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Off-Fault Secondary Failure Induced by a Dynamic Slip Pulse

by James R. Rice, Charles G. Sammis, and Robert Parsons*

Abstract We develop a 2D slip-weakening description of a self-healing slip pulse
that propagates dynamically in a steady-state configuration. The model is used to
estimate patterns of off-fault secondary failure induced by the rupture, and also to
infer fracture energies G for large earthquakes. This extends an analysis for a semi-
infinite rupture (Poliakov et al., 2002) to the case of a finite slipping zone length L
of the pulse. The dynamic stress drop, when divided by the drop from peak to residual
strength, determines the ratio of L to the slip-weakening zone length R. Predicted
off-fault damage is controlled by that scaled stress drop, static and dynamic friction
coefficients, rupture velocity, principal prestress orientation, and poroelastic Skemp-
ton coefficient. All damage zone lengths can be scaled by , which is proportionalR*o
G/(strength drop)2 and is the value of R in the low-rupture-velocity, low-stress-drop,
limit. In contrast to the Poliakov et al. (2002) case R/L � 0, the region that supports
Coulomb failure reaches a maximum size on the order of when mode II ruptureR*o
speed approaches the Rayleigh speed. Analysis of slip pulses documented by Heaton
(1990) leads to estimates of G, each with a factor-of-two model uncertainty, from
0.1 to 9 MJ/m2 (including the factor), averaging 2–4 MJ/m2; G tends to increase with
the amount of slip in the event. In most cases, secondary faulting should extend, at
high rupture speeds, to distances from the principal fault surface on the order of 1
to 2 � 1–80 m for a 100-MPa strength drop; that distance should vary with depth,R*o
being larger near the surface. We also discuss gouge and damage processes.

Introduction

A well-known characteristic of elastodynamic fracture
propagation is the strong growth of off-plane stresses near
the crack tip, relative to those on the primary fracture plane,
at high rupture velocity. This is a feature not only of tensile
cracks (Yoffe, 1951) but also of shear ruptures (Erdogan,
1968; Andrews, 1976a; Rice, 1980; Kostrov, orally reported
results [1978] cited in Rice, 1980; Kame and Yamashita,
1999). When the shear rupture velocity mr approaches its
“limiting speed” clim (the shear speed cs for mode III and the
Rayleigh speed cR � 0.92cs for mode II), these stresses grow
to the point where branching should be expected (Poliakov
et al., 2002; Kame et al., 2003). Such branching had been
studied earlier on the basis of static crack models (Segall
and Pollard, 1980; Pollard and Segall, 1987).

Poliakov et al. (2002) (subsequently referred to as
“PDR”) calculated the off-fault stresses for dynamic mode II
and mode III ruptures in the context of earthquake mechan-
ics and discussed several examples of the general observa-
tion that a major earthquake rarely propagates along a single
fault plane. More often the propagation path bends to follow
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an intersecting fault plane or jumps (Harris and Day, 1993)
to an offset fault segment. PDR explored the conditions for
which the elastodynamic stress field for a singular crack
leads to Coulomb failure on intersecting faults, thereby sup-
porting out-of-plane propagation. They also analyzed off-
fault stressing near a nonsingular crack governed by a slip-
weakening model, building on the work of Rice (1980) and
Rubin and Parker (1994). Their results may be summarized
as follows. As expected, stresses that can initiate failure on
off-plane secondary faults grow dramatically as mr r clim.
However, the continued propagation of off-plane secondary
ruptures to distances significantly beyond the crack tip de-
pends on the initial stress field, specifically on its principal
stress directions and their ratio. Such predictions for choice
of the rupture path along branched-fault systems are quan-
tified in studies by Kame et al. (2003), using a dynamic
boundary integral equation formulation for simulation of
slip-weakening rupture. They compare favorably with field
examples. In mode II, it is very common for off-plane rup-
ture to be encouraged near the crack tip but discouraged at
larger distances, which leads to intermittent propagation and/
or arrest on the main fault plane.

In their study, PDR calculated off-plane stresses for the
semi-infinite nonsingular slip-weakening model in Figure 1
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Figure 1. Nonsingular slip-weakening rupture
model with a linear variation of shear stress (from
peak strength sp to residual strength sr) with distance
from the crack tip in the slip-weakening zone. After
Poliakov et al. (2002); semi-infinite slipping zone,
corresponding to negligible stress drop � sr

oryx

(mode II) or � sr (mode III), compared withoryz

strength drop sp � sr.

(the singular crack corresponds to a slip-weakening zone
length of R � 0 in this figure). The initial stress, or prestress,

was defined such that the y � 0 fault plane contains theorij

intermediate principal stress axis and the slip vector, which
is assumed to align with the shear traction on the plane. The
rupture was assumed to propagate in the x direction and two
cases were considered, mode II and mode III. Mode II rup-
ture occurs when the intermediate principal stress is in the z
direction and slip is in the x direction, parallel to the rupture
propagation. In this case, the prestress has the form:

o or r 0xx yx
o o or � r r 0 .ij yx yy� �o0 0 rzz

Mode III occurs when the intermediate principal stress is in
the x direction and slip is in the z direction (perpendicular
to the propagation). For mode III the prestress is

or 0 0xx
o o or � 0 r r .ij yy yz� �o o0 r ryz zz

The origin of the x,y coordinate system moves with the crack
tip at velocity mr, and for the simple steady state considered,
stress and displacements fields calculated in that moving
frame are time invariant.

PDR did not explicitly consider pore pressure when dis-
cussing distributions of off-fault failure predicted by their
slip-weakening analysis. However, we wish to do so here
and thus will regard their as Terzaghi “effective” stresses.orij

That is, � podij where is the total stress, soo tot,o totr � r rij ij ij

that denotes its initial value, and p is pore pressure,tot,orij

with initial value p0. We calculate the alterations oftotDrij

total stress due to the propagation of the dynamic rupture in
the next section. In poroelastic terminology, response should
be considered to be “undrained” over the multimeter scale

of interest to us here, on the short timescale during which
the dynamic stress pulse traverses a material point. In such
circumstances the pore pressure change, at least at points
slightly off the fault plane (where other effects such as ther-
mal pressurization of pore fluid from shear heating, inelastic
dilation, and local Darcy transport may be occurring) can be
calculated as:

tot tot totDp � �B(Dr � Dr � Dr )/3 (1)xx yy zz

where B is the Skempton coefficient (Rice and Cleary, 1976)
for stress alteration under undrained conditions. Thus, the
alterations of the effective stress are Drij � � Dpdij.

totDrij

The plan of this article is to first show results that ne-
glect poroelastic effects, in the sense of assuming a Skemp-
ton coefficient B � 0, so that Dp � 0 and Drij � .totDrij

That is a case of interest in itself and allows comparison
with the analogous results shown by PDR. (PDR did discuss
the inclusion of B � 0 and Dp � 0 in their analysis of
stresses favoring rupture branching near a singular crack tip,
but not in their slip-weakening analysis.) Subsequently, we
discuss the effects of taking B � 0 and Dp � 0 in the present
analysis of off-fault damage; those effects can be significant.

Although the PDR slip-weakening model captures many
important characteristics of the stress field near the tip of a
propagating rupture, it may not be the best model for an
earthquake. Because the slipping region is treated as semi-
infinite (relative to the size R of the slip-weakening zone),
the initial stress and the residual strength sr cannot beoryx

significantly different, that is, the dynamic stress drop ap-
proaches zero in their model. PDR characterize this as a
“strong but brittle” limit for faulting (meaning sp � sr is
much larger than � sr; “strong” because of the largeoryx

sp � sr, “brittle” because of the small � sr at whichoryx

propagation occurs). Also, in their model, slip continues
over the entire slipped zone from 0� to ��. However, seis-
mological observations of the temporal and spatial distri-
bution of slip during large earthquakes suggest that slip is
limited to a finite zone behind the propagating crack tip.
Known as the “self-healing pulse model” for earthquakes
(Heaton, 1990), this is a dislocation-like model in which no
slip occurs at distances x � �L behind the crack tip.

In this article, we extend the work by PDR by calculating
the off-plane stress field with a dislocation model in which
slip is limited to a patch of length L behind a crack tip that
propagates at constant velocity mr (Fig. 2). Thus, we address
a slip-weakening version of a model of a self-healing frac-
ture, propagating with steady-state space-time dependence,
as studied by Broberg (1978) and Freund (1979), and by
Nielsen and Madariaga (2003) in the context of a self-similar
space-time dependence. Like Broberg (1978), we consider
nonuniform shear stresses along the slipping zone due to a
gradual loss of strength near the fracture tip. However, we
follow the Freund (1979) description of the onset of healing,
as a process taking place without local alteration of stress
along the slipping zone near the healing front, corresponding
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Figure 2. Nonsingular slip-weakening slip-pulse
model. As in Figure 1, a linear variation of shear
stress is assumed in the slip-weakening zone. The
PDR model (Fig. 1) coresponds to normalizing the
stress fluctuation Drij with sp � sr and then taking
the limits L/R r � and ( � sr)/(sp � sr) r 0, suchoryx

that x/R and y/R remain finite. In comparison, the sin-
gular crack model corresponds to first normalizing the
Drij with ( � sr) and then letting R/L r 0 andoryx

(sp � sr)/( � sr) r � with x/L and y/L remainingoryx

finite. The PDR model may be regarded as providing
a magnified view of the region of large but actually
finite stress concentration represented by the singu-
larity in the latter model.

Figure 3. The scaled dynamic stress drop (( �oryx

sr)/(sp � sr) for mode II or ( � sr)/(sp � sr) fororyz

mode III) as a function of R/L calculated using equa-
tion (8) in the text. Note that the dynamic stress drop
is 0 when R/L � 0, corresponding to the semi-infinite
crack modeled by Poliakov et al. (2002). The stress
drop increases monotonically to (sp � sr)/2 as R/L
r 1.

to cessation of slip without a stress singularity (Broberg
[1999] later adopted the same concept for healing). Once
healed, the stress necessarily rises along the newly locked
portion of the fault in this class of models (Perrin et al.,
1995). We thereby simulate a self-healing slip pulse (without
addressing the question of why it is self-healing) and are
able to consider cases where the dynamic stress drop �oryx

sr is a finite fraction of the strength drop sp � sr . Although
we find that the general conclusions in PDR (summarized
previously) also hold for the slip-pulse model, significant
differences exist, in particular, in the spatial extent of off-
fault failure, as the rupture velocity approaches clim.

