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Abstract—This paper presents an artificial neural network
(ANN) and support vector machine (SVM) approach for locating
faults in radial distribution systems. Different from the traditional
Fault Section Estimation methods, the proposed approach uses
measurements available at the substation, circuit breaker and
relay statuses. The data is analyzed using the principal component
analysis (PCA) technique and the faults are classified according to
the reactances of their path using a combination of support vector
classifiers (SVCs) and feedforward neural networks (FFNNs). A
practical 52 bus distribution system with loads is considered for
studies, and the results presented show that the proposed approach
of fault location gives accurate results in terms of the estimated
fault location. Practical situations in distribution systems, such as
protective devices placed only at the substation, all types of faults,
and a wide range of varying short circuit levels, are considered
for studies. The results demonstrate the feasibility of applying the
proposed method in practical distribution system fault diagnosis.

Index Terms—Artificial neural network, distribution systems,
fault location, support vector machines.

1. INTRODUCTION

ISTRIBUTION SYSTEM (DS) consisting of a number

of radial feeders, has to be highly reliable and efficient
under normal and contingency conditions. In the event of fault
there should be exact information about the type of fault and
its location. This information is required to start the network
reconfiguration, as soon as possible and restore normal energy
supply. Hence, one of the crucial blocks in the operation of such
a DS is that of fault detection and its location. This objective is
achieved and depends on the success of the Distribution Au-
tomation (DA) System and in turn on the availability of reliable
measurement database from SCADA systems. The DA system
should be implemented quickly and accurately in order to iso-
late those affected branches from the healthy parts and to take
countermeasures to recover normal power supply. DA analytical
tools include various application functions [1], [2].

Faults are abnormal events that frequently occur in distribu-
tion feeders. Distribution feeder faults modulate primary current
and generate noise through arcing phenomena. Owing to their
nature (presence of low or no current), the conventional protec-
tion scheme is not capable of detecting them. Usually they are
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identified only when the consumers inform the utility about a
broken cable or complain about the cut in power supply. Tra-
ditional outage handling methods were based on the customer
trouble calls [3]. The geographic location of the caller and the
connectivity of the distribution network have to be overlapped
exactly for the exact location of fault. Also, there might not be
any calls during night-time, which poses a problem for the op-
erator in locating the fault. Also, the available measurements of
currents in the lines and voltages at the distribution transformers
may be limited, e.g., situations such as communication failures
or due to other practical difficulties of installing measuring de-
vices at each DS bus. Hence, it is of practical importance that
the exact location of fault is estimated only with limited mea-
surements available around the substation.

In recent years, some important techniques have been dis-
cussed for the location of faults particularly in Radial Distribu-
tion systems [4], [5]. These methods use various algorithmic
approaches, where the fault distance is iteratively calculated
by updating the fault current. Measurements are assumed to
be available at the sending end of the faulty line segment.
The emerging techniques of Artificial Intelligence (AI) can
be a solution to this problem, wherein all the short circuit
analysis are carried out offline, and the fault is located online
within short time. A brief comparison of various analytical
techniques with the ANN method for fault location in Trans-
mission System is provided in [6]. Among the various Al
based techniques like Expert systems, Fuzzy Set and ANN
systems, the ANN approach for fault location in transmission
lines is found to be encouraging [7]-[9].

The major bottlenecks in Fault Location, particular to Distri-
bution System are:

. Very limited measurements along the path of the
feeder. The limiting case being of measurements only
at the substation.

J No Circuit Breaker (CB) and relay statuses, and mea-
surements of each line segment, unlike the Transmis-
sion System.

. The number of generators in operation changes
throughout the day and so, the measurements obtained
during fault at a specific location, but at different times
of a day, are different.

The Function Approximation procedure must overcome these
difficulties for the success of the DA. Artificial Neural Networks
(ANNS5) have been successfully applied for Fault Section Esti-
mation (FSE) [10], [11], where the information of the current
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status of protective relays and CBs are available. These tech-
niques have been more popular in the Transmission Systems.

Section II describes the Short Circuit analysis of the Distri-
bution System with loads. A functional relation between the
driving point impedances of buses and the substation mea-
surements is developed in this section. Section III gives brief
description of the proposed methodology, some schemes rele-
vant to the problem, and describes the ANN and SVM approach
used for the present problem. PCA based data preprocessing,
particular to this problem, is outlined in Section IV. The test
system and the results of the proposed approach are presented
in Section V.

II. FAULT LOCATION ALGORITHM

There is a definite relation between the measurements at the
sending end, and the distance of fault from this end, for the
faulted phase. On the source side, in the case of a distribution
system, an equivalent generator is modeled with an equivalent
reactance, at the sending end of the radial feeders. The varying
number of generators in operation is modeled by an equivalent
reactance at this bus. Varying this equivalent reactance in a spec-
ified range varies the contribution of short circuit MVA from the
source side.

