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Abstract 
 

 
This paper derives the asymptotic distribution of nonparametric neural network 
estimator of the Lyapunov exponent in a noisy system proposed by Nychka et al 
(1992) and others. Positivity of the Lyapunov exponent is an operational definition of 
chaos. We introduce a statistical framework for testing the chaotic hypothesis based 
on the estimated Lyapunov exponents and a consistent variance estimator. A 
simulation study to evaluate small sample performance is reported. We also apply 
our procedures to daily stock return datasets. In most cases we strongly reject the 
hypothesis of chaos; one mild exception is in some higher power transformed 
absolute returns, where we still find evidence against the hypothesis but it is 
somewhat weaker. 
 
Keywords: Artificial neural networks; nonlinear dynamics; nonlinear time series; non- 
parametric regression; Sieve estimation. 
JEL nos.: C14, C22. 
 
 
 
 
 
 
 
 
© by the authors. All rights reserved. Short sections of text, not to exceed two 
paragraphs, may be quoted without special permission, provided that full credit, 
including © notice, is given to the source. 
 
 
 
 
 
 
 
Contact address: Professor Oliver Linton, Department of Economics, London School 
of Economics and Political Science, Houghton Street, London WC2A 2AE, UK. Email: 
o.linton@lse.ac.uk/ 
 
 
 
 

mailto:o.linton@lse.ac.uk


1 Introduction

The largest Lyapunov exponent, which measures the average rate of divergence or convergence of two
nearby trajectories, is a useful measure of the stability of a dynamical system. Indeed, the positivity
of the Lyapunov exponent in a bounded dissipative nonlinear system is a widely used formal de…nition
of chaos.1 To obtain the Lyapunov exponent from observed data, Eckmann and Ruelle (1985) and

Eckmann et al. (1986) proposed a method based on nonparametric regression which is known as the
Jacobian method. The Jacobian method is also applicable when stochastic noise is present in the
system (Nychka et al., 1992). In recent work, the asymptotic distribution of the Jacobian method

estimator using a kernel-type nonparametric regression in a noisy system was derived by Whang and
Linton (1999). This asymptotic result can be used to test the null hypothesis of positive exponent
as a formal test for chaos.2 In principle, any nonparametric regression estimator can be employed in

the Jacobian method. Following the works by Nychka et al.(1992) and Gençay and Dechert (1992),
the neural network became one of the most widely used nonparametric regression methods in the
context of Lyapunov exponent estimation.3 However, despite the popularity of the neural network-
based Jacobian method, empirical researchers have been con…ned to report only the point estimates

of the Lyapunov exponent as the distributional theory was not known.4

This paper …rst derives the asymptotic distribution of the Lyapunov exponent estimator based
on neural networks. Based on the limiting distribution, consistent estimation of the variance of the

Lyapunov exponent estimator is introduced. Then we propose a formal statistical framework for
testing the hypothesis of the positivity of the Lyapunov exponent; in other words, we propose a
direct test for chaos.5 The basic idea is to combine the result of Whang and Linton (1999) and the

recent results on neural network asymptotics obtained by Chen and White (1999) and others. The
conditions, in terms of the number of hidden units in neural nets as well as the block length, for
asymptotic normality of the Lyapunov exponent estimator are derived for both one-dimensional and

1This de…nition is introduced by Eckmann and Ruelle (1985).
2Chaos can be de…ned in stochastic system using Lyapunov exponent. Such a generalization of the notion of chaos

is sometimes referred to as noisy chaos as opposed to the deterministic chaos.
3See also McCa¤rey (1991), Ellner et al. (1991) and McCa¤rey et al. (1992) for the Jacobian method based on

neural networks. Applications of this method in economics include: Dechert and Gençay’s (1992) analysis of foreign
exchange rates; studies on monetary aggregates by Serletis (1995) and Barnett et al. (1995); and the analysis of stock
return series by Abhyankar, Copeland and Wong (1996).

4The bootstrap may be an alternative way to conduct a statistical test for the Lyapunov exponent. This line of
research is pursued by Gençay (1996). However, the computing burden of bootstrapping neural nets seems to be the
main problem in practice.

5The well-known BDS test proposed by Brock et al. (1996) should be viewed as a test for iid against general
dependence which include chaos rather than a direct test for chaos.
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multi-dimensional cases. It is shown that the required growth rate of block length based on neural
nets is slower than those based on kernel estimators.

Theoretically, neural nets are expected to perform better than other approximation methods es-
pecially with high-dimensional models since the approximation form is not sensitive to the increasing

dimension.6 Practically, the reliability of the Jacobian method based on nonparametric neural net-
work estimation is rea¢rmed by a single-blind controlled competition conducted by Barnett et al.
(1997).7 Using the data set used in this competition as well as using the arti…cially generated chaotic

data in noisy system, the small sample properties of our proposed methods are examined. Finally,
we apply our methods to stock return series. This is well-motivated since a certain type of economic
model predicts chaos in the …nancial market.

The remainder of the paper is organized as follows: De…nitions of the Lyapunov exponent and
the neural network estimator are presented in Section 2. Section 3 derives asymptotic properties of
estimated Lyapunov exponents based on neural nets and proposes test statistics. Some additional
discussion is given in Section 4. Monte Carlo evidence is presented in Section 5. An empirical

application is reported in Section 6. Some concluding remarks are made in Section 7. All proofs are
given in the Appendix.

We will use following notation throughout the paper. When j ¢ j is applied to a vector a0 =

(a1; : : : ; ad) 2 Rd, it denotes a vector norm de…ned by jaj ´ Pd
i=1 jaij. Let ¹ = (¹1; : : : ; ¹d)0 denote

a d-vector of non-negative integer constants, we denote x¹ =
Qd
i=1 x

¹i
i for x = (x1; : : : ; xd)0 2Rd and

D¹g(x) =
@ j¹jg(x)

@x¹11 ; : : : ; @x
¹d
d
;

for any real function g(x) on Rd. When ¹ is a scalar constant, as is the case when d = 1, we de…ne

D¹g(x) to be the ¹-th order derivative of g(¢) evaluated at x with the convention that D0g(x) = g(x)
and D1g(x) = Dg(x). We use Bmd to denote a weighted Sobolev space of all functions on Rd that
have continuous and uniformly bounded (partial) derivative up to order m. For g 2 Bmd , the norm is
de…ned by

kgkBmd
def:= max

0·j¹j·m
sup
x2Rd

jD¹g(x)j <1

and the associated metric is de…ned with this norm. The symbols “)” and “ p!” are used to signify

convergence in distribution and convergence in probability, respectively. All the limits in the paper
are taken as the sample size T ! 1.

6As stated in McCa¤ery et al. (1992) “Compared to the preceding functional approximations, the neural net form
is not sensitive to increasing d (p. 689).”

7Furthermore, the robustness of the neural nets to the choice of smoothing parameters (or number of hidden units)
and lag length (or dimension) have been reported in simulations. See Gallant and White (1992) and Nychka et al.
(1992).
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2 Model

2.1 Lyapunov exponents for stochastic systems

Let fXtgTt=1 be a random scalar sequence generated by the following non-linear autoregressive model

Xt = µ0(Xt¡1; : : : ;Xt¡d) + ut; (1)

where µ0: Rd !R is a non-linear dynamic map. We employ the following assumptions for the data
Zt = (Xt; : : : ; Xt¡d+1)0 2Rd, error ut, and the class of non-linear function µ0 in (1).

Assumption A1. (a) fZtgTt=1 is a strictly stationary and ¯-mixing sequence with mixing co-

e¢cient satisfying ¯(j) · ¯0j¡³ for some ¯0 > 0, ³ > 2, where the ¯-mixing coe¢cient is given
by

¯(j) = E sup
©¯̄
P (BjF0

¡1) ¡ P (B)
¯̄
: B 2 F1

j

ª
;

where F ts is the ¾-…eld generated by (Zs; : : : ;Zt).

(b) The distribution of Zt is absolutely continuous with respect to Lebesgue measure with marginal
density function f with a compact support Z in Rd. The initial condition Z0 is a random variable
generated from the same distribution.

Assumption A2. futgTt=1 is a random sequence of either:

(i) i.i.d. with E(ut) = 0 and E(u2t ) = ¾2 <1, or

(ii) martingale di¤erence with E(utjF t¡1
¡1) = 0 and E(u2t jF t¡1

¡1) = ¾2t 2 [²; ²¡1] for some ² > 0.

Assumption A3. µ0: Rd !R is a target function in the parameter space having …nite third
absolute moments of the Fourier magnitude distributions, namely,

£ =
½
µ : µ(z) =

Z
exp(ia0z)d¹µ(a); k¹µk3 ´

Z
l(a)3dj¹µj(a) · C <1

¾
;

where ¹µ is a complex-valued measure on Rd, j¹µj denotes total variation of ¹µ, l(a) = max
h
(a0a)1=2 ; 1

i

and a0 = (a1; : : : ; ad) 2Rd.

