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Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Tolga Çiloğlu
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ABSTRACT

TRACKER-AWARE DETECTION:
A THEORETICAL AND AN EXPERIMENTAL STUDY

Aslan, Murat Şamil

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Afşar Saranlı

Co-Supervisor : Prof. Dr. Buyurman Baykal

February 2009, 140 pages

A promising line of research attempts to bridge the gap between detector and

tracker by means of considering jointly optimal parameter settings for both

of these subsystems. Along this fruitful path, this thesis study focuses on

the problem of detection threshold optimization in a tracker-aware manner so

that a feedback from the tracker to the detector is established to maximize

the overall system performance. Special emphasis is given to the optimization

schemes based on two non-simulation performance prediction (NSPP) method-

ologies for the probabilistic data association filter (PDAF), namely, the mod-

ified Riccati equation (MRE) and the hybrid conditional averaging (HYCA)

algorithm.

The possible improvements are presented in two domains: Non-maneuvering

and maneuvering target tracking. In the first domain, a number of algorithmic
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and experimental evaluation gaps are identified and newly proposed methods

are compared with the existing ones in a unified theoretical and experimental

framework. Furthermore, for the MRE based dynamic threshold optimization

problem, a closed-form solution is proposed. This solution brings a theoretical

lower bound on the operating signal-to-noise ratio (SNR) concerning when the

tracking system should be switched to the track before detect (TBD) mode.

As the improvements of the second domain, some of the ideas used in the

first domain are extended to the maneuvering target tracking case. The pri-

mary contribution is made by extending the dynamic optimization schemes

applicable to the PDAF to the interacting multiple model probabilistic data

association filter (IMM-PDAF). Resulting in an online feedback from the filter

to the detector, this extension makes the tracking system robust against track

losses under low SNR values.

Keywords: Tracker-aware detection threshold optimization, modified Riccati

equation, hybrid conditional averaging algorithm, interacting multiple model

probabilistic data association filter (IMM-PDAF), track before detect approach
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ÖZ

İZLEYİCİ-FARKINDA SEZİM:
BİR KURAMSAL VE DENEYSEL ÇALIŞMA

Aslan, Murat Şamil

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Yard. Doç. Dr. Afşar Saranlı

Ortak Tez Yöneticisi : Prof. Dr. Buyurman Baykal

Şubat 2009, 140 sayfa

Umut vaat eden bir araştırma kolu, sezimci ve izleyici arasında, her iki alt sis-

tem için birleşik olarak eniyi parametre ayarlarını gözönüne alarak, bir köprü

kurma çabası içindedir. Bu verimli yolda, bu tez çalışması, izleyici-farkında

olarak, sezimci eşiği eniyileme problemine odaklanmaktadır. Bu şekilde, izleyi-

ciden sezimciye, tüm sistemin performansını artıracak şekilde bir geri besleme

yapılmaktadır. Özel olarak, olasılıksal veri ilişkilendirme süzgeci (PDAF)

için geliştirilmiş iki benzetimsiz başarım tahmini (NSPP) yöntembilimi olan,

değiştirilmiş Riccati denklemi (MRE) ve melez koşullu ortalama alma (HYCA)

algoritması yöntembilimlerine dayanan eniyileme tasarımlarına ağırlık verilmek-

tedir.

Olası geliştirimler iki alanda sunulmaktadır: Manevrasız ve manevralı hedef

izleme. İlk alanda, bir takım algoritmik ve deneysel değerlendirme boşlukları
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belirlenmekte ve birleştirici bir kuramsal ve deneysel çatı altında, yeni önerilen

yöntemler, mevcut olanlarla karşılaştırılmaktadır. Ayrıca, MRE tabanlı di-

namik eşik eniyileme problemi için, kapalı bir çözüm önerilmektedir. Bu çö-

züm, izleme sisteminin ne zaman, sezmeden önce izle (TBD) moduna geçmesi

gerektiğine dair, çalışılan işaret gürültü oranı (SNR) üzerinde kuramsal bir alt

sınır getirmektedir.