Stress Field Near an Elastodynamic Slip Pulse

We follow the general approach in PDR, but in place of
the semi-infinite sliding zone in Figure 1, we consider a slid-
ing zone of finite length L that moves with constant velocity
mr in the x direction as in Figure 2. The forward end of the
sliding patch is at x � 0. The shear stress on the fault plane
(y � 0) far ahead of the crack tip is for mode II oro or ryx yz

for mode III. We use the nonsingular slip-weakening model
introduced by Ida (1972) and Palmer and Rice (1973) and
used in PDR. Weakening begins when shear stress on the
fault s (�ryx or ryz) first reaches a finite peak strength sp on
an unslipped part of the fault. When slip Du begins, s de-
creases with Du, approaching sr at large Du, somewhat as
illustrated in Figure 2. We have assumed, for simplicity, a
linear decrease of s with spatial distance x (that is not con-
sistent with a linear decrease of s with Du). The peak
strength sp � � ( )tan �p is determined by the coefficientoryy

of static friction (fs � tan �p) on the fault plane. We take
fs � 0.6 corresponding to �p � 31�, a typical value for rock.
The residual strength sr � � ( )tan �r is determined byoryy

the dynamic coefficient of friction fd � tan �r. Since we do
not know what to take for fd (or even if it is constant during
an earthquake) we show some results for a range of fd/fs �
sr/sp from 0.2 to 0.8, but favor the lower value to allow
laboratory-like fs at the onset of slip to be consistent with
low frictional dissipation in large earthquake slips.

Following the reasoning in PDR, we assume that s de-
creases linearly with x from sp to sr over an as-yet-unknown
slip-weakening zone length R along the x axis, writing

x
s � 1 � (s � s ), for �R � x � 0r p r� �Rs � �s for �L � x � �R ,r

(2)

which implicitly assumes R � L (which will be seen later to
be valid for a dynamic stress drop that is less than half of
the strength drop. See Fig. 3).

The effective stress field in the vicinity of such a crack
may be written rij � � Drij. The task is to determineorij

Drij, vanishing at �, such that ryx (for mode II) or ryz (for

mode III) has the prescribed values on the slipping patch
�L � x � 0 given by equation (2), and such that there is a
smooth closure without a stress singularity at the trailing
edge (Fig. 2).

PDR show that the can be written in terms of antotDrij

analytic function M(z) of a complex variable z (such use for
z is not to be confused with use of the same symbol to denote
the third Cartesian coordinate) as follows:
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For mode II:

tot 2 2Dr � Dr � Dp � 2� Im[(1 � � � 2� )xx xx s s d
2M(z ) � (1 � � )M(z )] /D,d s s

tot 2Dr � Dr � Dp � �2� (1 � � ) (3)yy yy s s

Im[M(z ) � M(z )] /D,d s
tot 2 2Dr � Dr � Re[4� � M(z ) � (1 � � ) M(z )] /D.yx yx s d d s s

For mode III:

Dr � Re[M(z )], Dr � Im[M(z ) /� ]. (4)yz s xz s s

In these expressions the complex variables zd and zs are de-
fined as zd � x � i�dy and zs � x � i�sy, where �d �

, �s � , and cd and cs are the dila-2 2 2 21 � v /c 1 � v /c� �r d r s

tational and shear-wave speeds, and “Re” and “Im” mean
the real and imaginary parts. The Rayleigh function D is
D � 4�s�d � (1 � )2 and vanishes when mr � cR. (The2�s

expression for Dryx in equation 3 corrects a misprint in the
appendix of PDR. The signs of the right sides of the expres-
sions for Dryx in their equations A2 and A3 should be re-
versed, although the correct form of those equations was
used in the results presented in PDR.)

For the plane strain conditions assumed in mode II,
� t( � ), where t is the Poisson ratio (thetot tot totDr Dr Drzz xx yy

undrained Poisson ratio in poroelastic terminology) and thus,
using (1), we calculate Dp in equation (3) as

tot totDp � �(1 � t)B(Dr � Dr )/3 (5)xx yy

We always adopt t � 1/4 here, consistent with cd � 3c� s

and cR � 0.919cs.
Introducing the notation h� � 2 sin�1( ), which var-R/L�

ies from 0 to p as R/L varies from 0 to 1, and letting z be a
proxy for either of zd or zs, the appropriate analytic function
M(z) is shown in the Appendix to be M(z) � M0 � M1(z),
where

h� h� � sin h�0M � �(s � s ) � ,p r � 2 �p 2p sin (h�/2)

1 z 11M (z) � � (s � s ) 1 � ln(F(z)) (6)p r �� �� �p R i

1/2 1/2z (z � L) h�
� ,�R

and

ih� 1/2 1/2(e �1)L/2� z� z (z�L)
F(z) � � ih� 1/2 1/2�(e �1)L/2� z� z (z�L) (7)

1/2 1/2z� z (z�L)
.� 1/2 1/2�z� z (z�L)

Here, the branch cut of z1/2(z � L)1/2 is along the slipping

zone such that the product approaches z for |z| k L. Also,
as will be clear from (8) to follow, M0 � �M1(�) corre-
sponds to sr � in mode II and to sr � in mode III.o or ryx yz

Nondimensional Parameters of the Model

If we make all stress alterations Drij nondimensional by
dividing by the peak strength sp(��fs ), and coordinatesoryy

nondimensional in the form x/R and y/R, the expressions for
the stress alterations then depend on four nondimensional
parameters for mode II. We choose these to be the scaled
rupture speed mr/cs, the ratio of residual to peak strength
sr/sp, the length of the slip-weakening zone relative to the
length of the slip pulse R/L, and the Poisson ratio t (which
is irrelevant for mode III and which we always choose as
t � 0.25, so that cd � ). The Skempton factor B be-3c� s

comes a fifth parameter in our models considering pore pres-
sure and undrained poroelastic response, in which t � 0.25
is then interpreted as the undrained Poisson ratio. The ratio

/sp is implied by that parameter set (in fact, just by sr/sp
oryx

and R/L; see equation 8), but to fully represent the in-plane
components of /sp, to determine zones where the predictedorij

stresses violate the Mohr-Coulomb failure condition, we
must specify two more parameters. We choose these as the
ratio of the normal prestresses , and the coefficient ofo or /rxx yy

static friction fs � sp/(� ). The latter, which is also theoryy

only parameter needed to specify the Mohr-Coulomb failure
condition, is chosen as fs � 0.6 in all the results shown here.

The dynamic stress drop, � sr for mode II, may beoryx

expressed in scaled form as a function of R/L (see equation
A14 in the Appendix) as

o(r � s ) h� h� � sin h�yx r
� � , (8)2(s � s ) p 2p sin (h�/2)p r

where, again, h� � 2 sin�1 . (This stress ratio corre-R/L�
sponds to 1/(1 � SA), where SA � (sp � )/( � sr) iso or ryx yx

the Andrews [1976b] ratio.) The same expression as in equa-
tion (8) applies for � sr in mode III. Remarkably, ruptureoryz

speed mr does not enter this expression; both R and L vary
in the same way with mr and both vanish as mr r clim, as
explained following. The methods of the Appendix can be
used to show that such results are not limited to the particular
slip-weakening law associated with the linear-in-x stress dis-
tribution adopted here; for all slip-weakening laws, the 2D
steady slip-pulse solution has the features that R/L is a func-
tion only of the scaled stress drop (but generally different in
form from equation 8), independently of mr, and that both R
and L vanish as mr r clim. Equation (8) is plotted as in Figure
3. Thus, choosing a particular R/L is equivalent to choosing
the scaled dynamic stress drop (which may then be regarded
as a prescribed parameter in place of R/L) or, thinking of sp

and sr as given material properties, to choosing the initial
shear stress . Note that the dynamic stress drop � sr

o or ryx yx

is less than 1/2 the strength drop for all R � L (i.e., for all
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h� � p), and that ( � sr)/(sp � sr) r 0 as R/L r 0oryx

(h� r 0), corresponding to the semi-infinite crack modeled
by PDR.

The size of the slip-weakening zone, R, depends on the
fracture energy G, the shear modulus l, the strength drop
(sp � sr), the scaled rupture velocity mr/cs, and the dynamic
stress drop (which we parameterize using h� � 2 sin�1

as previously). In this slip-weakening context, G isR/L�
defined by G � �[s(Du) � sr]d(Du) (Palmer and Rice,
1973; Rice, 1980), where s(Du) is the slip-weakening func-
tion implied through the elasticity solution for our assumed
linear-in-x stress distribution in Figure 2 and the integral
extends to sufficiently large slips Du that s(Du) becomes
coincident with sr. We show in the Appendix, in equations
(A25) and (A26), that

lG F(v )rR � , (9)2(s � s ) h(h�)p r

where

h� h� � sin h� h� � sin h� cos h�
h(h�) � � , (10)� 2 � � 4 �p 2p sin (h�/2) 4 sin (h�/2)

which varies only modestly, from h(0�) � 16/9p � 0.566
to h(p) � p/8 � 0.393, and

2D / [� (1 � � )] for mode IIs sF(v ) � (11)r �� for mode III.s

Here, D � 4�s�d � (1 � )2 is the Rayleigh factor defined2�s

previously. The functions F(mr) diminish with rupture speed
and vanish when mr r clim, with the following limits:

1/(1 � t) when v � 0r for mode II�0 when v � cr RF(v ) �r 1 when v � 0r� for mode III,�0 when v � cr s

where t is the Poisson ratio. The ratio F(mr)/F(0) corresponds
to what is called 1/fII(mr) for mode II, and 1/fIII(mr) for mode
III, in Rice (1980) and PDR.

We write the value of R at low speed (mr � 0�), but at
the same fixed R/L (or fixed stress drop), as Ro where Ro �

. Hence,2[lG/(s � s ) ]F(0)/h(h�)p r

R F(v ) (1 � t)Dr
� � (12)2R F(0) � (1 � � )o s s

for mode II, and R/Ro � �s for mode III. Thus R/Ro is a
function of mr only. A slipping length Lo may be similarly
defined, just by equating Ro/Lo to the fixed R/L. Then it
follows that L/Lo � R/R0, so that L/Lo is the same function
of mr as in equation (12).

Because Ro depends on R/L, we choose to normalize all

lengths in the problem by the value of Ro when L/R r �
(that is, when the dynamic stress drop is a negligible fraction
of the strength drop), which we call . This is obviouslyR*o
invariant to mr and to the magnitude of the stress drop. Be-
cause h(h�) � h(0�) � 16/9p, we havelim

L/Rr�

9pF(0) lG 9p lG
R* � � , (13)o 2 216 (s � s ) 16(1 � t) (s � s )p r p r

for mode II, exactly as in PDR, and the (1 � t) is deleted
for mode III. Hence, using equations (9) and (13), we scale
R for mode II as

R 16(1 � t) F(v )r
� (14)

R* 9p h(h�)o

and L as L/ � (L/R)(R/ ), where L/R is one of the givenR* R*o o

parameters. For mode III, the (1 � t) is again deleted. (Note
that our coincides with what PDR called Ro, because theyR*o
dealt only with the h� � 0 case of vanishing scaled stress
drop.)