Assumption A3 is a slightly modi…ed version of the smoothness condition …rst introduced by
Barron (1993) in the neural network literature. For the purpose of investigating approximation
properties of neural nets with respect to derivatives up to order m, the modi…ed norm with the
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scaling factor l(a)m+1 is introduced by Hornik et al. (1994). It should be noted that such a modi…ed
condition is stronger than Barron’s original condition and requires the Sobolev norm of order m+ 1
to be bounded.8 In other words, A3 implies that µ 2 B3

d or boundedness of the third derivative.
This fact will be used later as a bridge between convergence in L2 norm and Sobolev norm to obtain

uniform convergence rate of derivative estimation from neural networks (see Lemma 1).
The model (1) can be expressed in terms of a map with Ut = (ut; 0; : : : ; 0)0 and the map function

F : Rd !Rd such that

Zt = F (Zt¡1) +Ut: (2)

Let Jt be the Jacobian of the map F in (2) evaluated at Zt. Speci…cally, we de…ne

Jt =

2
66666664

¢µ1t ¢µ2t ¢ ¢ ¢ ¢µd¡1;t ¢µdt
1 0 ¢ ¢ ¢ 0 0
0 1 ¢ ¢ ¢ 0 0
...

... . .. ...
...

0 0 ¢ ¢ ¢ 1 0

3
77777775

(3)

for t = 0; 1; : : : ; T ¡ 1, where ¢µjt = Dejµ0(Zt) for j = 1; : : : ; d in which ej = (0; : : : ; 1; : : : ; 0)0 2Rd

denotes the j-th elementary vector. We next assume the existence of the Lyapunov exponent of (1).

Assumption A4. The system (1) has a …nite Lyapunov exponent de…ned by

¸ ´ lim
M!1

1
2M

ln º1 (T0
MTM) ; TM =

MY

t=1

JM¡t = JM¡1 ¢ JM¡2 ¢ ¢ ¢ ¢ ¢ J0; (4)

where ºi (A) is i-th largest eigenvalue of a matrix A.

Necessary conditions for Assumption A4 have been discussed in the literature [For example, see
Nychka et al., 1992, p.406]. It is known that, if maxfln º1(J 0tJt); 0g has a …nite …rst moment with
respect to the distribution given in Assumption A1, then the limit in (4) almost surely exists and

will be a constant, irrespective of the initial condition. When ¾2t = 0, the system (1) reduces to a
deterministic system and the interpretation of ¸ > 0 is identical to the de…nition of deterministic
chaos. For moderate ¾2t , the stochastic system generated by (1) can also have sensitive dependence

to initial conditions, and noisy chaos with ¸ > 0 can be also de…ned (see Nychka et al., 1992). For
example, a stationary linear autoregressive process has ¸ < 0, while the unit root and the explosive
autoregressive process imply ¸ ¸ 0. One interesting question here is whether the Lyapunov exponent

is continuous in the amount of noise for small amounts of noise. Speci…cally, let ¸¾ denote the
8Barron’s original condition requires only the Sobolev norm of order 1 to be bounded.
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Lyapunov exponent for a noisy system with error variance ¾2 and let ¸0 be the Lyapunov exponent
for the deterministic skeleton with ¾2 = 0:We suspect that lim¾!0 ¸¾ = ¸0: This is certainly the case
for a large class of processes including the linear autoregressive processes, but we do not have a proof
that works under general conditions. Under further continuity properties, our distributional theory

given below can also be extended to ‘small sigma’ asymptotics, i.e., to work under the condition that
¾! 0:

For the multidimensional case with d ¸ 2, we can also de…ne the i-th largest Lyapunov exponents

(¸i) for 2 · i · d, by replacing º1 (¢) in (4) by ºi (¢) for 2 · i · d. These other exponents also
contain some important information related to the stability of the system, including the directions
of divergence and contraction of trajectories (see Nychka et al., 1992) and the types of non-chaotic

attractors (see Dechert and Gençay, 1992). In the following subsection, we introduce the single
hidden layer networks to obtain the nonparametric estimates of (1) and (4).

2.2 Nonparametric neural network estimation

Let bµ(¢) be the estimate of µ0(¢) in (1) based on neural networks. In this paper, we consider only
feed-forward single hidden layer networks with a single output, which is the most frequently used
model in the statistical analysis on neural nets. Following Chen and Shen (1998) and Chen and

White (1999), we view this neural network estimator as a special case of Grenander’s (1981) sieve
extremum estimator in our analysis. In other words, it can be viewed as a problem of maximizing an
empirical criterion, LT (µ), over the neural network sieve, £T , which is a sequence of approximating

parameter spaces that is dense in the in…nite dimensional parameter space, £, as T ! 1. The
formal de…nition of the estimator is given as follows.

Assumption B1. (a) The neural network estimator bµT is an extremum sieve estimator that
satis…es

LT (bµT ) ¸ sup
µ2£T

LT (µ) ¡O("2T )

with "T ! 0 as T ! 1; where LT (µ) is a least square criterion

LT (µ) =
1
T

TX

t=1

l(µ; Xt;Zt¡1) = ¡ 1
T

TX

t=1

1
2
(Xt ¡ µ(Zt¡1))2:

(b) The neural network sieve µT : Rd !R is an approximation function in the parameter space

£T satisfying

µT (z) = ¯0 +
2kr(T )X

j=1

¯jl(aj )
¡3Ã(a0jz + bj)
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with

max
1·j·2kr(T )

jajj · CT ;
2kr(T )X

j=0

j¯j j · BT ;

where Ã is an activation function, aj 2Rd, bj ; ¯j 2R are parameters, and k is the number related to
the choice of activation function de…ned below.

In B1(a), we consider the approximate maximization problem where exact maximization is in-

cluded as a special case when "T = 0. Similar to the case shown in Chen and Shen (1998), our
asymptotics in the next section are valid as long as "T converges to zero faster than the theoretical
rate of convergence of the estimator. The neural network sieve in B2(b) is again slightly di¤erent
from the usual de…nition since each hidden unit is scaled by the factor l(aj)¡3 for the same reason

as A3. Also note that 2kr(T ) is the number of hidden units instead of r(T ) in our notation.
Typically, Ã is a sigmoid function de…ned by a bounded measurable function on R with Ã(u) ! 1

as u! 1, and Ã(u) ! 0 as u! ¡1. However, we do not need to restrict our attention to sigmoid

functions in order to obtain the powerful approximation properties of the neural networks. For this
reason, we employ the condition of Hornik et al. (1994) and allow a more general class of functions
for our activation function.

Assumption B2 (Hornik et al., 1994). The activation function Ã is a possibly nonsigmoid
function satisfying Ã 2 B2

1 and is k-finite for some k ¸ 2, namely,

0 <
Z

R
jDkÃ(u)jdu <1:

We can replace the condition above by the stronger condition that all derivatives DkÃ, 0 < k < 2,
are absolutely integrable with respect to one-dimensional Lebesgue measure, or,

R
R jDkÃ(u)jdu <1

for all k such that 0 < k < 2.
We now de…ne our estimator of ¸ based on the neural network estimator bµ. The basic idea of

the Jacobian method is to substitute bµ in the Jacobian formula (3) and obtain bJt. Following the
convention of neural network estimation of Lyapunov exponent, we distinguish between the “sample
size” T used for estimating Jacobian bJt and the “block length” M which is the number of evaluation

points used for estimating Lyapunov exponent. Since the number of evaluation points should always
be less than or equal to T ,M can be also understood as a subsample. The neural network estimator
of Lyapunov exponent can be de…ned as

b̧M =
1

2M
ln º1

³
bT0
M

bTM
´
; bTM =

MY

t=1

bJM¡t = bJM¡1 ¢ bJM¡2 ¢ ¢ ¢ ¢ ¢ bJ0; (5)
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where

bJt =

2
66666664

¢bµ1t ¢bµ2t ¢ ¢ ¢ ¢bµd¡1;t ¢bµdt
1 0 ¢ ¢ ¢ 0 0

0 1 ¢ ¢ ¢ 0 0
...

... .. . ...
...

0 0 ¢ ¢ ¢ 1 0

3
77777775
; (6)

where ¢bµjt = Dejbµ(Zt) for t = 0; 1; : : : ;M ¡ 1: For notational convenience we have just taken the
…rst M observations. However, in practice, there are several alternative choices of subsample, a

matter that will be discussed in subsection 4.2. The estimator for the other Lyapunov exponents,
b̧iM , can be de…ned similarly by replacing º1 (¢) by ºi (¢) for 2 · i · d.

3 Theoretical results

3.1 Uniform convergence rate for derivative estimator

We …rst provide the uniform convergence rate for the derivative estimator. Let us denote ¢bµ(Zt) =
(¢bµ1;t;¢bµ2;t; : : : ;¢bµd;t)0 and ¢µ0(Zt) = (¢µ01;t;¢µ02;t; : : : ;¢µ0d;t)0.

