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Varieties of Learning Automata: An Overview
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Abstract—Automata models of learning systems introduced  The original notion of LA corresponds to what is calfedte

in the 1960s were popularized as learning automata (LA) in action-set learning automata (FALAJhis type of LA has been

a survey paper in 1974 [1]. Since then, there have been many gy ,gied extensively. In many applications, one needs to use a
fundamental advances in the theory as well as applications of b f LA and often this leads to t tworks of LA
these learning models. In the past few years, the structure of LA num er_o {:m 0 en. IS e"’_‘ s1oteams or'ne .or SO '
has been modified in several directions to suit different app]ica_ Wh|Ch will be d|SCUSSEd in Section Il. In SUCh SltuatIOHS, a|mOSt
tions. Concepts such as parameterized learning automata (PLA), all of the current algorithms available for FALA assure conver-
generalized learning automata (GLA), and continuous action-set gence only to a local maximizer of the reinforcement signal.
learning automata (CALA) have been proposed, analyzed, and e can get convergence to global maximum by modification of

applied to solve many significant learning problems. Furthermore, h - . . .
groups of LA forming teams and feedforward networks have the learning algorithm which entails a random walk term being

been shown to converge to desired solutions under appropriate SUperposed on the probability updating. This in turn needs a
learning algorithms. Modules of LA have been used for parallel parameterization of action probabilities and leadpaoame-

operation with consequent increase in speed of convergence. Allterized learning automata (PLAWhich are considered in Sec-
of igﬁﬁﬁigglnﬁiﬁfwf"rgd Eﬂsgltttse r?{et rﬁiﬂ‘t’)‘zgnnfn";gg?na{ﬁi ssca;teerredtion 1. In a number of random environments which naturally
![2 bring together the hain ideaspinvolved in a unified frameF\)N(?rk appear. '_n_ pattern recognition and control problems, the action
and provide pointers to relevant references. probabilities have to be updated based uporctireext vectar
Index Terms—Continuous action-set leaming automata which is typlciailly afeature vectorqr a state vector. This leads to
(CALA), generalized leaming automata (GLA), modules of another modified LA structure which has been calyesheral-
learning automata, parameterized learning automata (PLA), ized learning automata (GLAThis is discussed in Section IV.
teams and networks of learning automata. In situations where the objective of learning is a continuous
valued parameter, the values of which cannot be discretized, the
action-set corresponds to an interval over the real line. Such con-
tinuous action spaces can be handledccbgtinuous action-set
I NVESTIGATION of learning automata (LA) began in thejegrning automata (CALAWnhich are described in Section V.
erstwhile Soviet Union with the work of Tsetlin [2], [3]. Rapid convergence of LA can be achieved by their parallel oper-
These early models were referred todzgerministic and sto- ation. Such parallel operation through the use of modules of LA,
chastic automata operating in random environmeiisrther \hich result in increased speed of convergence, is the subject of
work was taken up by Fu and others in the U.S. in the 196@gction VI. In Section VII, we illustrate the utility of some of
[4]-{6]. Inits current form, an LA roughly corresponds to whaghe | A models on a pattern classification example. Pointers to
was calledvariable structure stochastic automat¢r] in the  some of the recent applications of automata models are provided
early models. The terrtearning automata (LAvas first pub- jn sectionVIIl. Finally, SectionIX concludes the paper.
licized in the survey paper by Narendra and Thathachar [1]The common theme running through our discussion of all
though earlier uses of this term are known [8], [9]. Since thethe models presented here is an optimization view of learning
the field has seen much development and a number of bOQ}f%ﬂy outlined below.
and survey papers have appeared [10]-{13]. The notion of re-rsypkin [15] was among the first to formalize a unifying

inforcement learning [14], which has received a lot of attentiqfamework for all learning problems as that of optimizing a per-
in recent years, represents a development closely related tofk{ehance index

. INTRODUCTION

work on LA. '
Systems built with LA have been successfully employed in J(w) = / R(x, w)dP 1)
many difficult learning situations over the years. This has also pY ’

led to the concept of LA being generalized in a number of di- . )

rections in order to handle various learning problems. HowevéfhereR(x, w) is a functional of the parameter vecterand

some of these extensions to the structure of LA are not so weiiservation vectok, and ' is the space of alk. The per-

known. This paper is aimed at summarizing the main resuf@mance indexJ is the expectation oR with respect to the

available on such extended notions of LA. randomx, the distribution of which is given b$. The special
feature of learning problems is that the probability distribution

. . . __Pis unknown. Hence, givenw, the value ofJ(w) cannot be
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R((x, y), w) = {(G(w, x), y), where(x, y) is a (random) at each instant, the action probability distributiop(%) into
training sample withx as the feature vector angl as its p(k+1) using the most recentinteraction with the environment,
associated class labeli(w, x) is the output of a classifier, namely, the paifa(k), 8(k)).

with parameter vectow, onx; and/(-, -) is an appropriate loss  Definition 2.1: A learning algorithm is said to beoptimal
function. If we consider the case of a 0-1 loss function, théhgiven anye > 0, we can choose parameters of the learning
J(w) would be the probability of wrong classification by thealgorithm such that with probability greater than- ¢

classifier corresponding to the parameter veatorNow the

problem is how to choose some “good” parameterization for a Lim inf pp(k) > 1—e.

desirable family of classifiers and then search for a minimizer ke—oo

f ing only val n some random rvations. T . L
of J using only values oR on some random observations From the above definition, it is easily seen thaiptimality

The distinguishing characteristic of automata-based Iearnllnsgachieved if and only iiminfx_... E[3(k)] > dpm — e.