Consider a fault of a general type occurring on a bus (or on a
line section) at a distance of p from the Source side, as shown in
Fig. 1. V;Egg VZ‘E% are voltages at bus i, initially and during fault
conditions. Z{" is Driving Point Impedance of bus i. 3", Z¢"°
are fault current, fault impedance. Vp“(’}c) during fault voltage at
fault point p.

abc __ rzabc yabe
p(H) =25 If @

Voltage of bus i during fault is

abce abce abc rabe
Viin = Vi) = 2" 15 @

Similarly voltage at fault point p during fault is

abe abce abc rabe
Votr) = Vo) = Zpp 15 3

Substituting (1) in (3),

abc fabe __ abe abe Fabe
23T = p(0) = Zyp 15 )

The fault current is obtained as

abc __ abe abe -1 abe
I} _( f +pr) 'V;)(O)‘ ®)

Substituting the value of [ ?bc from (5) in (2)

-1

Vith = Vitey = 25 - (27 + Z5°) VG- ©
This is the value of voltage at bus i, during steady state fault
conditions. From (6), it is seen that, the voltage at bus i during
fault is a function of initial voltage at buses i and p, driving point
impedance of bus p, transfer impedance between buses i and p,
and the fault impedance. By considering Vias’f as a measurement
at the sending end, we obtain the distance of the faulty bus p

from the sending end. (The distance is implicit of the terms Zfzf’c
and Zz‘f;jc).
In simple analogy, (6) is

y = f(z) @)
where

T = (I/;abc7 Ibe, R?bc) = Measurements at sending end,

y=g (Z;;;C, prbc) = Distance of fault from sending end.

g is a function relating the distance of fault node from the source,
and the corresponding terms of the Z-bus matrix.

The relation in (7) will become complex, once varying load
conditions, fault resistance, and different types of faults on a
feeder, are incorporated. This function would then correspond
to numerous inputs mapping onto a single target, e.g., a single
line to ground fault occurring at the same location on a feeder,
but at different load levels. Such type of mapping is difficult to
model using an algorithmic approach. Hence, this paper pro-
poses a new, combined approach, wherein the Support Vector
Machine (SVM) breaks the complexity of (7), and the ANN (in
this case, Feedforward neural network) estimates the unknown
parameters in (7) based on supervised learning. Also the pur-
pose of this paper is to show that a very limited and reliable set of
measurements can lead to a very accurate estimation of the fault
location, considering the various practical aspects of the DS.
Any further information regarding the fault, i.e., statuses of var-
ious switches and CBs in the path of the feeder can be effectively
added to the input space, so that the actual fault location can be
determined among multiple fault locations. The high impedance
faults can be simulated over a range of impedance values. This
becomes a further more complex functional relation.

III. ARTIFICIAL NEURAL NETWORK AND SUPPORT VECTOR
MACHINES BASED FAULT LOCATION

A. Proposed Approach

The relationship between the measurements and the fault dis-
tance is highly complex if all types of faults at all loading levels
and, along all the radial feeders, are considered simultaneously.
The faulty feeder can of course be identified by the status of
the protective device at the substation. Now, consider a system
as shown in Fig. 11. There are 3 radial feeders, with 52 nodes,
where each node is a distribution transformer with a specified
load. Consider a single line to ground fault on a node (say node
8) of feeder 1. During fault, the 3 phase voltage and current mea-
surements at the substation are considered as the input vector
and, the line reactance of the feeder up to the node 8, is consid-
ered as the target. This is repeated for other nodes of the feeder
1. The relation between these measurements and the targets are
built up by the ANN, which relates them only in a condition of
one fault type and at one Source Short Circuit (SSC) level. To
consider different types of fault and a range of SSC levels, we
need to map multiple inputs to a single output. This becomes
difficult to model using a single ANN. This can be seen from
Fig. 10, i.e., variation of data points in the input space and the
difficulty involved in mapping such a space. Hence we model
the single input, single output type of mapping, e.g., single line
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Fig. 1. Three-phase Radial network with general fault at distance p from the
source side.

to ground fault at a known SSC level occurring on a node. For
this, we need to know the type of fault and the SSC level prior to
the estimation of the fault distance by the ANN. This is solved
as a classification problem using techniques such as Support
Vector Machines, which have well-established advantages over
other classification methods. Multiclass classification [12]-[14]
is adopted for both fault type (4 types of faults) and SSC level
(7 classes of SSC levels) classification. Here, two schemes are
proposed for locating the fault. In scheme I only fault type clas-
sification is done, and all SSC levels are considered with in
one ANN. In scheme II, the fault type and SSC level are deter-
mined by the classification procedures and there is a one-to-one
mapping, which is then modeled by the FeedForward Neural
Network.

B. Training Patterns

The data used in the supervised learning are obtained at the
substation. We have considered the three-phase steady-state
voltage and current signals as measurements. The SSC level at
the source bus (substation) is varied in specific steps to simulate
the DS under light load conditions up to peak load conditions.
The range of SSC level used for simulation is from 20 MVA to
50 MVA, in steps of 5 MVA. Hence we get 7 SSC levels: 20,
25, 30, 35, 40, 45, and 50 MVA. Similarly, 4 types of faults,
Line to Ground (LG), Double Line to Ground (LLG), Line to
Line (LL) and 3-phase Symmetrical faults are simulated at each
load point (bus) on the Distribution Network. Measurements
are taken at each of the above DS conditions.