Lemma 1. Suppose that assumptions A1 to A4 and B1 to B2 hold, BT ¸ const: £ k¹µk3,
CT = const: and r(T ) satis…es r2 log r = O(T ). Then

sup
z2Z

¯̄
¯¢bµ(z) ¡ ¢µ0(z)

¯̄
¯ = Op([T= logT ]¡1=4):

In order to obtain the improved rate for the derivative estimator, we introduce a Hölder condition
on the activation function.9

Assumption B3 (Chen and White, 1999). For any (a0; b); (a01; b1) 2 Rd£ R, there exists an
® 2 (0; 1] associated with Ã 2 B3

1 such that for all z in the compact support S,

°°Ãa;b ¡ Ãa1;b1
°°
B31

· const:£
h
((a¡ a1)0(a ¡ a1))1=2 + jb¡ b1j

i®
;

where Ãa;b(z) is the rescaled activation function de…ned by Ãa;b(z) = l(a)¡3Ã(a0z + b).

Lemma 2. Suppose that assumptions A1 to A4 and B1 to B3 hold, BT ¸ const:£ k¹µk3, CT =
const: and r(T ) satis…es r2(1+®=d¤) log r = O(T ); where d¤ = d if Ã is homogeneous (Ã(cz) = cÃ(z)),

9See Makovoz (1996) and Chen and White (1999) for the relation between this condition and the source of im-
provement in the rate of approximation.
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and d¤ = d +1 otherwise. Then

sup
z2Z

¯̄
¯¢bµ(z) ¡ ¢µ0(z)

¯̄
¯ = op(T¡1=4):

3.2 Lyapunov exponent when d = 1

In this subsection, the asymptotic behavior of b̧ for the scalar case (d = 1) is presented mainly for the
purpose of illustration. The general results for the multidimensional case (d ¸ 2) will be obtained in

the next subsection. When d = 1, since Zt = Xt, Z = Â, and Jt =Dµ0(Xt), the Lyapunov exponent
estimator in (5) simpli…es to

b̧M =
1

2M

MX

t=1

ln
h
Dbµ(Xt¡1)2

i
:

To investigate the asymptotic property of the estimator, it is convenient to introduce the notion

of the local Lyapunov exponent de…ned by

¸M =
1

2M

MX

t=1

ln
£
Dµ(Xt¡1)2

¤
:

Unlike the “global” Lyapunov exponent ¸, the local Lyapunov exponent measures the short-term

rate of divergence. It should also be noted that ¸M is a random variable in general. By the de…nition
in assumption A4, ¸ can be seen as a limit of ¸M with M ! 1. Using ¸M , the total estimation
error, b̧M ¡ ¸, with normalizer

p
M can be decomposed as

p
M(b̧M ¡ ¸) =

p
M(b̧M ¡ ¸M) +

p
M(¸M ¡ ¸): (7)

The second term represents the asymptotic behavior of the local Lyapunov exponent which is
common to all Jacobian methods irrespective of the choice of the nonparametric estimator. Thep
M rate of convergence and CLT for this term were derived by McCa¤rey et al. (1992) and Bailey

(1996), respectively. The …rst term can be understood as the estimation error for the local Lyapunov

exponent. In contrast to the second term, the asymptotic behavior of the …rst term depends on
the estimation method. Whang and Linton (1999) employed kernel regression methods and showed
that the asymptotic of (7) is dominated by the second term under some conditions. Similarly, we

investigate the condition on the neural network estimator for the …rst term to have negligible e¤ect
on the asymptotic behavior of (7). To obtain asymptotic normality, we employ the following two
assumptions.

Assumption A5¤. For some Á ¸ 0,

max
1·t·M

¡
jDµ0(Xt¡1)j¡1¢ =

µ
min

1·t·M
jDµ0(Xt¡1)j

¶¡1

= Op(MÁ):
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Assumption A6¤.

© ´ lim
M!1

var

"
1p
M

MX

t=1

´t

#

is positive and …nite, where

´t = ln jDµ0(Xt¡1)j ¡ ¸:

Assumption A5¤ is a condition on the properties of the data around zero derivatives …rst employed

by Whang and Linton (1999). As explained in Whang and Linton (p. 9), it is closely related to
extreme value theory for stochastic processes. The condition is weak and is expected to hold for many
chaotic processes including the well-known logistic map. Assumption A6¤ provides the variance of

the second term in (7), namely, the variance for the local Lyapunov exponent. The following points
should be noted with respect to this assumption. Since ´t is a weakly dependent process, if we take
an equally spaced subsample, it is expected to be an asymptotically independent sequence. Also,

this condition implies that we are focusing our attention on the nonlinear case, since the variance
degenerates in the linear case. Using these assumptions, we obtain the following result.

Theorem 1. Suppose that assumptions in Lemma 1, A5 ¤ and A6 ¤ hold. If M = O([T= log T ]1=(2+4Á)),
then

p
M(b̧M ¡ ¸) ) N (0;©):

Remark. The result shows that the simple asymptotic formula can be derived with an appropri-
ate choice of block length. For example, when Á = 0, M = O([T= logT ]1=2) is su¢cient for the …rst
term in (7) to have negligible e¤ect in the asymptotic distribution. It is also interesting to compare

the required conditions on block length with those of kernel based method derived in Whang and
Linton (1999). First, unlike our result, their rate depends on the trimming parameter because of the
boundary problem of kernel estimation.10 Second, the di¤erence in the convergence rate of the deriv-
ative estimator results in a slower growth rate of the block length in the neural network procedure

than those in the kernel based method by the logarithmic term in the denominator.

3.3 Lyapunov exponents when d ¸ 2
10 It should also be noted that Whang and Linton (1999) allow their rate of bandwidth to be random, but we restrict

our attention to the deterministic number of hidden units.
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We now discuss the extension of the result in the previous subsection to the case in which d may
be greater than one. For the purpose of deriving the asymptotic properties, we will introduce
multidimensional version of assumptions A5¤ and A6¤ for the one-dimensional case.

Assumption A5. For 1 · i · d and some Á ¸ 0,

max
1·t·M

jFit(JM¡1; : : : ; J0)j = Op(MÁ);

where
Fit(JM¡1; : : : ; J0) =

@ ln ºi (T0
MTM )

@¢µ(Zt)
and ¢µ(Zt) = (¢µ1;t;¢µ2;t; : : : ;¢µd;t)0:

Assumption A6. For 1 · i · d;

©i ´ lim
M!1

var

"
1p
M

MX

t=1

´it

#

is positive and …nite, where

´it = » it ¡ ¸i with »it =
1
2
ln

Ã
ºi (T0

tTt)
ºi

¡
T0
t¡1Tt¡1

¢
!

for t ¸ 2 and »i1 =
1
2
ln ºi (T0

1T1) :

By using arguments similar to those of the previous subsection, we have the main theoretical
result of the paper.

Theorem 2. Suppose that assumptions in Lemma 1, A5 and A6 hold. If M = O([T= logT ]1=(2+4Á)),
then for 1 · i · d; p

M(b̧iM ¡ ¸i) ) N (0;©i):

Remark. The result shows that a simple asymptotic formula can be used for all Lyapunov

exponents in the multidimensional case, with the growth rate of the block length identical to the
rate which applies in the one-dimensional case. It should also be noted that both one-dimensional
and multidimensional results are obtained using the same smoothness condition given in A3. This
advantage of the neural network approach comes from the powerful approximation properties of

neural networks given in Lemma 1. In general, other nonparametric approaches require stronger
conditions on the smoothness (or di¤erentiability) of the function when the dimension increases (for
example, see the requirement for the kernel regression based method in Whang and Linton, 1999).
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3.4 Test statistics

In this subsection, feasible test statistics are introduced and a one-sided test is proposed for the
purpose of testing chaotic behavior of time series. First, we construct the test statistics based on the
asymptotic results on Lyapunov exponent estimates obtained in the previous subsections. To simplify

the notation, we omit the subscript 1 for the largest Lyapunov exponent in the multidimensional
case. Suppose b© is a consistent estimator of © in Theorem 2. Our primary interest is to test the null
hypothesis H0 : ¸ ¸ 0 (¸ · 0) against the alternative of H1 : ¸ < 0 (¸ > 0). Our test statistic is

bt =
b̧Mq
b©=M

. (8)

We reject the null hypothesis if bt · ¡z® (bt ¸ z®) where z® is the critical value that satis…es
Pr [Z ¸ z®] = ® with Z being a standard normal random variable.

Next, we consider consistent estimation of ©. Since ´t’s are serially dependent and not identically
distributed, we need to employ a heteroskedasticity and autocorrelation consistent (HAC) covariance
matrix estimator (see, e.g. Andrews, 1991) for ©. For the one-dimensional case, the covariance

estimator b© is de…ned as follows:

b© =
M¡1X

j=¡M+1

w(j=SM )b°(j) and b°(j) = 1
M

MX

t=jj j+1

b́tb́t¡jjj;

where b́t =
n
ln

¯̄
¯Dbµ(Xt¡1)

¯̄
¯ ¡ b̧M

o
and where w(¢) and SM denote a kernel function and a lag

truncation parameter, respectively. For the multidimensional case, the test statistic bti = b̧
iM=

q
b©i=M

with the covariance estimators b©i can be similarly constructed by replacing b́t by

b́it = b»it ¡ b̧iM with b» it =
1
2
ln

0
@
ºi

³
bT0
t
bTt

´

ºi
³

bT0
t¡1

bTt¡1

´
1
A for t ¸ 2 and b» i1 =

1
2
ln ºi

³
bT0

1
bT1

´
.