's that the search for the optimizing parameter vector is COPhus, the objective of the learning scheme is to maximize the
ducted in the space of probability distributions defined over the =™ J 9

. . W?ﬁgected value of the reinforcement received from the environ-
parameter space, rather than in the parameter space itself. WHi : -

. o . ment. Hence, an equivalent way of characterizing the goal of an
this may appear as complicating the problem further, it means . :

g . automata algorithm is

we do not need to assume that the space is isomorphic to some
real Euclidean space or even that it is a metric space. This per- o
mits a great deal of flexibility and allows one to work with, for maximize f(p) = E[3(k)|p(k) = p]
example, rich families of classifiers in a pattern recognition con- o _ _ _
text. The different LA models that we discuss in this paper are #fhere the optimization is over thedimensional simplex, that

motivated by the requirements of such an optimization framis. over all possible action probability vectors. (For brevity, such
work. expectations will be denoted @§|p] in the sequel.) This is

the manner in which LA are most often used in applications.
The actions of the automaton represent the possible values of
the parameters and the automata algorithms search in the space
An LA is an adaptive decision-making device that learns thg probability distributions defined over the parameter space.
optimal action out of a set of actions through repeated interaghis special characteristic of the automata algorithms defines
tions with a random environment. The two characteristic fegqe niche in the application domain where the automata algo-
tures of LA are that the action choice is based on a probabilifyhms are most useful.
distribution over the action-set and it is this probability distribu- There are many learning algorithms that are proven to be
tion that is updated at each instant based on the reinforcemg@btimaL e.g., linear reward inactiod. £_;), estimator algo-
feedback from the environment. Traditionally, the action-set j§hms such as the pursuit algorithm, etc. In these algorithms, the
always considered to be finite. That is why we termed this tradiction probabilities are treated as continuous variables. Another
tional model of LAfinite action-set learning automata or FALA. ¢|ass of FALA are the so-called discrete automata where the ac-
In this section, we briefly describe the FALA model and how fiony probabilities are quantized. There are discrete versions of
number of FALA can be configured as teams or networks fqr,, , and pursuit algorithms which akeoptimal and which,
solving complex problems. generally, exhibit faster rate of convergence (see, for example,

LetA = {a1, ..., ar}, 7 < oo, be theset of actionsavail-  [16]-[21] for more details of FALA algorithms).
able. At each instarit, the automaton choosesaction«a (k) €

A, atrandom, based onits currexction probability distribution A  Games of FALA
p(k) = (p1(k), ..., pr(k))t, k = 0,1,...1 (Here,p;(k) = _ _ S .
Probla(k) = ;] andy""_, pi(k) = 1,¥ k). The action chosen . As briefly outlined earlier in this paper, a single automaton

by the automaton is the input to the environment which respon'asgenerally sufficient for learning the optimal value of one pa-

with a stochasticeactionor reinforcement(k) € R C [0, 1] rameter. However, for multidimensional optimization problems,
where R is the set of possible reactions. Higher values of the® need a system consisting qf as many automata as there are
reinforcement signal are assumed more desirableiLd¢note parameters. One possible configuration for such a system of au-

the expected value gf(k) givena(k) = «;. Thend; is called tomata is a game of automata.

the reward probabilityassociated with action;, 1 < ¢ < r. Let 4, ..., Ay be the automata involved in ai-player
Define the indexn by d,,, — max; {d;}. Then the actiony,, is game. Each play of the game consists of each of the automata

called theoptimal action In the above, we have implicitly as_players choosing an action and then getting ibgoffsor re-

sumed thatl;, 1 < i < r, and hence the identity of the c)Io,m,nalinforcements from the environment for this choice of actions
11 — — 1
action are not time-varying. In this case, the environment is szﬂé

the group of LA. Letp;(k), ..., pn (k) be the action prob-
to bestationary.Otherwise, the environment is said to iben- ability distributions of theN automata. Then, at each instant
stationary.

k, each of the automatd; chooses an action’(k) indepen-
The LA has no knowledge of the reward probabilities. Thgf?vtly atr_1d at _ra_ndor:wtactzordlngm(k), 1tS ;].ShN' Thlsdset ith
objective for the automaton is to identify the optimal actior? actions 1s Input to the environment which responds wi

This is to be achieved through a learning algorithm that updatég,random payoffs, which are supplied as reinforcements to the
corresponding automata. L8t(k) denote the reinforcement to

1The superscript denotes transpose. automaton4; for the choice of actions made at inst&ntWe

[I. FINITE ACTION-SET LEARNING AUTOMATA (FALA)
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assumesi(k) € [0, 1], Vi, k. Let S; denote the action-set of would be a local maximum of the above problem. Thus, by using

A;. Define functionsit: Hf’:lsi —[0,1,1<i< N by Lgr_r, we can locate a local maximum of the expectation of re-
4 ’ ) inforcement in the automata game. It is possible to converge to
d'(z1, ..., o) = B[ (k) |a'(k) =2, 1 <i < N]. (2) the global maximum (that is, the action tuple corresponding to

o , the largest entry in the reward probability matrix) by employin

The funcuord‘ is called thQ)ayoff.fu.rmnorfc.)r automatpnéli. the esgmator al);orithms [23]. 'IF')he estimétor alg())rit)amsglsil) e?(-
Essentially, automata want to maximize their payoff. Since theggit snerior speed of convergence. However, these algorithms
are mult_lple payqff functions, one Way_of_deflnlng the ObjeCtIVﬁave large memory overhead, especially in cases wieig
of learning here is to reachNash equilibrium large.

Definition 2.2: The N-tuple of actions(as, ..., an) IS guch a game model is useful for optimizing a function over
called aNash equilibriunof this game if, foreach, 1 <« <N yarjables or parameters using only noise corrupted values of
the function. The action-sets of different automata represent the
possible values of different parameters. Since we are consid-
ering only FALA here, to use this model we should quantize the
values of different parameters. LA in a common payoff game
e often referred to as a team of LA.

d’i(a17 ey i1, Ty Ajq1y ovvy G,N> §di(a17 ey (IN)
Vees, (3)

Itis known that if each of the automata in the team useban;
algorithm for updating action probabilities, then the team wou
converge to a Ngsh equilibriu.m [22]. . . B. Networks of FALA

A useful special case of this model is a game veitimmon o o _
payoff Here, all the automata get the same payoff from the en-There are many situations where it is convenient to formu-
vironment (that is3' = (3). Hence, there is only one payoﬁlate the learning problem in sgch a way that the o_ptlmal action
function, e.g.d. Since all automata here have only finite acdeépends on thetateof the environment made available to the

tion-sets, we can represefias a hyper-matrixD = [d;,...;.] learning system as an input vector. This input is usually desig-

of dimensionr(1) x - - x r(N), where nated as theontext vectarExamples of context vectors include
feature vector in a pattern recognition problem and the state of
dj,..jy = E[B(k) | o' (k) = o}, 1 <i < NJ. (4) the system in a control problem. We consider the pattern recog-
. . nition problem to explain the different ways in which LA sys-
Here, we used the notatidhy = {o%, ..., a:ﬂ(i 1} is the set tems can tackle such problems.

