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Genetic K-Means Algorithm

K. Krishna and M. Narasimha Murty

Abstract—In this paper, we propose a novel hybrid genetic algorithm
(GA) that finds a globally optimal partition of a given data into a specified
number of clusters. GA’s used earlier in clustering employ either an
expensive crossover operator to generate valid child chromosomes from
parent chromosomes or a costly fitness function or both. To circumvent
these expensive operations, we hybridize GA with a classical gradient
descent algorithm used in clustering viz., K-means algorithm. Hence, the
name genetic K-means algorithm (GKA). We define K-means operator,
one-step of K-means algorithm, and use it in GKA as a search operator
instead of crossover. We also define a biased mutation operator specific
to clustering called distance-based-mutation. Using finite Markov chain
theory, we prove that the GKA converges to the global optimum. It is ob-
served in the simulations that GKA converges to the best known optimum
corresponding to the given data in concurrence with the convergence
result. It is also observed that GKA searches faster than some of the
other evolutionary algorithms used for clustering.

Index Terms— Clustering, genetic algorithms, global optimization,
K-means algorithm, unsupervised learning.

I. INTRODUCTION

Evolutionary algorithms are stochastic optimization algorithms
based on the mechanism of natural selection and natural genetics [1].
They perform parallel search in complex search spaces. Evolutionary
algorithms include genetic algorithms, evolution strategies and evolu-
tionary programming. We deal with genetic algorithms in this paper.
Genetic algorithms (GA’s) were originally proposed by Holland [2].
GA’s have been applied to many function optimization problems and
are shown to be good in finding optimal and near optimal solutions.
Their robustness of search in large search spaces and their domain
independent nature motivated their applications in various fields like
pattern recognition, machine learning, VLSI design, etc. In this paper,
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we propose an algorithm, that is a modification of GA, for clustering
application.

Clustering has been effectively applied in a variety of engineering
and scientific disciplines such as psychology, biology, medicine, com-
puter vision, communications, and remote sensing. Cluster analysis
organizes data (a set of patterns, each pattern could be a vector
measurements) by abstracting underlying structure. The grouping is
done such that patterns within a group (cluster) are more similar
to each other than patterns belonging to different groups. Thus,
organization of data using cluster analysis employs some dissimilarity
measure among the set of patterns. The dissimilarity measure is
defined based on the data under analysis and the purpose of the
analysis. Various types of clustering algorithms have been proposed
to suit different requirements. Clustering algorithms can be broadly
classified into hierarchical and partitional algorithms based on the
structure of abstraction. Hierarchical clustering algorithms construct
a hierarchy of partitions, represented as adendrogram in which
each partition is nested within the partition at the next level in the
hierarchy. Partitional clustering algorithms generate a single partition,
with a specified or estimated number of nonoverlapping clusters, of
the data in an attempt to recover natural groups present in the data. In
this paper, we confine our attention to partitional clustering of a given
set of real-valued vectors, where the dissimilarity measure between
two vectors is the Euclidean distance between them.

One of the important problems in partitional clustering is to find a
partition of the given data, with a specified number of clusters, that
minimizes the total within cluster variation (TWCV) (which is defined
below). We address this problem, viz., minimization of TWCV, in the
present paper. In general, partitional clustering algorithms are iterative
and hill climbing and usually they converge to a local minimum.
Further, the associated objective functions are highly nonlinear and
multimodal. As a consequence, it is very difficult to find an optimal
partition of the data using hill climbing techniques. The algorithms
based on combinatorial optimization such as integer programming,
dynamic programming and, branch and bound methods are expensive
ever for moderate number of data points and moderate number of
clusters. A detailed discussion on clustering algorithms can be found
in [3].

The simplest and most popular among iterative and hill climbing
clustering algorithms is the K-means algorithm (KMA). As mentioned
above, this algorithm may converge to a suboptimal partition. Since
stochastic optimization approaches are good at avoiding convergence
to a locally optimal solution, these approaches could be used to
find a globally optimal solution. The stochastic approaches used in
clustering include those based on simulated annealing, genetic algo-
rithms, evolution strategies and evolutionary programming [4]–[11].
Typically, these stochastic approaches take a large amount of time to
converge to a globally optimal partition. In this paper, we propose an
algorithm based on GA, prove that it converges to the global optimum
with probability one and compare its performance with that of some
of these algorithms.