As in PDR, R decreases to zero as mr increases to its
limiting value clim. Because L/R is fixed for a given, scaled,
stress drop by equation (8), L also approaches zero. How-
ever, the final slip displacement d that is locked-in on healing
is independent of mr, so that our slip-pulse solution ap-
proaches that of a step Volterra dislocation moving at speed
clim. That is because, as we show in equation (A23),

2G 16(1 � t) (s � s )p r
d � � R* , (15)oo or � s 9p (r � s )lyx r yx r

for mode II, where the latter form uses (13) also. Thus, the
locked-in displacement depends only on the fracture energy
and dynamic stress drop but is independent of the velocity.
This result (15) also holds for mode III, which differs only
by the change of stress drop to � sr and deletion of theoryz

(1 � t) in the latter form. The result, rewritten as �or dyx

srd � G, is easy to interpret. It says that the work ofor dyx

the remote stress field in advance of the rupture front over
a unit area is balanced by the total dissipation, which is the
sum of srd in friction dissipation at the residual level, plus
G by stresses s(Du) � sr in excess of residual.

As suggested, there is a certain slip-weakening relation
s � s(Du) implied by our analysis, which we have simplified
by assuming a linear variation of stress with distance as in
Figure 2, corresponding to a specified fracture energy G,
which is interpretable as G � �[s(Du) � sr]d(Du). The re-
sulting weakening function s(Du) was plotted by Palmer and
Rice (1973) for the R/L � 0 limit and mr � 0� case that
they considered. Rice (1980) showed, again for the R/L �
0 limit, that for dynamic propagation, the function s(Du)
implied by this procedure is independent of mr. A similar
result holds here: For a given scaled dynamic stress drop,
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Figure 4. Mohr circle in terms of effective stress,
illustrating the condition for Coulomb failure on the
most favorably oriented plane.

hence given R/L and given fracture energy G, the implied
slip-weakening function is independent of mr . However, in
our present work, the precise form of that implied s(Du)
depends on R/L (although it starts at the same sp, finishes at
the same sr and has the same integral G for all R/L). We
show in the Appendix how to determine s(Du) and, by com-
paring results for the limit cases R/L � 0 and R/L � 1 (see
the final figure of the Appendix), we demonstrate that the
dependence on R/L is very weak, suggesting therefore that
it may be safely neglected.

Off-Plane Coulomb Failure Induced by a
Slip Pulse: Mode II

The potential for bending or forking of the slip-pulse
onto planes intersecting a singular crack tip is exactly as
calculated by PDR for the semi-infinite crack, because the
stress field in the immediate vicinity of the tip is the same
in both cases. However, the spatial extent of Coulomb failure
on slip surfaces removed from the crack tip can be quite
different for the two cases. Slip will occur when the Cou-
lomb stress on a plane, defined as s � fsrn, is greater than
0. (Recall that rn is negative for compression and, consid-
ering pore pressure, the stresses are effective stresses.) We
will produce figures similar to figures 11 and 13 in PDR to
effect a direct comparison between the mode II finite slip
pulse modeled here and the mode II semi-infinite crack mod-
eled by PDR. Those figures in PDR explore the effects of
parameters , mr/cs, and sr/sp on the spatial distributiono or /rxx yy

of Coulomb failure. We use the same range of parameters
as in figures 11 and 13 in PDR for a range of the new pa-
rameter R/L � 0.001, 0.1, 0.5, and 0.9. The figures in PDR
correspond to the case R/L � 0. We explore mode III in the
next section.

The new figures were calculated as follows: All stresses
were scaled by sp. The diagonal elements of the remote stress
field are then /sp � �1/fs, where we take fs � 0.6 fororyy

the static coefficient of friction, and /sp � ( ) /o o o or r /r rxx xx yy yy

sp, where the stress ratio is a given parameter. The remote
shear stress is given by (A14) in the Appendix which, scaled
by sp, gives

or h� h� � sin h� s syx r r
� � 1 � � , (16)� 2 � � �s p 2p sin (h�/2) s sp p p

where sr/sp and h� � 2 sin�1 are given parameters.R/L�
The changes in effective stress due to the cut, Drij, were

calculated using equations (3), (5), (6), and (7), with B � 0
in (5) so that Dp � 0 and Drij � (Figs. 5 to 10), andtotDrij

subsequently with B � 0 (Figs. 11 and 12). Note that the
stresses in these equations have the factor (sp � sr) which,
because we are scaling all stresses by sp, becomes (1�sr/sp).
The lengths z, R, and L in these equations were scaled by

as discussed previously. The stress components were cal-R*o
culated as rij � �Drij on a grid of points �2 � x/or R*ij o

� 2, �2 � y/ � 2. At each grid point, we asked whetherR*o
frictional sliding had occurred on the most favorably ori-
ented plane. This is most easily visualized using the Mohr
circle diagram in Figure 4 for which the principal stresses
are r1 � S � smax and r2 � S � smax, where S � (1/2)(rxx

� ryy) and smax � (1/2)[(rxx � ryy)
2 � 1/2. The angle24r ]yx

w between the r1 and the x axis is w � (1/2) tan�1 [2ryx/
(rxx � ryy)].

Referring to the Mohr circle in terms of effective stress
in Figure 4, slip first occurs when the circle touches the
friction line s � �rn tan �p. This occurs when smax � �S
sin �p. Hence, for any stress state where smax � �S sin �p,
slip will have occurred on the most favorable plane, and
possibly others. We defined sCoulomb � �S sin �p and, at
each grid point, computed the ratio smax/sCoulomb. Slip will
have occurred at any point where smax/sCoulomb � 1. The
critical planes on which slip first occurs make angle of
�(1/2)(p/2 � �p) with respect to r1. For �p � 31�, the
critical planes are oriented at angles w � 29.5� relative to
the x axis. These planes are indicated as line segments on
the contour plots of smax/sCoulomb. We also check to see if
the least principal stress may have turned positive, that is,
tensile.

Effect of Rupture Velocity, Slip-Weakening Zone
Size, and the Orientation of the Initial Stress Field

The effects of rupture velocity mr/cs, the slip-weakening
zone size R/L, and the initial stress ratio on the off-o or /rxx yy

plane stress field are explored in Figures 5 through 9 for the
case B � 0. These figures are formatted as in PDR where
the ratio smax/sCoulomb is contoured, and areas where this ratio
is greater than 1 are lightly shaded. Within this lightly
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Figure 5. Contour plot of smax/sCoulomb as a function of position surrounding the tip
of a propagating slip pulse when the weakening zone length is very small compared
with the slipping length of the pulse (R/L � 0.001, meaning that the scaled stress drop
is 0.013). Within the shaded areas smax/rCoulomb � 1 and slip on pre-existing fractures
is possible. The short heavy lines within the shaded areas indicate the orientation of
optimal planes for right-lateral slip, the short lighter lines for left-lateral slip. In the
darker shaded region, a principal stress is predicted to be tensile. The three columns
of plots are for different values of the scaled propagation velocity mr/cs � 0, 0.7, and
0.9. In the top row of plots � 2 (w � 7�), in the bottom row � 0.8o o o or /r r /rxx yy xx yy

(w � 64�). All calculations in this figure assume sr/sp � 0.2. Poroelastic coupling is
neglected, B � 0. This figure is identical with figure 11 in Poliakov et al. (2002) for
which L r � and R/L r 0.

shaded region, Coulomb slip is possible and the optimal ori-
entations of slip planes are indicated by line segments. The
heavier-weight lines are for right-lateral slip and the lighter
are for left-lateral slip (where we have modeled a right-lat-
eral rupture on the main fault plane). In some cases the min-
imum compressive effective stress close to the rupture be-
comes tensile (positive in Fig. 4). We indicate such regions
with darker shading. Within tensile regions extensive frag-
mentation probably occurs.

In each figure, the upper row of three panels is calcu-
lated assuming a ratio of initial stresses � 2 (maxi-o or /rxx yy

mum compression direction at a low angle to the fault plane),
whereas in the lower three panels this ratio is 0.8 and the
compression direction is at a high angle to the fault plane.
In each case we give the angle W � (1/2) tan�1 [ o2r /yx

] between the maximum compression directiono o(r � r )xx yy

and the fault plane. The residual stress ratio in each case is
taken to be sr/sp � 0.2.

In Figure 5, the weakening zone length is assumed to
be very small in comparison with the length of the slip pulse
(R/L � 0.001), thus approximating the semi-infinite crack
modeled by PDR. As expected, this figure is nearly identical
with figure 11 in the PDR article. In Figures 6, 7, and 8, R/L
is progressively increased to 0.1, 0.5, and 0.9. Note that in-
creasing R/L decreases the stress concentration at the crack
tip and thus reduces the size of the shaded slip region (for
the same slip velocity and initial stress field). The effect of
increasing slip velocity is to increase the off-fault stresses.
This is largely because L decreases with slip speed (as dis-
cussed subsequently in more detail). Because we fix the ratio
R/L, R also decreases with increasing mr/cs, thus sharpening
the stress concentration and increasing off-plane stresses.

The effect of the orientation of the initial stress is the
same as that documented by PDR. When the initial maximum
compression direction is at a low angle to the fault plane
( � 2), Coulomb failure occurs on both sides of theo or /rxx yy
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Figure 6. The same as Figure 5, except that R/L � 0.1 (scaled stress drop � 0.136).
The larger weakening zone length produces less off-fault stress at a comparable slip
velocity. Note that the angle W � (1/2) tan�1 [ /( � )] between the maximumo o o2r r ryx xx yy

precompression direction and the fault plane is slightly different for different values of
R/L; now W � 10� in the top row and 59� in the bottom. Like in all of Figures 5 to
10 here, B � 0, although Figure 11 to follow examines the same cases, but with
B � 0.6.

fault plane. When it is at a higher angle ( � 0.8),o or /rxx yy

failure is mostly limited to the extensional side of the fault
plane. Figure 9 shows that the spatial extent of the Coulomb
failure zone does not expand significantly as mr r clim � cR

� 0.92cs.

Effect of the Residual Strength Ratio sr/sp

Because we do not know the value of dynamic friction
or the peak strength during an earthquake, we treat the ratio
fd/fs � sr/sp as an adjustable parameter. In the preceding
section, Figures 5–9 were calculated by assuming a fairly
low value of sr/sp � 0.2. In Figure 10 we explore the effect
of increasing sr/sp to 0.5 and 0.8 for two values of R/L. As
in PDR, we assume mr/cs � 0.9 and � 1 (w � 45�)o or /rxx yy

so that the top row in Figure 10, where R/L � 0.001, is
essentially identical with figure 13 in PDR where L/R r �.
The bottom row in Figure 10 is identical with the top row
except that R/L � 0.1. Extensive Coulomb failure also oc-
curs on the compressive side of the slip pulse when sr/sp �
0.8. In this case the shear stresses ryx are much larger than
for sr/sp � 0.2, which is presumably the cause of the effect.