of actions of automatori;, 1 < ¢ < N. D is called the re-  One can think of the requirements of a pattern recognition

ward probability matrix of the game and itis unknown to the aystem as that of outputting a class label for a feature vector that
tomata. The objective for the team is to maximize thg expectrdinput to the system. One way of using automata models for
value of the common reinforcemefit DefineS = [\, S;. this problem is to think of actions of automata as possible class

For anya = (ay, ..., ax) € S, we define its neighborhood in |abels. Then, an action is optimal only in thentextof certain
S as feature vectors. Such problems have been termed associative
) o reinforcement learning problems [24] because here the objective

N(a) = {x € S[3j, stw; = ai, Vi # j, andz; # aj}. 5o learn to associate differeinputswith different actions. To

tackle the problem in this way, we need to have an automata
model whereby the probability of choosing an action depends
also on the context vector input from the environment. Such an
*.A model is called a5LA and will be discussed in Section IV.
Another way of solving such problems is through teams of au-
épmata. We first formulate an appropriately parameterized class

the matrix. As it is easy to see, a mode would be an element tR{Ijl{jiscriminant functions. The learning problem is to obtain the

is simultaneously maximum along each of the hyper rows POOtimal values of the parameters. If we think.of actipns of au-
which it belongs. Itis known that if all the automata involved jjomata as parameter values, then we can define optimal actions

a common payoff game ude, ; (with sufficiently small value without reference to any context. As was already discussed, one

for the step size parameter), then the team would converge {0 use teams of FALA fo learn the optimal parameters in such

mode of the reward probability matrix [22]. prok?lems. . ' . . .
LetP = (p! pt)t € RrD+-+7(N) denote the tuple Since we need to ultimately find different class regions in the
= (p}, ..., Py

of all action probabilities of all the automata in the team. Thr—zf atulréespace, %lljr p?rameterlztgd iﬁss ogd|scr|r$|nant f:lhnctmns
itis easy to see that once again, the automata team is solvingst gu'dbe capable ol representing them. Depending on the com-
LT plexity of the problem we may want to employ a number of
optimization problem of
teams of FALA.
maximize f(P) = E[3|P] In such cases, it would be convenient to organize the teams
in an orderly manner so that there is some clarity about the role
by searching over th&/-fold product of ther(z)-dimensional played by each team. One such organization is a feedforward
simplexes. By searching over this space, the algorithm findstwork of learning units where each unit is a team of FALA
an N-tuple of actions that is a mode. By our earlier explananvolved in a common payoff game [25], [26]. A schematic of a

tion of the mode, the corresponding tuple of action probabilitieetwork is shown in Fig. 1.

Thus, the neighbors of any -tuple of actions is the set of all
action choices that differ only in one action.

Now it is easy to see that a specifié-tuple of actionsa €
S is a Nash equilibrium for this game with common payoff i
and only ifd(a) > d(x), Vx € N(a). The corresponding
element of the reward probability matrix is called a mode
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Environment }— tribution of theith FALA at instantk, 1 < ¢ < N. Then,
P(k) = [pi(k), ..., pi(k)]* represents the internal state of
()utpﬂ L Reinforcdment the network atk. The goal for the learning algorithm in this
network is to maximizef(P) = E[3 | P].
stwork It can be shown that if each FALA uses thg_r algorithm
with the reinforcement that is commonly supplied to all au-

tomata, then the network converges to a local maximuyfi{ Bf)

/ \ / under assumptions that are not restrictive in most applications
Context [25], [26]. How well a local maximum of corresponds to the
desired mapping of context vectors to the best actions depends
both on the complexity of the problem as well as the architec-
\/ ture of the network [25].

An interesting example of a network of FALA is the three-
layer network extensively used in pattern recognition [26], [27].
The objective here is to divide the feature space into two regions
(not necessarily connected) such that each region corresponds to
Fig.1. Network of learning automata. Each of the boxes corresponds to ategrpattem class. The first layer of the network forms hyperplanes
of FALA. in the feature space and the second layer forms convex regions

i bopunded by these hyperplanes using AND logic. The third layer

The network' superﬁma] ly resembles a fgedforwarq neur%ﬂms the final class regions (which could be nonconvex and dis-

network, but differs considerably in operation. The input t

' . nn ing OR logic on th f th nd-| r
each unit could be the context vector from the environment g\%. ected) by using OR logic on't _e OUtDUt.O the seco .d. aye
its. Here, the parameter vecterin each first-layer unit is

well as outputs of other units appearing earlier in the networ;% represent a hyperplane and thus didunction would be

Trhoeuc’lgf:;f;?nutﬂé Ijn(:[eﬁ;ma;re?h2%3:%??52: rfztc\);gr?( lgaqinear discriminant function. The parameter vector for each
group : Y, P second-layer unit would be a binary vector with as many com-

the external environment is determined by the outputs of SOIME onts as the number of units in the first layer. Hence, in a

?oelﬁ)'gvgamd units. The sequence of events in such a system Ige‘?‘?ond-lz;tyer unit all FALA would have two actions and a spe-

. . ific choice of actions indicates which of the hyperplanes from
At each instant, the environment generates a context vect yperp

T o first layer should be used for making the convex region.
which is input to the LA network. Based on its internal stat .
(i.e., the action probability distributions of all of the FALA in theguCh a feedforward network of FALA would be useful in any

_two-class pattern recognition problem because one can well ap-
network) and the context vector, the network outputs an action. P g b P

The environment then generates a reinforcensemthich indi- proximate arbitrary regions of feature space by union of convex

cates the appropriateness of the action for the particular contgg hedral sets [27]. It may be noted here that such a network
pprop P 1S actually an alternate representation for the so-called oblique

vector. Th's reinforcement is made qva!lable to every FALA | ecision tree classifiers used extensively in pattern recognition
each unit. The network then updates its internal state so as to [?;g]

prove its performance. Unlike a neural network, the updating
all FALA in all units is based on the same reinforcement signal.

