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[1] On the basis of elastodynamic stress fields for singular crack and nonsingular slip-
weakening models of propagating rupture, we develop preliminary answers to such
questions as follows: If a rupturing fault is intersected by another, providing a possible
bend in the failure path, when will stressing be consistent with rupture along the bend?
What secondary fault locations and orientations, in a damaged region bordering a major
fault, will be stressed to failure by the main rupture? Stresses that could initiate rupture on a
bend are shown to increase dramatically with crack speed, especially near the limiting
speed (Rayleigh for mode II, shear for mode III). Whether a bend path, once begun, can be
continued to larger scales depends on principal stress directions and ratios in the prestress
field. Conditions should often be met in mode II for which bend paths encouraged by
stressing very near the rupture tip are discouraged by the larger-scale stressing, a basis for
intermittent rupture propagation and spontaneous arrest. Secondary failure in the damage
zone likewise increases markedly as the limiting speed is approached. Such may make the

fracture energy much greater than for slip on a single surface. The extent of secondary
faulting is strongly affected by prestress directions and the ratio of residual to peak
strength. For mode II, prestress controls whether activation occurs primarily on the
extensional side, which we show to be the typical case, or on the compressional side too.

Natural examples are consistent with the concepts developed.
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1. Introduction
1.1. Observations

[2] Earthquakes seldom rupture along single planar
faults. Instead, there exist geometric complexities, including
fault bends, branches and step overs, which affect the
rupture process, including nucleation and arrest. Starting
in the 1970s and 1980s systematic field observations have
shown the importance of such complexities for determining
the size of an earthquake and strong motion generation. The
role of fault bends in the initiation and termination of
rupture was noted, with many examples, by King and
Nabelek [1985], who proposed that rupture in individual
earthquakes is often limited to regions between bends in
faults. The epicenter of the M, 6.5 1966 Parkfield earth-
quake was close to a 5° bend, and rupture stopped after
propagation past a bend and offset. The M; 7.5 1973
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earthquake in Luhuo, China, had an epicenter near a bend.
The M; 6.7 1975 Lice, Turkey, earthquake started near a
bend in the fault and terminated near another one. The
bilateral M, 7.8 1976 Tangshan, China, earthquake had an
epicenter located at a bend in the aftershock distribution and
terminated at the southern end by thrust faulting. The A 7.4
Caldiran, Turkey, earthquake started at a pronounced 40°
bend. The M; 5.7 1979 Coyote Lake, California, earthquake
had an epicenter near a bend in Calaveras fault; the rupture
terminated adjacent to a dilational jog.

[3] More field observations of rupture interaction with
fault bends and jogs were discussed by King [1986] and
Sibson [1985, 1986]. These include the 1979 Imperial
Valley and 1992 Landers, California, earthquakes discussed
in the closing section of the paper, and the 1968 M, 7.2
Dasht-e-Bayaz earthquake in NE Iran, where the rupture
continued through two 1-km-broad dilational jogs in a
highly irregular manner, decelerating and pausing at the
jogs, so the overall average rupture velocity was only
0.5 km/s [Niazi, 1969].
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[4] Broad observations of strike-slip fault complexities in
the fault systems of Turkey have been collected by Barka
and Kadinsky-Cade [1988] and worldwide by Knuepfer
[1989] and Aydin and Schultz [1990]. Dynamic finite differ-
ence modeling of vertical strike-slip ruptures jumping an
offset was introduced, just in time for the 1992 Landers
event, by Harris et al. [1991] and Harris and Day [1993].
That has recently been extended to a dynamic model of the
rupture of the complex M,, 7.4 1999 Izmit, Turkey, earth-
quake [Harris et al., 2002]. The models confirmed the
highly irregular rupture velocity and slip in the progression
of strike-slip failure through fault offsets, as well as the
importance of fault steps in rupture arrest. The modeling also
recognized the importance of past earthquake history, which
contributes to the prestress and can be decisive for determin-
ing if a given offset is breached [Harris and Day, 1999].

[5] In dip-slip regimes, less information is usually avail-
able on geometrical complexities. However, the rupture
processes of some modern continental thrust earthquakes
are inferred from mapped surface ruptures complemented by
seismological observations. The M 7.6 1952 Kern County
earthquake exhibited a 1-km strike-slip offset between two
thrust segments [Buwalda and St. Amand, 1955]. The M 6.8
1968 Meckering, Australia, earthquake jumped a 3-km right
step via a strike-slip fault that displayed surface rupture
[Gordon and Lewis, 1980]. Surface rupture of the M 6.4
1971 San Fernando earthquake showed a 1.5-km offset
between thrust segments [Tsutsumi and Yeats, 1999]. The
M 7.3 1980 El Asnam, Algeria, earthquake jumped a 2-km
tear fault offset defined by surface rupture and aftershock
focal mechanisms [King and Yielding, 1984]. The M 5.5
1982 New Idria, M 6.5 1983 Coalinga, and M 6.1 1985
Kettleman Hills thrust earthquakes were single segment
events on a blind thrust fault [Ekstrom et al., 1992]; see
closing section. Folds above the thrust are offset by 2 and 4
km, suggesting similar offsets in the thrust faults; aftershock
focal mechanisms suggest that a lateral ramp occupies the 4-
km-wide offset [Eaton, 1990]. The M 5.9 1987 Whittier
Narrows earthquake was a single segment blind thrust main
shock with aftershocks illuminating a strike-slip fault along
the edge of the main shock rupture zone. The strike-slip fault
apparently confined the main shock rupture. The M 6.7 1994
Northridge earthquake may have been confined in the 7- to
15-km depth range by two lateral ramps that offset the Santa
Susanna fault zone by 2- and 5-km at the surface [Yeats et al.,
1994; Hauksson et al., 1995].

[6] Magistrale and Day [1999] performed three-dimen-
sional (3-D) finite difference simulations of earthquake
rupture to evaluate the effectiveness of lateral ramps or tear
faults joining the thrust segments in retarding rupture. They
concluded that with a tear fault or lateral ramp present, and
necessarily being modeled as being orthogonal to the main
fault due to constraints in their finite difference procedure,
offsets up to 2 km wide usually present little impediment to
rupture, and offsets 2 to 5 km are more significant barriers
that may or may not rupture. Absent a tear fault, the
maximum offset that can be breached is an order of
magnitude smaller. More simulations of this kind are
presented by Magistrale [2000], investigating the influence
of fault strength, stress drop, hypocenter location, stress
heterogeneity, etc., on the rupture of two thrust segments
connected by an orthogonal tear fault. There is also evi-
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dence for the branching of rupture path in crustal thrust
events as a deeply nucleated event propagates up dip, e.g.,
in the 1971 San Fernando earthquake as suggested by
Heaton and Helmberger [1979]; see closing section.

1.2. Stress Near a Fast Propagating Fracture

[7] Dynamic effects strongly distort elastically predicted
stress fields near rapidly propagating crack tips. The generic
effect is that of the maximum off-fault shear stress
increases, relative to that on the main fault plane, with the
velocity v, of rupture propagation. This increase becomes
strikingly large at high speeds, i.e., when vr approaches the
“limiting speed” ¢y, Which is the shear speed ¢, for mode
IIT and the Rayleigh speed cp (~0.92 c¢,) for mode II. It has
long been suggested [e.g., Andrews, 1976a; Rice, 1980]
(also B. V. Kostrov, orally reported results, Bad Honnef,
Germany, 1978, as cited by Rice [1980]) that these high off-
fault stresses could play a central role in the dynamics of the
rupture process. They should contribute to secondary fault-
ing within the damaged border zones which are known to
occur along major faults [Wallace and Morris, 1986; Power
et al., 1988], like along the exhumed San Gabriel [Chester
et al., 1993] and Punchbowl [Chester and Chester, 1998]
faults. They may also contribute to bifurcation of the
fracture along a kinked path or, at least, generation of a
highly intermittent rupture propagation. The expected sce-
nario is for the rupture to speed up toward c¢y;,,, which is the
basic fate of a rupture confined to a plane [e.g., Freund,
1990], but in so doing to generate the high off-fault stress
which make the rupture tip susceptible to bending or fork-
ing. That bifurcation can either stop the rupture completely,
or can lead to a temporary slowdown until something more
resembling the static stress distribution gets established
again, and re-nucleates continuing rupture on the main fault
plane. That provides new ways of thinking about the origin
of small earthquakes and the frequency-magnitude relation
because it provides a way to stop ruptures without recourse
to assuming strong heterogeneity along the main fault zone
itself and provides a route to understanding the enriched
high frequency content of strong ground motion. Also,
dissipation in secondary faulting provides a way of under-
standing why the inferred fracture energy of large earth-
quakes is orders of magnitude larger than what is inferred
from laboratory shear failure even of initially intact rock
[Rice, 1980; Wong, 1982], and indeed why earthquake
fracture energies are so large that we cannot easily explain
from them how small earthquakes could even nucleate.