Effect of Poroelastic Coupling, B � 0 and Dp � 0

We illustrate the effects of nonnegligible poroelastic
coupling (B � 0) in Figures 11 and 12. Figure 11 is for the
same set of parameters as in Figure 6, except that fairly
strong poroelastic coupling is now included with B � 0.6.
The remaining parameters are R/L � 0.1, sr/sp � 0.2, mr/cs

� 0, 0.7, and 0.9 in the three columns, and � 2 ando or /rxx yy

0.8 in the two rows. The effect of poroelastic coupling in
the simple way we analyze it here (neglecting the usually
modest effect on the total stress field ) is to leave thetotrij

deviatoric parts, (rxx � ryy)/2 and ryx, of the effective stress
field the same as when B � 0, but to buffer the effect of the
mean stress change because

tot totD(r � r )/2 � [1 � 2(1 � t)B/3]D(r � r )/2 .xx yy xx yy

The (bracketed) buffering factor is 0.5 for the case in Figure
11 with B � 0.6. Thus, the center of the Mohr circle (Fig.
4) gets translated less than would be the case when B � 0,
but its radius is unaltered. On the compressional side of the
fault, the center of the Mohr circle is translated 50% less to
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Figure 7. The same as Figures 5 and 6, except that R/L � 0.5 (scaled stress drop
� 0.318; W � 14� in the top row and 55� in the bottom).

the left, thereby enhancing the area of Coulomb failure. On
the tensile side, it is translated 50% less to the right, thereby
reducing both the area of Coulomb failure and the zone of
tensile stressing. Comparison of Figure 11 (B � 0.6) with
Figure 6 (B � 0) shows this effect.

Figure 12 shows the poroelastic coupling results with
B � 0.3 in the top row and B � 0.6 in the bottom one. This
is for mr/cs � 0.9, R/L � 0.1, and � 1 in all panels,o or /rxx yy

and for strength ratios sr/sp � 0.2, 0.5, and 0.8 in the three
columns. Those parameters other than B are the same as in
the bottom row of Figure 10, which thus provides the case
B � 0 for comparison. Again, the effect is to enhance failure
on the compressional side and reduce it on the extensional
side, although the effects are modest and almost negligible
when B � 0.3.

Off-Plane Coulomb Failure Induced by a
Slip Pulse: Mode III

The antiplane shear stresses in mode III are ryz � oryz

� Dryz, where Dryz was calculated by using equations (4),
(6), and (7). As in PDR, we assumed . Off-faulto or � rxx yy

slip in this case was determined by comparing the shear
stress s � with sp. In Figures 13 and 14, isolines2 2r � r� yz xz

of s/sp are plotted and areas of potential slip (s/sp � 1) are

shaded. Directions of maximum shear, hmax � tan�1 (�rxz/
ryz), are indicated by line segments. Planes of maximum
Coulomb shear are not perpendicular to the plane of the
figure, but intersect along the maximum shear directions
shown (see PDR). Figure 13 is for the case R/L � 0.001 and
is nearly identical with Figure 15 in PDR, where L r �.
Figure 14 is for R/L � 0.5 and shows that increasing this
parameter for the slip pulse decreases the spatial extent of
off-fault failure.

Estimating the Fracture Energy

Rice (2000) gave the following expression, based on the
Freund (1979) solution, for the fracture energy of a singular
slip pulse of length L and displacement d traveling with con-
stant velocity mr:

2ld
G � F(v ) , (17)r

pL

where F(mr) is given by (11). In terms of the model of Figure
2, that singular crack limit corresponds to first normalizing
the stress fluctuation Drij with ( � sr) and then lettingoryx

R/L r 0 and (sp � sr)/( � sr) r �, but with x/L andoryx

y/L remaining finite. In contrast, the model addressed by PDR
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Figure 8. The same as Figures 5, 6, and 7, except that R/L � 0.9 (scaled stress
drop � 0.459; W � 17� in the top row and 53� in the bottom row).

(Fig. 1) corresponds to normalizing the stress fluctuation
Drij with sp � sr and then taking the same limits as previ-
ously, now more naturally expressed as L/R r � and ( oryx

� sr)/(sp � sr) r 0, but now such that x/R and y/R remain
finite in the limit. The PDR model may be regarded as pro-
viding a magnified view of the region of large but actually
finite stress concentration that is represented by the un-
bounded term of the singular crack model. Rice (2000) used
Heaton’s (1990) estimates of L, d, and mr for seven earth-
quakes to calculate from (17) an average value of G � 2
MJ/m2.

We now repeat this analysis using our more general
results for the slip-weakening slip pulse. We begin with
equation (A24),

2h(h�) (s � s ) Rp rG � , (18)
F(v ) lr

where h(h�) is given by equation (10) and F(mr) by (11).
Equation (A21) can be used to write:

4ld 4 sin (h�/2)
s � s � F(v ) . (19)p r rR h� � sin h� cos h�

Also, we use R � L sin2(h�/2) to change the length scale to
L, and use (10) for h(mr/cs,h�), to get:

2G 4p sin (h�/2)
G* � �2 � �(ld /pL) h� � sin h� cos h� (20)

h� h� � sin h�
� F(v )r� 2 �p 2p sin (h�/2)

The product of the h�-dependent factors in (20) varies from
1 when h� r 0 (i.e., when R/L r 0), thus verifying (17) in
that limit, to 2 when h� � p (R/L � 1). Equation (20) is
plotted in Figure 15. For R/L � 0, G* decreases smoothly
from 1/(1 � t) (mode II) or 1 (mode III), when mr � 0�

toward 0 when mr � clim. The effect of increasing R/L is to
increase G*. The maximum increase is a factor of 2 (for both
modes II and III) when R � L.

Whereas the scaled fracture energy G* decreases
smoothly to 0 with increasing rupture speed, this is because
it is scaled by L, which itself decreases to 0. The unscaled
fracture energy G is independent of the rupture speed for a
given, speed-independent, slip-weakening function s(Du).

Interpretation of Seismically Observed
Slip Pulses

Following Rice (2000), we used the estimates of L, d,
and mr given by Heaton (1990) from seismic slip inversions
for seven events (Table 1) to calculate G, � sr, slip-orxy
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Figure 9. The same as Figure 8 (R/L � 0.9) except that the three scaled velocities
are now mr/cs � 0.9, 0.91, and 0.915. Note that the off-fault stress field only increases
slightly as the limiting value of mr/cs r mr/cR � 0.92.

weakening distance d1, and . The seismic moments andR*o
fault parameters for these seven events are also given in
Table 1. Our estimates of G, � sr, d1, and wereor R*xy o

calculated as described in the following sections and are
summarized in Table 2.

Fracture Energy

The fracture energy was estimated for each event in
Table 1 by using

2ld
G � G* , (21)� �pL

where G* is given by equation (20) and Figure 15. The val-
ues of Gmin in Table 2 are minimum values in that they were
calculated assuming R/L � 0. They could be twice as large,
Gmax � 2Gmin, at the other limit R/L � 1 (see Fig. 15). We
must accept that R/L is an unknown quantity (which is to
say that the ratio of stress drop to strength drop is unknown),
so the best we can do within our model, for given values of
L, d, and mr, is to assert that the actual G lies between Gmin

and Gmax. Values for Gmin range from 0.1 to 4.6 MJ/m2 with
an average of 1.9 MJ/m2. Thus, including the factor-of-two

model uncertainty (we are not in a position to address un-
certainty in the seismic inversion or limitations from our use
of a 2D steady-state model), we conclude that G falls in the
range 0.1 to 9 MJ/m2 for the various events, with average
between 2 and 4 MJ/m2. The larger values of G tend to be
for the larger events. The lowest Gmin value of 0.1 MJ/m2

for the North Palm Springs earthquake is largely a conse-
quence of its reported high rupture velocity (see Table 1),
very near clim. Rice (2000) estimated a more narrow range,
quoted also in PDR, because he assumed a uniform mr �
0.85cs for all events, thus giving for example, Gmin � 0.3
MJ/m2 for North Palm Springs.

Dynamic Stress Drop

Equation (A23) was used to calculate the dynamic stress
drop as � sr � G/d. In fact, the dimensionless G* oforyx

(20) has the alternative interpretation � sr � G* ld/pL.oryx

The dynamic stress drops based on Gmin (for R/L � 0) range
from 0.3 to 3.3 MPa with an average of 1.9 MPa. There was
no evident trend with event size. Again, these are minimum
values. They could be twice as large if we used Gmax (R/L
� 1), and the best we can do is say that they lie between
the numbers in the table and twice those numbers.
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Figure 10. Contour plot of smax/sCoulomb as a function of position surrounding the
tip of a rapidly propagating slip pulse (mr/cs � 0.9 in all cases) for a range of residual
strength ratios sr/sp � 0.2, 0.5, and 0.8 and for � 1 (so that W � 45�). Theo or /rxx yy

top row is for R/L � 0.001 (scaled stress drop � 0.013), which produces results
essentially identical with figure 13 in Poliakov et al. (2002) for which L r � and R/L
r 0. The bottom row is for R/L � 0.1 (scaled stress drop � 0.136). Again, B � 0;
Figure 12 to follow gives results corresponding to the bottom row here when B � 0.3
and B � 0.6.

Slip-Weakening Displacement

The fracture energy G can be interpreted as the area
between sp and sr under the curve of shear stress versus
displacement, as the shear stress drops from sp to sr with
increasing displacement Du. If we assume an exponential
form for this decrease,

s(Du) � (s � s )exp(�Du/d ) � s (22)p r 1 r

where d1 is some constant characteristic slip for the weak-
ening process, the integration yields G � (sp � sr)d1. A
weakening displacement d1 defined by that relation to G is
seen, using (A23), to be in the same ratio to the locked in
displacement d as is the stress drop to the strength drop, that
is, d1/d � ( � sr)/(sp � sr). Note that this exponentialoryx

form in (22) agrees with the Lachenbruch (1980) analysis of
weakening by thermal pressurization of a pore fluid in the
deforming fault gouge in the undrained, adiabatic limit (see
also Sibson, 1973; Mase and Smith, 1987; Andrews, 2003).
Then, sr is proportional to the ratio of dilation to shear rates

in the gouge, assumed constant by Lachenbruch. Using ther-
mal properties of water and granite at 100 MPa pressure and
300�C, d1 is predicted (Rice, 2003) to be 1.7 (1 � r)/f times
the thickness h of the deforming gouge layer. Here, f is the
friction coefficient prevailing during large slip and r, ne-
glected in the Lachenbruch analysis, is the ratio of fractional
volume change of pore space per unit pore pressure increase
divided by the compressibility of the pore fluid (called b�/
bf in Segall and Rice [1995]); r is likely to be of the order
1 to 2. Thus, the adiabatic undrained weakening model pre-
dicts d1 � 7 h if f � 0.6, and d1 � 20 h if f � 0.2.