A team of FALA which forms a unit is able to handle the con- [ll. PARAMETERIZED LEARNING AUTOMATA (PLA)
text vector input as follows. Suppose we would like the output
of the unit (e.g.y) to be binary with

The basic limitation of a team as well as a network of au-
tomata is that with a decentralized learning algorithm such as
y=1 if G(x, w) >0 Lgr_y, they can converge only to a local maximumiofs | P].
. In order to facilitate convergence to the global maximum, one
=0 It G, w) <0 ) has to change the learning algorithm.
whereG is a known function ok, the context vector input, and It is known that estimator algorithms such as the pursuit al-
w, a parameter vector. (Choice of the functi@ris part of the gorithm lead to the global maximum, but it has a large memory
architectural design of the network.) Then, the tuples of actiongerhead. Another approach would be to use an algorithm sim-
that can be chosen by the team correspond to possible valuesasfto simulated annealing for global optimization [29]. This
the parameter vectar. For every value ofv so chosen by the would mean imposing a random perturbation while updating
team, the value of?(x, w) is used to computg using (5). If the action probability vectop(k) so that the learning process
the number of possible actionsristhen we can have functionsmoves out of local maxima. Introducing a random term directly
Gj(x, w), j=1, ..., r,and chooséth action ifG;(x, w) = in the updating equations is difficult for two reasons. First, it
max; Gj(x, w). To update the state of the network, each of the cumbersome to ensure that the resulting vector after the up-
FALA in each unit update their action probabilities using thdating remains a probability vector. Second, the resuliffg-
globally supplied reinforcement. sionwould be on a manifold rather than the entire space, thus
Suppose the network consists of a total 8f number making the analysis difficult.
of FALA. (This number includes the FALA in all units of One way of overcoming such difficulties is to parameterize
the network.) Letp;(k) denote the action probability dis-the action probabilities in terms of some real numbers and up-
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date these real numbers based on the reinforcement receidinded. This is similar to the penalty term in many constrained
Such a FALA is referred to as jparameterized learning au- optimization algorithms. The last term containiag(-) is the
tomaton (PLA). random perturbation term which is responsible for the algorithm
A PLA will have an internal state vectar of real numbers, getting out of local maxima that are not global maxima. This
which is not necessarily a probability vector. The probabilitids similar to the simulated annealing-type algorithms for global
of various actions are calculated, based on the value o§ing optimization overfR™ except for the fact that here we keep the
aprobability generating functiop(-, -). Teams and networks of variance of perturbations constant.
PLA can be formed along the same lines as FALA. We explainIt can be shown that for sufficiently small values of the
next the learning algorithm to be used with a PLA under tHearning parametex, the behavior of the algorithm can be well

notation of a network of automata. approximated by the Langevin equation. More precisely, one
Consider theith PLA in a network. We denote by; = can show that an appropriately interpolated continuous-time
(wi1y -« -5 Uz‘r(i))t the vector of real numbers that constitutes theersion of the state of the netwolK(¢) converges to the solu-
stateof this PLA. The probability of théth PLA choosing the tion of the stochastic differential equation of the Langevin-type
jth actionp;; can be generated from; as given by
pi; =9i(wi, j) dU = VH(U) + odW 9)
exp(ui;)
== 6
S expluug) (6) where
l
H(U) = E[B| U]+ h(uij) (10)

Now, p; will be inside the probability simplex irrespective of

the values taken bw;. Other types of probability generating i ) ) )
functions are also possible. andW is the standard Brownian motion process of appropriate

The optimization problem addressed by PLA has to glimension. Itis known that the solutions of the Langevin equa-
slightly modified in relation to that connected with FALA agion concentrate on the global maximumidfaso tends to zero.
it is the u; that is updated now. This problem can be stated §§cause of our choice of the functiéi), this means that (for

2%

follows: sufficiently small values ofA andg) the algorithm would con-
verge to a state that is the global maximum of the expected re-
maximize inforcement [that is, the functiofi( U)] if the global maximum
f(U) = E[g|U] state vector is such that each component is less th&dther-
subject to wise, the algorithm would find aonstrainedglobal maximum
) ) ) of f(-) inside the bounded region allowed for the algorithm [30].
luij| < L, j=1,...,r@¢); i=1,...,N.
Here,U = (uf, ..., ug\f)t e Rr(+-+r(N) represents the IV. GENERALIZED LEARNING AUTOMATA (GLA)

tuple of all state vectors of all PLA in the system. The constant As mentioned in Section 11-B, one method of handling asso-
L > Oisintroduced to avoid unbounded behavior of the learningative reinforcement learning problems is to use a GLA, where
algorithm. However, we can choogéo be sufficiently large so the structure of LA is modified to allow for context vector input.
thatthere is insignificant difference between the constrained anda single GLA is described by the tupleX, Y, R, u, g, T).
unconstrained global maxima. Here, X is the set of all context vectors that can be input to the
A learning algorithm for updating the state of tite PLA, GLA; Y is the (finite) set of outputs or actions of GLA is
which ensures convergence to the global maximum is descrifd set of values that the reinforcement signal can take (which

below is usually taken to be the intervl, 1]); g is the probability
dlng; generating function; and is the internal state which is a vector
uij(k +1) = uij (k) + A3(k) Dy (ui(k), ai(k)) of real numbersT is the learning algorithm that updates

Let the action-set of the GLA b¥ = {y1, ..., v}. The
action probabilities of a GLA are generated by

Probla(k) = y; |u, x] = g(x, y;, u) (11)

+/\h'(u”(k)) + \/XSLJ(]{?) (7)

In the above algorithm

 h/(-) is the derivative of(-), which is defined as
where the functiory satisfiesg(x, y;, u) > 0, Vy;, u, x,

h(z) =—K(x—-L)*  fore>1L andY'_, g(x, y;,u) = 1 VYu,x. At each instantk, the
=0 for |z| < L learning algorithni” updatesa(k) based on the current values
=—K(z+L)* fore < —L 8) of x(k), u(k), the reinforcement signa#(k), and the action

chosen by the GLAx(k). Dependence of the updating on the
e {sij(k): 1 <j<r@), 1<i<N, k=0,1,...}is context vectox(k) is the main characteristic of GLA.
a set ofiid random variables with zero mean and variance The motivation for defining GLA is to be able to tackle asso-
0%, L andK are positive real constantd;is a positive ciative reinforcement learning problems directly. Hence, with
integer; and\ > 0 is the learning parameter. the same state vectar, the probabilities with which a GLA
The second term on the right-hand side of (7) is a gradiettiooses different actions can (and most often, would) be depen-
term. The third term containing/(-) is introduced to keep;; dent on the context vector. This is why the probability gener-
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ating function of the GLA is dependent on both the siand where

the context vectok. This may be contrasted with that of PLA, g¢; probability generating function of thigh GLA,;

where the probability generating function is dependent only on\ > 0 learning parameter;

u. In a PLA, the state is only arepresentatiorfor the action L, K >0 constants.

probability distribution. In a GLA, the state (along with the  Analysis of the network of GLA can be carried out using

function g), is arepresentatiorfor a mapping from set of con- weak convergence techniques [25], [33]. It can be shown that

text vectors to set of action probability distributions. under some broad assumptions, the network of GLA using the
A simple example of a probability generating function fombove algorithm converges to a constrained local maximum of

a GLA is as follows. Suppose the context vectobelongs to E[5 | U].