1.3. Numerical Modeling of Dynamic Rupture

[8] The effect of those high off-fault stresses is well
illustrated in simulation by boundary integral methodology
of the spontaneous growth of a dynamic shear crack without
constraints on the crack tip path, as performed by Kame and
Yamashita [1999a, 1999b]. The methodology enables them
to handle complicated fault geometries such as bends and
branches. Kame and Yamashita base the choice of the
orientation of each new increment of crack path on the
maximum shear stress along radial directions very near
the crack tip, explicitly including the high-speed distortion
of the stress field. It remains an open issue of how to
properly include effects of normal stress in that description.
Nevertheless, the results based on the near-tip shear stress
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show that when high speed is attained, the crack tip forks
and each fork bends, so much so that the rupture ultimately
arrests. The nature of their crack-tip-focused procedure does
not allow for the possibility of renucleation of rupture on the
main fault plane, which we think is a critical feature for the
overall rupture dynamics. That, the inclusion of normal
stress effects in the failure criterion, and the channeling of
allowable paths along preexisting planes of a fault network
are important additional issues to address.

[o] Previous 2-D works that simulated spontaneous
dynamic rupture propagation on preexisting nonplanar
faults, with different boundary integral equation formula-
tions, were done by Koller et al. [1992], Tada and Yama-
shita [1996, 1997], Kame and Yamashita [1997], and
Bouchon and Streiff [1997]. Seelig and Gross [1999] did
analogous studies of branching tensile cracks. Tada et al.
[2000] have formulated boundary integral equations for
arbitrary 3-D nonplanar faults removing any singularities
in the time domain, and Aochi et al. [2000a, 2000b]
simulated spontaneous rupture process on a complex
branching fault. Aochi and Fukuyama [2002] applied such
an approach to understanding the 1992 Landers earthquake.
That work also based the failure criterion on only the shear
stress at the rupture tip, although very recently, Aochi et al.
[2002] have extended this approach to include the effects of
normal stresses as well.

[10] Finite element procedures have also been developed
for predominantly tensile failures with dynamically self-
chosen rupture paths, allowing the possibility of multiple
paths and path competition. These include models in which
elements lose stiffness with deformation [Johnson, 1992]
and those in which all or some subset of element boundaries
are potential failure surfaces on which coupled tensile
decohesion and slip weakening can take place [Xu and
Needleman, 1994; Camacho and Ortiz, 1996; Falk et al.,
2001]. Such models have not yet been extended to dynamic
fault ruptures.

1.4. Objectives of the Present Work

[11] The preceding discussion points to the major prob-
lem in rupture dynamics of understanding propagation
through geometrically complex fault systems containing
bends, branches, step overs and, in the case of major faults,
an array of smaller faults or fractures in damaged border
regions. Our aim here is to study the stress field near a
dynamically propagating rupture, as described by both
singular elastic crack models and by a version of slip-
weakening rupture models (analyzed in a preliminary way
by Rubin and Parker [1994]). We use those results to
suggest what may control whether a rupture will branch
along a kinked path and to identify the nature and extent of
secondary faulting expected in damaged border zones. We
find that important parameters are the rupture speed as well
as the principal directions and ratios of components in the
prestress field through which the rupture propagates.

2. Elastodynamic Singular Crack Solutions
and Application to Fault Bends

[12] We consider the special, but reasonably general,
situation in which the state of tectonic prestress oy is such
that the fault plane (y = 0) is parallel to the intermediate
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principal stress direction. Further, we assume that the direc-
tion of slip aligns with the shear traction direction on that
plane, hence is perpendicular to the intermediate direction.
The direction of rupture propagation may take any orienta-
tion relative to the slip direction. We label that propagation
direction as the x direction and make two simple choices for
it: (1) A mode II configuration (Figure la) in which the
rupture direction and slip direction coincide, both in the x
direction, so that the prestress has the form

0 0
Oy »x
o __ 0 0
o;= |0y oy 0],
0 0 o2

zz

where the z direction is the intermediate direction; and (2) a
mode III configuration in which the rupture direction (x)
and slip direction (z) are perpendicular, so that the prestress
is

0
oy 0 0
o __ o 0
oy = 0 oy, Oy
0 o2 o

vz zz

and now the x direction is the intermediate principal stress
direction.

[13] For simplicity, we start from the study of elastic
singular solutions around a shear crack tip propagating with
velocity v, (Figure 1a for mode II) and sustaining a uniform
residual stress shear stress T, along the slipping rupture
surface.

2.1. Mode II

[14] Mode II rupture occurs at the extremities of the
slipping zone along strike for strike-slip faulting, and along
dip for dip-slip faulting. The initial stress state of; is depicted
on the right in Figure la. The stress change due to presence
of the crack is

Ky 0 —AT
Ao = FIY0,v,) + + O(v7),
y /—ZTU” ij ( ) CAr 0 (\/_)

where the reduced matrix represents just the xx, yy, and xy
components, AT = o), — 7, is the stress drop, Ky o< ATVL
is the stress intensity factor, L is the length of the slipping
region, and r, 0 are polar coordinates with origin at the crack
tip (Figure 1b). The form of the F,»]LI (6,v,) are given in
Appendix A, equations (AS5), and by Freund [1990]. The
symbol O(+/r) represents additional terms, which are part of
the full solution but which vanish at least as fast as /7 at the
crack tip.

[15] The final stress o, is the sum of the initial oj; and
stress change Aoy

Ky O Tr
0; = 0%+ Aoy = FL0,v,) + + O(V/r).
y ij y /——_ZTU" ij ( ) . 40 (\/_)
w
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Figure 1. (a) Singular elastic crack model of a mode II
shear rupture propagating with velocity v,. Stress state
shown (left) far behind the tip and (right) far ahead. (b)
Stresses (ogg, 0¢,-) on a branched fault plane originating at the
rupture tip at angle 6.

With inclusion of the O(y/r) terms, this would of course
agree with oj; far from the crack. We shall later use the
notation o,} to denote the finite stress state, like in the
middle term above, which provides the first correction near
the rupture tip to the 1/4/r singular term. In order to discuss
potential bending or forking of the crack, it is relevant to
consider the normal and tangential stresses (ogy0g,) ON a
potential plane originated at the crack tip at angle 0 (Figure
1b). To find how much shear stress oy, is different from the
critical stress needed to overcome shear resistance —fogg (f
is the friction coefficient) on the crack, we also plot the
Coulomb stress, equal to o6.°" = o, + o, Where a positive

value of o6,°" means that slip is encouraged.

