positive. Hence, under this modificatighis column-allowable. 145 -i;\ i
5) Theorem 3: Let W, be the weight matrix (1) corresponding to S 7

the strings. Let X (t) = S(W,(;)), wheres™(¢) is the string, with O T T a0 s 80 100 120 1e0 1s0 1m0 200

Generations

the least SE measure, encountered during the evolution of GKA till
the time instant. Let DBM2, with¢,,, > 1, be the mutation operator Fig. 2. GKA with and without the distance based mutation on BTD.
and the fitness function be as defined in (9). Then

flin; PriX(t)=5"}=1 (10) output strings of ten different runs of GKA. In all the experiments,
the value of N, the population size, was set to 50 and the value of
¢, the constant in (7), was set to 2. The mutation @tgewas set to
0.05 wherever DBM1 is used.

whereS* = min {S(i)|: € T}, T is the set of all legal strings.

6) Sketch of the Proofit is proved [13, Theorem 6] that a canon-
ical GA, whose transition matri® is primitive and, which maintains . . .
the best solution found over time, converges to the global optim 1238\/'\?;'20:”0&? I;::A(;?Sd EBMllfﬁ:WSV\;EE SaEndme\;VgS:)eUtover
In the sense given in (10). Under the hypothesis of the theorem, héenerations CF())?'res ondin fo th%é experiment. Although it can be
transition matrix of GKA is primitive. This is evident from the above - P g fo b - ATnoug
discussion. It may be noted that the GKA defined in Fig. 1 maintair?sf]alynca”y shown that GKA without KMO asymptotically converges

Lo . L ' t0 the global optimum, the algorithm becomes very slow after some
the best solution found till the current time instant. Thus, the theorem,. . . .
follows from [13, Theorem 6] O initial generations as shown in Fig. 1. It can be observed from

The above theorem implies thai(¢), the least SE measure of theF|g. 1 that KMO significantly increases the speed of convergence of

strings encountered by GKA till the instantconverges to the global the algorithm. In fact, this is the main reason for using a gradient

optimum S™, with probability 1 descent step in GA's.
7) Remark 1—On MutationDBML is less computationally ex- In the next experiment, GKA with and without DBM1 were applied

pensive than DBM2. Since the performance of GKA remains same BTD'. The cor_resppndmg results are shgwn n Fig. 2 Itis to be
o : - emphasized at this point that the SE shown in the graph is the average
with either of the mutation operators, we have used the earlier one’in . .
- . e ) over 10 runs of GKA. It was observed, in the case of GKA without
simulations. It has been observed that small variations in the val -
o -DBML1, that even though the minimum of SE values among these 10
of ¢, do not significantly affect the performance of GKA. Hence, in . . .
. . . S runs reached the best known optimum, the average is still at a higher
simulation results reported in the next sectiop, is set to one. S . . ;
. L ; . value as shown in this figure. This shows that GKA without mutation
8) Remark 2—On Fitness FunctiorGKA was simulated using is.not always ensured to reach the global optimum. It is observed
(7) as well as (9) as fitness functions. It has been noted that . Y 9 P | '

o-truncation mechanism performed much better than the other tec 5. In the case of any evolutionary algorithm, that lower mutation

. . . . ates make the GKA converge slowly and higher rates also slow
nigue. So, we user-truncation mechanism for the experimenta S .
study down the convergence of GKA. This is so because at low mutation