R™. We choose the internal stateto also ben-dimensional.  The network can be made to converge to the global maximum

Suppose there are only two actions so tHat {y;, y2}. Then of the expected reinforcement function by introducing perturba-

a probability generating function for the GLA could be tion terms in the updating which are similar to those with a PLA.

1 This global algorithm is as follows:

=1- . = .
g(X7 Y1, u) g(X/ Y2, u) 1+ exp(—xtu)

8Ing,~
It is easy to see that learning an “optimai’with such a GLA uij
is like learning an “optimal” linear discriminant function in a +AR (uij (k) + VAsi(k) - (13)
two-class pattern recognition problem.

In general, the goal for a GLA is to learn the desired mappirY&
from context vectors to actions. Since the probability generating
function is fixed, chosen by us, and since the environment is . . .
unknown, itis not possible to know whether there exists a vector**/ (k) \S/Zﬂ;ﬁgg:ffd random variables with zero mean and
e e ooy ol anaysis of e loal lgoritm s smia 0 tat o e
fashion, we may have to make very stringent assumptions %Rbal algorithm for PLA via approximation using the Langevin

. o . .equation.
the problem [24]. A better choice for the objective of learning igd . . . . . .
to maximizef(u) = E[8 | u]. This would ensure learning of the f/?\:SAT:nlﬂoned eartl;]er, a smg_let GLAt.'S esse?natl!y like e:]team
best mapping that is allowed after having chosen a probabili -A. However, nere are Interesting applications where a
: : LA is the more natural choice. For example, a GLA can be
generating function [25]. . . ) :
Esed as a gating network in models such as adaptive mixture of

From the example of a probability generating function give .
earlier, it is easy to see that a single GLA is like a team of a .—Cal experts [31]. Here, each input (context vector) frpm the en-
ﬁronment would be sent to all the experts and the final output

wij(k + 1) = uij(k) + AB(k) (xi(k), yi(k), ui(k))

here
n derivative of the functiorh defined by (8);
A > 0 learning parameter;

tomata. A network of GLA can be formed just like a networ : : . .

of FALA with the change that each unit (which was a tea om the system is determined by the gating network which de-

of FALA) now corresponds to one GLA. The context vecto ides how to combine the outputs of different expert networks.
: uch models are useful for learning mixture densities or for

input for each GLA in the network could consist of the extern mina a pattern classification svsterm in which different (tvoes
context vector from the environment or the outputs (actions) gap nsy . (typ
of) classifiers are to be used in different regions of the feature

other GLA connected to this GLA or a combination of both. | h bl ‘ f FALA d i i
Consider theéth GLA in the network. Its state vectorig = space. In such pro ems., ateamo 0€s not appear suit-
able for the task of a gating network.

(w1, - .., uir(i))'. The objective of the network is to maximize
E[3| U], whereU = (uf, ..., ul)’, subject to boundedness
of the components dfl. A learning algorithm which ensures the
boundedness of solutions is as follows. (This is a modification of So far, we have considered the LA model where the set of ac-
the REINFORCE algorithm [32]). Lai; (k) denote the state of tions is finite. Hence, while finding the optimal parameter values
ith GLA atk; y;(k) its output atc; andx; (k) its context input at to maximize a performance index, we need to discretize the pa-
k. Let 3(k) be the reinforcement obtained by the network fromameter space so that actions of LA can be possible values of
the environment at instarit parameters. A more satisfying solution would be to employ an
dlng; LA model where the action-set can be continuous. Such a model
Dy (xi(k), yi(k), h(ui(k))) is E:rak\‘IIedcqntinuou?gztli_c;\n.—s? Iearr|1:pg a#]omat.on or CBAIBAI\
e action-seto isthereal line. The action probability

AR h(uij (k) = uig (K] (12)  gishrinution atk is N(u(k), o(k)), the normal distribution with

V. CONTINUOUS ACTION-SET LEARNING AUTOMATA (CALA)

wig(k + 1) = wi (k) + AB(k)

where meany (k) and standard deviation(k). At each instant, the
CALA updates its action probability distribution by updating

h(w;) = [A(wir), -, b (win@)] n(k) ando (k). As before, letx(k) € R be the action chosen at

with k and let3(k) be the reinforcement &t Here, instead of reward

hn) =L forn > L probabilities fo_r various actions, we now have a reward function
- f: R — Rdefined byf(z) = E[B(k)|a(k) = z]. We shall
=1 for | < L denote the reinforcement in response to acti@s/, and thus
=—L forn < —L f(z) = EB,.
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The objective for CALA is to learn the value afat which estimating) any gradient information [37]. Unlike the case with
f attains a maximum. That is, we want the action probabilifyALA teams, we do not need to discretize the parameter space.
distribution N (u(k), o(k)) to converge taV(z,, 0) wherez, Another interesting model is a game withnumber of FALA
is a maximum off. However, we do not let (k) converge to andM number of CALA. Now, the payoff function is defined
zero to ensure that the algorithm does not get stuck at a nonoger N + M variables out of which\/ are discrete and/ are
timal point. Therefore, we use another parametgr> 0 (with  continuous. We can define optimal points of the game to be those
oy sufficiently small) and keep the objective of learning@s)  which are like Nash equilibria with respect to the discrete part
converging tary andp (k) converging to a maximum of. and local maxima (in the Euclidean sense) with respect to the

The learning algorithm for CALA is described next. Since theontinuous part. It can be shown that if each of the FALA uses
updating given forr (k) does not automatically guarantee thaf _; algorithm and each of the CALA uses the algorithm given
o(k) > o4, we always use a projected versiorugf:), denoted earlier in this section, then the team would converge to one of the
by ¢(o(k)), while choosing actions. Furthermore, unlike FALApptimal points [38]. Such optimization problems, where the ob-
CALA interacts with the environment through a choice of twgective function is defined over some discrete and some contin-

actions at each instant. uous variables, are useful in applications such as learning con-
Ateach instank, CALA chooses a(k) € R atrandom from cepts in the form of logic expressions [38], [39].
its current action probability distributiotV (u(k), ¢(o(k))), It is possible to conceive of networks of CALA along the

where ¢ is the function specified below. Then, it gets thesame lines as networks of FALA. However, at present, there are
reinforcement from the environment for the two action§t) no convergence results available for networks of CALA.
andz(k). Let these reinforcements b, and 3,. Then, the

distribution is updated as follows: VI. M ODULES OFLEARNING AUTOMATA
A decisive aspect of any learning system is its rate of learning
n(k +1) = u(k) + 3B = ) (w(k) — p(k)) or equivalently, speed of convergence. It is decisive because
p(o(k)) P(o(k)) most learning systems operate in slowly changing environments

ok+1)=0(k)+ A

#(o(k)) icant changes take place in the environment; otherwise learning
is ineffective. In the case of LA, speed of convergence can be in-