2.1.1. Influence of the Rupture Velocity on the
Near-Tip Stress

[16] The initiation of a bifurcation of the rupture path
onto a bend direction will presumably be controlled by
stresses very near the rupture tip, and hence by character-
istics of the 1/,/r singular field, in such crack models.
Features of the stress field at larger scales will, however,
determine whether the rupture, once nucleated on a bend
path, can continue long distances along it. Because the
singular part of the stress depends only on 0 for fixed r, all
stresses are normalized by Ky/v/27nr. The singular term is
strongly influenced by rupture velocity. Figure 2 shows the
dependence of normalized ogs, 0., and o§,°", including the
singular 1/\/r terms only, on the angle 6 for different
velocities of crack propagation, measured as fractions of
the shear (c,) or Rayleigh (cp) velocities. The main feature
of dynamic crack propagation is that the stresses off the
main fault plane grow relative to those on it as the crack
velocity increases. The normal stress oy does not qualita-
tively change very much with the increase of v, (it is
asymmetric; more extensional for negative 6 and more
compressive for positive 0). At the same time, the shear
stress g, evolves from having one maximum at 6 = 0° for v,.
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= 0" to having two maxima at 0 ~ £70° for higher velocities
(v, > 0.85¢R), as shown already by Kame and Yamashita
[1999a, 1999b]. These maxima grow strongly with increase
of v,. As a result the Coulomb stress o6°" also has a one
maximum for v, < 0.9 — 0.95¢; (Figure 3a) suggesting that
the propagating fault will bend at this regime at angles —10°
<8 < —70° depending on the velocity of propagation. The
higher the velocity is, the higher the most favored bending
angle is. While 05" is highest on the extensional side of
the rupture (negative 0), it is also elevated on the compres-
sional side. If v, > 0.95¢, there will be two strong maxima
at 0 &~ £70°, suggesting that there could be a fracture
bifurcation or forking.

[17] The discussions of this paper neglect pore fluid
presence, which will tend to buffer the effect of changes
in normal stress on the Coulomb stress. Correspondingly,
we have used a value of f chosen toward the lower end of
the range suggested by laboratory and borehole observa-
tions (/= 0.60 in Figures 2 and 3a, /= tan 30° = 0.58 in the
subsequent slip-weakening analysis). However, fuller inclu-
sion of pore fluid effects does not seem to qualitatively
change our conclusions. Cocco and Rice [2002] showed
that when stress changes from a nearby earthquake are
suddenly imposed on a thin neighboring fault, which fault
does not significantly perturb those stress changes outside
its core, then the undrained pore pressure change Ap in the
core, when it has isotropic poroelastic properties, is a
Skempton coefficient B [Rice and Cleary, 1976] times a
linear combination of the changes in normal stress and mean
stress (i.e., first stress invariant) of that imposed field. In the
limit for which the shear rigidity of the fault core is much
less than outside it (and also in the limit of a highly
anisotropic damage distribution as discussed by Cocco
and Rice [2002]), this reduces for a branch fault orientation
like in Figure 1b to Ap = —BAog. In the opposite limit,
for which the fault core properties are identical to those
outside it, the relation is Ap = —B(Ao,, + Aogy + Ao..)/3.
Taking representative values f'= 0.75 and B = 0.50 [Cocco
and Rice, 2002], it is clear that in the first limit the results
for Coulomb stress will be of the form o, + Gy With f/ =
f(1 — B) =~ 0.38 and hence will be qualitatively similar to
what is shown in Figures 2 and 3a. The results for the second
limit are shown in Figure 3b, and it is clear that qualitatively,
the conclusions remain the same; branches to both sides are
favored at high speeds, but there is a preference for branch-
ing to the extensional side. We have also checked inter-
mediate cases in which both normal stress and mean stress
changes affect p and reach the same conclusion.

2.1.2. Influence of the Stress Field at Larger Scales

[18] This can be crucial for the continuation of rupture,
once begun, along a kinked path. Consider a volume of rock
under maximum and minimum compressive principal
stresses, Smax and Spin, like in Figure 4. The ratio of Sy,
to Shax defines an angle ¢ (not to be confused with a critical
Mohr-Coulomb failure angle, with which it would coincide
only if the rock was noncohesive and was stressed to
failure). Relative to the principal directions, there are two
quadrants of fault orientations for which right-lateral slip is
encouraged by the shear stress, as marked in Figure 4. Also,
the orientation sustaining the maximum ratio of right-lateral
shear stress, T, to compressive normal stress, —o, makes an
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Figure 2. Dynamic crack tip singular fields for right-lateral mode II rupture at different rupture speeds v,.
angle of (m/4) — (¢/2) with the direction of maximum divides these cases, first consider the situation oy, = oy),.

compression.

[19] Now let us apply that concept to stressing along a
bend path. We observe that the first correction to the 1/\/r
singular term involves the uniform stress field

T o;y
and so we could identify S, and S,.x as the principal
stresses of that field, to understand how that correction o},
influences the stresses that drive faulting. At larger distances
from the crack tip the stress field approaches the prestress
0y, so at such distances we would wish to identify S, and
Smax With principal values of 7.

[20] With either interpretation there are two distinct
limiting regimes, depending on the ratio of the fault
parallel precompression, —cy,, to the fault-normal precom-
pression, —oy,. The fault-parallel compression is greater in
Figure 5a, and the fault-normal in Figure 5b. To see what

Then both the S, for the prestress oy, and the Sy, for
the first-correction stress 0,?,», make an angle y = 45° with
the fault plane. However, when (—o},) < (—o%,), like in
Figure 5a, the Spax based on oy makes an angle y smaller
than 45° with the fault plane, and the S, based on 0,-}
makes a yet smaller angle y (since T, < oy, ). If the residual
stress T, during earthquake slip approaches zero (complete
stress drop), then y based on 0}j approaches zero. In
comparison, when the fault-normal precompression is
dominant, so that (—a},) > (—o¥,) like in Figure 5b, then
the Spax based on oj; makes an angle y greater than 45°
with the fault, and the y based on o}j makes a yet steeper
angle. That latter ; approaches 90° in the limit of
complete stress drop. Those differences mean that different
angular zones experience right-lateral shear stress, depend-
ing on whether the fault-normal precompression is smaller
or larger than the fault-parallel component. The differences
are most striking when we consider the first-correction
stress state oilj for which the angle change, in the limit of

complete stress drop, approaches 90°.
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Figure 3. Coulomb stress 05> = oq, + f(0pg + p) of

dynamic crack tip singular fields, for right-lateral mode II
rupture at different rupture speeds v,. (a) Pore pressure p
neglected, like in Figure 2. (b) Case of identical poroelastic
properties within the branch fault core as outside it.

[21] We expect that the stresses o,-l,- determine, or at least
strongly affect, whether the rupture along the bend path
can be continued beyond the immediate vicinity of the
rupture tip, where it nucleated under stresses like those
plotted Figures 2 and 3. Similarly, the stresses o should
control whether propagation can be continued far from the
tip. Figure 5 thus predicts that when the fault-parallel
precompression is large compared to the fault-normal
precompression (Figure 5a), the stress state could allow
rupture to continue along bend paths primarily to the
compressional side (even though the compressional side
is less favored for nucleation along a bend path), but would
inhibit continuation on the extensional side. When the
fault-normal precompression is instead the larger (Figure
5b), the stress state could encourage ruptures to continue
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stressed
right-lateral Sinax ic' ;?—Siselet(eiral
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slip
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Figure 4. General stress state under maximum and
minimum compressive principal stresses, Spax and Spin.
The ratio of Sy, to Spax defines an angle ¢, not to be
confused with the critical Mohr-Coulomb angle.

on bend paths to the extensional side and inhibit the
compressional.