Scheme I: In this scheme, multiclass classification is done
based on the fault type. A Support Vector Classifier is trained
for this purpose, with input patterns obtained by simulating all
types of faults at the nodes of a feeder. The block diagram of
scheme I is shown in Fig. 2. In this figure the 4 blocks “ANN a”
to “ANN d” correspond to ANNSs trained with patterns obtained
corresponding to the 4 types of faults. Each ANN block approx-
imates the function relating the input vectors and the targets, for
all SSC levels that are considered during short circuit analysis.
Hence, without explicitly knowing the SSC level at the time of
fault, the fault location is estimated in this scheme.

Scheme 1I: In this scheme, Support Vector Classifiers are
trained with the patterns obtained during fault simulation with
all types of faults and the entire range of SSC level. After
training, these classifiers determine the fault and SSC level
of a fault online. Hence, the work of the FFENN is reduced
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Fig. 3. Block description of Scheme II.

to modeling of a simple one-to-one mapping. The block dia-
gram of scheme II is shown in Fig. 3. In this figure the block
‘ANN la’ represents an ANN trained with patterns obtained at
20 MVA SSC level and fault of type Line to Ground. Hence
there are 7 x 4 (7 SSC levels, 4 types of faults) ANN blocks.
The fault type classifier SVM is trained to classify the type of
fault. Also, there are 4 SVM blocks trained to classify the SSC
level of the input, where each block corresponds to a particular
type of fault. Though the ANN and SVM blocks are more in
number, in this scheme compared to scheme I, training is faster
due to the lesser number of training patterns for each ANN
and SVM block. As training of all the blocks runs in parallel,
with reduced number of training patterns, offline training of
scheme II is faster.

Detailed steps followed in scheme II are described as follows:

Step 1: Fault of a type is simulated at each node on a feeder
with a particular SSC level, say 20 MVA at the
source, and measurements are collected at the sub-
station. Step 1 is repeated for each node, for all types
of faults and the complete range of SSC level from
20 MVA to 50 MVA.
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Step 2: The input vectors and the targets corresponding to
a feeder are normalized as outlined in Section IV.
Steps 1 and 2 are repeated for other feeders.
There is some amount of redundant information
in the input set. The redundancy exploring proves
useful in case the dimension of the input vector
is high, e.g., in the case of more measurements
available along the path of the faulty feeder. The
architecture of the ANN for such data of reduced
dimension is simple and its training is faster, without
much compromise on the accuracy of the results.

For dimensionality reduction, consider a feature
matrix, with training patterns as its columns. A co-
variance matrix of the input dataset is obtained. The
reduced input dataset is obtained by multiplying
the original feature matrix, with the eigenvectors of
the covariance matrix that correspond to significant
eigenvalues. This means that we consider only those
dimensions of the input space that contribute max-
imum to the information contained in the dataset.
Support Vector Classifiers are trained to classify the
fault type and the SSC levels.
The input vector corresponding to a fault type, a SSC
level, and a feeder is passed on to an ANN block for
training. The target for each node is provided.

The Procedure for online Fault Location is out-
lined in the form of a flow chart shown in Fig. 4.

Step 3:

Step 4:

Step 5:

C. ANN Methodology

The ANNs have emerged as powerful tools for function ap-
proximation [15], and control of dynamical systems [16]. This
is because of the advantage of high computation rate provided
by their massive parallelism and, versatility of the three-layered
FeedForward Neural Networks (FFNN) in approximating a
complex nonlinear mapping. The fault location problem of
radial distribution systems has two distinct features, which
qualify the ANN approach as the preferred one, among other
Al techniques.

. Huge dataset corresponding to a vast Distribution
Network.

. The complex relation between the input dataset and the
target set.

The ANN used is the 3-layered FFNN whose architecture is
shown in Fig. 5, with activation functions for the hidden and
output layer neurons as the nonlinear e.g., tangent hyperbolic
transfer function tanh(x) and the linear transfer functions re-
spectively. Number of hidden neurons is chosen to match the
complexity of the function, which it emulates. The Training
algorithm used is the well-known Levenberg Marquardt (LM)
algorithm [17], due to its proven advantages over other con-
ventional methods, like faster learning, reliable convergence.
The LM algorithm is basically a Hessian-based algorithm that
allows the network to learn more subtle features of a compli-
cated mapping. The training process converges quickly as the
solution is approached, because the Hessian does not vanish
at the solution.

The statuses of the CBs at the substation are
analyzed to identify the faulty feeder to which the
present input vector belongs. Once the faulty
feeder is identified the fault locating system
corresponding to this feeder is put into service.

— 1 o

Fault locating Fault locating Fault locating
system of Feeder 1 | | system of Feeder 2 | | system of Feeder 3

\—¥

The original feature vector (input
vector) is normalized and filtered
by Principal Component Analysis
(PCA), described in step 3 above
and also in section IV, to remove
the insignificant dimensions.

| —

SVCs classify the SVCs classify the
input vector based on input vector based
the type of fault. on the SSC level.

l 1

The ANN block corresponding to this fault
type and SSC level, analyzes the pattern, and
the output obtained is in the normalized form.

h 4

In case of multiple branches of a
feeder, the statuses of the
switches and fuses if available,
indicate the actual fault location
among multiple fault locations
that are estimated by the ANN.

X

The output obtained is denormalized
and is converted to distance from the
substation in meters.