+ MClov - o(K)]} (14) creased by increasing the value of the learning parameter. How-

ever, this results in reduced accuracy in terms of probability of

(Be — Bu) [((x(k — u(k))>2 B 1] and the learning process should be completed well before signif-

where convergence to the correct action. The problem therefore is to
increase speed without reducing accuracy. This is not possible
d(0) =0y foro < oy in the models considered so far because a single parameter con-
Y foro > oy (15) trols both speed and accuracy.

Parallel operation is known to increase the speed of conver-
gence in general. In order to conceive of parallel operation of

and _ ) LA, one has to change the sequential nature of the models con-
A step size parameter for learning € A < 1); sidered earlier. If we have a number of LA acting in parallel,
C' large positive constant; each of these automata generates its own action and gets a cor-

o, lower bound on standard deviation, as explained earlifesponding reinforcement signal from the environment simulta-

The CALA algorithm can be used as an optimization teC'?reoustZ.
nigue without discretizing the parameter space. It is similar to The pasic ideain such a parallel operation of LA is that, since
stochastic approximation algorithms [34] though here the ragie environmental responses are stochastic, updating of action
domness in choosing the next parameter value makes the alg@pabilities based on several responses would have less ex-
rithm explore better search directions. Furthemore, unlike th@cted error than that based on a single response and would fa-
classical stochastic approximation algorithms, here we do ngjiiate faster convergence.
explicitly estimate the gradient. For this algorithm, it is proven considem FALA operating in parallel in the place of a single
that with arbitrarily large probability,(%) will converge close | A, These LA could be said to form module The schematic
to a maximum off (-) and¢(o(k)) will converge close te, if  of such a module is shown in Fig. 2. The main features of the
we choose\ ando sufficiently small [35], [36]. module are the following. The action-set{is;, ..., a,}. The

As in the case of FALA, we can consider, for example, gction probability vectop(k) is common to all the: automata
common payoff game played By number of CALA. Since the of the module. Each LA (e.g., thi¢h) in the module selects an

action-set of each automaton is the real line, the payoff functiggtion (o (k)) based on the common action probability vector
would have domaift. It can be shown that if each CALA in
the team uses the algorithm described above (With sufficiently’Such a model would be useful in applications such as pattern recognition

Il val for the | . t then the t re actions of automata are possible parameter values and one can test sev-
small values for the learning parame ers), en the team woy | parameter vectors simultaneously using the next available example. On the

converge to a local maximum (in the standard Euclidean sens@pr hand, in applications such as routing in communication networks where
of the payoff function [35]_ Such a team model would be useftjje action corresponds to choice of a route, simultaneous choice of several ac-

R . . . . tions is not possible unless one is working with a simulation model of the system.
for optimizing a function of\ variables using only noise COr-pence in general, whether or not parallel operation is feasible depends on the
rupted values of the function and without needing (or explicitlgpplication.
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LA algorithms such as the pursuit algorithm can also be paral-
lelized in a similar fashion. In fact, in the case of pursuit algo-
rithm, one can achieve convergence in a single step for a suffi-
ciently large size of the module [41].

The common payoff game of a team of FALA also has a par-
allel version where each LA is replaced by a module:afu-

Environment

LA 2 : tomata. Thus, there areparallel teams here with thg¢h team
Fuser being formed by théth LA of each module. Using the above al-
: gorithm for each member of each of the parallel teams, we can
LA B ensure convergence to local optima of the payoff function while

increasing rate of convergence. The same idea can be extended

to feedforward networks of units where each unit is a team of

Fig. 2. Module of learning automata. automata. Similar properties of increased rate of convergence
without sacrificing accuracy follow for such parallel networks.

and obtains its reinforcement sigr@l‘(k)). The common ac- Modules of other types of LA, such as PLA, GLA, and CALA,

tion probability vector is updated depending on all the actio§gn also be formed along similar lines [41].

selected and the reinforcements obtainedugercombines all

this information into quantities that are used in probability up-  V||. PATTERN CLASSIFICATION USING LA M ODELS
dating. It is assumed that (k) € [0, 1], Vi, k. The fuser com-

putes the following quantities at each instant.
 The total response o’ atk is

Modulé

In this section, we use the pattern classification problem as
an example to illustrate how the different LA models can be
employed in an application. We consider learning the “optimal”
n discriminant function (from a given parameterized class of dis-
(k) = Z B (k)I{o? (k) = o} criminant functions) in a two-class pattern recognition problem.

= We denote the feature vector kyand the parameter vector (of
any discriminant function) byv.

wherel{ A} is the indicator function of evert. We first need to decide on a parameterized family of discrim-
« The total response at instahis inant functions. Then, it is straightforward to use a teaniof
automata to learn the optimal values dfparameters. To use
no r a FALA team, we have to quantize the range of each of the pa-
q(k) = Z B (k) = Z (k). rameters. Then, the action-set of each FALA would be the (fi-
i=1 i=1 nite) set of all possible values for the corresponding parameter.
A choice of action-tuple by the team results in the choice of
The learning algorithm is given by a specific classifier. We classify the next training pattern with
this classifier and supply a “1” or “0” as common reinforcement
pi(k+1) =pi(k) + /N\(qi(k) — q(k)pi(k)) to all FALA, based on whether or not this classification agrees

(16) with that given in the training sample. From the results given in
Section lI-A, it is clear that, if we use thegr_ algorithm, we
converge to a local optimum. We can alternatively use the PLA
called itsnormalized value model and thg corresponding global algorithm to converge to
: the global optimum. We can use a team of CALA instead of a