rate, mutation is hardly applied on the strings and at higher rates,
the chromosomes keep changing frequently and give no time to the
V. EXPERIMENTAL STUDY algorithm to exploit the search space around the solution. In fact, this
We conducted experiments using GKA on two data sets. The tigthe only parameter that controls the performance of GKA.
data sets were German town data (GTD) [15] and British town dataThus, the two operators, KMO and DBM1, play very important
(BTD) [16]. GTD consists of Cartesian coordinates of 59 towngles; KMO helps in speeding up of convergence and DBML1 in the
in Germany. BTD consists of 50 samples each of four variablgdobal convergence of GKA.
corresponding to the first four principal components of the original 2) Performance of GKA:In the next set of experiments, GKA
data [16]. We report the results of four sets of experiments in thigas applied on both the data sets for different number of clusters.
section. First, the significance of KMO and DBML1 in finding theThe SE measures corresponding to BTD and GTD with different
global optimum is examined. The performance of GKA on GTmumber of clusters are given in the second columns of Tables | and
and BTD for different number of clusters is considered next. Thirdl, respectively. It is observed that GKA took more time to reach
we compare the performance of many duplicates of KMA witthe optimal partition as the number of clusters increases. This is
that of GKA. Finally, the performance of GKA is compared withvery much expected since the increase in the number of clusters
that of the algorithms based on evolutionary strategies (ES) aingreases the size of the search space combinatorially, hence it is
evolutionary programming (EP) [11], GA and the greedy algorithm®ore difficult to find a globally optimal solution. However, it is also
viz., alternating first-best (AFB) and, alternating best-first (ABF) [7jobserved that in all the cases, average SE eventually converged to the
Since GKA is a stochastic algorithm, the average SE value repor@@bal optimum. This is in concurrence with the convergence result
in all the simulation results is the average of the SE values of tiderived in the previous section.
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TABLE | 150 } T T T
COMPARISON OF ACCURACY OF DIFFERENT
ALGORITHMS WITH THAT OF GKA oN GTD 1o Ll |
K GKA ES EP GAX | ABF !
Avg (min) Avg (min) Avg (min) 130 "\‘ 1
4 | 49600.59(49600.59) | 49600.59(49600.59) | 49600.59(49600.59) | 49600 | 49600 il
5 | 38716.02(38716.02) | 38716.02(38716.02) | 38716.02(38716.02) | 38716 | 38716 g 120 \ ]
6 | 30535.39(30535.39) | 30535.39(30535.39) | 30543.66(30535.39) | 30535 | 30535 & | \\ K-Means: Average
7 | 24432.57(24432.57) | 24432.57(24432.57) | 24434.70(24432.57) | 24432 | 24432 & 11O 7
8 | 21497.81(21483.02) | 21523.10(21483.02) | 21491.95(21483.02) | 21483 | 21499 K-Means: Best GHA: Average
9 | 18787.21(18550.44) | 18550.44(18550.44) | 18722.56(18550.44) | 18550 | 18970 or l l 1
10 | 16526.23(16307.97) | 16429.86(16307.97) | 16498.89(16307.97) | 16353 | 16711 B ot M s
90 T B!
GKA: Best
50 . . ; ‘
TABLE I 0 2 g)enerat\ons/!leraliogg & 1%
COMPARISON OF ACCURACY OF DIFFERENT . . .
ALGORITHMS WITH THAT OF GKA oN BTD Fig. 3. Numerical demonstration of global convergence property of GKA
using BTD.
K GKA ES EP KMA
Avg (min) Avg (min) Avg (min) Avg (min)

compare with the results of GKA. Different GA’s have been used in
clustering [7], [8], [11]. We consider a representative among these
viz., the one given in [7]. In [7], two crossover operators are defined
and the GA'’s using these operators were applied on GTD. Of the two
crossover operators, the GA using the first crossover showed better
110.31(105.01 performa_nce than the_ other. We refer to the GA with this crossover
e as GAX in the following text and quote the results reported in [7]
110.93(95.20). using GAX. The performance of GAX was compared with two greedy
algorithms AFB, ABF in [7]. Among AFB and ABF, ABF performed
better than AFB. So, we quote here the results of ABF. The results on
) o . ) . GTD and BTD are compiled in Tables | and Il, respectively. In these
3) Comparison withi -Means Algorithm (KMA): In  this experi- 5pje5 the columns corresponding to GKA, ES, and EP contain the
ment, we consider partitioning of BTD into 10 clustés = 10).  ayerage and minimum SE measure of the solutions obtained by the
Fig. 3 shows the average and the best SE values obtained in fgthithms after 50 generations. The columns corresponding to GAX
independent runs of GKA during the first 100 generations. The valug$ntain the best SE measure of the solutions found by GAX after 40
corresponding to KMA are also plotted in Fig. 3. Since each GKA(generations as reported in [7]. ABF algorithm, being a deterministic
maintaining a population 50 solutions and, we considered ten in gorithm, converges to a local optimum. Reported here are the best
pendent runs of GKA's to obtain the values plotted in the figure, {@sults obtained from 40 random initial cluster configurations. Since
make the comparison more meaningful, we considered 500 duplicaigs time taken by ABF to reach the optimum highly depends on
of KMA starting with different random initial configurations. Sincethe initial configuration, we do not analyze the time complexity
all theses trials converged well within 20 iterations, we have plotteg this algorithm. We have applied 500 copies of KMA, starting
the corresponding values up to only 50 iterations. with different random initial clusters, on BTD for various number
It can be observed from Fig. 3 that, in case of GKA, the averagg clusters. The obtained results are given in Table Il. As mentioned
SE value is approaching the best SE value, whereas it is not in cageve, the difference between the average and the best SE, in case
of KMA. This again shows that almost every run of GKA eventuallbf KMA, is increasing with the number of clusters. This implies that
converges to a globally optimal partition, numerically verifying thevhen the number of clusters is large, the algorithms, that converge to
convergence result proved in the previous section. The performarcical optimum, can give a really bad solution. Again in this case,
of KMA is not surprising because KMA typically converges to a localve do not compare the time complexities of GKA and KMA.
optimum. Therefore, from this graph we can infer that even if KMA 5) Complexity of GKA: The complexity of evaluation of SE of a
starts with the same number of initial configurations as in GKA, given solution string i€)(nd), the complexity of mutation operator is
is not assured to reach the global optimum. The situation becont@&:”d) and K-means operator 8(n K d). Since the mutation rate is
worse when the search space is large and there are many local optweay small, the effective number of times the operator is applied to an
The figure also shows that in every iteration/generation, the best ailkle in a string is only a fraction (equal to mutation rate) of the total
average SE corresponding to GKA is less than those correspondmgnber of alleles. Moreover, K-means operator is a gradient descent
to KMA. The extra computational effort made by GKA in everyoperator and it does not change the string once it reached a local
generation, is that of DBM1 and selection operators. optimum unless the string is disturbed by mutation. Also since KMO
4) Relative PerformanceThe accuracy and speed of GKA werds deterministic, if a string is not changed in the previous generation
compared with those of the following algorithms. In [10] and [11]then there is no need to apply KMO on the string again. In fact,
the performance of different algorithms based on ES and EP appliMO is operational only in the initial phases of the evolution; in the
on GTD and BTD are reported. In each case, one version of tléder phases, it is effective only when the strings are disturbed by
algorithm is identified by the respective researchers, to be the b@uttation. Therefore, the effective computations can be reduced if the
on these data sets. We use the results of these identified versiongh@nges in strings in a population are stored.