For the covariance matrix estimation, we employ the following class of kernel functions similar to
that given in Andrews (1991).

Assumption C1 (HAC estimation). w: R ! [¡1; 1] is a piecewise continuous function, con-

tinuous and taking the value 1 at zero, symmetric around zero, and has a …nite second moment. In
other words, the class of kernel is

W =
½
w(¢) : w(0) = 1; w(¡x) = w(x) 8x 2 R;

Z 1

¡1
w2(x)dx <1;

w(¢) is continuous at 0 and at all but a …nite number of pointsg :
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Corollary 1. Suppose that assumptions in Theorem 2 and C1 are satis…ed. Also suppose, SM
satis…es SM ! 1 and SM = o(M1=2). Then for 1 · i · d, b©i p! ©i.

Remark. This result shows that the HAC estimation with given growth rate of bandwidth
can be used to construct the standard error for Lyapunov exponents. Since the infeasible statistic
eti = (b̧iM ¡ ¸i)=

q
b©i=M ) N (0; 1), bti = eti + ¸i=

q
b©i=M diverges to ¡1 (1) for any ¸i under H1 :

¸i < 0 (¸i > 0). Therefore the test is consistent under reasonable conditions.

4 Discussions

4.1 Optimal block length and optimal subsampling scheme

It should be noted that the asymptotic results in the previous section required that the number of

products of the Jacobian in the Lyapunov exponent estimate (M) to be less than the sample size of
data used in Jacobian estimation (T ). Therefore, the choice of block lengthM is an important issue
in practice. McCa¤rey et al. (1992) discussed the optimal choice of block length by decomposing
the local Lyapunov exponent asymptotics [the second term in (7)] into a bias term and a variance

term. Furthermore, they suggested that averaging the Lyapunov exponent estimators from the
nonoverlapping T=M blocks might reduce the overall bias (see also Ellner et al., 1991, and Nychka et
al., 1992). However, it should be noted that such an estimate in the one-dimensional case is identical

to the estimate based on a full sample (M = T ).
Whang and Linton (1999) pointed out that the asymptotics for the Lyapunov exponent estimate

can be derived not only from the blocking method but also from any other subsampling method.

This fact also raised a question of the optimal choice of subsampling scheme for a given number of
M . Suppose the optimal choice is made on the grounds that it minimizes the variance ©i in A6
(or A6¤). Then the comparison between the blocking scheme and the equally spaced subsampling
scheme can be understood from the following simple example.

Suppose we have three observations of the time series data (y1; y2; y3) generated from the au-
toregressive (AR) process of order one. If we want to estimate the mean of the process using two
observations out of three, we only have two alternatives; using the adjacent sample [(y1; y2) or (y2; y3)]

or use the skipped sample [(y1; y3)]. The variance of such an estimate depends on the AR parameter.
A simple calculation implies that the …rst scheme is more e¢cient when the parameter is negative
and the second scheme is more e¢cient when the parameter is positive. Similarly, when the data are

generated by the moving average (MA) process of order one, the …rst scheme is better when the MA
parameter is positive and the second scheme is better when the parameter is negative.

12



This simple example shows that the optimal subsample for the Lyapunov exponent estimation
depends on the data generating process. Therefore, we may use either the blocking scheme or equally
spaced subsample scheme as a choice of subsample. For this reason, in this paper, we report the
results based on equally spaced subsamples in addition to the results based on the commonly used

blocking method in the simulation and empirical analysis.

4.2 Full sample estimation

As discussed by Ellner et al. (1991), it has been questioned whether the requirement of block length
(M) less than full sample (T ) is necessary in the theoretical analysis of asymptotic behavior of the
neural network approach. When the Jacobians from the whole sample points are used for Lyapunov

exponent calculation (M = T ), the …rst term in (7) now enters the asymptotic behavior of the
overall estimation error. Therefore, we can expect the full sample estimator to have a di¤erent
asymptotic distribution from the one based on subsamples. Whang and Linton (1999) showed that
the asymptotic distribution for a full sample estimator based on kernel regression can be derived if

one employs some strong assumptions on the functional form. The purpose of this subsection is to
illustrate that it is also possible in the neural network approach to derive the asymptotic results if the
similar assumptions are employed. To simplify the argument, we only consider the one-dimensional

case.

Corollary 2. Suppose that assumptions in Lemma 2, A5 ¤ with Á = 0 hold, ´t in A6 ¤ is replaced
by ´t = v(Xt¡1)ut + ln jDµ0(Xt¡1)j ¡ ¸; where

v(x) =
D2µ0(x)

fDµ0(x)g2
¡ Df (x)

fDµ0(x)g f (x)
:

Further assume that f (x)=Dµ0(x) = 0 at the boundary points x and x. Then we have the asymptotic
normality result in Theorem 1 with M = T .

Remark. To derive this result, stronger conditions for both activation function and target
function are employed. Among all additional conditions, Á = 0 is the most di¢cult requirement

since it “is not satis…ed by any univariate chaotic process that we are aware of (Whang and Linton,
1999, p.8).” The consistent estimator of © can be constructed by using the sample analogue of
´t; which requires a second derivative estimation of target function as well as density and density

derivative estimation.

13



4.3 Upper bound estimation

The de…nition of » it in Theorem 2 does not have a simple form as »t in Theorem 1 since ln ºi (T0
MTM ) 6=

PM
t=1 ln ºi

¡
J 0M¡tJM¡t

¢
for the multivariate case. However for the largest Lyapunov exponent (i = 1),

we have the following relation between the two quantities:
MX

t=1

ln º1
¡
J 0M¡tJM¡t

¢
= ln

MY

t=1

º1
¡
J 0M¡tJM¡t

¢
¸ ln º1

¡
(¦Mi=1JM¡t)0(¦Mi=1JM¡t)

¢
= ln ºi (T0

MTM) :

Here, we used the matrix norm inequality jº1 (A0A)j jº1 (B 0B)j ¸ jº1 ((AB)0(AB))j. Using this rela-
tionship, we can bound the largest Lyapunov exponent from above by

¸ ´ limM!1
1

2M

PM
t=1 ln º1

¡
J 0M¡tJM¡t

¢
. We can consistently estimate this quantity, using its sample

analogue,

b̧
M ´ 1

2M

MX

t=1

ln º1
³

bJ 0M¡t bJM¡t
´
:

Corollary 3. Suppose that assumptions in Lemma 1 hold, Fit in A5 is replaced by Ft =

@ ln º1 (J 0tJt) =@¢µ(Zt), ´it in A6 is replaced by ´t = 1
2 ln º1

¡
J 0t¡1Jt¡1

¢
¡¸. If M = O([T= logT ]1=(2+4Á)),

then p
M(b̧M ¡ ¸) ) N (0;©):

Remark. For the multidimensional case, ¸ is always positive. This implies that the asymptotic

distribution of the upper bound estimator seems to be useful only if the data is generated from a

chaotic process (or ¸ is positive). For example, when some speci…c positive value of the Lyapunov
exponent is predicted by a theory, upper bound estimates below this value provide strong evidence
against the hypothesis.

5 Simulation results

5.1 Logistic map

Since the testing procedure proposed in the previous section is based on asymptotic theory, it is
of interest to examine its performance with sample sizes that are typical for economic time series.
This section reports the result of the Monte Carlo experiments designed to assess the small sam-
ple performance of neural network estimates of Lyapunov exponent with various data generating

processes.
We …rst examine the logistic map with system noise:

Xt = aXt¡1(1 ¡Xt¡1) + ¾"t;
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where "t=vt » U(¡1; 1) independent of Xt; and

vt = min faXt¡1(1 ¡Xt¡1); 1 ¡ aXt¡1(1 ¡Xt¡1)g :

This particular form of heteroskedasticity ensures that the process Xt is restricted to the unit interval.
It is interesting to note that this simple one-dimensional model contains both a globally stable case
(0 < a < 3) and a chaotic case (3:57 < a · 4) depending on the parameter a. We use a = 1:5 as an

example with a negative Lyapunov exponent (¸ = ¡ ln 2 when ¾ = 0) and a = 4 as an example with
a positive Lyapunov exponent (¸ = ln 2 when ¾ = 0).

For the neural network estimation, we use FUNFITS program developed by Nychka et al. (1996).