[22] Because the dictates of the strongly velocity-depend-
ent stress very near the rupture tip (Figures 2 and 3) will
often be inconsistent with what the stress at larger scales
(Figure 5) can sustain as a rupture, it is plausible to expect

Case with

quadrant stressed

(Low inclination for right-lateral slip

of Smax With fault)

Smax

maximum
7/(—0) direction

(a)

Case with
—63}, >0
) .
(High inclination max
of Spmax With fault)
= o >
«— _v \*—
— S quadrant stressed

\\ for right-lateral slip
A

maximum

1/(—0) direction

(b)

Figure 5. Qualitative prediction of the directions over
which the larger-scale stress states (c},— or oy) favor right-
lateral shear along bend paths. (a) Fault-parallel precom-
pression is dominant, (—oy,) < (—0%): Smax makes an
angle y smaller than 45° with the fault plane, allowing
rupture to continue along bend paths primarily to the
compressional side. (b) Fault-normal precompression is
dominant, (—oy,) > (—0,): ¥ is greater than 45°, allowing
rupture to continue on bend paths primarily to the
extensional side.
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Figure 6. Singular elastic crack model of a mode III rupture propagating with velocity v,.

that there will be many failed attempts to follow bend faults
where they are available. Hence rupture propagation may be
intermittent and subject to spontaneous self-arrest, e.g., in a
manner analogous to that shown by Kame and Yamashita
[1999a, 1999b]. The above discussion focused on the signs
of the shear components of 0,; and oj;. However, the
magnitudes are also important; the driving shear stress must
be greater than T, along the branch path.

[23] Because our considerations here have not explicitly
modeled the alterations of the stress field due to actual
rupture growth along a bend path, our conclusions are
speculative. Nevertheless, they provide predictions, which
could be tested by field observations (see the natural
examples in the closing section here) and by detailed
numerical simulation methods like those mentioned in the
Introduction, of how rupture velocity and the nature of the
prestress may control the propensity of rupture to follow a
bend path. Some such relevant numerical simulations have
been reported recently: N. Kame et al. (Effects of prestress
state and rupture velocity on dynamic fault branching,
submitted to Journal of Geophysical Research, 2002) used
the boundary integral equation formulation of Kame and
Yamashita [1999a, 1999b], applying it to a straight fault
with a branch at 15° to one side or the other. They varied the
incoming v, and the prestress angle y (Figure 5) of Sy in
the prestress field and verified that the size of that angle did
indeed control whether branch paths to the extensional or
compressional side would be followed. Also, Aochi et al.
[2002] report simulations which show that the direction of
branching is favored to the compressional side when faults
are loaded close to the Coulomb frictionally optimal princi-
pal stressing directions relative to the main fault. In that case
the Spax direction for oy makes a shallow angle of (n/4) —
arctan (f)/2 with the fault, so that their simulation corre-
sponds to the case shown in Figure 5a and the branching
they found is consistent with the predictions made.

2.2. Mode III

[24] Mode III rupture (Figure 6) occurs at the extremities
of the slipping zone along strike for dip-slip faulting, and
along depth for vertical dip-slip faulting. The initial stress
state, given earlier, is depicted on the right in the figure. The
stress change associated with the crack is

o 0 o
Aoy =W gy lo 0 —Ar|+0(/F
V2mr Y
0 —AT 0

with stress drop AT =09, — 7, and Ky o< Atv/L. The form
of the F/ ,}H (6,v,) is given by equations (A8) and by Erdogan
[1968] and Freund [1990]. The final stress oy; is thus

a2, 0 0
o K m o
0 = oy + Aoy = \/me’ Ov)+ | 0 oy T | +OWT),

where now the middle term provides the first correction cr,;
to the 1/y/r singular terms.

[25] To explore the possibility of crack forking or branch-
ing, we calculate the antiplane Coulomb stress 05> on a
potential bend plane originating at the crack tip at an angle
0: 052" = 64, + foge. The term proportional to 1/ \/r contains
no diagonal elements and as a result, the oy stress does not
contribute, so that o§°"! = g4, for that term. We normalize
the singular term by Kj/v/2wr and show it for different
v,./cs values in Figure 7a. Similarly to mode II, o¢. has one
maximum for lower velocities (approximately for v, /cy <
0.7) , while at higher velocities (v,/cy, > 0.7) it has two
maxima at 6 ~ £90°. Because, these maxima are symmetric,
the propagating fracture may fork rather than bend (in
contrast to mode II fracture where the maximum shear
stress on the extensional side is always higher than on the
compressional). These features may be a source of inter-
mittency in propagation and spontaneous arrest, like dis-
cussed for mode II.

3 [og, / Ky /V@mo)]

2

1

0

180 <120 -60 0 60 120 180

Figure 7. Dynamic singular fields for mode III at different
V.
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3. Slip-Weakening Dynamic Model

[26] An underlying assumption of singular crack models
is that inelastic breakdown processes are confined to the
immediate vicinity of the rupture tip; they do not allow
description of the stress changes Ao;; on the scale of those
processes. The nonsingular slip-weakening model intro-
duced by Ida [1972] and Palmer and Rice [1973], in
analogy to cohesive models of tensile cracks by Barenblatt
[1962] and Dugdale [1960], does allow such a description.
In that model the fault shear stress T (= 0, in mode II, 0, in
mode III) is assumed to undergo a weakening process which
begins when T first reaches a finite peak strength 7, on an as
yet unslipped part of the fault, and then as slip & begins, T
decreases with 0, approaching a residual strength T, at
sufficiently large 9. That results in a variation of T with
position x along the fault somewhat like what we show in
Figure 8 (although, in general, T will not vary linearly with
x as shown there). We will link 7, and 7, to the fault-normal
compressive stress —oy, by writing

T, = (—0j)tand,, T, = (—o) )tano,.

Here tan ¢, is the friction coefficient for onset of rapid
sliding on the fault, and we set it to 0.577 (¢, = 30°) in
subsequent numerical illustrations. It is less clear what to
take for tan ¢,, or how reasonable it is to regard it as
actually constant at large earthquake slip, especially when
the possibility of thermal weakening and fluidization of
the rapidly shearing fault zone is considered. We will
show results for relatively high and low values of T,./T, =
tan ¢,/tan ¢, (0.8 and 0.2, respectively).

[27] The stress distribution near the tip is not readily
tractable unless one makes simplifying assumptions about
the relation between T and 8. To approximately determine
the stress and express the length R of the slip-weakening
zone in terms of properties of the slip-weakening relation,
Palmer and Rice [1973] adopted the relation which would
result in a linear variation of T with x along the slip-
weakening zone (Figure 8),

—-R<x<0

{ T+ (1 4+x/R)(1p — 7/,

Try x < —R.

A unique slip-weakening relation corresponds to that (it is
shown by Palmer and Rice [1973] and Rice [1980]) and the
length R can then be expressed in terms of the fracture
energy G. At least that is so in their asymptotic limit case,
which we consider too, when R is much less than other
length dimensions like overall slipping zone length L. In
that limit case, the stress drop At = o}, — 7, is assumed to
be much less than the strength drop 7, — 7,. That was
studied for quasi-static rupture growth by Palmer and Rice.
Rice [1980] pointed out that the solution for dynamic
rupture propagation, for the same slip-weakening law,
would be provided if R was made a certain function of
rupture velocity, which diminished with velocity in a
particular way. That is

Ry
fll(vr) ’

R=
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Figure 8. Nonsingular slip-weakening rupture model with
linear variation of shear stress (from peak strength T, to
residual strength T,) with the spatial coordinate along the
slip-weakening zone. Used to estimate regions of off-plane
inelastic response.

where
o wG
Ry =
*T16(1—v) (1, — 1,0
for mode II rupture, and
Ry
R= :
S (vr)
where
9 G
Rt MG
16 (Tp = Tr)

for mode III, where the functions f(v,) are

ay(1 — o)

1
(1 — U)[40Ld0£; — (1 + 01%)2] ’ ﬁn(v,,) = a’

where \/1 —12/c2, oy = /1 —v2/c2 and ¢, and ¢, are the
dilational and shear wave speeds. Both of the functions f(v,)
=1 when v, = 0", but they increase with v, (so that the slip-
weakening zone contracts in length), without limit as v, —
Clim- We follow an earlier study by Rubin and Parker
[1994] in applying that dynamic near tip solution to study
off-fault stressing. Previously, Andrews [1976a] showed for
a mode III slip-weakening model that the predicted
maximum shear stress magnitude off the fault plane grows
without limit as v, — ¢, and Rice [1980] showed that the
average fault-parallel stress alterations predicted along the
walls of the slip-weakening zone, i.e., Aoy, for mode I and
Ao, for mode III, are proportional to f(v,) and fi(v,),
respectively, times T, — T,, and become indefinitely large
as v, — Clim-