Genetic algorithms (GA’s) work on a coding of the parameter
set over which the search has to be performed, rather than the
parameters themselves. These encoded parameters are calledsolutions
or chromosomesand the objective function value at a solution
is the objective function value at the corresponding parameters.
GA’s solve optimization problems using a population of a fixed
number, called thepopulation size, of solutions. A solution consists
of a string of symbols, typically binary symbols. GA’s evolve
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over generations. During each generation, they produce a new
population from the current population by applying genetic operators
viz., natural selection, crossover, and mutation. Each solution in
the population is associated with a figure of merit (fitness value)
depending on the value of the function to be optimized. The selection
operator selects a solution from the current population for the next
population with probability proportional to its fitness value. Crossover
operates on two solution strings and results in another two stings.
Typical crossover operator exchange the segments of selected stings
across a crossover point with a probability. The mutation operator
toggles each position in a string with a probability, called the
mutation probability. For a detail study on GA, readers are referred
to [12]. Recently, it has been shown that the GA’s that maintain the
best discovered solution either before or after the selection operator
asymptotically converge to the global optimum [13].

There have been many attempts to use GA’s for clustering [7], [8],
[11]. Even though all these algorithms, because of mutation, may
converge to the global optimum, they face the following problems
in terms of computational efforts. In the algorithms where the
representation of chromosome is such that it favors easy crossover,
the fitness evaluation is very expensive as in [7]. In the algorithms
where the fitness evaluation is simple, either the crossover operation
is complicated or it needs to be repeatedly applied on chromosomes
to get legal strings [8], [11]. In this sense, selection and crossover are
complementary to each other in terms of computational complexity.

GA’s perform most efficiently when the representation of the
search space under consideration has a natural structure that facilitates
efficient coding of solutions. Also, genetic operators defined on these
codes must produce valid solutions with respect to the problem. Thus,
in order to efficiently use GA’s in various applications, one has to
specialize GA’s to the problems under consideration by hybridizing
them with the traditional gradient descent approaches. A hybrid GA
that retains, if possible, the best features of the existing algorithm,
could be the best algorithm for the problem under consideration.
Davis also made these observations in his handbook [14]. Since KMA
is computationally attractive, apart from being simple, we chose this
algorithm for hybridization. The resulting hybrid algorithm is called
thegenetic K-means algorithm(GKA). We use the K-means operator,
one step of KMA, in GKA instead of the crossover operator used
in conventional GA’s. We also define a biased mutation operator
specific to clustering, called distance based mutation, and use it in
GKA. Thus, GKA combines the simplicity of the K-means algorithm
and the robust nature of GA’s. Using finite Markov chain theory, we
derive conditions on the parameters of GKA for its convergence to
a globally optimal partition.

We conduct experiments to analyze the significance of the operators
used in GKA and the performance of GKA on different data sets and
varying sizes of search spaces. We show through simulations that even
if many duplicates of KMA starting with different initial partitions are
run, the best partition obtained is not necessarily a global optimum,
whereas almost every run of GKA eventually converge to a globally
optimal partition. We also compare the performance of GKA with
that of some of the algorithms based on GA, evolution strategies
and evolutionary programming, which possibly converge to a global
optimum, and show that GKA is faster than them. In the next section,
the statement of the problem under consideration along with a brief
description of KMA is given. The proposed algorithm is explained in
Section IV. In Section V, the conditions on the parameters of GKA
are derived which ensure its convergence to the global optimum. The
algorithm is tested on British town data (BTD) and German town data
(GTD). Details of simulations and results are presented in Section VI.
We conclude with a summary of the contributions of this paper in
Section VII.

II. PARTITIONAL CLUSTERING

The main objective of the clustering algorithm under consideration
is to partition a collection ofn given patterns, each pattern is a vector
of dimensiond, into K groups such that this partition minimizes the
TWCV, which is defined as follows.

Let fxi; i = 1; 2; � � � ; ng be the set ofn patterns. Letxij denote
jth feature ofxi. Define fori = 1; 2; � � � ; n andk = 1; 2; � � � ; K,

wik =
1; if ith pattern belongs tokth cluster,
0; otherwise.