Fig. 4. Flowchart representation of the online fault location process.
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Preprocessing
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Fig. 5. Typical Feedforward Neural Net used in the proposed approach.

The Error function or Cost function chosen for the learning
process is the mean squares of the error of the outputs, along
with a regularization term, which increases the generalization
ability of the neural net. This is of more relevance in this con-
text as faults can occur at any point between two buses that are
chosen for learning the function. The regularization term used
is the mean of the sum of squares of the network weights.
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Fig. 6. SSC level classification of Feeder 2.

However, the advantages of ANN in the Fault Location
process suffer a major setback when encountered with the situ-
ation of varying SSC levels in a Practical Distribution System.
Due to this condition of the DS, a fault occurring at a specific
location, though representing the same location, does not have
the same target to map to. The target, if drawn from the Z-BUS
impedance matrix, leads to this situation. Therefore the line
reactances are chosen as targets to the fault locations. Further,
there is the difficulty that the SSC levels are unknown, unless of
course the utility gets this information from the control center
each time the fault occurs. This disadvantage can be eliminated
by the prior classification of patterns on the basis of a complete
range of SSC levels. This leads to the information about the
level at which the fault occurs, knowing which, the output of
the ANN can be recognized as the true one.

D. Support Vector Machines Methodology

In recent years, Support Vector Machines (SVMs) [18] have
risen as powerful tools for solving classification and, regression
problems [19], [20]. SVMs try to find the hyperplane, which
separates optimally, the training patterns according to their
classes, which have been previously mapped to a high dimen-
sional space, such that structural risk is minimized. Traditional
quadratic programming algorithms [20] have been proposed,
but these algorithms require enormous matrix storage and do
expensive matrix operations. To avoid these problems, fast
iterative algorithm like the Sequential Minimal Optimization
(SMO) [21], which is easy to implement is chosen for training
the SVMs.

A sample Support Vector Classifier (SVC) is described in 2D
space by simulating 3 phase symmetrical faults at the 12 nodes
of feeder 2 of the test system described in Section V. The output
of the SVC, classifying the patterns based on their SSC levels is
shown in Fig. 6. If n is the number of SSC levels that are sim-
ulated, then the number of classifiers chosen is (n — 1). Thus,
there are 6 binary classification problems for each of the SSC
level classifiers ‘SVM a’ to ‘SVM d’ to solve during training
process, e.g., Classifier 1 classifies faults of 20 MVA and 25
MVA. ‘SVM 2’ in Fig. 3 refers to SSC level classifier that is
trained with Line to Ground faults. The function value f(z) in
(A6) points to the class the pattern belongs toi.e., each SVC out-
puts the pattern as a positive or negative function value, which
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TABLE 1
SAMPLE TWO-CLASS CLASSIFICATION OF 3-PHASE SYMMETRICAL
FAULTS ON FEEDER 2

Bus No 30 MVA 35 MVA
o f(x) o f(x)

1 0.0 1.0530 3.2211 -1.0002
20 0.0 1.2481 24.9871 -1.0000
21 0.0 1.2133 0.0 -1.3020
22 0.0 1.0980 0.0 -1.0248
23 0.0 1.0023 0.0 -1.0283
24 423772 1.0000 0.0 -1.3562
25 0.0 1.2311 0.0 -1.0056
26 0.0 1.2346 1.5459 -1.0002
27 0.0 1.1100 0.0 -1.2109
28 0.0 1.0342 0.0 -1.2058
29 0.0 1.0298 0.0 -1.0556
30 0.0 1.2217 0.0 -1.0891
31 1.2514 0.9999 0.0 -1.4576

TABLE 1I

CLASSIFYING 3-PHASE SYMMETRICAL FAULTS OF TWO LEVELS ON FEEDER 2

Claﬁ;ﬁer (C;;:;Z; 32 MVA 33 MVA
1 20-25 3.3638 -3.8435
2 2530 2.4922 3.3665
3 30-35 1.0156 0.5925
4 3540 3.8867 24713
5 40 45 7.1996 5.8708
6 45-50 8.6052 6.9059

is indicative of it belonging to either class. Output of Classifier
No 3i.e., SVC classifying faults at 30 MVA and 35 MVA levels
is given in Table 1. The patterns corresponding to nonzero La-
grange multipliers () are the support vectors, which define the
separating hyperplane.

Table II, describes the classification of 32 MVA and 33
MVA source level faults as that of 30 MVA and 35 MVA
source levels respectively. The results correspond to 3 phase
symmetrical faults of levels 32 MVA and 33 MVA, simulated
on the midpoint of line connected between nodes 30 and 31.
The f(x) value of the 32 MVA fault changes sign at classifier
nos. 2, 3 (in third column of Table II—the value of f(x) changes
from—2.4922 to +1.0156) and the common class between
these two classifiers being 30 MVA, we classify this fault as
one that occurred in the group of 30 MVA. Similarly for the 33
MVA fault, which is categorized as belonging to 35 MVA class.

Similarly, in the fault type classifier, the patterns are classi-
fied into 4 classes as shown in Fig. 7. Now the fault is com-
pletely specified, in the sense that, its type and SSC level being
known, the trained Feedforward Neural Network can estimate
its location accurately. Another SVC is trained to classify the
input pattern as belonging to a nearby node, i.e., fault occur-
ring in the vicinity of the node and output of the trained SVC is
shown in Fig. 8.