As an activation function Ã, this program uses a type of sigmoid function

Ã(u) =
u(1 + ju=2j)
2 + juj + u2=2;

which was also employed by Nychka et al. (1992). For the estimation of ©, Bartlett’s kernel w(u) =

1¡juj with one lag is employed. We use the block subsample and equally spaced subsample in addition
to the entire sample. To see how the results di¤er with the choice of the lags of the autoregression,
we consider the cases with lag length d varying from 1 to 4. The results are based on the parameters

r = 4, ¾ = 0:25, T = 200 with 1000 replications. For subsample estimation, we use M = 66 giving
three blocks and estimates for each replication. The results are reported in Table 1. When correct
lag length is chosen (d = 1), the mean and the median of Lyapunov exponent estimates appeared

close to the true value for both stable (a = 1:5) and chaotic (a = 4) cases. This suggests that our
method works well even in the small sample environment. When d increases, the number of estimates
with incorrect sign increases for the stable case, while the estimates is robust to the additional lag
lengths for the chaotic case. For the standard errors, there is a systematic downward bias for the

stable case, but those for the chaotic case are in close agreement with actual standard deviations.
Figures 1 and 2 show the …nite sample densities of the Lyapunov exponent estimates standardized
by the mean and variance superimposed on the standard normal densities.11 The distribution has

some skewness, but with this small sample situation, it is close enough to normality predicted by the
theory.

5.2 Henon map

Next we consider the example with a higher dimension. We employ a second-order chaotic process,
the Henon map with system noise:

Xt = 1 ¡ aX2
t¡1 + Yt¡1 + ¾"t; Yt = bXt¡1

11Sample density is computed by kernel method with Silverman’s rule of thumb bandwidth.
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with a = 1:4 and b = 0:3. By using the arguments similar to those of the logistic map example, we
employ "t=vt » U(¡1; 1) with

vt = 1:5 ¡
¯̄
1 ¡ 1:4X2

t¡1 + Yt¡1
¯̄
:

The (largest) Lyapunov exponent is known to be positive (¸ = 0:408) in this model. This example

is almost identical to the one used by Dechert and Gençay (1992). Following their experiments, we
chose the parameter ¾ so that the noise-to-signal ratio (de…ned with respect to standard deviation)
is 0:005. Other numbers in the experiment are identical to those in our …rst example with logistic

map. The simulation results are reported in Table 2. When insu¢cient lag length (d = 1) is chosen,
there is a slight downward bias. However, with su¢cient lag length (d ¸ 2), the estimates are close
to the true value. In addition, the standard errors capture the actual standard deviations reasonably
well. Figure 3 shows the standardized …nite sample density of Lyapunov exponent estimates and

the standard normal density. Again, two densities are close, while there is a small skewness in the
sample density.

5.3 Barnett competition data

Powerful properties of the neural network approach were con…rmed by the successful results in the
single-blind controlled competition conducted by William Barnett. Detail of the competition design

and the results can be found in Barnett et al. (1997). However, since they used only point estimates
of the neural network approach, it is of interest to examine how statistical procedure in this paper
works for the same data used in the competition.12

The competition used two di¤erent sample sizes, 380 and 2000. Both small sample data and large

sample data are taken from a single observation generated from the following …ve di¤erent models
with ut being an iid standard normal random variable.

² Model I (Logistic map): yt = 3:57yt¡1(1 ¡ yt¡1) with y0 = 0:7.

² Model II (GARCH): yt = h
1=2
t ut where ht = 1 + 0:1y2t¡1 + 0:8ht¡1 with h0 = 1 and y0 = 0.

² Model III (NLMA): yt = ut + 0:8ut¡1ut¡2.

² Model IV (ARCH): yt = (1 + 0:5y2t¡1)
1=2ut with y0 = 0.

² Model V (ARMA): yt = 0:8yt¡1 + 0:15yt¡2 + ut + 0:3ut¡1 with y0 = 1 and y1 = 0:7.
12The data is downloaded from the archive given in Barnett et al. (1997, footnote 2).
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Of the …ve models described above, only Model I has a positive Lyapunov exponent. For this
subsection and the empirical part of this paper, the number of lag length (d) and the number of
hidden units (r) will be jointly determined by minimizing the BIC criterion (Schwarz, 1978) de…ned
by

BIC(d; r) = ln b¾2 + ln T
T

[1 + r(d + 2)]

where b¾2 = T¡1 PT
t=1

³
Xt ¡ bµ(Xt¡1; : : : ;Xt¡d)

´2
. For the HAC estimation required for the standard

error, we employ the QS kernel with optimal bandwidth selection method developed in Andrews
(1991). The employed block length (M) for the small sample data (T = 380) is 70 giving a total of
5 blocks, while that for the large sample data (T = 2000) is 86 giving a total of 23 blocks.

The results for Barnett competition data are presented in Table 3. For the subsample estimates,
the median values with rejection frequencies at 1% level of signi…cance are reported. The results can
be summarized as follows. First, the signs of all point estimates correspond to the true signs of the

processes. Second, for models II to V, the positivity hypothesis is rejected at 1% level based on full
sample estimation. Except for block subsample based estimates for model V, the same hypothesis is
rejected for all estimates in each model from II to V. These results con…rm the validity of the neural

network approach and our testing procedure. Third, positivity of the Lyapunov exponent in model
I is not rejected for both full sample and subsample cases, but it did not provide strong evidence
against the negativity.

6 Application to …nancial data

Over the past decades, numerous models that can generate chaos in economic variables have been

developed. For example, Brock and Hommes (1998) showed that chaos in stock price was possible if
heterogeneous beliefs of agents were introduced in traditional asset pricing model.13 In this section,
we apply our proposed procedure to investigate the possibility of chaos in the U.S. …nancial market

using stock price series.14

We use daily observations on the Dow Jones Industrial Average (DJIA). Sample period is from
January 3, 1928 to October 18, 2000 giving a total of 18,490 observations. It should be noted that the

period of the stock market crash of 1987 is included in the sample period. The stock return is simply
de…ned as the di¤erence of log of the stock price index (Rt = ¢lnPt). Following Taylor’s (1986)
…nding, it is now well-known that the absolute return (jRtj) has higher autocorrelation compared

13See Abhyankar, Copeland and Wong (1997) for a survey of previous results of analyses of chaos using …nancial
data.

14Other economic theories predict chaos in real aggregate series. The method proposed in this paper is also applied
to international real output series by Shintani and Linton (2001).
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to the return series (Rt). Ding, Granger and Engle (1993) also examined the correlation of power
transformation of the absolute return (jRtjk) and found quite high autocorrelations. Extending this
line of approach, we estimate the Lyapunov exponent of various power transformed absolute return
series. Table 4 shows the sample autocorrelations of the transformed absolute DJIA stock returns

jRtjk for k = 0:5;1; 1:5;2; 2:5 in addition to those of the untransformed return series. The return
series has small positive …rst order autocorrelation and small negative second order autocorrelation,
while the transformed absolute return has much higher autocorrelations with k = 1 being the highest.

These results are very similar to those of Ding, Granger and Engle (1993) based on S&P 500 series
with number of observation close to that of our data.

The estimated Lyapunov exponents for each series is presented in Table 5 along with the t

statistics and p-values for the null hypothesis of positive Lyapunov exponent (H0 : ¸ ¸ 0). The block
length (M) and the number of blocks used for subsampling estimates are 127 and 145, respectively.
The number of hidden units (r) are selected using BIC. For all cases, the Lyapunov exponents from
full sample estimation are negative, and the positivity hypothesis is signi…cantly rejected at the

1% level with exception of transformed series with k = 2:5. Similar strong evidence is obtained
from subsample estimation except for the same series. Another interesting observation is that the
Lyapunov exponents are larger for the transformed absolute returns than for the level of returns,

suggesting less stability in volatility (or absolute values) than in returns themselves. These results
from various transformed data o¤er strong statistical evidence against the chaotic explanation in
stock returns. This strengthens the results in Abhyankar, Copeland and Wong (1997) who obtained

negative Lyapunov exponent point estimates for both S&P500 cash and futures series with 5-minute
and 1-minute frequencies.

7 Conclusion

This paper derived the asymptotic distribution of the neural network Lyapunov exponent estimator

proposed by Nychka et al. (1992) and others and introduced a formal statistical framework of testing
hypotheses concerning the sign of the Lyapunov exponent. Such a procedure o¤ers a useful empirical
tool for detecting chaos in a noisy system. The small sample properties of the new procedure were

examined in simulations, which indicate that the performance of the procedure is satisfactory in
moderate-sized samples. The procedure was applied to investigate chaotic behavior of …nancial
market. In most cases we strongly rejected the hypothesis of chaos in the stock return series with
one mild exception in some higher power transformed absolute returns.
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Appendix

Proof of Lemma 1

In this proof, we de…ne the (weighted) Lp space (with distribution function F (x)) by the set of Lp-

integrable functions with norm kgkp =
nR
Â jg(x)jp dF (x)

o1=p
and associated metric from this norm.