(1)

Then, the matrixW = [wij ] has the properties that

wij 2 f0; 1g and ;
K

j=1

wij = 1: (2)

Let the centroid of thekth cluster beck = (ck1; ck2; � � � ; ckd), then

ckj =

n

i=1

wikxij

n

i=1

wik

: (3)

The within-cluster variation ofkth cluster is defined as

S
(k)(W ) =

n

i=1

wik

d

j=1

(xij � ckj)
2 (4)

and the total within-cluster variation (TWCV) is defined as

S(W ) =

K

k=1

S
(k) =

K

k=1

n

i=1

wik

d

j=1

(xij � ckj)
2 (5)

Sometimes this is also calledsquare-error (SE) measure. The objec-
tive is to find aW � = [w�

ik] which minimizesS(W ), i.e.,

S(W �) = min
W

fS(W )g:

KMA is the most popularly used algorithm to find a partition that
minimizes SE measure. There are many variations of the KMA [3].
We briefly explain below one of its simple variant that will be used
in the development of GKA. KMA is an iterative algorithm. It starts
with a random configuration of cluster centers. In every iteration, each
pattern is assigned to the cluster whose center is the closest center
to the pattern among all the cluster centers. The cluster centers in
the next iteration are the centroids of the patterns belonging to the
corresponding clusters. The algorithm is terminated when there is no
reassignment of any pattern from one cluster to another or the SE
measure ceases to decrease significantly after an iteration. A major
problem with this algorithm is that it is sensitive to the selection of
initial partition and may converge to a local minimum of SE if the
initial partition is not properly chosen.

III. GENETIC K-MEANS ALGORITHM

As in GA, GKA maintains a population of coded solutions. The
population is initialized randomly and is evolved over generations;
the population in the next generation is obtained by applying genetic
operators on the current population. The evolution takes place until a
terminating condition is reached. The genetic operators that are used
in GKA are the selection, the distance based mutation and the K-
means operator. In this section we explain GKA by specifying the
coding and initialization schemes and, the genetic operators.
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1) Coding: Here the search space is the space of allW matrices
that satisfy (2). A natural way of coding suchW into a string,sW ,
is to consider a chromosome of lengthn and allow each allele in the
chromosome to take values fromf1; 2; � � � ; Kg. In this case, each
allele corresponds to a pattern and its value represents the cluster
number to which the corresponding pattern belongs. This is possible
because [refer to (1)] for alli; wik = 1 for only onek. This type
of coding isstring-of-group-numbers encoding[8]. GKA maintains
a population of such strings.

2) Initialization: The initial populationP(0) is selected ran-
domly. Each allele in the population can be initialized to a cluster
number randomly selected from the uniform distribution over the
set f1; � � � ; Kg. In this case, we may end up withillegal strings,
strings representing a partition in which some clusters are empty,
with some nonzero probability. This is avoided by assigningp, the
greatest integer which is less thann=K, randomly chosen data points
to each cluster and the rest of the points to randomly chosen clusters.

3) Selection: The selection operator randomly selects a chromo-
some from the previous population according to the distribution given
by

P (si) =
F (si)
N

j=1

F (sj)

(6)

whereF (si) represents fitness value of the stringsi in the population
and is defined in the next paragraph. We use the roulette wheel
strategy for this random selection.

Solutions in the current population are evaluated based on their
merit to survive in the next population. This requires that each
solution in a population be associated with a figure of merit or a fitness
value. In the present context, the fitness value of a solution string
sW depends on the total within-cluster variationS(W ). Since the
objective is to minimizeS(W ), a solution string with relatively small
square error must have relatively high fitness value. There are many
ways of defining such a fitness function [12]. We use the�-truncation
mechanism for this purpose. Letf(sW ) = �S(W ); g(sW ) =
f(sW ) � (f � c � �), wheref and� denote the average value and
standard deviation off(sW ) in the current population, respectively.c
is constant between 1 and 3. Then, the fitness value ofsW ; F (sW ),
is given by

F (sW ) =
g(sW ); if g(sW ) � 0
0; otherwise.