Combining the three SVCs: Fault type classifier, SSC level
classifier, Fault bus classifier described above, we get a stand
alone SVM Fault Locator System. However, we describe here
a scheme to show how the exact location of fault is determined
using a combined approach.
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The circled points in the Figs. 6, 7, and 8 are the support
vectors that define the separating hyperplanes, lines or curves
in the case of 2 dimensional space. The classification problem
is: learning these separating hyperplanes. A brief mathematical
derivation of the binary classification problem is outlined in the
Appendix A.

IV. DATA PREPROCESSING

The data and targets are normalized by dividing the current
values by a suitable constant or can be done as follows:

Tmax — Lmin
L =Y — Ymin [4:| + Zmin,
Ymax — Ymin
where

x =  normalized input;

Y =  raw input;

Lmin = 0'07xmax =10

Ymin = 0.0, Ymax = 20.0(say).

Here, y represents each element of the input vector and also
that of target vector. The targets in this case are scalar. The el-
ements of the input vector that are well within the range of 0.0
to 1.0 are not normalized, e.g., per unit voltage measurements.

However the current measurements of the three phases are nor-
malized, to bring them within the range of 0.0 to 1.0.

To get a feel of the pattern of scattering of data points in
the input space, we shall show the input space in 3D. When
more measurements are available to the Distribution System, the
input dimension can increase, sometimes resulting in high re-
dundancy, and more training times of the ANN and SVM. The
variable reduction or dimensionality reduction comes to help
under such conditions. The dimensionality reduction is carried
out using the Principal Component Analysis (PCA) technique.
A low-dimensional feature vector is a critical element in any
pattern recognition problem as the number of data examples
needed for training grows explosively with the dimension of the
problem. Care must be taken at this stage that the information
discarded in the dimension reduction is not relevant for diag-
nosing the fault.

The PCA, which is a feature reduction technique is fast,
simple and is characterized by minimal loss of information.

n: size of the input vector

d: dimension of the input vector

ZTqn: nth element of input vector corresponding to dth di-
mension.

The initial feature matrix

11 Tin
P =
Td1 Tdn
with column vector
zj=[r1 m - - " (1<j<n)

of dimension d is adjusted to have zero mean, and unit variance
by subtraction from each dimension (row), the mean of that di-
mension. Thus,

. @iy — % i=1tod,
newijy — sz ,7 — 1 ton
where, Mean Z; = (1/d) Zle Tij,
Standard Deviation (SD) of x; is
1 &
Oe; = Al 771 ;(%’ —7;)°

The covariance matrix of the feature matrix is calculated as

Yic(@ij — 7)) (yij — Ti)

cov(z,y) = p—

In general, the dimensionality of the dataset is reduced to
the number of significant eigenvalues of the covariance matrix.
Though these dimensions do not have any physical meaning in
the fault location problem, they depict the most important aspect
of the function approximation problem, i.e., the way in which
the data are scattered in the reduced dimensional space.

In Fig. 9 the data points of LG fault are shown in 3D space
along the 3 major eigenvectors. The solid line connecting the
points depicts the variation of the fault distance along the path
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Fig. 10. Dataset of Feeder 1, corresponding to the overall fault location
problem.

of the feeder, whereas the dotted line depicts the variation of data
points over the range of SSC levels. The points are arranged in
the order of the targets, which they represent. We note that the
surface has a well-defined shape, which can be modeled by the
neural net. Scheme I models the whole surface, whereas Scheme
IT models each solid line independently.

In Fig. 10, each point represents a fault of a particular type
and at a particular SSC level, on a node of Feeder 1. From this
figure we can conclude that a single ANN, that is required to
map each of these points to the respective targets, cannot handle
the Fault Locating Scheme efficiently. So, as a first step in the
Fault Location process, the faults are classified by their type. A
fuzzy type of logic can do this classification, but in this paper
the Support Vector Machines (SVM) approach is used.

As the size of the Distribution Network grows, the Fault Lo-
cation system deals with huge datasets, which have to be clas-
sified into various classes and subclasses. The SVM shows its
strength as a pattern classifier under these demanding situations.

V. TEST SYSTEM AND RESULTS

The developed algorithms are tested on a few Distribution
Systems. Results obtained on a sample 11 KV Practical Distri-
bution Network of 52 buses with 3 main feeders shown in Fig. 11
are presented. Each feeder of the system consists of more than
one main branch. The Loads in kVA are represented by the dis-
tribution transformers at various nodes.
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The simulated short circuit levels are 20 000 kVA (light load
conditions) through 50 000 kVA (peak load conditions), in steps
of 5 000 kVA. The value of this step change in SSC level can be
chosen in accordance with the required accuracy of the function
approximation. Each feeder is analyzed individually. Measure-
ments are collected at the substation (Bus 1) for simulated faults
on each node of a feeder.

In the case of multiple branches e.g., 4 branches of feeder 2,
the fault location is estimated to be on more than one branch of
the feeder. To know the true fault location we need to know the
statuses of the switches and fuses that are encountered along the
path of the feeder. A sample problem of the above type is shown
in Fig. 12 with results in Table III.