180.91(180.91)
160.23(160.23)
141.46(141.46)
126.29(126.29)
113.99(113.50)
103.52(102.74)
10| 93.40(92.68)

180.91(180.91)
160.30(160.23)
141.85(141.46)
127.70(126.28)
115.13(113.50) | 114.25(113.50)
103.92(103.21) | 104.39(102.74)
94.75(92.68) | 93.97(92.68)

180.91(180.91)
160.26(160.23)
141.65(141.46)
126.79(126.28)

189.51(180.91)
168.83(160.23)
152.27(141.46)
140.01(128.00)
128.90(115.65)
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6) Complexity of ES and EPIn ES, each solution contains cen-and complicated crossover operators as well as computationally
troids and strategic parameters associated with each component ofetkigensive function evaluations are avoided. It has been shown that
centroids. In each generation, the algorithm calculates fitness valk@®40 significantly improved the speed of convergence of GKA.
of all the strings in the population. The offspring are generated [ihe distance based mutation, DBM1, acts as a generator of biased
recombining randomly selected solutions and mutating each resultiagiddom perturbations on the solutions, otherwise moving along the
solution by adding Gaussian noise to each component of the centrogiadient with the possibility of getting stuck at a local optimum.
The variance of the Gaussian noise is decided by the strate@ious, mutation helps GKA avoid local minima. The selection operator
parameters. In every generation, the strategic parameters are updaidies a focused parallel search. It has been shown by analysis
The next population is obtained by selecting the best among pareagl through simulations that almost every run of GKA eventually
and offspring of the current population. converges to a globally optimal partition. The performance of GKA

In case of EP, solutions contain just centroids. In each generatigsis been compared with that of some representatives of evolutionary
EP evaluates the fitness value of each solution in the population angorithms, which are used for clustering and are supposed to
calculates variance of the zero-mean Gaussian noise, that is tocbverge to a global optimum. It turns out that GKA is faster than
added by the mutation operator to the solutions, based on the fitngfsse algorithms.
value of the solutions. The stochastic tournament strategy is usedVe conjecture that for any complicated search problem, a combi-
on the parents and offspring in the current generation to get thgtion of known best gradient descent step specific to the problem
next population. Though tournament strategy is very expensive, #igd knowledge-based biased random mutation may form competent
presence of recombination operator in ES makes both ES and &frators. These operators along with the selection operator may yield
equally computationally expensive. a good hybrid GA for the problem under consideration. In such a

The fitness function used in both these algorithms is as followgase, the resulting hybrid GA would retain all the best features of
Each pattern is assigned to the cluster with the nearest centroid. BagRdgradient descent algorithm. GKA is an instance of this type of
on these assignments new cluster centers are computed and agg#idization. In this manner, the present work demonstrates with an
data are assigned to different clusters as before. The fitness valug)gjmme a way to obtain good hybrid GA’s for a variety of complex
the solution is the SE value of this assignment. So, in this case ﬁ!ﬂ%blems.
fitness value computation is twice as expensive as that in GKA. The
ES and EP, that gave the above results, evaluate the fitness function ACKNOWLEDGMENT
of 100 solutions, which include both parents and offspring, in every

. ; ) . ..~ The authors would like to thank the anonymous referees for their
generation. This makes the fitness computation by these algorithm : . :
. . - . valuable comments on an earlier version of this paper. The authors
four times as expensive as that by GKA in every generation. Eve . . :
. . . L also thank M. T. Arvind for his useful comments and suggestions
if we assume that KMO is applied on every solution in all th% this paper
generations, computational effort needed to find SE value and appﬂl paper.

KMO and DBM1 by GKA is much less than (almost three quarters)
that needed to find the fitness value by ES and EP. Therefore, the
overall computational effort by GKA is much less than that by ES[1] D. B. Fogel, *An introduction to simulated evolutionary optimization,”
or EP. Even though the average SE in case of ES and EP appeari IEEE Trans. Neural Networks/ol. 5, no. 1, pp. 314, 1994.

:

. . J. H. Holland, Adaptation in Natural and Artificial SystemsAnn
have been converging to the best SE value in these examples, th Arbor, MI: Univ. of Michigan Press, 1975.

is no formal proof of convergence of these algorithms to the globajs] A. K. Jain and R. C. DubesAlgorithms for Clustering Data. Engle-
optimum. wood Cliffs, NJ: Prentice-Hall, 1989.
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