We first estimate (sp � sr) for each earthquake by as-
suming sp k sr (as implied by the absence of significant
heat generation by large faults [Lacenbruch and Sass, 1980;
Zoback et al., 1988]) and calculating sp � 0.6 , wherer̄

� [overburden � hydrostatic p]|z̄ is the effective normalr̄
stress calculated at the median depth z̄ of each earthquake
rupture. Alternatively, it may be said that we simply assume
sp � sr � 0.6 . The characteristic slip-weakening displace-r̄
ment, calculated as d1 � G/(0.6 ), then ranges from 1 to 49r̄
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Figure 11. This is for the same set of parameters as in Figure 6 except that poro-
elastic coupling is included here, with B � 0.6, whereas B � 0 in Figure 6 (R/L �
0.1, scaled stress drop � 0.136; sr/sp � 0.2; the columns are for propagation velocities
mr/cs � 0, 0.7, and 0.9; in the top row � 2 and W � 10�, and in the bottomo or /rxx yy

row � 0.8 and W � 59�).o or /rxx yy

mm based on Gmin; again, because Gmin � G � Gmax �
2Gmin, actual values could be up to a factor of 2 higher, and
the total range is therefore 1 to 98 mm. Within the undrained
adiabatic interpretation with f � 0.6 previously, these would
imply a thickness h of the deforming gouge zone on the order
of 0.1 to 15 mm (the smaller end of that range could not be
consistent with absence of fluid and heat transport). If we
assumed a much lower friction during rapid slip, for exam-
ple, due to flash heating (Rice, 1999; Tullis and Goldsby,
2002) of, say, f � 0.2, so that d1 � G/(0.2 ), the estimatedr̄n

range of d1 triples over that previously, to 3 to 290 mm, but
the corresponding range of thickness h does not change, be-
cause it also scales as 1/f.

We may also calculate d1 for the case of a very low
strength drop, where we just assume (sp � sr) � 10 MPa
for all events. Then d1 ranges from 10 to 460 mm based on
Gmin. Again, there is the factor-of-two range for G so that
each d1 could be up to 2-fold larger and the actual range for
d1 is 10 to 920 mm.

We have treated G here as being entirely due to slip
weakening. However, our analysis of stress fields off the
main fault plane suggests (Figs. 5–8, 11, 13, and 14) that as
mr increases over the typical range inferred for rupture

speeds, from 0.7 to 0.9cs, inelastic deformation and secon-
dary failures at locations off the main fault plane will begin,
or will increase markedly in spatial extent. This process must
also contribution to the fracture energy and would seem to
add a component of G, which rises rather rapidly with in-
crease of mr over that range. That might typically make frac-
ture speeds self-limiting so that a propagation speed is cho-
sen finitely below clim, as already suggested by PDR. The
process requires a more precise analysis, in which full ac-
count is taken of the coupling (ignored here) between no-
nelastic deformation off the fault plane and redistribution of
the stress field there.

Slip-Weakening Zone Size

All distances in the preceding calculations are scaled by
the size of the displacement-weakening zone in the limitR*o
of low scaled stress drop and low rupture velocity. Because
our calculations found that Coulomb failure extends to a
distance on the order of (how far depends, especially, onR*o
mr but also on the prestress state and ratio of residual to peak
strength; see Figs. 5–14), we estimate for each earth-R*o
quake using equation (13). Two cases are considered:
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Figure 12. Porelastic coupling results with B � 0.3 in the upper row and B � 0.6
in the bottom row. This is for mr/cs � 0.9, R/L � 0.1 (scaled stress drop � 0.136),
and � 1 (W � 45�), and for the three strength ratios sr/sp � 0.2, 0.5, and 0.8.o or /rxx yy

Those parameters other than B are the same as in the bottom row of Figure 10, which
thus provides the case B � 0 for comparison.

(a) high peak strength and low dynamic strength (sp k sr)
such that (sp � sr) � sp � 0.6 , and (b) low strength drop,r̄n

sp � sr � 10 MPa for all depths. For case (a) of high peak
strength, listed in Table 2, ranged from 1.3 to 36 m basedR*o
on Gmin, and for the same reasons previously stated each
entry could be up to two-fold larger, so that the range is 1.3
to 72 m. For the low strength case (b), ranged from 73 mR*o
to 3.3 km based on Gmin, and again each could be twice as
large. These unusually large values for in case (b) reflectR*o
that is sensitive to the strength drop, varying as (sp �R*o
sr)

�2 in equation (13).

The Effect of Depth

One interesting question is how do the parameters in
Table 2 vary with depth? It is commonly assumed that d1 is
approximately independent of depth because this parameter
is associated with some physical length scale like the thick-
ness of the active gouge zone (Lachenbruch, 1980). Because
G � 0.6 d1, the fracture energy increases with depth as .r̄ r̄n

For the high-strength case, the strength drop also increases
with depth as (see equation 30) sp � sr � 0.6 . Hence,r̄n

decreases with depth asR*o

9p lG 9p ld1R* � � (30)o 216(1 � t) (s � s ) 16(1 � t) 0.6r̄p r n

for mode II and we expect the size of the Coulomb failure
zone, which is on the order of (see previously), to alsoR*o
decrease as . If the active thickness of the gouge also�1r̄n

decreases with depth, then will be less sensitive to depth.R*o
Recall, the numbers reported in the table for refer to aR*o
median depth z̄ along the rupture zone; it should be higher
near the surface and lower at the base of the rupture zone.

Discussion

The rupture model developed here is a 2D dynamic slip-
pulse model in which slip is limited to a finite zone of length
L behind a crack tip that moves at constant velocity mr. Our
model represents an improvement or at least an enlargement
on previous slip-pulse models (Broberg, 1978; Freund,
1979) in that it includes a more explicit account of slip-
weakening friction and characterization of the off-fault stress
state. We have extended the dynamic rupture model devel-
oped by PDR, which also includes slip-weakening, but which
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Figure 13. Contour plot of s/sp, where s � is the shear stress and sp is the static
strength. Areas of off-fault slip (s/sp � 1) are shaded and line segments indicate the
orientations of planes of maximum shear. The three columns of plots are for three
values of the scaled rupture velocity mr/cs � 0, 0.7, and 0.9. The top row is for sr/sp

� 0.2, the bottom row is for sr/sp � 0.8. The very small value of R/L � 0.001 (scaled
stress drop � 0.013) assumed here reproduces figure 15 in Poliakov et al. (2002),
where L r �.

models a semi-infinite slipping zone (i.e., L/R r �) and dy-
namic stress drop that is very much smaller than the strength
drop ([ � sr]/[sp � sr] r 0). As such, the PDR modeloryx

does not describe the extent of off-fault damage surrounding
a propagating slip pulse over a wide range of parameters
of interest. The discrepancy is particularly large as mr ap-
proaches its limiting velocity where the damage zone pre-
dicted by the PDR model grows very large, whereas that
predicted by the slip-pulse model with finite, non-zero
( � sr)/(sp � sr) approaches a smaller asymptotic value.oryx

Static Stress Drop, Radiated Energy

Our 2D steady-state model, strictly interpreted, cannot
be used to estimate static stress drop on the fault plane or
radiated seismic energy. It predicts zero for both. The static
stress drop vanishes because the stress on the fault plane
grows from sr back to behind the slip pulse (see Fig. 2).oryx

This is a direct consequence of the infinite extent of our fault
plane in the z direction. For energy, there is no change with
time of total strain or kinetic energy, and all the work of

remote stress in an increment of time is dissipated as the
work against fault plane stresses resisting slip (equations
A22 and A23), implying no radiated energy.

However, relative to an unsteady 3D description, our
2D model can be regarded as a local representation of a
narrow slip-pulse region that separates the part of the fault
that has not yet slipped from that which has slipped and is
now relocked, for general, realistic shapes of that latter part.
For example, the slipped and now relocked zone could grow
as a circular region of expanding radius, or as some more
general expanding oval or rectangular shape, just as in stan-
dard kinematic dislocation models of rupture (Aki and Rich-
ards, 1980). Dislocation rise time would then be identified
as slip-pulse duration, that is, as L/mr in our notation, and a
properly non-zero static stress drop and radiated energy
could then be calculated by standard methods. The steady
2D model that we consider would then seem an appropriate
representation if that rise time is short compared with a char-
acteristic time, say L/|L̇|, over which L changes. That con-
dition just requires |L̇| K mr, a condition that may often be
met.
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Figure 14. The same as Figure 13 except that R/L � 0.5 (scaled stress drop �
0.318). This larger value results in less extensive off-fault failure.

Table 1
Earthquake Source Parameters from Heaton (1990)

Event
Mo

(1018 N m)
l

(km)
w

(km)
d

(m)
mr

(km/s)
Ts

(s)
L

(km)

Michoacan 1985 (M 8.1) 1500 150 120 2.8 2.6 5 13
depth range, 10–35 km, est.

Borah Peak 1983 (M 7.3) 23 40 20 0.96 2.9 0.6 1.7
depth range, 0–15 km, est.

San Fernando 1971 (M 6.5) 7 12 14 1.4 2.8 0.8 2.2
depth range, 3–15 km

Imperial Valley 1979 (M 6.5) 5 30 10 0.56 2.6 1.0 2.6
depth range, 0–10 km

Morgan Hill 1984 (M 6.2) 2.1 20 8 0.44 2.8 0.3 0.8
depth range, 0–12 km

North Palm Springs 1986 (M 6.0) 1.8 18 10 0.33 3.0 0.4 1.2
depth range, 1–12 km

Coyote Lake 1979 (M 5.9) 0.35 6 6 0.32 2.8 0.5 1.4
depth range, 3–10 km

Mo, seismic moment; mr, rupture propagation speed; l, w, length, width of
rupture area; Ts, duration of slip; d, slip left in wake of pulse; L, length of slipping
zone, L � mrTs. est., estimated.

Figure 15. Scaled energy release rate as a func-
tion of rupture speed for a range of R/L. The R/L val-
ues of 0, 0.5 and 1 correspond to scaled stress drops
of 0, 0.318, and 0.5, respectively.
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Table 2
Fracture Parameters for the Slip-Pulse Model Calculated Using

the Data from Heaton (1990) Summarized in Table 1

Event
Gmin

(MJ/m2)
( � sr)min

oryx

(MPa)
(d1)min

(mm)
( )minR*o

(m)

Michoacan 1985 (M 8.1) 4.4 1.6 15 3.8
depth range, 10–35 km, est.

Borah Peak 1983 (M 7.3) 1.9 2.0 23 19
depth range, 0–15 km, est.