[28] Essentially, in the above expressions, the size R is
obtained from the condition that the net stress singularity at
the crack tip is zero, due to the Kj; or Ky of the singular
crack model being balanced by the intensity factor due to
the shear stress excess T — T, which provides resistance to
displacements in the slip-weakening zone, equations (A12a)
and (A12b). That gives

4 2
Kim — 3 (tp — Tr)\/ ERILIH =0,

Ju(v) =
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and the result for Ryyyy is then expressed in terms of G by
using [e.g., Rice, 1980]

—V

1
G= z—ufu("r)KIzp

or
1 2
G= TMﬁH(W)Knr

The invariant slip-weakening relation between T — 7, and ,
consistent with any specified value of G, is then obtained by
solving for the displacement field under the loading as in
Figure 8. The values for the fracture energy G for natural
earthquakes vary greatly depending on the method of
calculation. Rice [2000] used parameters reported for seven
large earthquake by Heaton [1990], interpreting them with
use of a self-healing crack model by Freund [1979], to infer
average G values for the individual events which range from
0.5 to 5 MJ/m”.

[29] Tt is reasonable to assume, at least as an end-member
case, that everywhere except at some places of locally high
shear stress or low effective normal stress, where earth-
quakes can readily nucleate, the shear prestress in the crust
along major faults is much less than the stress 7, to initiate
slip. Assuming that T, is related to the fault-normal pre-
compression like in laboratory and borehole studies, and
that the fault-normal stress is comparable to the overburden,
we expect T, to generally be of the order of 100 MPa at
crustal seismogenic depths. On the other hand, to meet heat
flow constraints, one is driven to assume that 7, < 10 MPa
to sustain slip during major ruptures. Thus T, — 7, would be
of the order 100 MPa. That is much larger than a typical
seismic stress drop AT, inferred to be just a few mega-
pascals. That scenario with large T, — 7, describes what has
been called a ‘“‘strong but brittle” fault [Rice, 1996];
“strong” because of the high 7, but “brittle” because of
the low T,. Assuming that abundant regions are present
where the effective stress is locally low enough to allow
nucleation (say, due to locally low normal stress from
nonplanarity of the fault surfaces, or to local pore pressure
elevation), models of such strong but brittle faults can allow
fault operation at low overall driving stress, and low heat
generation, while still agreeing with laboratory friction
estimates of strength at the onset of slip [Rice, 1996].
Slip-weakening models of that type, with At < 1, — 7,
and, correspondingly, Ry much smaller than any macro-
scopic length scale like length of the rupture, pose a great
challenge for numerical simulations, because they require
extreme grid refinement. At least partly for that reason,
cases with 7, — 7, only modestly greater than At are most
commonly presented [e.g., Andrews, 1976b; Aochi et al.,
2002].

[30] Assuming that T, — 7, is indeed of order 100 MPa,
and using the estimates of G cited above, we can estimate
the low-speed length R, of the slip-weakening zone to be in
the range 4—40 m. Nevertheless, we will soon argue that the
inferred G values may include significant energy dissipation
in secondary faulting off the main rupture plane [Andrews,
1976a], and thus would not correspond to slip on just a
single fault, so that the slip weakening zone size could be
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Figure 9. Mohr circle for residual stress field, o, oy, T,
along the fault plane far from the tip which, under
approximations made, is not very different from that for
Oxrs Opys Oy

less than that estimate. At yet another extreme, if we
assumed that T, — T, was not large like in the above
discussion, but only modestly greater than typical seismic
stress drops, say T, — T, = 10—-20 MPa, then R, would be

20—80 times larger than above.

3.1. Mode IT

[31] Consider a mode II crack tip with the slip-weakening
zone moving in the far-field stress o3y, oY), o). The system
of coordinates x,y moves with the crack tip at velocity v,.
Writing the stress field as o; = oj; + Aoy, the solution for
the Aoy is given by equations (A3) in terms of a complex
function defined by equation (A11). That solution treats the
slipping zone as if it extended semi-infinitely to x = —oo on
a fault in a full space, with a stress drop that is a negligible
fraction of the strength drop (03, — T, < T, — T,). At that
level of approximation, we do not distinguish between oy,
and T1,. That simple slip-weakening model is therefore
sensible for a strong but brittle fault operating at low
overall driving stress, as in the discussion above, but not
for a fault with a seismic stress drop that is a significant
fraction of T, — T,.

3.1.1. Parameterization of the Model

[32] The stresses depend only on the nondimensional
velocity v,/c; if the Poisson ratio v is fixed. We have chosen
v =025 (cics = /3, cgles = 0.9194). The rest of the
parameters, namely, initial normal stresses oy, 0y, as well
as peak T, and residual T, stresses are shown in Figure 9.
We choose T,/T,, 03,/0y,, and v, /c; to parameterize. How-
ever, there is a limitation on the choice of oy, /oy, for given
7,/T, if we impose the condition that the residual stress
state far behind the rupture tip must cause a maximum shear

Stress Trax = 1/ (09, — c;’y)2 /4 + 72 in the material adjoin-

ing the fault which is lower than the Coulomb critical stress
of —(a% + oy,)sin(¢,,)/2. This condition gives the limits

(U)?x/o;y)min.max = [l + sin2¢p +2 Sin(b[’ - (TV/TP)2:| /COSZ (bl”

which reduce when ¢, = 30° to

(O')(zx/o)(jy)min,max = (5/3) + (4/3) 1 - (TV/TP)Z'
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Figure 10. Explanation of mode II plots which follow. (a) Mohr circle representation of maximum shear

Stress Tax =

\/ (00 — ny)z /4 + ofcy and the Coulomb limit stress Tcoylomb = —(0xy T 0y,) sin (¢,)/2. (b)

The Tmax/Tcoulomb 180lines, with coordinates x, y nondimensionalized by the low-speed size R, of the slip-
weakening zone. The secondary faulting area T,/ Tcoulomb > 1 1S shown in gray.

3.1.2. Explanation of the Figures

[33] Figure 10 explains the notation used in subsequent
plots. To demonstrate how close the stress state is to
failure,we plot the ratio of maximum shear stress T« =
\/ (0 — 0,,)*/4+ 02, to the Coulomb limit stress Tcoulomp =
—(04 T 0y,)8i0(0,)/2 (Figure 10a). Figure 10b is a typical
plot of the ratio of T ,ax/Tcoulomb 180lines in a box around the
tip of a right-lateral shear crack, where the coordinates x,y
are nondimensionalized with the low-speed size R, of the
slip-weakening zone. The activated zone, i.e., where stress
is above the peak stress (Tmax/Tcoulomb > 1) 1S shown in
gray. Directions of potential secondary faulting are drawn at
the angles £(45° — ¢,/2) = £30° to the most compressive
principal stress. These planes are shown by thin solid lines
for left-lateral slip and by thick solid lines for right-lateral
slip.