The input vectors, targets and the corresponding outputs
(in reactance), for faults of type single line to ground at two
SSC levels, and at all the nodes of feeder 1, are shown in
Table I'V. In Fig. 13 the absolute error distances i.e., deviations
of the estimated location of fault from actual Fault Location
in meters, of Scheme I are shown. The errors correspond to
the simulated fault locations at the nodes on feeder 1. The
errors in case of Scheme I are in the range of 100 to 300
meters. But when each ANN encounters an SVM-classified
fault described in Scheme II, we see from Fig. 14 that the error
distances are reduced to a negligent value of about 10 meters.
The simulated fault locations in Scheme II are: 20%, 50% and,
80% of distance on each line segment of a feeder. Results
for the Peak load and Light load conditions are included.
Also, this shows that the proposed scheme II is better than
scheme I for the present problem. The performance errors
(with regularization included), number of training epochs of
the Feedforward Neural Network and, the architecture of the
Feedforward Neural Network (FFNN), for schemes I and II
are shown in Table V.

Itis seen that the 3-layered FeedForward Neural Network and
the SVM network perform exceedingly well under various prac-
tical conditions of a distribution system. The use of Levenberg
Marquardt algorithm in the case of FFNN and the Sequential
Minimal Optimization algorithm in the case of SVMs proves to
be fast and efficient for the problem under consideration. The
total training time of each scheme, when run on a PC with pro-
cessor speed—?2 GHz is given in Table V.

High impedance faults are quite usual in any distribution
system and also they produce very low fault currents that may
go undetected due to improper settings of the protection relays.
Under such circumstances, the unknown function relating the
measurements, during faults of varying fault impedances, to the
corresponding targets of the fault locations has to be estimated
by the ANN. There are three main issues of concern for such
an estimation to be successful:

. the fault type has to be identified;
J the SSC level has to be estimated;
. the fault impedance has to be estimated;

after which the fault can be located. The estimation of fault
impedance can however be overridden by providing simulated
data, corresponding to a range of fault impedances, to the ANN.
But, still there is a need to accurately estimate the SSC level.
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Fig. 12. Multiple branches of Feeder 2 of test system.

TABLE III

ESTIMATED FAULT LOCATIONS—FOR ACTUAL FAULT OF TYPE SINGLE LINE TO

GROUND AT DIFFERENT NODES ON FEEDER 2

Bus20

105.00

Fault Bus No 21 25 29 30

FB 21 25 22 22

Branch1 TB 22 26 25 25
EFL % 0.2 0.1 16.5 16.6

FB 21 22 22 22

Branch2 TB 22 23 23 23
EFL % 0.2 61 10.5 10.6

FB 27 30 30 30

Branch3 TB 30 31 31 31
EFL % 12.5 48.9 0.1 0.1

FB 27 - 29 29

Branch4 TB 28 - - -
EFL % 34.2 - 0.05 0.2

FB: From Bus. TB: To Bus. EFL %: Estimated Fault Location in percent.

Hence there is an added stress over the ANN to learn an ad-
ditional function. Howeyver, if it is assumed that the SSC level
is known beforehand, we can proceed with the estimation of
the location of high impedance faults. The magnitudes of high
impedance fault currents at the lowest SSC levels are in the same
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Fig. 13.  (a) Simulated LG faults on Feeder 1 at all SSC levels. (b) Simulated
LL faults on Feeder 1 at all SSC levels.

range as that of the load currents for the peak load conditions.
As this forms the critical condition to test the performance of the
ANN, we have considered the SSC level of 20 MVA, a range of
Ry values (50, 60, 70, 80, 90, and 100 €2), and faults of type
LG, on Feeder 1. From Fig. 15 we note that a clear distinction
between the data sets (lines) diminishes for higher values of R.
Hence, we conclude that the ANN is able to locate accurately
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Fig. 14. (a) Simulated LG faults on Feeder 1 at light load conditions.
(b) Simulated LLG faults on Feeder 1 at peak load conditions.

high impedance faults up to the range of 70 € for a SSC level
of 20 MVA.

The use of different ANNSs for different feeders is to take into
account the fact that network configuration, each section length
and loading patterns in one feeder may be quite different than
that of another feeder. However, if we consider testing an ANN
that is trained with one feeder, on another feeder, we get satis-
factory results in terms of percentage deviations from the actual
fault locations as shown in Fig. 16. Here, we have considered an
ANN trained with the data corresponding to Feeder 1, and the
network is fed with data corresponding to Feeder 3, the results
of which are shown in Fig. 16. The choice of Feeder 1 for the
training is because the maximum and minimum values of the
targets corresponding to Feeder 3 (0.8695 & 0.1480) are well
within the respective range of Feeder 1 (0.9805 & 0.1110).

VI. CONCLUSION

The use of ANNs as powerful tool for applications in fault
location problems, specific to distribution systems is presented.
The significance of ANNSs, under various practical conditions of
the distribution system, and usefulness of the SVMs in the clas-
sification of faults with respect to various factors is described.
Two schemes particular to the problem are discussed and the ac-
curacy of the results obtained for each scheme is shown to be in
the range of a few meters from the actual location of fault on the
feeder. It is also observed that the ANN methods provide accu-
rate results compared to analytical methods.