San Fernando 1971 (M 6.5) 4.6 3.3 49 36
depth range, 3–15 km

Imperial Valley 1979 (M 6.5) 0.88 1.6 17 22
depth range, 0–10 km

Morgan Hill 1984 (M 6.2) 1.3 2.9 20 22
depth range, 0–12 km

North Palm Springs 1986 (M 6.0) 0.10 0.31 1.4 1.3
depth range, 1–12 km

Coyote Lake 1979 (M 5.9) 0.38 1.2 6.0 6.6
depth range, 3–10 km

Assumes l � 30 GPa, q � 2800 kg/m3, cs � 3.3 km/s. When R/L �

0, G � Gmin � G* ld2/(pL), � sr � ( � sr)min � Gmin/d. Wheno or ryx yx

R/L � 1, G � Gmax � 2Gmin, � sr � ( � sr)max � 2( � sr)min.
o o or r ryx yx yx

d1(�G/(sp � sr)) and (�(3p/4)lG/(sp � sr)
2) were calculated for theR*o

case sp � sr � fs (i.e., assuming sp k sr) with fs � 0.6 and �r̄ r̄n n

overburden � hydrostatic pore pressure at middle of depth range; for other
choices of fs, note that d1 � 1/fs and � 1/fs

2. Values shown are for G �R*o
Gmin (R/L � 0) and would double for G � Gmax � 2Gmin (R/L � 1). est.,
estimated.

Fracture Energy Estimates and Comparisons

Our estimates of G are 0.1 to 9 MJ/m2, with an average
of 2–4 MJ/m2, for the large events characterized by Heaton
(1990) from seismic slip inversions. Those estimates fall at
the high end of the very broad range (1 J/m2 to 1 MJ/m2)
inferred by Husseini et al. (1975) in the first study of seismic
estimates of G. We may make the following comparisons
with more recent studies. For the 1984 Morgan Hill rupture,
Beroza and Spudich (1988) used results of their slip inver-
sion to infer an average G � 2 MJ/m2, which is bracketed
by our Gmin to Gmax range of 1.3–2.6 MJ/m2 for that event;
for the 1979 Imperial Valley event, Favreau and Archuleta
(2003) infer an average G of 0.81 MJ/m2, whereas we find
0.88–1.9 MJ/m2. Our results, in general, are compatible with
estimates of G for other large events, not in the Heaton com-
pilation. For example, from seismic inversions, Guatteri et
al. (2001) estimate 1.5 MJ/m2 for the 1995 Kobe earthquake,
consistent also with Ide (2002); Olsen et al. (1997) and
Peyrat et al. (2001) estimate 5 MJ/m2 for the 1992 Landers
earthquake. The results are also generally consistent with
MJ/m2 range estimates of G for large events from analyses
of large earthquake initiation and arrest (Aki, 1979; Li, 1987;
Rudnicki and Wu, 1995).

Further, Abercrombie and Rice (2001, 2005) show that
a quantity they call G� can be evaluated from the seismic
stress drop (inferred from seismic moment and corner fre-
quency or pulse duration) and radiated energy. Their G� co-
incides with G when the final static shear stress on the fault
is not very different from the dynamic friction stress during

the last increments of slip, that is, the case of negligible
dynamic overshoot or undershoot. They present arguments
as to why such effects are modest and suggest that G might
range from about 0.6 G� to an unconstrained, but probably
not large, amount greater than G�. For events with slips be-
tween about 0.2 and 4 m, roughly comparable with slips d
in the Heaton data set used here, they find a range of G� �
0.3 to 20 MJ/m2. Further, they find that G� increases with
slip, at least for slips less than about 0.5 m. (The data is
insufficient to show if there is saturation at larger slips.) We
find a similar trend. For example, including the Gmin to Gmax

range, our G values for the three smallest-slip events in the
table (0.32–0.44 m) are G � 0.1–3 MJ/m2, whereas for the
three largest slip events (of 0.96 to 2.8 m) G � 2–9 MJ/m2.
Abercrombie and Rice (2005) show that a consistent expla-
nation of the scaling of G with event size is provided if the
slip-weakening relation is such that strength continues to
decrease with slip Du, but at an ever decreasing rate of weak-
ening, �ds/d(Du). For example, they propose that their scal-
ing can be described approximately by a slip-weakening re-
lation in the form s � C � 24(Du)0.28, at least for Du above
about 0.5 mm; here, stress is in megapascals, Du in meters,
and C is unconstrained by their analysis. Their associated
expression for G� (in MJ/m2) is G� � 5.25(Du)1.28, where
Du is again in meters.

To compare with that expression for G�, the three largest
slip events of Heaton’s set have an average slip of 1.72 m,
and the three smallest have an average slip of 0.36 m. The
power law expression for G� (for which our 1.72 m extends
beyond their range of well-documented scaling) would pre-
dict that G�1.72 m/G�0.36 m � 7.4. We can find from Table 2
that our average Gmin � 3.6 MJ/m2 for the larger events and
0.59 MJ/m2 for the smaller, which shows a ratio of 6.1 (our
Gmax values have the same ratio). That is reasonably consis-
tent with the scaling of Abercrombie and Rice (2005). The
actual G� predicted by that scaling is somewhat close to our
average Gmax for each event set; that is, an average Gmax of
7.2 and 1.2 MJ/m2 for the respective event sets with average
slips of 1.72 and 0.36 m. In comparison, their expression for
G� gives 10.5 and 1.4 MJ/m2 for the respective slips of 1.72
and 0.36 m. Thus our results, although for a different set of
events, are roughly consistent with the scaling and, if we use
Gmax, with the magnitude of what Abercrombie and Rice
(2005) infer for G�.

Factors in Estimating Fracture Energy

As noted, the fracture energies that we have estimated
using this solution have good consistency with other seismic
results and are consistent with the use of generally plausible
parameters for shear zone thickness in the Lachenbruch
(1980) and Mase and Smith (1987) analyses of thermal
weakening by pressurization of pore water. (Other weak-
ening processes, not seen in the slow, small slips of tradi-
tional laboratory studies, may be active too; Sibson, 1975;
Spray, 1993, 1995; Chambon et al., 2002; Goldsby and Tul-
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lis, 2002.) However, a number of things could go wrong in
making such seismic estimates of G as we do:

1. There are uncertainties in the seismic inversions
themselves. For example, seismic records, in general, are
filtered in inversion studies at periods shorter than on the
order of 1 s, to remove effects of scattering; 1 s is the same
order as the slip durations for most events listed in Table 1.

2. A correspondence of the mechanism leading to the
apparently self-healing slip inferred in natural examples
(Heaton, 1990) to the mechanism introduced in our model
cannot be confirmed. From the perspective of theoretical
models, self-healing is not a direct outcome of rupture mod-
els like we consider with a slip-rate-independent friction
stress (Zheng and Rice, 1998); in general, it must be imposed
in such models by propagating arrest phases or other inter-
actions with heterogeneities (Day, 1982; Johnson, 1990; Per-
rin et al., 1995; Beroza and Mikumo, 1996; Nielsen and
Carlson, 2000; Nielsen and Madariaga, 2003). Self-healing
can also occur when spatially nonuniform slip can alter nor-
mal stress across a fault plane, as for sliding between elas-
tically dissimilar solids (Weertman, 1980; Andrews and
Ben-Zion, 1997; Harris and Day, 1997; Cochard and Rice,
2000) or between certain foam rubbers (Brune et al., 1993).
Such alteration of normal stress is, in principle, a generic
consequence of nonlinear constitutive response off the fault
plane (Cochard and Rice, 2000), although such a route to
self-healing pulses has not yet been demonstrated. Finally,
slip-rate dependence of friction (Cochard and Madariaga,
1994, 1996; Perrin et al., 1995; Beeler and Tullis, 1996;
Nielsen and Carlson, 2000; Nielsen and Madariaga, 2003),
at least if present under sufficiently low driving stress
(Zheng and Rice, 1998), is a robust route to self-healing.
Thus, the array of possible models for self-healing is great
and we do not have sufficiently general solutions, analogous
to that developed here, for those other mechanisms to com-
pare with the observations.

3. The constraint from slip inversions on rupture veloc-
ity mr is actually a constraint on the average velocity. We
cannot rule out the possibility that there are very strong fluc-
tuations in mr at periods shorter than those that can be re-
solved in the inversion. In such cases we may argue that the
net energy flow G to the crack tip is sensibly estimated by
our procedure, but only some of that (say, Gmat) is actually
dissipated in frictional processes near the rupture front and
the rest (call it Grad, so that G � Grad � Gmat) is radiated
out again from the crack tip as high-frequency stress waves.
A simplified analysis of this effect (Rice, 2000) may be car-
ried out in the context of a mode III singular crack (R/L r

0, scaled stress drop r 0). Let m�r be the time-variable in-
stantaneous rupture speed, which averages to mr, and sup-
pose, to make a simple tractable case, that m�r fluctuates rap-
idly between two constant values

v̂ , very near c , for a fraction of the timer s
v� �r �0 for the rest of the time.

This might roughly represent fracturing through a highly
segmented fault system in which the material energy ad-
sorption Gmat is low on individual segments, so that getsv̂r

quite near cs, but rupture arrests at segment ends until stress
waves radiated out from there nucleate new ruptures on
neighboring segments (e.g., Harris and Day, 1993).

During such rapidly fluctuating motion of the crack tip
that there is no energy flow per unit time to the crack tip
when � 0, but there is an energy flow to inelastic pro-v�r
cesses at the crack tip per unit time during the rapid motion
at � , amounting tov� v̂r r

1 � v̂ /cr sG � Gmat rest�1 � v̂ /cr s

per unit fractured area (Eshelby, 1969a,b; Freund, 1990).
Here, Grest is the “rest” value of the energy release rate and
is unaffected by the rapid fluctuations (Rice et al., 1994;
Morrissey and Rice, 1998). The G that we infer based on
the average speed mr must bear the same relation to Grest,
namely,

1 � v /cr sG � G .rest�1 � v /cr s

By taking ratios and eliminating Grest, we thus find that the
fraction of energy flow actually absorbed by inelastic pro-
cesses at the tip is

G 1 � v̂ /c 1 � v /cmat r s r s
� � �G 1 � v̂ /c 1 � v /cr s r s

and the remaining fraction (Grad/G � 1 � Gmat/G) is radi-
ated out in the high-frequency wave field created by the rapid
velocity fluctuations. Thus, although we may with some con-
fidence estimate G, that puts only an upper bound on how
much energy is absorbed by the material near the tip, and in
this simple illustration Gmat may be made an arbitrarily small
fraction of G by making arbitrarily close to cs. For ex-v̂r

ample, if mr � 0.80cs and � 0.99cs, then Gmat � 0.21Gv̂r

and Grad � 0.79G.

Damage Zones and Fault Gouge

Although we used the PDR model primarily to explore
fault branching, we can address the additional goal here of
exploring the mechanics responsible for the formation of
fragmented fault rock. The wall rocks of most faults are
separated by one or more layers of fragmented rock called
gouge or fault breccia. (See Ben-Zion and Sammis [2003]
for a review of fault-zone structure.) Although there is con-
siderable variation in the width of these layers and the extent
of fragmentation within them, most faults with significant
slip tend to have a structure described by Chester and Logan
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(1986, 1987), Chester et al. (1993), Evans and Chester
(1995), Chester and Chester (1998), Schulz and Evans
(2000), Lockner et al. (2000), Wibberley (2002), Wibberley
and Shimamoto (2003), and Otsuki et al. (2003). A “core”
of extremely finely fragmented rock (possibly altered to
clay) is bordered by layers of more coarsely fragmented fault
breccia. The core contains one or more planar surfaces which
appear to have accommodated most of the slip, and which
Chester and Chester (1998) refer to as “prominent fracture
surfaces.” Somewhat surprisingly, the layers of fault breccia
that border the core appear to have accommodated little if
any strain, despite the fact that brecciation often extends to
the micron scale. Low strain is inferred from observations
that relict structures from the host rock do not appear to be
significantly sheared.