(7)

4) Mutation: Mutation changes an allele value depending on the
distances of the cluster centroids from the corresponding data point.
It may be recalled that each allele corresponds to a data point and
its value represents the cluster to which the data point belongs. An
operator is defined such that the probability of changing an allele
value to a cluster number is more if the corresponding cluster center
is closer to the data point. To apply the mutation operator to the
allele sW (i) corresponding to patternxi, let dj = d(xi; cj) be the
Euclidean distance betweenxi and cj . Then, the allele is replaced
with a value chosen randomly from the following distribution:

pj = PrfsW (i) = jg =
cmdmax � dj

K

i=1

(cmdmax � di)

(8)

where cm1 is a constant usually�1 and dmax = maxj fdjg. In
case of a partition with one or more than one singleton clusters, the

1cm is introduced because, in Section IV, we needpj to be nonzero for
all j to prove the convergence of GKA. This forcescm to be strictly greater
than 1.

above mutation may result in the formation of empty clusters with
a nonzero probability. It may be noted that smaller the number of
clusters, larger the SE measure; so empty clusters must be avoided.
A quick way of detecting the possibility of empty cluster formation
is check whether the distance of the dataxi from its cluster center
cs (i) is greater than zero. It may be noted thatds (i) = 0 even
in the case of nonsingleton clusters wherein the data point and the
center of the cluster are the same. Thus, an allele is mutated only
when ds (i) > 0. The strings that representK nonempty clusters
are calledlegal strings; otherwise, they are calledillegal strings.
Each allele in a chromosome is mutated as described above with
a probabilityPm, called mutation probability. We call this mutation
DBM1 in the sequel. It will be shown in Section V that this mutation
helps in reaching better solutions. A pseudo-code of the operator is
given below.

(sW )
f for i = 1 to n
f if ( () < Pm)
f Calculate cluster centers,cj ’s,
corresponding tosW ;

j = 1 to K, dj = (xi; cj);
(ds (i) > 0)
f dmax = maxfd1; d2; � � � ; dKg

j = 1 K,
pj = (cmdmax � dj)=

K

k=1(cmdmax � dk)
sW (i) = a number, randomly selected from

f1; 2; � � � ; Kg according to the
distributionfp1; p2; � � � ; pKg;

g
g

g
g
( () returns a uniformly distributed random
number in the range[0; 1])

5) K-Means Operator:The algorithm with the above selection
and mutation operators may take more time to converge, since the
initial assignments are arbitrary and the subsequent changes of the
assignments are probabilistic. Moreover, the mutation probability is
forced to assume a low value because high values ofPm lead to
oscillating behavior of the algorithm. To improve this situation, a
one-step K-means algorithm, named K-means operator (KMO), is
introduced. LetsW be a string. The following two steps constitute
KMO on sW which yieldss ~W :

1) calculate cluster centers using (3) for the given matrixW ;
2) reassign each data point to the cluster with the nearest cluster

center and thus form~W .

There is a penalty to be paid for the simplicity of this operator. The
resulting strings ~W may represent a partition with empty clusters,
i.e., KMO may result in illegal strings. We convert illegal strings to
legal strings by creating desired number of new singleton clusters.
This is done by placing in each empty cluster a patternx from the
clusterC with the maximum within-cluster variation [refer to (4)].x
is the farthest from the cluster center of the clusterC. Since KMO
and DBM1 are applied again and again on these strings, it should not
matter how the splitting is done. We chose to do as above because this
technique is found to be effective and computationally less expensive.

6) GKA: A pseudo-code for GKA is given in Fig. 1. To start
with, the initial population is generated as mentioned above and the
subsequent populations are obtained by the application of selection,
DBM1 and KMO over the previous population. The algorithm is
terminated when the limit on the number of generations is exceeded.
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Fig. 1. GKA with and without K-mean pass on BTD.

The output of the algorithm is the best solution encountered during
the evolution of the algorithm.

IV. A NALYSIS

It has been shown using finite Markov chain theory that the
canonical genetic algorithms converge to the global optimum [13].
We prove the global convergence of GKA along similar lines by
deriving conditions on the parameters of GKA that ensure the global
convergence.

Consider the processfP(t)gt�0, whereP(t) represents the pop-
ulation maintained by GKA at generationt. The state space of this
process is the space of all possible populationsS and the states can
be numbered from 1 tojSj. As mentioned earlier, the state space
is restricted to the populations containing legal strings, i.e., strings
representing partitions withK nonempty clusters. From the definition
of GKA, P(t+ 1) can be determined completely byP(t), i.e.,

PrfP(t) = ptjP(t� 1) = pt�1; � � � ; P(0) = p0g

=PrfP(t) = ptjP(t� 1) = pt�1g

GeneticK-Means Algorithm
Input :

Mutation Probability,Pm;
Population size,N ;
Maximum number of generation,MAX GEN ;