3.1.2.1. Influence of Crack Velocity and the
Initial Stress

[34] This is shown in Figure 11 for 7,/7, = 0.2. Isolines of
Tmax/ TCoulomb de€monstrate that the stress level and size of
the activated zone grow as crack velocity increases. At v,/c
~ 0.9 (0.90 corresponds to v,/cy ~ 0.98) the size of the
activated zone becomes comparable to the size of the low-
speed slip-weakening zone R, or can exceed it, like in the
example in Figure 11b for which the size of the secondary
faulting zone is around 5R,. A perspective on activated zone
growth with v, is as follows: The peak stress T, should vary
with normal compressive stress —o,,, and o,, = oy, at all

positions along the fault, due to the mode II symmetry. As
Figure 12a shows, the shear stress o,, along the fault plane
ahead of the rupture rises to T, because of the stress
concentration. The Mohr circle for stress states along that
plane will, generally, pass outside the Mohr-Coulomb fail-
ure envelope at any v,. Once slip weakening begins, oy,
reduces in size. However, when v, — cp, the size R
diminishes toward zero; since the same critical slip-weak-
ening displacement is attained over distance R, that causes
strong extensional or compressive straining of the two fault
walls [Rice, 1980]. The result is very large changes in o,
along the fault, further driving the stress along the fault
itself outside the failure envelope. Much more complex
changes in stress state occur off the fault plane.

[35] A striking feature in Figure 11 is that the shape of
the activated zone also crucially depends on o%,/0y),. In our
discussion of Figures 4 and 5, the qualitative influence of
the initial stress ratio on the fracture pattern has already
been suggested. When —oy, < —o¥, like in Figure 1la,
secondary faulting consistent with branching was predicted
to be encouraged on the compressional side, and when
—0oy, > —oy, like in Figure 11b, on the extensional. Here
we can be more quantitative. The very small angle 1 of the
principal stress associated with Figure 1la allows equal
activation of secondary faulting on both sides of the
rupture. Somewhat larger y values, and especially values
of y > 45° like in Figure 11b, strongly favor secondary
faulting on the extensional side.

[36] The mathematical solution shows that oy, 0}, do not
change along the fault plane ahead of the rupture tip while
the shear stress increases to its peak (Figure 12, insert at the
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Figure 11.

smaller than 45°, y ~ 7° for 0,
y larger than 45°, v ~ 65° for Oy

top). If o}, /0y, ~ 1.7 (for ¢, = 30°) the Coulomb failure
condition is achieved only along the fault plane but at no
orientations tilting away from it (because the Mohr circle
then makes tangential contact with the failure line). If 0¥,/
o,y > 1.7, then for 0, — T, ahead of the rupture, surfaces
tilting anticlockwise from the main fault plane will be
stressed above the Coulomb failure line (Figure 12a). For
oy /0y, < 1.7 the same is true of surfaces tilting clockwise
(Figure 12b).

3.1.2.2. Influence of the Residual Strength Ratio T,/7,

[37] This is shown in Figure 13 for the velocity v,/c, ~
0.9. We have chosen o, = o}, in order to keep the direction
of principal stresses constant (45° with the fault direction)
with change of 7,/7,. The size of the activated zone
increases with increase of T,/T, Wthh can be explained
by growth of the shear part of the 0,] term. Also, the right-
lateral secondary faults are more nearly perpendicular to the
main fault for low T,/7,, because the stress field is dominated
by the tip stresses, and more nearly parallel to the fault at
high T,/1, because the stress is then controlled by the
residual stress T,.

3.2. Mode III

[38] For mode III slip weakening, the antiplane shear
stresses can be calculated as o, = o}, + Ao, 0., = Aoy,
with the Aoy, given by equations (A6) and (All), and the
assumption is again that o}, — 7, < 7, — T,. For simplicity,

Right-lateral failure with 7, = 0.6(—0},) and T, =
rupture speeds v,. Maximum speed shown is 0.90 ¢, ~ 0.98c. (a) The ratio oy, /o)),

=T, R Oy, Y, & 25° for o),
=T, NO'yx,\VrvSOOfOI"O'

b)

0.27, at two prestress ratios and different
= 2; Smax angle y
= T,. (b) The ratio 0y, /0y, = 0.8; Spmax angle

yx = Tp.

we assume that oy, = o}, so that 7, is independent of 6 and
the solution may be characterized by two nondimensional
parameters, v,/c; and T,/7,. To demonstrate how close is the
stress to failure, we plot isolines of 7/7,, where 7 =

A /02 + 02, as shown in Figure 14. The zone /7, > 1 is

Xz
shown in gray. Directions 0., = tanfl(—cxz/cyz) of max-
imum shear are shown in black. The optimal Coulomb
failure planes are not perpendicular to the plane of the
diagram, but do intersect along the maximum shear direc-
tions shown.

[39] Effects of the crack velocity and residual strength
ratio are shown in Figure 15. As in the singular model, the
maximum shear stress grows with increasing crack velocity.
In this case, 7,/T, appears to be quite important. For 7,/1, =
0.8 (Figure 15b), the off-fault stress has not attained the
peak value 7, even at a velocity as high as v,/c; = 0.9 (but it
does at yet higher speed). For 7,/7, = 0.2 (Figure 15a) the
activated zone size reaches the low-speed slip-weakening
size Ry at v,/c, = 0.9, and forking is likely to occur. In
contrast to mode II the shape of the activated zone is
symmetric relative to the main fault.

4. Discussion
4.1. Phenomena Related to Fault Dynamics

[40] In this paper we addressed several phenomena
related to fault dynamics. These include (1) bending and
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Figure 12. Graphical interpretation of results for different
0w /0y, in Figure 11. Mohr circle pairs show increase of
shear stress T — T, (following solid arrow) along the fault
plane in front of the crack tip (insert on the top explains the
location). Substantial increases or decreases (depending on
side of fault) of o, from o,, but no change of 5, from ay,,
occur along the fault as oy, reduces from T, to 7, within the
slip weakening zone (Figure 8), especially when v, is near to
cg. Much more complicated changes of the Mohr circles
occur off the fault plane. (a) For oy, /0}, > 1.7, surfaces of
anticlockwise orientation relative to the main fault plane
will be stressed above the Coulomb failure line. (b) For o3,/
oy, < 1.7 the same is true of surfaces of clockwise
orientation.

bifurcation of the rupture path, (2) intermittency in fracture
propagation, (3) high fracture energy observed for natural
earthquakes, and (4) activation of secondary faulting
regions within damage zones bordering a major fault. These
issues are discussed further below.

4.1.1. Crack Acceleration and Dynamic Growth of
Off-Plane Stresses at High Velocities

[41] The hypothesis of our work is that the dynamic
stress field near the tip of a rapidly propagating rupture
plays a major role in all above mentioned phenomena.
Theoretical elastodynamic models of nonuniform crack
extension [Kostrov, 1966, 1975; Eshelby, 1969; Freund,
1972a, 1972b; Fossum and Freund, 1975] have shown that
fractures which remain on a plane have a tendency to
accelerate to their limiting speed (shear wave speed for
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mode III and Rayleigh speed for mode II). However,
studies of high-speed crack tip stresses (Yoffe [1951] for
mode I, Erdogan [1968] and Andrews [1976a] for mode
III, B. V. Kostrov (orally reported results, Bad Honnef,
Germany, 1978, as cited by Rice [1980]), and Rice [1980]
for mode II) clearly demonstrate that off-fault stresses
grow rapidly as the crack speed approaches the limiting
speed.

4.1.2. Intermittency of Rupture Propagation

[42] These strong off-fault stresses may cause extensive
local failures near the main rupture tip, and may force the
rupture to bend or fork at the conditions discussed.
However, continued slip on a fault bend may be incom-
patible with the larger-scale stress field. In such cases,
propagating ruptures may be self-destabilizing near the
limiting speed. That is, having begun along a path that the
larger-scale stress state cannot sustain, they may be subject
to arrest or to discontinuous propagation. We think it is
likely that shear fault dynamics will ultimately be under-
stood in ways that have recently been quite productive for
dynamic tensile (mode I) cracking [e.g., Rice, 2001]. In
that case, cracks do not reach their theoretical terminal
speed cp because extensive secondary cracking develops
off the main crack plane [Ravi-Chandar and Knauss,
1984a, 1984b, 1984c; Sharon et al., 1995, 1996]. We
have argued here that analogous effects should occur for
shear cracks. The effect of further increase in applied
force, which would drive v,, although the local v, becomes
even more highly oscillatory [Ravi-Chandar and Knauss,
1984a, 1984b, 1984c; Sharon et al., 1995]. At yet further
increase of applied force, macroscale forking of the
fracture path occurs. We are suggesting a similar source
of highly intermittent rupture propagation in shear, with
similar highly oscillatory v,, that should be a source of
enriched high frequency seismic radiation from faults
(compared to what one would expect for smooth rupture
propagation).