Most studies of fault gouge and breccia to date have
focused on the particle-size distribution. Sammis et al.
(1987) found that breccia from the Lopez Canyon Fault (a
branch of the now extinct San Gabriel Fault in southern Cali-
fornia) had a power law distribution of particle sizes consis-
tent with a fractal structure. This was not the expected result,
because existing fragmentation laws predicted either a log-
normal or exponential Rosin-Ramler distribution (see, e.g.,
Prasher, 1987). To explain these observations, Sammis et al.
(1987) proposed a new fragmentation model, which they
dubbed “constrained comminution.” In constrained commi-
nution, particles are not free to move as they are in normal
milling operations. Rather, they are fixed in position relative
to other particles by the dense packing and high pressures
in the subterranean faulting environment. Consequently, the
probability of a particle fracturing is not dominated by its
fragility as in other fragmentation models, but by its loading
geometry from adjacent particles. Particles loaded by same-
sized neighbors have the highest fracture probability. The
process starts eliminating the largest (and hence weakest)
particles until all large same-sized neighbors are eliminated,
leaving isolated large particles cushioned by surrounding
smaller ones. The process then works its way down, elimi-
nating smaller and smaller same-sized neighbors. The result
is a granular mass in which no two neighbors are the same
size at any scale. A fractal distribution having fractal di-
mension D � 1.6 has this property; in fact, this is the fractal
dimension found for the Lopez Canyon breccia. Constrained
comminution has been observed in the double-shear friction
apparatus of J. H. Dieterich at U.S. Geological Survey (Bie-
gel et al., 1989) and simulated in computer studies (Steacy
and Sammis, 1991).

The development of a fractal particle distribution has
been shown to have important mechanical consequences.
Biegel et al. (1989) found that the emergence of a fractal
distribution is closely associated with the observed transition
from velocity-strengthening friction (and stable sliding) to
velocity-weakening friction (and possible stick-slip instabil-
ities). Sammis and Steacy (1994) proposed the explanation
that deformation in nonfractal distributions is accommo-
dated mostly by the failure of particles which, as in triaxial

laboratory experiments, is velocity strengthening. As a frac-
tal distribution is developed it becomes increasingly difficult
to fracture particles and, at the same time, reduced dilatation
signals that it is easier to accommodate deformation by slip
between particles. Because the resistance to slip increases
with the age of the particle contacts, velocity weakening
becomes possible and the macroscopic friction transitions
from velocity strengthening associated with the fracture of
particles to weakening associated with slip between them.

The reduced dilatation associated with the evolving
fractal distribution also leads to shear localization on sur-
faces within the granular mass. From this perspective, the
reason fault breccia has low strain is that it represents only
the initial phase of fault formation. Breccia forms early in a
fault’s history as it grows by linking offset strands (Segall
and Pollard, 1983) and removing geometric asperities
(Power et al., 1988). If these asperities have a fractal size
distribution (i.e., the fault surface has fractal roughness),
Power et al. (1988) show that the scale of the geometrical
mismatch grows with fault displacement in such a way that
the thickness of the resultant gouge and breccia zone in-
creases approximately linearly with displacement, as often
observed (Scholz, 1987; Hull, 1988). However, only a rela-
tively small strain on the order of about 3 is required to
produce a fractal gouge (Biegel et al., 1989), after which
strain localizes onto a prominent slip surface. Once strain
has localized, the gouge layer is a relict structure playing no
significant role in the accommodation of additional strain.

This view of the formation and mechanical significance
of gouge has recently been challenged by Brune (2001), who
proposed that fault breccia is formed by dynamic stress
changes during an earthquake. In particular, he argues that
gouge forms during the dynamic reduction of normal stress
across a fault accompanying the propagation of a “wrinkle
pulse,” or dynamic pore pressure reduction, or any other
opening type motion of the class recently proposed to allow
faulting without the attendant generation of heat—thus solv-
ing the “heat-flow paradox” for the San Andreas fault. As
evidence, Brune cites the apparent lack of significant strain,
observations of “exploded grains” that have obviously failed
in tension, and the orientation of small slip surfaces within
the breccia that are aligned at high angles to the prominent
slip surface. As mentioned previously, the apparent lack of
strain is not unique to dynamic rupture. Nor is the obser-
vation of grains that have failed in tension since such grains
were observed in double-shear friction experiments (Biegel
et al., 1989) where all macroscopic stresses were compres-
sive. Tensile failure in that case resulted from the failure of
individual grains under bipolar loading by same-sized neigh-
bors in the load-bearing ligands (stress chains) that transmit
force in granular media. It should be noted that Brune’s hy-
pothesis is consistent with Sibson’s (1986) observation that
“explosion breccia” tends to form in dilatational fault jogs.
However, this is an expected outcome in quasistatic defor-
mation and does not require a dynamic opening-type mode
of rupture.
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Our results show that the dynamic stress field from a
propagating slip pulse can produce Coulomb slip on preex-
isting fractures which extends out to a scaled distance on the
order of 1–2 in the range of typical seismic rupture ve-R*o
locities, mr � 0.7–0.9cs. Using our model to analyze the slip
pulses observed by Heaton (1990) for seven large events,
we found that is in the range of 1 to 40 m if sp � sr �R*o
0.6 , and can be on the order of kilometers if the strengthr̄n

drop is low, for example, (sp � sr) � 10 MPa. These results
are roughly consistent with observations by Wilson et al.
(1999) that a zone of oriented microfracture damage extends
to distances of about 30 m from the exhumed Punchbowl
Fault in southern California, and that random microfractures
are above the background level to distances of about 100 m.

Coulomb slip on preexisting fractures is a necessary, but
not sufficient, condition for compressive failure and frag-
mentation of crystalline rock. A damage mechanics analysis
(such as Ashby and Sammis, 1990) is required to map the
boundaries of fragmentation. However, under certain con-
ditions, we found that the minimum principal stress r2 be-
comes positive (tensile), which would almost certainly pro-
duce failure and fragmentation. As is evident in Figure 5,
tensile stress is favored by a preexisting maximum com-
pression direction at a high angle w to the fault plane, and
a high value of the rupture velocity mr. The extent to which
the fault zone becomes narrower with depth depends on the
depth dependence of d1/(sp � sr). If (sp � sr) depends on
the effective normal stress through a coefficient of friction,
then the zone width should decrease linearly with depth.
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Appendix: Stresses Near a Propagating Slip Pulse

This appendix is an extension of the appendix in Polia-
kov et al. (2002) (PDR) to the case of a finite sliding zone,
as considered earlier by Broberg (1978) and Freund (1979).
The analysis is done here for the particular slip-weakening
model illustrated in Figure 2. The problem is again to find
an analytic function M(z) of the complex variable z, this time
having a specified stress on the slipping portion of the x axis
�L � x � 0.

For mode II

or � r � Re[M(x)] on �L � x � 0, (A1)yx yx

and, as discussed in the text, we require

Re[M(x)]
os � r , �L � x � �Rr yx

� x o� 1 � (s � s ) � s � r , �R � x � 0p r r yx� �R
(A2)

For mode III, substitute for .o or ryz yx

Additional conditions imposed are that M(z) vanishes as
z r � and is bounded as z r 0 and as z r �L. Note that in
our problem, because ryx and ryz are continuous across the
fault,

� �Re[M (x)] � Re[M (x)] � g(x) (A3)

for �� � x � �, where g(x) is the right side in (A2) for
�L � x � 0 and is ryx(x,0) � for all x.oryx

If we define M̄(f) as , then M̄(z̄) � , and¯M(f) M(z)
2Re[M(z)] � M(z) � M̄(z̄). Hence, 2Re[M�(x)] � M�(x)
� M̄�(x) � 2Re[M�(x)] � M�(x) � M̄�(x) � 2g(x), and
we find by subtraction that [M(x) � M̄(x)]� � [M(x) �
M̄(x)]� for all x. This means that M(z) � M̄(z) is actually
analytic across the cut, and hence is analytic everywhere.
But M(z) r 0 and M̄(z) r 0 as |z| r �. Thus, M(z) � M̄(z)
� 0 for all z, which means that M̄(z) � M(z) and 2Re[M(z)]
� M(z) � M(z̄). Thus, Re[M(x)] � g(x), �L � x � 0, is
equivalent to the condition

� �M (x) � M (x) � 2g(x), �L � x � 0. (A4)

By standard methods (e.g., Muskhelishvili, 1953) we
now seek a function X(z), which is analytic outside the cut
and satisfies X�(x) � X�(x) � 0, �L � x � 0, so that
when we divide (A4) by X�(x) and use X�(x) � �X�(x),
we get

� �M(x) M(x) 2g(x)
� � (A5)� � � � �X(x) X(x) X (x)

on the cut. We note also that M(z)/X(z) is also analytic out-
side the cut if X(z) has no zeros there.

Such a function that satisfies X� (x) � X� (x) � 0 is
X(z) � z�1/2 (z � L)�1/2, where z1/2 � , with z �ih /21r e� 1

and �p � h1 � �p, and (z � L)1/2 � , withih ih /21 2r e r e�1 2

z � L � r2eih2 and �p � h2 � �p.
The motivation for this transformation is that (A5) is in

a suitable form to solve with the Cauchy integral represen-
tation. Letting F(z) � M(z)/X(z) and h(x) � 2g(x)/X�(x),
we have the problem of finding the function F(z), analytic
outside the cut from �L to 0, and constant at � (because it
is easy to show that our M(z) is such that zM(z) remains
bounded as z r �), satisfying F�(x) � F�(x) � h(x), a
given function on �L � x � 0. Referring to Figure A1, the
Cauchy integral representation is

F(t) F(t)
2piF(z) � � dt � � dt

t� z t� zC Cq cut

where Ccut is traversed in clockwise sense and Cq (a large
circle of radius q) in counter-clockwise sense, shrinking Ccut

to the slipping zone along the x axis:

� �0 0F(t) F (t) � F (t) h(t)
� dt � dt � dt .	 	t� z �L t� z �L t� zCcut

Letting q r �

F(t) dt
lim � dt � F(�) � � 2piF(�)

t� z tqr� C CR R
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Figure A1. Integration path in complex plane, for
calculation of stress field solution.

and we have

0

1 h(t)
F(z) � F(�) � dt .	2pi t� z

�L

So the solution to (A5) is

0
�M(z) 1 2g(t)/X (t) A

� dt � ,	X(z) 2pi t� z p
�L

where A is a constant. (In the next section, we show that
the locked-in displacement d across the healed part of the
fault is proportional to A.) Because X�(t) � (1/i �t)�

, we can write:(1/ t � L)�

�1/2 �1/2z (z � L)
M(z) �

p (A6)
0

g(t) �t t � L� �
dt � A .� 	 �t � z

�L

To ensure no singularity at z � 0, we must relate parameters
of the model by

0

t � L
A � g(t) dt , (A7)	 � �t

�L

and for no singularity at z � �L, by

0

�t
A � g(t) dt , (A8)	 �t � L

�L

Using (A2) for g(x) in (A7),

0

t � LoA � �(r � s ) dt � (s � s )xy r p r	� �t
�L

0

t t � L
1 � dt .	 � ��R �t

�R

Substituting t � �(L/2) � (L/2) cos h, dt � �(L/2) sin
hdh and integrating yields (the following has been simplified
by using equation A14 subsequently, a consequence of equa-
tions A7 and A8):

h� � sin h� cos h�
A � R(s � s ) , (A9)p r 48 sin (h�/2)

where h� � 2 sin�1( ). For consistency, the two valuesR/L�
of A in (A7) and (A8) must be the same, giving the condition