Output : Solution string,s�;
f Initialize the population,P;
geno = MAX GEN ;
s� = P1; (Pi is the ith string inP)
while (geno > 0)
f Calculate Fitness values of strings inP;

P̂ = Selection (P);
for i = 1 to N , Pi = Mutation (P̂i);
for i = 1 to N , K-Means (Pi);
s = string inP such that the corresponding weight

matrixWs has the minimum SE measure;
if (S(Ws ) > S(Ws)), s� = s;
geno = geno� 1;

g
outputs�;

g

HencefP(t)gt�0 is a Markov chain. Also, the transition probabilities
are independent of the time instant, i.e., if

pij(t) = Pr fP(t) = pj jP(t� 1) = pig

then pij(s) = pij(t) for all pi; pj 2 S and for all s; t � 1.
Therefore,fP(t)gt�0 is a time-homogeneous finite Markov chain.
Let P = (pij) be thetransition matrix of the processfP(t)gt�0.
The entries of the matrixP satisfy pij 2 [0; 1] and jSj

j=1 pij =
1 8 i 2 S. Any matrix whose entries satisfy the above conditions is
called astochastic matrix. Some definitions are given below which
will be used in the rest of this section.

1) Definition 1: A square matrixA:m�m is said to bepositive,
if aij > 08i; j 2 f1; 2; � � � ; mg and, is said to beprimitive, if there
exists a positive integerk such thatAk is positive. A square matrix
is said to becolumn-allowable, if it has at least one positive entry in
each column.

In the following theorem, it is required thatP be a primitive matrix.
So, first we investigate the conditions on the operators which make
the matrixP primitive. The probabilistic changes of the chromosome
within the population caused by the operators used in GKA are
captured by the transition matrixP, which can be decomposed in
a natural way into a product of stochastic matricesP = KKK �MMM � SSS,
whereKKK; MMM , andSSS describe the intermediate transitions caused by
K-means, mutation and selection operators respectively.

2) Proposition 2: LetKKK; MMM , andSSS be stochastic matrices, where
MMM is positive andSSS is column-allowable. Then the productKKK �MMM �SSS
is positive.

Since every positive matrix is primitive, it is therefore, enough to
find the conditions which makeMMM positive andSSS column-allowable.

3) Conditions on Mutation:The matrixMMM is positive if any string
s 2 S can be obtained from any another string on application of
the corresponding mutation operator. The mutation operator (DBM1)
defined in the previous section does not ensure this because the alleles
are not mutated ifds (i) = 0. DBM1 is slightly modified to make the
corresponding transition matrixMMM positive. The modified operator is
referred to as DBM2. DBM2 changes each allele, irrespective of the
value ofds (i), according to the distribution in (8). This may result
in an illegal string, with some small nonzero probability, in the cases
whereds (i) = 0. If this operation results in an illegal string, the
above procedure is repeated till we get a legal string. Ifcm in (8) is
strictly greater than one then allpj ’s are strictly greater than zero.
This implies that DBM2 can change any legal string to any other
legal string with nonzero probability. Hence, the transition matrixMMM

corresponding to DBM2 is positive.
4) Conditions on Selection:The probability of survival of a string

in the current population depends on the fitness value of the string;
so is the transition matrix due to selection,SSS. Very little can
be said aboutSSS if the fitness function is defined as in (7). The
following modification to the fitness function will ensure the column-
allowability of SSS. Let

F (sW ) = cs � Smax � S(W ) (9)

whereSmax is the maximum square error that has been encountered
till the present generation andcs > 1. Then the fitness values of
all the strings in the population are strictly positive and hence the
probability of survival of any string in the population after selection
is also strictly positive. Therefore, the probability that selection does
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not alter the present state,sii, can be bounded as follows:

sii �
F (s1)
N

l=1

F (sl)

� � �
F (sN)
N

l=1

F (sl)

=

N

l=1

F (sl)

N

l=1

F (sl)

N
> 0 8 i 2 S

wheresl is thelth string in the population under consideration. Even
though this bound changes with the generation, it is always strictly
positive. Hence, under this modificationSSS is column-allowable.