4.1.3. High Values of Fracture Energy

[43] Figures 11, 13, and 15 show the growth of the off-
fault region where material undergoes inelastic response as
v, — c;im. Like for tensile cracks, and as already suggested
by Andrews [1976a] for mode III, that seems likely to
make the net fracture energy G increase significantly over
the part of G ascribable to the slip-weakening process on
the main fault plane. This has a potential connection to
two important problems: The expected rapid increase of G
with increase of v,, at speeds very near cp, makes the
barrier at ci harder to pass than for the ordinary slip
weakening model [Andrews, 1976b; Burridge et al., 1979].
That may help explain why seismic inferences of super-
Rayleigh propagation speeds are relatively rare. Also, the
very large G values inferred for major earthquakes, typi-
cally averaging 0.5 to 5 MJ/m? for individual events [e.g.,
Rice, 2000], must be expected to involve significant
contributions to the energy dissipation from outside the
main fault surface. The same G values would not apply to
ruptures moving only modestly slower on the same fault
(compare extent of off-fault activity predicted for v, = 0.7
¢, with 0.9 ¢, in Figures 11 and 15), and neither would
they apply to ruptures in the early phases of growth as
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Figure 13. Effect of ratio of residual strength, T,, to peak strength, 7, = 0.6(—0y,), shown for a high
rupture speed, v,/c; = 0.9, and for o}, /0y, = 1 (so that y = 45°).

they are nucleated. So there is no longer necessarily the
paradox that the G values are so large that we could not
reconcile them with lab values or understand how small
earthquakes with only tens of meters overall rupture
dimension could occur.

4.1.4. Size of Secondary Faulting Zone

[44] The structure of a mature seismogenic fault is
complex. It typically contains a narrow core (less than
tens of centimeters thick) where the major part of tectonic
slip is accommodated, with the possibility that individual
slip events occupy only a few millimeters of width within
it [Chester and Chester, 1998]. The fault core is bounded
by a zone of damaged host rock of the order of 100 m
thick [Chester et al., 1993]. Our models do not explain the
formation of the whole damage zone, which probably
involves the modeling of the history of repeated deforma-
tions in shear along fractally mismatched surfaces [Power
et al., 1988]. However, our models demonstrate stressing
which should activate a secondary faulting zone where
7/T, > 1 (which is shown in gray in Figures 11, 13, and
15). We suggest that during earthquakes some part of the
deformation is accommodated in this zone. The predicted
size of the activated region strongly depends on all studied
parameters. However, the dependence on the velocity of
propagation is straightforward: it grows with v,/cjjm
because of the increase of off-fault stresses. For high
velocities (i.e., v,/cjim = 0.9) its size reaches the size of
slip-weakening region ~Rj, which was roughly estimated
to be 4—40 m, or possibly less depending on how much of
the inferred G corresponds to slip weakening on the main
fault plane. Thus the estimated size of the zone of
secondary faulting is smaller or at most equal to the size
of the damage zone.

4.1.5. Influence of the Residual and Initial Stresses

[45] The illustrations in Figure 11 for two ratios of oyg/
oy, hint at the remarkably large effect of that prestress ratio,
which is well illustrated in Figures 4 and 5. The case o3,/
oy, =2 in Figure 11a is close to having the fault plane itself

be optimally oriented for rupture, in the Mohr-Coulomb
sense, when o, first reaches T,. Comparable regions on
both the extensional (y < 0) and compressional (y > 0) side
are then activated. However, laboratory [Savage et al.,
1996] and seismicity-based [Hardebeck and Hauksson,
1999] inferences suggest that prestress states are closer to
the oy /oy, = 1 case of Figure 13, for which the off-plane
activity is very different, and almost completely confined to
the extensional side.

4.2. Natural Observations and Comparisons
With Theory

[46] Despite the fact that the directions of principal
stresses in nature are generally not well constrained we can
compare our theoretical results with some natural examples.
These are discussed in connection with Figure 16 and are as
follows:

[47] 1. The San Fernando 1971 earthquake zone is
sketched in Figure 16a following Heaton and Helmberger
[1979]. 1t is a reasonable assumption that the maximum

Isolines of shear stress Ty

Damage zone (T/tp > 1)

Planes of maximum shear
(potential secondary faults)

Figure 14. Explanation of mode III plots. The isolines of
ratio of T = /o2 + 02 to T, are shown to demonstrate the
closeness to failure. The ratio 7/7, > 1 in the gray area.
Directions 0, = tanfl(foxz/oyz) of maximum shear shown
as solid lines.
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Figure 15. Mode III failure at different rupture speeds v,, with 7, = 0.27, and 7, = 0.87,,.

compression is horizontal. Because the earthquake took
place on the reverse 53° dip fault, the angle between the
maximum compressive stress and main fault (as in the case
with Figure 11b) is high. Consistent with our model, the
main fault bends (at 24°) to the extensional side.

[48] 2. The Kettleman Hills earthquake (Figure 16b from
Ekstrom et al. [1992]) took place as a low angle thrust fault
and represents an example where most compressive stress
makes a low angle to the fault like in Figure 11a. In this case
our results suggest a secondary faulting zone on the com-
pressional and extensional side from the main fault which is
consistent with the observed aftershock activity, although
there is no evidence on whether dynamic branching
occurred in this case.

[49] 3. The Landers 1992 earthquake jumped from a main
(the Johnson Valley) fault to the Kickapoo, or Landers, fault
located on the extensional side (Figure 16c, from Sowers et
al. [1994]). On the basis of inference of principal stress
directions from microseismicity by Hardebeck and Hauks-
son [2001], the principal stress direction near the bifurcation
of the rupture path is approximately 30° east of north. On
the other hand, the tangent direction to the Johnson Valley
fault is about 30° west of north. Thus there is an approx-
imately 60° angle between the most compressive stress and
the main fault. This is like the case shown in the Figure 11b,
demonstrating extensive above peak stresses on the exten-
sional side, and so the observed branching is consistent with
our theoretical concepts.

[s0] It is also interesting to compare the presence and
geometry of small slip-accumulating faults that curve off the
main fault and then stop, as mapped in detail by Sowers et
al. [1994] along the most northern branch of Johnson Valley
fault, and the southern reach of Homestead Valley fault.
Both fault segments ruptured in the Landers 1992 earth-
quake and are almost parallel to each other (see our Figure
16¢ and, especially, Plate 2 of Sowers et al. [1994]).
However, the rupture along the most northern branch of
the Johnson Valley fault was a right-lateral NNW slip that

continued only around 4 km past the junction with the
Kickapoo fault, with less and less slip as detailed by Sowers
et al. [1994]. It had small, also unsuccessful, faults branch-
ing off to its eastern, extensional side. By contrast the
rupture on the southern reach of Homestead Valley fault,
also unsuccessful in itself, was a right-lateral slip that started
presumably at the junction with the Kickapoo fault and
went SSE, also approximately over a distance around 4 km,
with diminishing slip as also detailed by Sowers et al.
[1994]. It had a pattern of off-branching small faults again
to its extensional side, which is then its western side. Thus
the pattern of secondary activity along both of these faults is
correlated with their rupture directions in the manner that
would be expected from our analysis. Such correlations in
other cases may be useful for paleoseismological inferences
of rupture directivity.