0

t � L �t
g(t) � dt	 � �� ��t t � L

�L
0

g(t)
� L dt � 0 (A10)	

�t(t � L)��L

Now, combining (A6) and (A7), and using

�t� 1 z
� � � ,

t� z �t �t (t� z)� �

(A6) becomes

0
1/21 z g(t) t � L

M(z) � � dt .� � 	 �p z � L t � z �t
�L

Similarly, after noting that we can add the integrand of equa-
tion (A10) to this (thus removing the apparent singularity at
the trailing edge of the slip pulse) and using the algebraic
manipulation

t � L� 1 z � L
� � ,

t � z t � L (t � z) t � L� �



132 J. R. Rice, C. G. Sammis, and R. Parsons

we obtain

1 1/2 1/2M(z) � � z (z � L)
p (A11)

0

g(t) dt
,	 (t� z)�t(t�L)��L

which is of the same form as an analogous representation
given by Broberg (1978). Thus, substituting t � �(L/2)
(1 � cos h),

1 1/2 1/2M(z) � � z (z � L)
p (A12)

p

g[t(h)]dh
.	 (L/2)cos h � (z � L/2)

0

where

o�(r � s ), h� � h � pyx r

Log[t(h)] � �(r � s ) � (s � s ) 1 � (1 � cos h) ,yx r p r � �2R�
0 � h � h�

(A13)

where, from (A10), the parameters must be related by

g[t(h)]dh � 0. Since t � �(L/2)(1 � cos h) gives
p

�
0

�R � �(L/2)(1 � cos h�), or R/L � sin2(h�/2), the con-
dition (A10) gives

or � s h� h� � sin h�yx r
� � . (A14)2s � s p 2p sin (h�/2)p r

for mode II. The same equation holds for ( � sr)/(sp �oryz

sr) in mode III. Note that this solution is only valid for 0 �
h� � p, which imposes an upper limit on the scaled stress
drop ( � sr)/(sp � sr) � 1/2. It is possible that healingoryx

occurs before the strength drop is complete and R � L, but
we will not consider that case here.

It is convenient to divide the integral (A12) into two
parts writing M(z) � M0(z) � M1(z), where M0(z) corre-
sponds to the constant part of g(t) in (A13) and M1(z) to the
part of g(t) that depends on cos h.

0
o(r �s ) dtyx r0 1/2 1/2M (z) � z (z�L) 	p �t(t�L)(t� z)��L

0
o �(r � s ) 1 X (t)yx r

� � dt	pi X(x) (t� z)
�L

o(r �s ) 1 X(t)yx r
� � � dt .

2pi X(z) (t� z)Ccut

As earlier for F(z) (see Fig. A1), dt �
X(t)

�
(t� z)Cq

dt � 2piX(z). However, dt � 0,
X(t) X(t)

� lim �
(t� z) qr� (t� z)C Ccut q

and hence dt � 2piX(z). Thus, M0(z) is indepen-
X(t)

�
(t� z)Ccut

dent of z, and M0(z) � �( � sr). Using (A14), we canoryx

rewrite this as

h� h� � sin h�0M (z) � �(s � s ) � . (A15)p r � 2 �p 2p sin (h�/2)

We now turn our attention to M1(z).

h�
1/2 1/2(s �s )z (z�L) [1 � (L/2R)(1�cos h)]p r1M (z) � dh	p (z�L/2) � (L/2)cos h

0

1/2 1/2(s � s )z (z � L)p r
� � (A16)

p
h�

2 z dh h�
1 � �� � � 	 �L R cos h � 1 � 2z/L R

0

We thus have an integral of the form I(c) � ,
h� dh	

0 cos h�c
where c � 1 � 2z/L. Making the change of variables r �
exp(ih),

exp(ih�)

1 dr
I(c) � 	i r[(r � 1/r)/2 � c]

1

exp(ih�)

2 dr
� 	i (r�r )(r�r )1 2

1

ih�1 e � r 1 � r1 2
� ln � ,� ih� �2 1 � r e � r1 2i c �1�

where r1 � c � and r2 � c � are the roots2 2c �1 c �1� �
of (1/2)(r2 � 1) � cr. Thus,

1 z 11M (z) � � (s � s ) 1 � ln(F(z))p r �� �� �p R i (A17)
1/2 1/2z (z�L) h�

� ,�R

where

ih� 1/2 1/2(e �1)L/2 � z � z (z�L)
F(z) � � ih� 1/2 1/2�(e �1)L/2 � z � z (z�L)

1/2 1/2z � z (z�L)
,� 1/2 1/2�z � z (z�L)
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and finally, (A15) and (A17) are combined to give M(z) �
M0(z) � M1(z).

Two consistency checks are satisfied, as follows:

1. As z/L r 0 and R/L r 0 at fixed z/R, this approaches the
solution in PDR.

2. As z/L r � for any fixed R/L, this M(z) r 0.

The Total Locked-in Displacement Produced
by a Slip Pulse

The total locked-in displacement, d � � , pro-� �u ux x

duced by a slip pulse at x � �L can be found using the
expressions for displacements given by PDR which we use
to write:

2z zd s2� (1 � � )�s s su � Re M(z)dz � M(z)dz . (A18)x � 	 	 �ilD ilD

In the limit |z| k L, equation (A6) becomes M(z) � A/pz,
so integration in (A18) gives, where |z| k L:

2A 2� (1 � � )�s s su � Re ln(z ) � ln(z )x d s� �p ilD ilD (A19)
22� A 1 � �s s

� h � h .d s� �lDp 2

That uses ln(z) � ln(r) � ih; the real parts of (A19) involve
just the theta terms. Because both theta change by 2p in
going from the lower to the upper surfaces of the region that
has been slipped and is now locked again, we thus end up
with

� � 2d � u � u � 2A� (1 � � ) /lD , (A20)x x s s

showing the proportionality of A to d. Substituting (A9) for
A then gives

2(s � s )R h� � sin h� cos h� � (1 � � )p r s s
d � .� 4 �l 4 sin (h�/2) D

(A21)

The same applies for mode III, but with the last fraction
replaced by 1/�s.

The Slip-Weakening Zone Length R

The basic energy balance for the slip pulse is

d d
or d � s(Du)d(Du) � [s(Du)yx 	 	

0 0

� s ]d(Du) � s d � G � s d . (A22)r r r

The result follows because is the work done by appliedor dyx

stresses per unit area of advance of the rupture front. That
work goes into changes of strain and kinetic energy, of
which there are none in this steady-state configuration, and

into frictional dissipation, which is s(Du)d(Du) per unit of

d

	
0

new ruptured area. This shows that

od � G/(r � s ) , (A23)yx r

and hence that d is independent of rupture speed in this
model, for given fracture energy and stress drop. The ex-
pression may be rearranged, with use of earlier expressions,
to obtain an expression for R. Let us write it as

or � syx roG � (r � s )d � (s � s )d .yx r p r� �s � sp r

Substituting (A14) for the ratio stress drop/strength drop (the
first term on the right) and (A21) for d gives

2 2h(h�)� (1 � � ) (s � s ) Rs s p rG � , (A24)
D l

where

h� h� � sin h� h� � sin h� cos h�
h(h�) � � . (A25)� 2 � � 4 �p 2p sin (h�/2) 4 sin (h�/2)

Hence, we have for the slip-weakening zone length

D lG
R � . (A26)2 2h(h�)� (1 � � ) (s � s )s s p r

All expressions in this section apply also for mode III when
we replace with and replace the ratio D/[�s(1 � )]o o 2r r �yx yz s

in (A24) and (A26) with �s. Both of those velocity-
dependent terms are called F(mr) in the text of the article.

Slip-Weakening Law Implied by the Assumed
Stress Distribution

Using Equation (A18), we can solve for the slip Du(x)
� (x,0) � (x,0) along the sliding part of the rupture,� �u ux x

�L � x � 0. Because we have assumed a form for the stress
variation there (Fig. 2), a slip-weakening law is implied.
From (A18) we obtain

2 0(1 � � )�s s �Du(x) � Im[M(x � i0 )	lD x
�� M(x � i0 )]dx . (A27)
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Figure A2. The slip-weakening law implied by
our procedures is independent of rupture propagation
speed but has a weak dependence on R/L (or, equiv-
alently, on the scaled dynamic stress drop of Fig. 3).
Comparison here is of the law for R/L � 0 and 1.
The commonly adopted linear slip-weakening law is
also shown.

The same applies for mode III when the factor in front is
replaced by 1/(l�s); in that case, Du(x) � (x,0) ��uz

(x,0). From equations (6) and (7), the structure of the�uz

integrand is of the form:

� �Im[M(x � i0 ) � M(x � i0 )]
� (s � s )m(1 � x/r,R/L),p r

where m(1 � x/R,R/L) (the 1 is added for convenience) is a
dimensionless function of its two arguments. For our as-
sumed stress distribution, when x is in the slip-weakening
zone �R � x � 0, 1 � x/R � T, where T � (s � sr)/(sp

� sr) is just the scaled strength drop. Thus, changing vari-
ables from x to T in (A27), the slip-weakening relation is
described by

2 1(s � s )R(1 � � )�p r s sDu � m(T�,R/L)dT�.	lD T

Equation (A26) now reveals that the factor in front of the
integral is just G/(sp � sr) times a function of h�, hence of
R/L. Absorbing that factor into m, to convert it to a new
dimensionless function m̂(T,R/L), we therefore determine
the slip-weakening law s � s(Du) by

1G
Du � m̂(T�,R/L)dT�,	(s � s ) Tp r (A28)

s(Du) � srwhere T � .
s � sp r

The result is the same for modes II and III, and all depen-
dence on mr disappears from it, but there is a dependence on
one additional variable, namely R/L. The expression is dif-
ficult to evaluate, in general, but to see how significant that
dependence on R/L is, we compare the implied slip-
weakening laws in the limit cases R/L r 0 and R/L � 1.
The result for R/L r 0 confirms the result of Palmer and
Rice (1973) and Rice (1980), and is

9G
Du � (2 � T) 1�T��8(s � s )p r

1 � 1�T�1 2� T ln , (A29)� ��2 1 � 1�T�

whereas for R/L � 1 we find that

G 2
Du � 1 � arcsin(2T � 1)�(s � s ) pp r

4
� (2T � 1) T(1�T) . (A30)� �p

These define the slip-weakening laws s � s(Du) for sp � s
� sr; in the model it is assumed that s(Du) � sr for Du
greater than the value produced by the preceding expressions
as T r 0�. Results of (A29) and (A30) are plotted in Figure
A2. The resulting functions s � s(Du) differ by only a small
amount from one another, despite the significantly different
R/L; in fact, they differ by only a minor amount from the
commonly adopted law that weakens linearly in Du, shown
there too. Thus, we conclude that the slip-pulse solutions
devised by the methods of this article describe response to
the same slip-weakening law, to a very good approximation,
irrespective of crack speed and the level of dynamic stress
drop.
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