5) Theorem 3: Let Ws be the weight matrix (1) corresponding to
the strings. Let X(t) = S(Ws (t)), wheres�(t) is the string, with
the least SE measure, encountered during the evolution of GKA till
the time instantt. Let DBM2, with cm > 1, be the mutation operator
and the fitness function be as defined in (9). Then

lim
t!1

Pr fX(t) = S
�g = 1 (10)

whereS� = min fS(i)ji 2 T g; T is the set of all legal strings.
6) Sketch of the Proof:It is proved [13, Theorem 6] that a canon-

ical GA, whose transition matrixP is primitive and, which maintains
the best solution found over time, converges to the global optimum
in the sense given in (10). Under the hypothesis of the theorem, the
transition matrix of GKA is primitive. This is evident from the above
discussion. It may be noted that the GKA defined in Fig. 1 maintains
the best solution found till the current time instant. Thus, the theorem
follows from [13, Theorem 6].

The above theorem implies thatX(t), the least SE measure of the
strings encountered by GKA till the instantt, converges to the global
optimum S�, with probability 1.

7) Remark 1—On Mutation:DBM1 is less computationally ex-
pensive than DBM2. Since the performance of GKA remains same
with either of the mutation operators, we have used the earlier one in
simulations. It has been observed that small variations in the value
of cm do not significantly affect the performance of GKA. Hence, in
simulation results reported in the next section,cm is set to one.

8) Remark 2—On Fitness Function:GKA was simulated using
(7) as well as (9) as fitness functions. It has been noted that
�-truncation mechanism performed much better than the other tech-
nique. So, we use�-truncation mechanism for the experimental
study.

V. EXPERIMENTAL STUDY

We conducted experiments using GKA on two data sets. The two
data sets were German town data (GTD) [15] and British town data
(BTD) [16]. GTD consists of Cartesian coordinates of 59 towns
in Germany. BTD consists of 50 samples each of four variables
corresponding to the first four principal components of the original
data [16]. We report the results of four sets of experiments in this
section. First, the significance of KMO and DBM1 in finding the
global optimum is examined. The performance of GKA on GTD
and BTD for different number of clusters is considered next. Third,
we compare the performance of many duplicates of KMA with
that of GKA. Finally, the performance of GKA is compared with
that of the algorithms based on evolutionary strategies (ES) and
evolutionary programming (EP) [11], GA and the greedy algorithms
viz., alternating first-best (AFB) and, alternating best-first (ABF) [7].

Since GKA is a stochastic algorithm, the average SE value reported
in all the simulation results is the average of the SE values of the

Fig. 2. GKA with and without the distance based mutation on BTD.

output strings of ten different runs of GKA. In all the experiments,
the value ofN , the population size, was set to 50 and the value of
c, the constant in (7), was set to 2. The mutation ratePm was set to
0.05 wherever DBM1 is used.

1) Significance of KMO and DBM1:GKA with and without
KMO were applied on BTD. Fig. 1 shows the SE measure over
generations corresponding to this experiment. Although it can be
analytically shown that GKA without KMO asymptotically converges
to the global optimum, the algorithm becomes very slow after some
initial generations as shown in Fig. 1. It can be observed from
Fig. 1 that KMO significantly increases the speed of convergence of
the algorithm. In fact, this is the main reason for using a gradient
descent step in GA’s.

In the next experiment, GKA with and without DBM1 were applied
on BTD. The corresponding results are shown in Fig. 2. It is to be
emphasized at this point that the SE shown in the graph is the average
over 10 runs of GKA. It was observed, in the case of GKA without
DBM1, that even though the minimum of SE values among these 10
runs reached the best known optimum, the average is still at a higher
value as shown in this figure. This shows that GKA without mutation
is not always ensured to reach the global optimum. It is observed,
as in the case of any evolutionary algorithm, that lower mutation
rates make the GKA converge slowly and higher rates also slow
down the convergence of GKA. This is so because at low mutation
rate, mutation is hardly applied on the strings and at higher rates,
the chromosomes keep changing frequently and give no time to the
algorithm to exploit the search space around the solution. In fact, this
is the only parameter that controls the performance of GKA.

Thus, the two operators, KMO and DBM1, play very important
roles; KMO helps in speeding up of convergence and DBM1 in the
global convergence of GKA.