From the results, we conclude that, though measurements ob-
tained during fault in a practical DS are very limited, they con-
tain significant information about the Location of Fault. They
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TABLE IV
TRAINING PATTERNS AND TARGETS OF FEEDER 1 FOR LG FAULTS AT TWO
SHORT CIRCUIT LEVELS AND THE CORRESPONDING OUTPUTS (SCHEME I)

I;L:)S Va Vi Ve Ia Iy I Target Output

Source Short Circuit Level: 20 MVA
2 051 092 098 17.99 191 2.02 0.1110 0.1115
3 079 095 1.00 1024 197 2.08 0.2960 0.2925
4 0.64 093 099 1452 193 2.09 0.1665 0.1670
5 072 094 1.00 12.15 1.95 210 0.2220  0.2227
6 070 094 1.00 1280 195 211 02035 0.2057
7 078 095 1.00 1040 197 2.11 0.2775  0.2782
8 080 095 1.00 9.87 1.99 2.14  0.2960 0.2939
9 0.86 096 1.01 7.77 202 2.14 04070  0.4088
10 091 097 1.01 5.86 206 214 05920  0.5909
11 092 097 1.01 5.48 206 214 0.6475  0.6478
12 092 098 1.01 5.27 206 214  0.6845  0.6819
13 094 098 1.00 4.69 2.07 213 08140 0.8177
14 094 098 1.00 4.63 2.07 213 0.8325 0.8328
15 094 098 1.00 4.62 207 213 08325 0.8354
16 092 097 1.01 5.48 206 214  0.6475  0.6478
17 094 098 1.00 4.49 2.07 212 0.8695 0.8733
18 094 098 1.00 4.62 2.07 213 08325 0.8354
19 095 098 1.00 4.18 207 212 09805  0.9790

Source Short Circuit Level: 25 MVA
2 0.57 092 099 2017 190 2.04 0.1110 0.1100
3 083 095 1.0l 10.76  1.98 2.09 0.2960  0.2953
4 0.70 093 1.00 1578 1.93 211  0.1665 0.1668
5 0.77 094 1.01 1295 196 211 02220 0.2240
6 075 094 1.01 13.72 196 213 02035 0.2048
7 0.82 095 1.01 1094 198 212 02775 0.2805
8 084 095 1.0l 1035 2,00 215 02960  0.2974
9 0.89 096 1.01 8.03 2.04 215 04070 0.4077
10 093 098 1.01 5.98 207 215 0.5920  0.5881
11 094 098 1.01 5.58 207 214  0.6475  0.6500
12 094 098 1.01 5.36 2.07 214 0.6845  0.6835
13 095 098 1.0l 4.75 207 213 0.8140 0.8138
14 095 098 1.0l 4.69 207 213 08325 0.8281
15 095 098 1.01 4.68 2.07 213 0.8325  0.8305
16 094 098 1.01 5.58 207 214  0.6475  0.6500
17 096 098 1.01 4.55 207 212 08695 0.8756
18 095 098 1.01 4.68 2.08 213 0.8325 0.8328
19 096 099 1.00 4.22 208 212 09805 09811

TABLE V
COMPARISON OF THE TWO SCHEMES CONSIDERING ALL TYPES OF FAULTS

Total

Scheme Fault FFNN Noof  Performance Training
Type Type Arch Epochs Error Time (s)
LG 270 1.386 ¢-5
Scheme LL 323 1.8606 ¢-5
- 3.3- .6 37.
I LLG ! 233 1.511e-5 306377
Sym 3ph 468 2.609 e-5
LG 86 2.823 e-6
Scheme LL 133 5.858 ¢-6
— 3-3-1 23.6-382
1 LLG 123 3.134 e-6 6-38
Sym 3ph 178 6.516 ¢-60

LG: Line-ground. LL: Line-Line.
LLG: Line-Line-Ground. Sym 3ph: Symmetrical 3 phase-Ground.

can be processed by an approach as described in this paper to
get an efficient Fault Locating System. However, for a change in
network configuration, following a contingency, either the ANN
has to be retrained or an ANN trained beforehand for the con-
tingency has to be put into service. The proposed approach also
has the advantage that if retraining has to be adopted, the time
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Fig. 15. Variation of data points corresponding to simulated LG faults on buses
of Feeder 1 for a range of Ry values at SSC level of 20 MVA.

Errors (%)
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Fig. 16. Simulated LG faults on Feeder 3, tested on the ANN trained with LG
faults on Feeder 1 (all SSC levels).

taken would be negligible. This is due to the simplicity and par-
allelism of the Neural Network architecture and algorithms.

APPENDIX A

Let the SVC be trained with patterns from classes 7 and j,
then

w" weight vector of the SVM network;
b bias term of the SVM network;
T input vector (pattern) of class 7;
V7 positive slack variables;
¢ some nonlinear function;
R" —
H
c penalty parameter (constant);
N total number of patterns.