To get an intuitive feel for the updating, we note that the quan- . .
tity g;(k)/q(k) can be considered as a figure of merit for the a(?(_eam of FALA if we do not want to quantize the parameters. In

tion ;. The algorithm moves; (k) towardg; (k) /q(k). Com- all these cases, it is easily shown that we can tolerate up to 50%
putationally,p(k) is updated only once and not necessarily b90|se in the classmcatlon. of the tr{:unlng sample§ [23].
each LA. The updated valyg(k + 1) is shared by all the LA In the above, the learning algorithm does not impose any re-

in the module for their next action selection. It can be Shomﬁ{rictions on the discriminant function. Thus, the method can
that the algorithm is-optimal in all stationary random environ-eaS”y handle discriminant functions that are nonliner botk in
ments [40]. andw. For example, the classifier chosen can be a feedforward

In this algorithm, the accuracy of the learning algorithm igeural network and the CALA team algorithm then would be

controlled byA = A/n. The speed of convergence is controlle@" alternative to the standard backpropagation, as well as being
by A. Hence, for the required accuragyand A can be varied able to handle noisy samples.
to control the speed. Higher speed of convergence for a giverdn general, we can choose for our discriminant function an
accuracy needs higher valuemfthat is, more members in thearbitrary logic expression, the literals of which are algebraic in-
module. However, since we nedd 1, there is a natural limi- equalities (involving feature vector components and some pa-
tation on the achievable speed-up. rameters). This can be handled by a network of FALA. For ex-
Simulation results indicate that the speed of convergence ample, we can employ a three-layer network of FALA (which
creases almost linearly with the size of the module [40]. Otheris briefly described in Section 1I-B) and then we can learn a

1=1,...,r

where) e (0, 1] is the learning parameter, and= \/n is
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TABLE | 0.55 T T T T
SIMULATION RESULTS FORIRIS DATA. THE ENTRY IN THE FOURTH COLUMN )
REFERS TORMS ERROR FORBPM AND PROBABILITY OF MISCLASSIFICATION 05 Iris Data
FOR L g_r. (NC StANDS FORNO CONVERGENCH
045} LA Network (n=1,2,4)
Algorithm | Structure | % Noise | Error | Steps _ N
BPM 931 0 2.0 66,600 \% 041 W (N Solid Line - No Noise
BPM 931 20 N NC 5035 ., Dotted Line - 10% Noi
BPM 931 40 - NC 5 ' o e T T
BPM 8881 0 2.0 | 65,800 % osb
BPM 8881 20 - NC 2 “
BPM 8881 40 - NC S5+ "\"“
Lrt 931 0 0.1 | 78,000 2 " .
La; 931 20 0.1 | 143,000 £ o2r LA S
L1 931 40 0.15 | 200,000 /
0.15} 4
01f
logic expression, the literals of which are linear inequalities. We
can also handle it by a network of GLA. In both of the network 9% " . o s " »
models, we can use the global algorithms so as to converge to Hterations (k) x 10"

the global optima. Finally, in any of these models, we can rE_— 5
place a single automaton by a module of automata to improy'%;re'e_l
the speed of convergence without sacrificing the accuracy. A

more detailed account of LA models for pattern classification ) ) _
can be found in [42]. The results obtained are summarized in Table I. These are

In the remaining part of this section, we describe some sim@Lerages over ten runs. The error reported in the table for the

lation results obtained with the network of LA model on a paf@ckpropagation algorithm is the rms error, while that for the

tern recognition problem to get a flavor of the type of possibl%”tomata network is the probability of misclassification on a test

results set. While they cannot be directly compared, the performance
Example: In this example, a two-class version of the iris dat¥@S about the same at the values reported.

is considered. The data was obtained from the machine learnind " results shoow that in the noise-free case, the BPM con-

databases maintained at the University of California at Irviné€79€s about 20% faster. However, this algorithm fails to con-

This is athree-class, four-feature problem. The three classes Jrigeeven when only 20%, noise is added. TheLA qetwork con-
1) iris-setosa; 2) iris-versicolor; and 3) iris-virginica. Of thesd!NUES {0 converge even with 40% noise and there is only slight
radation of performance with noise [26].

Learning curves for classification of iris data using modules of LA in
ayer network.

setosa is linearly separable from the other two. Since we

considering only two-class problems here, setosa was ignorea—0 illustrate the improvement in speed of convergence
va‘l,rough the use of module of automata, we consider the iris

and the problem was reduced to that of classifying versico bi ith h | work struct but
and virginica. The data used was 50 samples of each class ?rf problem with same three-layer network structure, bu
ith each automaton replaced by a module. The results (which

the correct classification. ‘ h in Fia. 3. This fi
The network consisted of nine first-layer units and threﬂe averages over ten runs) are shown in Fig. 3. This figure

second-layer units. Each first-layer unit has five automat early es_tablishes the faster speed of convergence for the larger
(since this is a four-feature problem). Each automaton hgbodule sizes [40]
nine actions which were{—4, —3, -2, -1, 0, 1, 2, 3, 4}.
Uniform initial conditions were used. The learning parameters
were 0.005 in the first layer and 0.002 in the second layer.  |n this section, we present a brief overview of applications
For a comparison of the performance achieved by th# LA models in a variety of areas. As explained in Section |,
automata network, a standard feedforward neural netwatlostlearning problems can be thought of as optimization of the
trained using backpropagation with momentum term (BPMpectation of a random function where the underlying proba-
is considered. The network has four input nodes and obiity distributions are unknown. LA models prove to be quite
output node. The different network architectures tried weraseful for handling many such stochastic optimization prob-
two hidden layers with nine and three nodes, and three hiddems [43]. One example of such optimization is the problem
layers with eight nodes each. Initial weights for the networdf learning discriminant functions for pattern recognition, as
were generated randomly. The step size for the momentwas discussed in Section VII. Another generic problem where
term was set at 0.9 and the results reported are for the bledtmodels would be useful is one that involves adaptive deci-
choice of step size for gradient term. sion making where one needs to choose an action (among sev-
Simulations were conducted for perfect data (0% noise) asdhl alternatives) on-line to optimize system performance, but
noisy cases. Noise was introduced by changing the known clagthout complete knowledge of how actions affect performance.
sification of the feature vector at each instant by a fixed prob&an early example of such an application is that of using LA for
bility. Noise levels of 20% and 40% were considered. making routing decisions in a telephone network. A good survey