[s51] 4. Another branching case is the 1979 Imperial
Valley earthquake shown in Figure 16d (our drawing is
based on the map of Archuleta [1984]). The approximate
maximum stress direction is north-south if we judge from
the stress directions inferred by Hardebeck and Hauksson
[1999] along their most southern traverse which passes
somewhat to the north-west of the bifurcation. While their
results average to north-south, individual estimates vary as
much as 14° to the east or west of north. That average
principal direction would be at approximately 35° to the
main fault. The angle is steep enough for the main off-fault
activity to take place on the extensional side, as found in
simulations of cases which we did not show here. So once
again the branching seems interpretable in terms of the
concepts developed.

Appendix A: Stresses Near a Propagating Shear
Rupture

[52] We consider the two-dimensional plane strain and/or
antiplane strain problem of a shear rupture moving with
velocity v, in an elastic material (Figures 1, 6, and 8), and
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Figure 16. Natural fault systems exhibiting off-main-fault activity. (a) San Fernando 1971 earthquake.
The maximum compressive stress, if horizontal, makes a 53° angle with the main fault [Heaton and
Helmberger, 1979]. The fault bends to the extensional side consistent with our model. (b) Kettleman Hills
1985 earthquake [Ekstrom et al., 1992]. The most compressive stress makes a low angle (< 20°) with the
main thrust fault. Aftershock activity takes place on the extensional and compressional sides as suggested
in Figure 11a. (c) Johnson Valley 1992 rupture, at start of the Landers 1992 earthquake, bending along the
Kickapoo (or Landers) fault zone [Sowers et al., 1994]. (d) Imperial Valley 1979 rupture bending onto the

Brawley fault zone [Archuleta, 1984].

assume that in the vicinity of the rupture tip the field is
steady in the sense that it depends only on x — v,¢ and .
Following the analysis of Kostrov and Nikitin [1970], also
reviewed by Rice [1980] and Dmowska and Rice [1986], the
elastodynamic equations have subsonic solutions in the
form

Here F, G, and H are analytic functions of the complex
variables indicated, defined by z;, = x + ia,y and z; = x +
iog, where oy = /1 —12/c2, oy = /1 —v2/c2, and ¢, and
¢, are dilatational and shear wave speeds, and Re means the
real part.

[53] Using equation (Al) in the isotropic elastic stress
strain relations, the stress alterations Ao from the uniform
prestress state o5 are then

Aoy = pRe[(1 — o +203)F (z4) + 2G (z4)],
Aoy, = pRe[—(1 + of )F'(z4) — 2G' ()],

Aoy, = pIm20gF (z2) + (1 +oF) /o) G ()],
Aoy, — iAoy, /oy = pH' (z4),

(A2)

and Ao.. = v(Ao,, + Ao,,), where v is the Poisson ratio.
[54] In order to find the relation between the F and G
functions, note that antisymmetry and linearity require that
the normal stress alteration Ao, =0 on y = 0. Because, z, =
zg=2xony =0, that means G'(z) = —(1 + o )F'(z)/2 on the
real z axis, a relation which must also be satisfied at z = co.
It then follows from the theory of analytic functions that the
relation is true everywhere. Defining a new analytic func-



ESE 6-16

tion M(z) = (inD/20y)F'(z), where D = 4o,y — (1 + o )* is
the Rayleigh function, the alteration Ao, of the in-plane
shear component of stress along the x axis is given as

Aoy, (x,y = 0) = Re[M(x)], and the alterations of the in-plane
stresses at general locations are

A = 20, Tm{(1 — o +203)M(z4) — (1 + a)M(z,)}/D,
Aoy, = —204(1 + o?)Im[M(z;) — M(z,)]/D, (A3)
Aoy, = —ReldayouM () — (1 + 022 M(z,)]/D.

An appropriate analytic function for the singular crack tip
solution [e.g., Kostrov and Nikitin, 1970; Freund, 1990],
also including the only nonsingular term of the stress
alteration which is nonzero at the tip, is

—KH 12 = 7KH e 02 _ AT

V2w V2T

Here p = (x* + o®?)"? = r(cos® 0 + o sin® 0)'? and ¢ =
tan~' (aw/x) = tan"'(o tan 0), where the variables o, p, ¢
will have either d or s as subscript, Kj; is the mode II stress
intensity factor, and At = g}, — 7, is the stress drop on the
rupture. Finally, the crack tip stress alterations are

M) = (A4)

Ao — _ﬁ 20,5(1 — cxf +20¢§) sin(b,/2)

YT D Jha

204(1 + o2) sin(d, /2)}
? Ve (AS5)

o Ka 20,01+ ) [sin0,/2) _sin(6,/2)

y \/Z_TY D \/@ \/‘—); )

_ Ku |4a504 cos(64/2) (14 a2)? cos(d,/2) B

Aoy, = =D Nz D N AT.

The singular (1/4/7) part of this was used for the plots in
Figures 2 and 3.

[ss] For antiplane strain we can put the equations in an
analogous form by defining M(z) = ipo,H'(z), so that the
antiplane shear stress alteration Ao,. along the x axis is
Ao,.(x,y = 0) = Re[M(x)] and the full field is

Aoy, = Re[M(zy)], Aoy =Im[M(z,)/ay]. (A6)
The analogous singular crack tip solution, again including

also the only nonsingular term of the stress alteration which
is nonzero at the tip, is

Ku _p Km
M) = —— 12 _Ar =" o71/2 _ Aq,
(@) TS e
where now Kjyp is the mode III stress intensity factor and the
stress drop term is At = o}, — 7. In this case the crack tip
stress alterations are

K K

Aoy, = ——F—— Aoy, =
’ \/2Tpg

(A7)

OLS\/Q?DZSin(d)S/ZL COS(¢S/2) — AT

(A8)

In order to minimize the number of parameters in this first
study, the slip weakening analysis has been done for the
case in which the size R of the slip-weakening zone is
negligibly small compared to the overall slipping length of
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the fault. That corresponds to the case in which the stress
drop AT is a negligible fraction of the strength drop 7, — T,
At this level of approximation, we do not distinguish
between T, and oy, or between T, and o).. In general, the
distribution of shear stress T (= o), for in-plane, o,. for
antiplane; Figure 8) with position x along the rupture must
be determined by specifying a constitutive relation, T = 7(9),
between T and the slip 6. However, we follow the simpler
procedure of Palmer and Rice [1973] and Rice [1980] in
assuming a simple linear distribution of T with position
(Figure 8), and accept whatever () relation which results,
choosing R to be consistent with a given fracture energy G
related to it by [Palmer and Rice, 1973]

G= /0 [T(8) — 7,]db. (A9)

The external loading, characterized by Kj; or Ky, must be
consistent with that G and the net singularity of stress must
be removed at the tip. Palmer and Rice [1973] did that in
the quasi-static situation (v, = 0"), in which case we denote
R as Ry, and showed that a plausible form of slip weakening
relation, T = 7(d), resulted. Rice [1980] then showed that the
solution could be obtained for the dynamic case, of interest
here, in a way which satisfied that same T = 7(8) if R was
related to Ry, and hence to G and T, — T,, in a specific,
speed-dependent manner as described in the text.

[s6] Thus to develop a solution, remembering that we do
not distinguish between 7, and oy, (or of.) at this level of
approximation, we wish to find an analytic function M(z)
that is cut along —oo < x < 0, which satisfies

0, —00 <x < —R
Re[M(x)] = (A10)
(14+x/R)(tp —7T+), —R<x<0
(since the shear stress alteration must equal Re[M(x)]),
satisfies M(z) ~ K/v/2mz as |z| — oo (where K denotes Kj; or
Kin), and is nonsingular at z = 0. The solution, correspond-
ing to that of Palmer and Rice [1973] and Rice [1980], is

M(z) :%(Tp — ) {(1 +%)tan’l <IZ—3)71/2—(]Z—2)1/2}7 (A11)

(Al2a)

or

R =97K?/32(1, — 7,)° (A12b)

to remove the singularity. This solution is further expressed

in terms of rupture speed v,., fracture energy G, and strength
drop T, — T, as described in the text.
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