2) Performance of GKA:In the next set of experiments, GKA
was applied on both the data sets for different number of clusters.
The SE measures corresponding to BTD and GTD with different
number of clusters are given in the second columns of Tables I and
II, respectively. It is observed that GKA took more time to reach
the optimal partition as the number of clusters increases. This is
very much expected since the increase in the number of clusters
increases the size of the search space combinatorially, hence it is
more difficult to find a globally optimal solution. However, it is also
observed that in all the cases, average SE eventually converged to the
global optimum. This is in concurrence with the convergence result
derived in the previous section.
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TABLE I
COMPARISON OF ACCURACY OF DIFFERENT

ALGORITHMS WITH THAT OF GKA ON GTD

TABLE II
COMPARISON OF ACCURACY OF DIFFERENT

ALGORITHMS WITH THAT OF GKA ON BTD

3) Comparison withK-Means Algorithm (KMA): In this experi-
ment, we consider partitioning of BTD into 10 clusters(K = 10).
Fig. 3 shows the average and the best SE values obtained in ten
independent runs of GKA during the first 100 generations. The values
corresponding to KMA are also plotted in Fig. 3. Since each GKA is
maintaining a population 50 solutions and, we considered ten inde-
pendent runs of GKA’s to obtain the values plotted in the figure, to
make the comparison more meaningful, we considered 500 duplicates
of KMA starting with different random initial configurations. Since
all theses trials converged well within 20 iterations, we have plotted
the corresponding values up to only 50 iterations.

It can be observed from Fig. 3 that, in case of GKA, the average
SE value is approaching the best SE value, whereas it is not in case
of KMA. This again shows that almost every run of GKA eventually
converges to a globally optimal partition, numerically verifying the
convergence result proved in the previous section. The performance
of KMA is not surprising because KMA typically converges to a local
optimum. Therefore, from this graph we can infer that even if KMA
starts with the same number of initial configurations as in GKA, it
is not assured to reach the global optimum. The situation becomes
worse when the search space is large and there are many local optima.
The figure also shows that in every iteration/generation, the best and
average SE corresponding to GKA is less than those corresponding
to KMA. The extra computational effort made by GKA in every
generation, is that of DBM1 and selection operators.

4) Relative Performance:The accuracy and speed of GKA were
compared with those of the following algorithms. In [10] and [11],
the performance of different algorithms based on ES and EP applied
on GTD and BTD are reported. In each case, one version of the
algorithm is identified by the respective researchers, to be the best
on these data sets. We use the results of these identified versions to

Fig. 3. Numerical demonstration of global convergence property of GKA
using BTD.

compare with the results of GKA. Different GA’s have been used in
clustering [7], [8], [11]. We consider a representative among these
viz., the one given in [7]. In [7], two crossover operators are defined
and the GA’s using these operators were applied on GTD. Of the two
crossover operators, the GA using the first crossover showed better
performance than the other. We refer to the GA with this crossover
as GAX in the following text and quote the results reported in [7]
using GAX. The performance of GAX was compared with two greedy
algorithms AFB, ABF in [7]. Among AFB and ABF, ABF performed
better than AFB. So, we quote here the results of ABF. The results on
GTD and BTD are compiled in Tables I and II, respectively. In these
tables, the columns corresponding to GKA, ES, and EP contain the
average and minimum SE measure of the solutions obtained by the
algorithms after 50 generations. The columns corresponding to GAX
contain the best SE measure of the solutions found by GAX after 40
generations as reported in [7]. ABF algorithm, being a deterministic
algorithm, converges to a local optimum. Reported here are the best
results obtained from 40 random initial cluster configurations. Since
the time taken by ABF to reach the optimum highly depends on
the initial configuration, we do not analyze the time complexity
of this algorithm. We have applied 500 copies of KMA, starting
with different random initial clusters, on BTD for various number
of clusters. The obtained results are given in Table II. As mentioned
above, the difference between the average and the best SE, in case
of KMA, is increasing with the number of clusters. This implies that
when the number of clusters is large, the algorithms, that converge to
a local optimum, can give a really bad solution. Again in this case,
we do not compare the time complexities of GKA and KMA.

5) Complexity of GKA:The complexity of evaluation of SE of a
given solution string isO(nd), the complexity of mutation operator is
O(n2d) and K-means operator isO(nKd). Since the mutation rate is
very small, the effective number of times the operator is applied to an
allele in a string is only a fraction (equal to mutation rate) of the total
number of alleles. Moreover, K-means operator is a gradient descent
operator and it does not change the string once it reached a local
optimum unless the string is disturbed by mutation. Also since KMO
is deterministic, if a string is not changed in the previous generation
then there is no need to apply KMO on the string again. In fact,
KMO is operational only in the initial phases of the evolution; in the
later phases, it is effective only when the strings are disturbed by
mutation. Therefore, the effective computations can be reduced if the
changes in strings in a population are stored.
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6) Complexity of ES and EP:In ES, each solution contains cen-
troids and strategic parameters associated with each component of the
centroids. In each generation, the algorithm calculates fitness values
of all the strings in the population. The offspring are generated by
recombining randomly selected solutions and mutating each resulting
solution by adding Gaussian noise to each component of the centroids.
The variance of the Gaussian noise is decided by the strategic
parameters. In every generation, the strategic parameters are updated.
The next population is obtained by selecting the best among parents
and offspring of the current population.