I
w

VIII. A PPLICATIONS
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of many of the earlier applications in areas such as routing awtiat the actions represent. Similarly, using a team containing
process control are available in [12] and [13]. A detailed revieloth CALA and FALA, we can optimize a function defined over
of recent applications of LA models is not feasible here due smme discrete and some continuous parameters.
limitations of space. However, we provide pointers to some of Even when the action-set is the real line (as in CALA), the
the recent applications. We would like to emphasize that this listhdomness in choosing the parameter values enables explo-
is only indicative and is, by no means, exhaustive. ration of better search directions, as demonstrated empirically
As illustrated briefly in Section VII, automata algorithmge.g., [35]).
have been used for learning rich classes of pattern classifier8Vorking in the probability space rather than the parameter
[42]. Due to the fact that the action-sets of automata nesface appears to give these learning models better noise toler-
not have any algebraic structure on them, similar algorithrasice. LA models have converged in situations where classical
are seen to be useful for concept learning [38], [39]. LAchemes have failed (e.g., the results presented on the iris data
models have also been used successfully for many problewith noisy samples).
involving adaptive decision making in communication systems. The models and algorithms described in this paper provide
Examples include bus arbitration schemes for ATM switchesunifying view of LA techniques as a general approach for
[44], conflict avoidance in star networks [45], and dynamion-line stochastic optimization. While a variety of models
channel allocation [46]. Another large application area wheeze described here, choice of the type of LA is dictated by
LA models are found to be useful is adaptive control anthe application. These models are not mutually exclusive in
signal processing [47]-[51]. Even in problems with no randotthe sense that, in many cases, there would be more than one
components, automata algorithms can prove to be usefulragdel that could be used. In general, as with any other suite
stochastic search techniques; an example being the problehtearning techniques, the choice is largely governed by ease
of graph partitioning [52]. Some of the other areas in whicbf representing the solutions needed or of the configuration
LA are useful include image processing [53]-[55], intelligendf the system. Further research is needed in clarifying the
vehicle control [56], pruning decision trees [28], object partstrengths and weaknesses of different varieties of LA and
tioning [57], string taxonomy [58], and learning rule bases dheir connection with related ideas such as soft computing and
fuzzy systems [59]. LA models provide a fairly general purposesolutionary algorithms.
technique for adaptive decision making, optimization, and
control. Many of the recent developments in LA models (some REEERENCES
of Wh_ICh are oqtllned in thls paper), alon.g Wlth. some “?C,e”t [1] K.S.Narendraand M. A. L. Thathachar, “Learning automata: A survey,”
techniques for implementing these algorithms in an efficient” ~ |EEg Trans. Syst., Man, Cyberwol. SMC-14, pp. 323-334, 1974

manner [60], should provide further impetus for employing LA [2] M. L. Tsetlin, “On theé)ye?avior of finite automata in random media,”

: - : - Autom. Remote ControVol. 22, pp. 1210-1219, 1962.

In many different apphcatlons. [3] M. L. Tsetlin, Automata Theory and Modeling of Biological Sys-
tems New York: Academic, 1973.

[4] K.S.FuandG. J. McMurtry, “A study of stochastic automata as a model
for learning and adaptive controller$EEE Trans. Automat. Conwol.

. . oo AC-11, pp. 379-387, 1966.

A V?‘”e_ty of LAmodels ha_ve been discussed in this paper' We[S] B. Chandrasekaran and D. W. C. Shen, “On expediency and convergence

have indicated how collectives of such LA can be configured ° in variable-structure automatalEEE Trans. Syst., Sci., Cybeywol.

into structures such as teams and networks in order to handlt[a6 Esg-“vFPP- 52—69, 1968-t vt Revi 4 outlooleEE

. o . S. Fu, “Learning control systems—Review and outloo
different applications. _ _ _ Trans. Automat. Contrvol. AC-15, pp. 210-221, 1970.
The general objective of a learning system built out of LA is [7] V. I. Varshavskii and I. P. Vorontsova, “On the behavior of stochastic

to maximize the reinforcement received from the environment. ~ automata with a variable structuréytitom. Remote Contwol. 24, pp.

L . 327-333, 1963.
As we have indicated, almost all problems of Iearnlng from ex- [8] R.Viswanathan, “Learning automaton: Models and applications,” Ph.D.

amples involve such optimization. A common theme in all LA dissertation, Yale Univ., New Haven, CT, 1972.
models is that updating is done over probability distributions [9] Ya.Z. Tsypkinand A. S. Poznyak, “Finite learning automatzgg. Cy-

. . . . . bern, vol. 10, pp. 478-490, 1972.
defined over the action space. Even in situations where the agr; S_VNarencﬂg and S. Lakshmivarahan, “Leaming automata: A

tion space directly corresponds to the parameter space (e.g., a critique,” J. Cybern. Inf. Scjvol. 1, pp. 5371, 1977.
CALA team), it is not necessary to resort to direct updating in[11] S. LakshmivarahanLlearning Algorithms: Theory and Applica-

th t Such h. th hit tions New York: Springer-Verlag, 1981.
€ parameter space. such an approach, though it may app??i’] K. S. Narendra and M. A. L. Thathach&earning Automata: An Intro-

indirect, has the following advantages. duction Englewood Cliffs, NJ: Prentice-Hall, 1989.
When the action-set is finite, as in FALA, PLA, and GLA, [13] K. Najim and A. S. PoznyaK,earning Automata: Theory and Applica-

th . t deal of freed . h . th ti Thi tions New York: Pergamon, 1994.
€re IS a great deal of freedom In choosing the actions. Ifi4] R. S. Sutton and A. G. Bartd&reinforcement Learning: An Introduc-

provides a lot of flexibility in designing an appropriate learning tion. Cambridge, MA: MIT Press, 1998.
system in different applications. For example, in a three—layelr15] Ya. Z. Tsypkin,Adaptation and Learning in Automatic Systemslew

. York: Academic, 1971.
network of FALA, actions of some automata correspond to real[le] M. A. L. Thathachar and P. S. Sastry, “A new approach to designing
valued parameters that represent hyperplanes, while actions of reinforcement schemes for learning automalaEE Trans. Syst., Man,

some other automata represent logical decisions of which hy-_  Cybern, vol. SMC-15, pp. 168-175, 198S. _
17] ——, “Estimator algorithms for learning automata,”Rmoc. Platinum

perplanes to p!Ck for mgklng. apprpprlate Conve).( regions. HOW="" ypjee Conference Systems and Signal ProcessiBgngalore, India:
ever, the learning algorithm itself is completely independent of  Dept. Elect. Eng., Indian Inst. Science, Dec. 1986.

IX. CONCLUSIONS
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