For training data from the +th and jth classes, we solve the fol-
lowing binary classification problem:

- it ij ij
11;“'-71,1;}]1.’1761'1' E(w ]) w ’ + C zt: ft
(W) p(we) + 67 >1- &7 ify =1,
(W) ' p(x) + 07 < -1+ &7, ify =3,

le,yt[(w”)Tgﬁ({Et)—}_bLj] Z 1- zja t= 17"'7k
(pattern number) (Al)

?

The training data z; are mapped to a higher dimensional space
by the function ¢. The Lagrangian for the above problem is:

N N
L(U}, b?ft; O‘wB) = %(w)Tw + ngt - Zﬂtft
t=1 t=1

]\7
+ Z [l — & — ye(whp(zy) + 1) (A2)

t=1

By the Wolfe dual problem [22] of maximizing this Lagrangian,
we get the optimum weights and bias terms as:

N
w = Z ey p(e)
t=1

N
Z ary =0
t=1

C=a;+ 6

1StSN7 CYZ[L HZO, OSOétSCI (A3)

(where « and (3 are the Lagrangian Multipliers)
Substituting these in the Lagrangian, we get the dual problem
to be solved to get the optimum Lagrangian variables:

N N

N
max L = q(a) = Z Q; — %Z Zyiyjfsz(a:i)(ﬁ(:vj)oziaj
i=1

i=1 i=1

]\T
s.t.Zaiyizo, 0<a;<C 0<i<N (Ad)
=1

Instead of the dot product ¢ (z;) - ¢(z;) we use the Kernel
Function K (z;, ;) to avoid the explicit calculation of the func-
tion ¢. The kernel functions used are:

Gaussian Kernel Function K(z;,z; ) =
e=llzi==ill’/20"  for Fault Level Classification
and,

Polynomial Function K (z;,z;) = (z;z; + 1)? for

Fault Bus and Fault Type Classifications.

The SMO algorithm is extended to multidimensional pattern
classification.

The Quadratic Cost Function (A4) is broken down into mul-
tiple subproblems. Each subproblem optimizes two Lagrangian
multipliers and the process is repeated to get the optimum values
of all the multipliers that define the classifying function. Each it-
eration of the SMO algorithm contains two main computations:
selection of the two Lagrange multipliers by heuristics [23], [24]
(variables to the subproblem) and, updating their values using
analytically derived equations for solving a two variable con-
strained Quadratic Programming (QP) problem. The conditions
for optimality are stated as

a;=0=y;f(z;) 21
0<a;<C=uyflz;)=1
a=0C = y1f(:17,) <1 (AS)
where f(x) is given by,
f(z) = Z @ yi K (z;,x) — b (A6)

i€S
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TABLE VI

LINE AND LOAD DATA OF THE TEST SYSTEM

End Buses of Line . Load at Bus y
Line Length
. kms Real Power Reactive Power
Bus x Busy (kms) W) (kvar)
Feeder 1
1 2 3.0 81.0 39.0
2 3 5.0 135.0 65.0
2 4 1.5 108.0 52.0
4 5 1.5 108.0 52.0
4 6 1.0 27.0 13.0
6 7 2.0 54.0 26.0
6 8 2.5 135.0 65.0
8 9 3.0 81.0 39.0
9 10 5.0 67.0 32.0
10 11 1.5 27.0 13.0
11 12 1.0 27.0 13.0
11 15 5.0 108.0 52.0
12 13 3.5 54.0 26.0
12 14 4.0 94.0 45.0
10 16 1.5 67.0 33.0
16 17 6.0 67.0 33.0
16 18 5.0 108.0 52.0
18 19 4.0 81.0 39.0
Feeder 2
1 20 1.0 108.0 52.0
20 21 1.5 94.0 46.0
21 22 3.0 81.0 39.0
22 23 5.0 108.0 52.0
23 24 2.5 108.0 52.0
22 25 3.0 102.0 50.0
25 26 4.0 41.0 20.0
20 27 1.0 108.0 52.0
27 28 1.5 162.0 79.0
28 29 2.5 68.0 33.0
27 30 4.0 68.0 33.0
30 31 5.0 95.0 46.0
Feeder 3
1 32 4.0 41.0 20.0
32 33 5.0 121.0 59.0
33 34 4.0 41.0 20.0
33 35 3.5 41.0 20.0
35 36 4.0 135.0 66.0
36 37 2.5 81.0 40.0
35 38 2.0 68.0 33.0
33 39 2.5 95.0 46.0
39 40 2.0 108.0 52.0
39 41 2.5 41.0 20.0
41 42 3.0 95.0 46.0
41 43 4.5 27.0 13.0
43 44 5.0 122.0 59.0
41 45 1.5 108.0 52.0
45 46 3.5 81.0 39.0
45 47 2.5 68.0 33.0
47 48 1.5 41.0 20.0
47 49 1.5 68.0 33.0
49 50 4.0 81.0 39.0
49 51 1.5 108.0 52.0
51 52 1.0 41.0 20.0

Here S = {i : o; > 0} & b=y; —

some j such that 0 < a; < C.

The data corresponding to the practical 52-Bus Distribution

ZieS Ozt’yLK(LIT“ zj) for

APPENDIX B

System is tabulated in Table VI.

Base kVA : 1000;
Conductor Type : ACSR

Base kV : 11

Line Resistance : 0.0086 p.u/km
Line Reactance : 0.0037 p.u/km

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]
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