For p = 1, we use kgk1 =sup
x2Â

jg(x)j. We will denote L2 norm kgk2 simply by kgk. Similarly, we

de…ne the (weighted) SobolevWmp space with set of functions with Lp-integrable (partial) derivatives

up to order m with norm kgkm;p =
nPm

j¹j=0

R
Â jD¹g(x)jp dF (x)

o1=p
and associated metric from this

norm. For p = 1, we use kgkm;1 = max
0·j¹j·m

sup
x2Â

jD¹g(x)j.
(a) To simplify the argument, we …rst derived the result for one-dimensional case, and then extend

the result to the multidimensional case. For d = 1, we denote Z = Â and our goal is to obtain the
convergence rate for

sup
x2Â

¯̄
¯Dbµ(x) ¡Dµ0(x)

¯̄
¯ :

Note that interpolation inequality (See Gabushin, 1967, and Shen and Wong, 1994) implies

kg(x) ¡ g0(x)k1 · K kg(x) ¡ g0(x)k2(m¡1)=2m kDmg(x) ¡Dmg0(x)k1=2m :

where K is a …xed constant. Substituting g(x) = Dbµ(x), g0(x) =Dµ0(x), m = 1 yields
°°°Dbµ(x) ¡Dµ0(x)

°°°
1

· K
°°°Dbµ(x) ¡Dµ0(x)

°°°
1=2 °°°D2bµ(x) ¡D2µ0(x)

°°°
1=2
:

If we use that
°°°Dbµ(x) ¡Dµ0(x)

°°° ·
°°°bµ(x) ¡ µ0(x)

°°°
1;2

·
°°°bµ(x) ¡ µ0(x)

°°°
2;2

and °°°D2bµ(x) ¡D2µ0(x)
°°° ·

°°°bµ(x) ¡ µ0(x)
°°°
2;2
;

the
°°°Dbµ(x) ¡Dµ0(x)

°°°
1

term is bounded by K
°°°bµ(x) ¡ µ0(x)

°°°
2;2

. Therefore it su¢ces to show the

convergence rate of
°°°bµ(x) ¡ µ0(x)

°°°
2;2

.

Approximation rate in Sobolev norm is derived in Hornik et al. (1994). Convergence rate of the
estimator in L2 norm is derived in Chen and Shen (1998) and Chen and White (1999). We will
combine their results to derive convergence rate of estimator in Sobolev norm. From the de…nition
of criterion in Assumption B1(a), we have

E [l(Zt; µ) ¡ l(Zt; µ0)] =
1
2

kµ ¡ µ0k2 :
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Since Assumption A3 implies the boundedness of the third derivatives, equivalence of L2 norm
and Sobolev norm with second derivatives holds and there exist two constants c1 and c2 satisfying

c1 kµ ¡ µ0k22;2 · E [l(Zt; µ) ¡ l(Zt; µ0)] · c2 kµ ¡ µ0k22;2

which is required for Theorem 1 in Chen and Shen (1998). Further, Condition A1 in Chen and Shen

can be replaced by our class of mixing condition in assumption A1(a) which is shown by Chen and
White (1999). Condition A2 and A4 in Chen and Shen (Assumption 3.4 (a) and (b) in Chen and
White) follows from the proof of Proposition 1 in Chen and Shen. Therefore, from Theorem 1 in
Chen and Shen (1998), we have

°°°bµT ¡ µ0
°°°
2;2

= Op
³
max

³
±T ; kµ0 ¡ ¼T µ0k2;2

´´

where ¼T µ0 2 £T and

±T = inf
½
± > 0 : ±¡2

Z ±

±2
[H(";FT )]1=2 d" · const:£ n1=2

¾

where H(";FT ) is the L2 metric entropy with bracketing which controls the size of the space of
criterion di¤erences induced by µ 2 £T (See Chen and Shen, 1998, for the de…nition. Formally,

the bracketing L2 metric entropy of the space of the L2 measurable functions indexed by £T given
by FT = fh(µ; z) = l(µ; z) ¡ l(µ0; z) : µ 2 £Tg is de…ned as follows. For any given ", if there exists
S(";N ) = fhl1; hu1 ; ; : : : hlN ; huN g ½ L2 with max1·j·N

°°huj ¡ hlj
°° · " such that for any h 2 FT there

exists a j with hlj · h · ¡huj a.e., then S("; N) is called a bracketing "-covering of FT with respect
to k¢k. We de…ne H(";FT ) by log(min fN : S("; N )g).)

Using the result in the proof of Theorem 3.1 in Chen and White (1999), we have

H(";FT ) · 2krBT (d + 1) log(2krBT (d + 1)=")

and
±T = const:£ [r log(r)]1=2 T¡1=2:

From Hornik et al. (1994), the approximation rate in SobolevW 2
2 norm is given by

kµ0 ¡ ¼T µ0k2;2 · const:£ r¡1=2:

By choosing ±T = kµ0 ¡ ¼T µ0k2;2, we have

r2 log r = O(T )

and °°°bµT ¡ µ0
°°°
2;2

= Op([T= log T ]¡1=4):
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as required.
(b) For the multidimensional case, from Gabushin’s interpolation inequality, we have

°°°¢bµi(z) ¡ ¢µi0(z)
°°°
1

· K
°°°¢bµi(z) ¡ ¢µi0(z)

°°°
1=2 °°°¢2bµi(z) ¡ ¢2µi0(z)

°°°
1=2
:

for each i = 1; : : : ; d with j ¢ j here being absolute value. If we use that

dX

i=1

°°°¢bµi(z) ¡ ¢µi0(z)
°°° ·

°°°bµ(z) ¡ µ0(z)
°°°
1;2

·
°°°bµ(z) ¡ µ0(z)

°°°
2;2
;

and
dX

i=1

°°°¢2bµi(z) ¡ ¢2µi0(z)
°°° ·

°°°bµ(z) ¡ µ0(z)
°°°
2;2
:

then,

sup
z2Z

¯̄
¯¢bµ(z) ¡ ¢µ0(z)

¯̄
¯ = sup

dX

i=1

¯̄
¯¢bµi(z) ¡ ¢µi0(z)

¯̄
¯

·
dX

i=1

sup
¯̄
¯¢bµi(z) ¡ ¢µi0(z)

¯̄
¯

=
dX

i=1

°°°¢bµi(z) ¡ ¢µi0(z)
°°°
1

· K
dX

i=1

µ°°°¢bµi(z) ¡ ¢µi0(z)
°°°
1=2 °°°¢2bµi(z) ¡ ¢2µi0(z)

°°°
1=2

¶

· K

Ã
dX

i=1

°°°¢bµi(z) ¡¢µi0(z)
°°°
!1=2 Ã

dX

i=1

°°°¢2bµi(z) ¡ ¢2µi0(z)
°°°
!1=2

· K
°°°bµ(z) ¡ µ0(z)

°°°
2;2

where the second inequality follows from Cauchy-Schwarz’s inequality. Therefore it again su¢ces
to show the convergence rate of

°°°bµ(z) ¡ µ0(z)
°°°
2;2

. Since the convergence rate of neural network

estimator does not depend on d, the same argument for the one-dimensional case can be directly
applied and the result follows. 2

Proof of Lemma 2

Similar to the proof of Lemma 1 it su¢ces to show the convergence rate of
°°°bµ(x) ¡ µ0(x)

°°°
2;2

for the

one-dimensional case.
Since additional assumption B3 is identical to assumption H in Chen and White, the result for

the improved rate in Sobolev norm in Theorem 2.1 of Chen and White can be used.
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The improved approximation rate in Sobolev W 2
2 norm is now given by

kµ0 ¡ ¼T µ0k2;2 · const:£ r¡1=2¡®=d¤:

From
±T = const:£ [r log(r)]1=2 T¡1=2:

with choice of ±T = kµ0 ¡ ¼T µ0k2;2, we have

r2(1+®=d
¤) log r = O(T )

and °°°bµT ¡ µ0
°°°
2;2

= Op([T= logT ]
¡ 1+(2®=d¤ )

4(1+(®=d¤ )) ) = op(T¡1=4):

as required. The same argument can be used for multidimensional case as in the proof of Lemma 1.
¤

Proof of Theorem 1

By rearranging terms,
p
M(b̧M ¡ ¸) =

p
M(b̧M ¡ ¸M) +

p
M(¸M ¡ ¸):

For the second term, we have

p
M(¸M ¡ ¸) = 1

2
p
M

MX

t=1

£
ln(Dµ0(Xt¡1))2 ¡ 2¸

¤
) N(0;©)

by the CLT of Herrndorf (1984, Corollary 1) and A5¤.
For the …rst term,

¯̄
¯
p
M(b̧M ¡ ¸M )

¯̄
¯ =

¯̄
¯̄
¯

1
2
p
M

MX

t=1

h
ln(Dbµ(Xt¡1))2 ¡ ln(Dµ0(Xt¡1))2

i¯̄¯̄
¯

=

¯̄
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¯
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M

MX
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1
Dµ¤(Xt¡1)

h
Dbµ(Xt¡1) ¡Dµ0(Xt¡1)

i¯̄¯̄
¯

· [T= log T ]¡
1
4M

1
2+Á

·
[T= log T ]