In case of EP, solutions contain just centroids. In each generation
EP evaluates the fitness value of each solution in the population and
calculates variance of the zero-mean Gaussian noise, that is to be
added by the mutation operator to the solutions, based on the fitness
value of the solutions. The stochastic tournament strategy is used
on the parents and offspring in the current generation to get the
next population. Though tournament strategy is very expensive, the
presence of recombination operator in ES makes both ES and EP
equally computationally expensive.

The fitness function used in both these algorithms is as follows.
Each pattern is assigned to the cluster with the nearest centroid. Based
on these assignments new cluster centers are computed and again
data are assigned to different clusters as before. The fitness value of
the solution is the SE value of this assignment. So, in this case the
fitness value computation is twice as expensive as that in GKA. The
ES and EP, that gave the above results, evaluate the fitness function
of 100 solutions, which include both parents and offspring, in every
generation. This makes the fitness computation by these algorithms
four times as expensive as that by GKA in every generation. Even
if we assume that KMO is applied on every solution in all the
generations, computational effort needed to find SE value and apply
KMO and DBM1 by GKA is much less than (almost three quarters)
that needed to find the fitness value by ES and EP. Therefore, the
overall computational effort by GKA is much less than that by ES
or EP. Even though the average SE in case of ES and EP appears to
have been converging to the best SE value in these examples, there
is no formal proof of convergence of these algorithms to the global
optimum.

7) Complexity of GAX:GAX manipulate the order representation
of the partitions. Each chromosome in this case represents many
possible partitions of the data. The fitness value of a chromosome
is the SE values of the partition with the least SE value. This was
computed using a dynamic programming algorithm whose complexity
is O(n2Kd). This is the most computationally expensive step in this
algorithm. The complexity of mutation and crossover areO(nd) and
O(nKd), respectively. So, it is evident that GKA is much faster
than GAX.

VI. CONCLUSIONS

We considered the problem of finding a globally optimal partition,
optimum with respect to SE criterion, of a given data into a specified
number of clusters. Since the objective function associated with the
above problem is nonlinear and multimodal, deterministic gradient
descent methods converge to suboptimal solutions. We developed a
stochastic gradient descent method by hybridizing the deterministic
gradient descent clustering algorithm and GA. The resulting hybrid
algorithm, GKA, has KMO, DBM1 and selection as genetic operators.
Earlier work on the applications of GA to clustering defined various
coding schemes and crossover operators on the encoded strings.
In most of the cases either the evaluation of fitness function of
the encoded string or the crossover operator is computationally
expensive. In this paper, a simple coding scheme is employed
and a problem-specific gradient descent operator, KMO, is defined

and complicated crossover operators as well as computationally
expensive function evaluations are avoided. It has been shown that
KMO significantly improved the speed of convergence of GKA.
The distance based mutation, DBM1, acts as a generator of biased
random perturbations on the solutions, otherwise moving along the
gradient with the possibility of getting stuck at a local optimum.
Thus, mutation helps GKA avoid local minima. The selection operator
carries a focused parallel search. It has been shown by analysis
and through simulations that almost every run of GKA eventually
converges to a globally optimal partition. The performance of GKA
has been compared with that of some representatives of evolutionary
algorithms, which are used for clustering and are supposed to
converge to a global optimum. It turns out that GKA is faster than
these algorithms.

We conjecture that for any complicated search problem, a combi-
nation of known best gradient descent step specific to the problem
and knowledge-based biased random mutation may form competent
operators. These operators along with the selection operator may yield
a good hybrid GA for the problem under consideration. In such a
case, the resulting hybrid GA would retain all the best features of
the gradient descent algorithm. GKA is an instance of this type of
hybridization. In this manner, the present work demonstrates with an
example a way to obtain good hybrid GA’s for a variety of complex
problems.
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