1
4 sup
x2Â

¯̄
¯Dbµ(x) ¡Dµ0(x)

¯̄
¯
¸

£
µ

1
MÁminft:Xt2Âg jDµ¤(x)j

¶
= op(1)

where the second equality holds by a one-term Taylor expansion aboutDµ0(Xt¡1) (with Dµ¤(Xt¡1) ly-
ing betweenDµ0(Xt¡1) andDbµ(Xt¡1)). The convergence to zero holds because of [T= logT ]¡ 1

4M 1
2+Á =

O(1) from the growth rate of block length, uniform convergence from Lemma 1 and
¡
MÁmin1·t·M jDµ¤(Xt

Op(1) from A4¤, respectively. The latter can be veri…ed by using the argument given in the proof of
Theorem 1 in Whang and Linton (1999). ¤
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Proof of Theorem 2

By rearranging terms,
p
M(b̧iM ¡ ¸i) =

p
M(b̧iM ¡ ¸iM ) +

p
M(¸iM ¡ ¸i)

where
¸iM =

1
2M

ln ºi
¡
(¦Mt=1JM¡t)0(¦Mt=1JM¡t)

¢
:

For the second term, we have
p
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p
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·
1
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=
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·
1
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¸

=
p
M

"
1
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Ã
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MTM )
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¢
!

+
1
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¢
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#

=
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"
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1
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Ã
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¢

ºi
¡
T0
M¡kTM¡k

¢
!

+
1

2M
ln ºi (T0
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#

=
p
M

"
1
M

MX

k=1

»i;M¡k+1 ¡ ¸i
#

=
1p
M

MX

t=1

[» it ¡ ¸i] ) N (0;©i)

by the CLT of Herrndorf (1984, Corollary 1) and results of Furstenberg and Kesten (1960, Theorem
3) and A5.

For the …rst term,
¯̄
¯
p
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1
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¯̄
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³
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= op(1)

where the second equality follows from a one-term Taylor expansion
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where the elements of J ¤t lie between those of bJt and Jt for t = 0; : : : ;M¡1. By analogous to the proof
of Theorem 1, the convergence to zero holds because of [T= logT ]¡

1
4M

1
2+Á = O(1) from the growth

rate of block length, uniform convergence from Lemma 1 and
M¡Ámax1·t·M

¯̄
Fi;t¡1(J ¤M¡1; : : : ; J¤0 )

¯̄
= Op(1) from A4, respectively. ¤

Proof of Corollary 1

We only prove the one-dimensional case since the multidimensional case can be obtained using the
similar argument. First de…ne

e© =
M¡1X

j=¡M+1

w(j=SM )e°(j) and e°(j) = 1
M

MX

t=jjj+1

´t´t¡jj j

where ´t = fln jDµ(Xt¡1)j ¡ ¸g. From Proposition 1 of Andrews (1991), e© p! ©. Therefore, it
su¢ces to show that b© p! e©. Since S2M=M ! 0, the result follows by showing

p
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The second element is bounded since (1=SM )
PM¡1
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R1
¡1 jk(x)j dx < 1. For the

…rst element, we have
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using [T= logT ]¡
1
4M

1
2+Á = O(1) from condition in Theorem 1, uniform convergence from Lemma 1

and¡
MÁmin1·t·M jDµ¤(Xt¡1)j

¢¡1 = Op(1) from A4¤, respectively. ¤

Proof of Corollary 2

Since the proof is similar to the one for Theorem 1(a) in Whang and Linton (1999), we only provide
the sketch of proof.

By rearranging terms,
p
T (b̧T ¡ ¸) =

p
T (b̧T ¡ ¸T ) +

p
T (¸T ¡ ¸):

For the second term, we have asymptotics identical to those in Theorem 1. For the …rst term,
p
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The …rst equality follows from a two-term Taylor expansion about Dµ0(Xt¡1) with Dµ¤(Xt¡1) lies

between Dµ0(Xt¡1) and Dbµ(Xt¡1). The second equality follows from the fact that the second term
is bounded by

1
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1
4 sup
x2Â

jDbµ(x) ¡Dµ0(x)j
¸2 1
T

TX

t=1

1
[Dµ¤(Xt¡1)]2

25



· op(1) £
µ

1
minft:Xt¡12ÂT g jDµ¤(Xt¡1)j

¶2

= op(1)

where the inequality follows by the uniform consistency results in Lemma 2, the last convergence

to zero holds because
¡
minft:Xt¡12ÂT g jDµ¤(Xt¡1)j

¢¡2 = Op(1) by A4¤. The third equality follows
from stochastic equicontinuity argument employed in Whang and Linton (1999). The forth equality
follows from integration by parts with the zero boundary condition. The last three equalities follows

from the de…nition of the linear functional l0µ0[
bµ ¡ µ0; Xt¡1] and inner product h:; :i used in Shen

(1997), Chen and Shen (1998) and Chen and White (1999), and

l 0µ0 [bµ ¡ µ0;Xt¡1] = [bµ ¡ µ0]ut

from our criterion function given in A3(a). ¤

Proof of Corollary 3

We use a one-term Taylor expansion

ln º1
³

bJ 0t¡1
bJt¡1

´

= ln º1
¡
J 0t¡1Jt¡1

¢
+
@º1
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i

= ln º1
¡
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¢
+ F 0t¡1

h
¢bµ(Zt¡1) ¡ ¢µ0(Zt¡1)

i

where the elements of J¤t¡1 lie between those of bJt¡1 and Jt¡1. The result follows from the argument
similar (but simpler) to the one used in the proof of Theorem 2. ¤
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Table 1

Logistic Map

(1) Stable System with a = 1:5 (¸ = ¡0:693)
d = 1 d = 2

Full Block Skipped Full Block Skipped
mean (b̧) -0.729 -0.729 -0.729 -0.291 -0.283 -0.280
median (b̧) -0.710 -0.705 -0.707 -0.276 -0.271 -0.271
std (b̧) 0.312 0.333 0.326 0.182 0.205 0.194
mean (se) 0.069 0.118 0.114 0.064 0.108 0.107
median (se) 0.068 0.114 0.112 0.062 0.105 0.104
lower 5% 0.060 0.060 0.060 0.050 0.060 0.060
upper 5% 0.040 0.040 0.040 0.040 0.030 0.040

d = 3 d = 4
Full Block Skipped Full Block Skipped

mean (b̧) -0.101 -0.089 -0.082 0.009 0.022 0.027
median (b̧) -0.091 -0.079 -0.076 0.014 0.027 0.031
std (b̧) 0.124 0.147 0.140 0.094 0.116 0.111
mean (se) 0.054 0.093 0.091 0.048 0.082 0.081
median (se) 0.053 0.090 0.089 0.047 0.080 0.079
lower 5% 0.060 0.060 0.060 0.060 0.060 0.050
upper 5% 0.030 0.030 0.040 0.040 0.040 0.050

(2) Chaotic System with a = 4 (¸ = 0:693)
d = 1 d = 2

Full Block Skipped Full Block Skipped
mean (b̧) 0.689 0.689 0.689 0.664 0.667 0.669
median (b̧) 0.689 0.691 0.691 0.679 0.681 0.674
std (b̧) 0.019 0.031 0.100 0.059 0.066 0.112
mean (se) 0.054 0.092 0.102 0.051 0.087 0.098
median (se) 0.053 0.090 0.101 0.050 0.085 0.097
lower 5% 0.050 0.050 0.050 0.070 0.070 0.060
upper 5% 0.050 0.040 0.050 0.000 0.010 0.040

d = 3 d = 4
Full Block Skipped Full Block Skipped

mean (b̧) 0.662 0.666 0.668 0.662 0.667 0.669
median (b̧) 0.673 0.676 0.675 0.670 0.675 0.671
std (b̧) 0.054 0.061 0.112 0.046 0.054 0.107
mean (se) 0.050 0.086 0.098 0.050 0.086 0.097
median (se) 0.050 0.085 0.097 0.050 0.085 0.097
lower 5% 0.050 0.060 0.060 0.050 0.050 0.050
upper 5% 0.000 0.010 0.040 0.000 0.010 0.040

Note: Sample size (T ) = 200. Number of hidden units (r) = 4. Number of replications = 1000.

Jacobians are evaluated using full sample (Full) as well as subsamples with blocks (Block) and skips

(Skipped) with number of block length (M) = 66. Lower 5% and upper 5% are tail frequencies of normalized

Lyapunov exponent estimates using standard normal critical values.
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Table 2

Henon Map

Chaotic System with a = 1:4; b = 0:3 (¸ = 0:408)
d = 1 d = 2

Full Block Skipped Full Block Skipped
mean (b̧) 0.354 0.354 0.354 0.414 0.418 0.422
median (b̧) 0.358 0.361 0.362 0.417 0.422 0.425
std (b̧) 0.076 0.093 0.120 0.029 0.049 0.080
mean (se) 0.050 0.085 0.103 0.042 0.072 0.082
median (se) 0.049 0.083 0.101 0.042 0.071 0.081
lower 5% 0.060 0.060 0.060 0.050 0.060 0.060
upper 5% 0.040 0.030 0.030 0.040 0.030 0.040

d = 3 d = 4
Full Block Skipped Full Block Skipped

mean (b̧) 0.411 0.417 0.424 0.411 0.416 0.420
median (b̧) 0.411 0.420 0.429 0.411 0.420 0.424
std (b̧) 0.034 0.054 0.085 0.036 0.054 0.086
mean (se) 0.043 0.074 0.082 0.043 0.074 0.083
median (se) 0.043 0.073 0.082 0.043 0.073 0.083
lower 5% 0.050 0.060 0.070 0.050 0.060 0.060
upper 5% 0.050 0.040 0.040 0.050 0.040 0.040

Note: Sample size (T ) = 200. Number of hidden units (r) = 4. Number of replications = 1000.

See also note for Table 1.
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Table 3

Barnett Competition Data

T = 380 T = 2000
Sample Sample

(d; r) Full Block Skipped (d; r) Full Block Skipped
(1) Logistic map

(2; 4) 0.015 0.294 0.126 (1; 4) 0.012 0.010 0.016
(0.396) (2.877) (0.600) (1.190) (0.135) (0.242)
[0.654] [0.998] [0.726] [0.883] [0.554] [0.596]

(2) GARCH
(1; 1) -4.260 -4.357 -4.323 (1; 1) -5.017 -5.072 -5.009

(-56.00) (-9.171) (-10.52) (-215.1) (-45.22) (-46.03)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

(3) NLMA
(2; 3) -0.435 -0.290 -0.336 (3; 4) -0.360 -0.341 -0.339

(-15.66) (-1.916) (-2.031) (-43.93) (-8.656) (-7.887)
[<0.001] [0.028] [0.021] [<0.001] [<0.001] [<0.001]

(4) ARCH
(1; 1) -3.925 -4.018 -3.994 (1; 1) -3.606 -3.611 -3.604

(-69.56) (-12.60) (-14.49) (-1324) (-291.9) (-281.6)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

(5) ARMA
(1; 1) -0.049 -0.029 -0.051 (3; 1) -0.041 -0.029 -0.034

(-4.843) (-4.937) (-2.676) (-8.116) (-2.587) (-3.322)
[<0.001] [<0.001] [0.004] [<0.001] [0.005] [<0.001]

Note: For the full sample estimation (Full), the largest Lyapunov exponent estimates are presented with

t statistics in parentheses and p-value for H0 : ¸ ¸ 0 in brackets. For the subsample estimation (Block and

Skipped), median values are presented.
The lag length (d) and the number of hidden units (r) are jointly selected based on BIC. QS kernel

with optimal bandwidth (Andrews, 1991) is used for the heterosckedasticity and autocorrelation consistent
covariance estimation.
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Table 4

Autocorrelations of Stock Return Series

data lag 1 2 3 4 5 10

(1) return 0.029 -0.022 0.005 0.018 0.019 0.007
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

(2) jreturnj0:5 0.233 0.242 0.245 0.251 0.260 0.236
(0.007) (0.007) (0.008) (0.008) (0.008) (0.010)

(3) jreturnj1:0 0.295 0.314 0.308 0.300 0.311 0.266
(0.007) (0.007) (0.008) (0.009) (0.009) (0.011)

(4) jreturnj1:5 0.280 0.294 0.269 0.243 0.271 0.198
(0.007) (0.007) (0.008) (0.008) (0.009) (0.010)

(5) jreturnj2:0 0.202 0.211 0.160 0.131 0.177 0.095
(0.007) (0.007) (0.007) (0.008) (0.008) (0.008)

(6) jreturnj2:5 0.117 0.129 0.072 0.054 0.098 0.034
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Note: Numbers in parentheses are standard errors.
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Table 5

Lyapunov Exponents of Stock Return Series

NLAR lag (d)
1 2 3 4 5 6

(1) return

Full -2.685 -1.539 -1.355 -0.820 -0.562 -0.503
(-262.1) (-347.7) (-721.6) (-228.5) (-322.7) (-455.81)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Block -2.689 -1.538 -1.339 -0.800 -0.546 -0.487
(-24.31) (-30.49) (-44.93) (-18.21) (-13.36) (-14.70)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Skipped -2.684 -1.540 -1.330 -0.799 -0.541 -0.490
(-23.62) (-30.35) (-45.40) (-17.64) (-13.40) (-14.71)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

BIC -8.944(2) -8.953(2) -8.951(3) -8.953(2) -8.949(3) -8.958(3)
(2) jreturnj0:5

Full -1.876 -0.985 -0.568 -0.364 -0.260 -0.194
(-306.9) (-189.7) (-191.3) (-130.3) (-113.8) (-129.7)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Block -1.921 -1.017 -0.582 -0.372 -0.264 -0.195
(-49.65) (-24.24) (-20.99) (-18.01) (-16.27) (-16.29)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Skipped -1.874 -0.960 -0.549 -0.352 -0.250 -0.188
(-38.53) (-19.61) (-19.05) (-16.51) (-14.27) (-14.77)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

BIC(r) -6.459(1) -6.508(2) -6.536(3) -6.554(3) -6.572(3) -6.576(3)
(3) jreturnj1:0

Full -1.424 -0.677 -0.476 -0.304 -0.211 -0.173
(-939.3) (-233.6) (-153.1) (-220.5) (-177.8) (-180.2)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Block -1.437 -0.693 -0.488 -0.308 -0.213 -0.173
(-209.2) (-41.18) (-25.88) (-27.07) (-22.45) (-19.80)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Skipped -1.424 -0.669 -0.460 -0.298 -0.204 -0.166
(-128.2) (-36.19) (-23.27) (-24.52) (-21.08) (-20.04)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

BIC(r) -9.554(1) -9.619(2) -9.660(3) -9.688(3) -9.711(3) -9.716(3)
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Table 5 (Continued)

NLAR lag (d)
1 2 3 4 5 6

(4) jreturnj1:5

Full -1.196 -0.452 -0.216 -0.136 -0.071 -0.111
(-2056) (-525.0) (-804.9) (-329.5) (-75.29) (-110.4)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Block -1.196 -0.454 -0.216 -0.131 -0.060 -0.114
(-311.0) (-66.31) (-88.06) (-51.85) (-14.79) (-17.93)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Skipped -1.195 -0.449 -0.215 -0.135 -0.066 -0.108
(-203.9) (-62.53) (-48.19) (-31.11) (-8.660) (-16.64)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

BIC(r) -12.33(3) -12.38(2) -12.42(3) -12.45(3) -12.46(3) -12.47(3)
(5) jreturnj2:0

Full -1.218 -0.111 -0.018 -0.014 -0.123 -0.088
(-909.6) (-38.94) (-13.24) (-22.28) (-104.3) (-106.5)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Block -1.232 -0.088 -0.005 -0.009 -0.129 -0.090
(-148.7) (-13.10) (-1.943) (-3.994) (-32.84) (-21.73)
[<0.001] [<0.001] [0.026] [<0.001] [<0.001] [<0.001]

Skipped -1.220 -0.108 -0.015 -0.013 -0.124 -0.086
(-102.2) (-6.911) (-2.159) (-2.974) (-23.80) (-15.65)
[<0.001] [<0.001] [0.015] [0.001] [<0.001] [<0.001]

BIC(r) -14.53(2) -14.56(2) -14.59(3) -14.63(3) -14.68(3) -14.65(3)
(6) jreturnj2:5

Full -0.040 0.078 -0.172 0.087 -0.380 -0.292
(-13.14) (23.99) (-160.6) (67.01) (-126.6) (-68.38)
[<0.001] [1.000] [<0.001] [1.000] [<0.001] [<0.001]

Block -0.008 0.103 -0.180 0.093 -0.407 -0.328
(-1.085) (20.53) (-93.92) (25.69) (-36.20) (-20.15)
[0.139] [1.000] [<0.001] [1.000] [<0.001] [<0.001]

Skipped -0.039 0.082 -0.170 0.089 -0.375 -0.269
(-1.918) (4.918) (-14.63) (8.333) (-15.49) (-7.245)
[0.028] [1.000] [<0.001] [1.000] [<0.001] [<0.001]

BIC(r) -16.30(3) -16.31(3) -16.34(3) -16.38(3) -17.45(3) -16.46(2)

Note: For the full sample estimation (Full), the largest Lyapunov exponent estimates are presented with

t statistics in parentheses and p-value for H0 : ¸ ¸ 0 in brackets. For the subsample estimation (Block

and Skipped), median values are presented. Block length (M ) and the number of blocks are 127 and 145,

respectively.
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The number of hidden units (r) are selected based on BIC. QS kernel with optimal bandwidth (Andrews,

1991) is used for the heterosckedasticity and autocorrelation consistent covariance estimation.
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