İkinci alandaki geliştirmeler olarak, ilk alanda kullanılan bazı fikirler, manevralı

hedef izleme durumu için genişletilmiştir. Birincil katkı, PDAF için uygulana-

bilen dinamik eniyileme yaklaşımlarının, etkileşimli çoklu model olasılıksal veri

ilişkilendirme süzgeci (IMM-PDAF) için genişletilmesi ile yapılmıştır. Süzgeç-

ten sezimciye çevrim içi bir geri beslemeyi sonuç veren bu genişletme, düşük

SNR değerleri altında, izleme sistemini iz kayıplarına karşı gürbüz hale ge-

tirmiştir.

Anahtar Kelimeler: İzleyici-farkında sezim eşiği eniyileme, değiştirilmiş Riccati

denklemi (MRE), melez koşullu ortalama alma (HYCA) algoritması, çoklu

model olasılıksal veri ilişkilendirme süzgeci (IMM-PDAF), sezmeden önce izle

yaklaşımı
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CHAPTER 1

INTRODUCTION

Radar systems are one of the most important remote sensing equipment of

today. They are used everywhere including civilian, military and space appli-

cations and are indispensable for sustaining modern way of life.

Radar systems typically radiate a pulse of electromagnetic energy and capture

and digitize the returning echo for the purpose of determining the location,

velocity and other state information of a “target” of interest. To achieve this

goal, the captured electromagnetic echo is first converted to an electrical signal

and passed through a signal processing stage which includes signal condition-

ing1 [2] and detection. This is usually followed by an information processing2

(i.e., tracking) stage [4], as illustrated in Fig. 1.1.

Following this conventional treatment, through the years, the research about

radar signal and data processing has been conducted along two distinct paths,

namely “detection theory” and “tracking theory” with little interaction be-

tween them. The tracking literature mostly assumed that the detection stage

is a prior and isolated process, providing measurements for the tracking stage.

The detection literature, in a similar way assumed no incoming information

from the downstream tracking algorithms.

1 This includes the processing blocks prior to detection such as analog-to-digital (A/D)
conversion, beamforming, pulse compression, clutter filtering and Doppler processing [2].

2 This stage is also called frequently as data processing, see for example [2], [3].
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A reasonable and challenging question is whether parameter decisions made

for the detector and tracker subsystems are optimal for the combined perfor-

mance of the overall radar system. This question, which is also the focus of

this thesis, has been first addressed by the work of Fortmann et al. [5], where

they introduced a feedback mechanism from the downstream information pro-

cessing (tracking) subsystem to the upstream signal processing (detection)

subsystem. The main contributions of [5] are the so-called modified Riccati

equation (MRE) and its by-product, tracker operating characteristic (TOC)

curves. Fortmann et al. have shown that for a given signal-to-noise ratio

(SNR), one can determine the optimum detector operating point by finding

the tangential intersection point between TOC and the corresponding receiver

operating characteristic (ROC) curve. Furthermore, the introduced MRE pro-

vides a steady-state non-simulation performance prediction (NSPP) for the

probabilistic data association filter (PDAF) in clutter, in a way similar to how

the standard Riccati equation (SRE) does for the Kalman filter in clutter-

free environments. Inspired from this work, Li et al. have introduced a more

sophisticated approach [6], known as hybrid conditional averaging (HYCA) al-

gorithm, which has extended the idea in [5] to the transient performance (e.g.,

track loss) prediction, and applied this technique for optimization of detection

thresholds [7].

Another equally important question is whether these subsystem level param-

eters really have to be statically optimized or should they rather be adaptive

in space and time. One strongly feels that some adaptation is necessary since

the motion of the target changes both the spatial context and the SNR. In-

deed, in [1], Gelfand et al. have formulated and solved threshold optimization

problem dynamically for each time step which led to a temporal adaptation of

the detection threshold. Another approach was presented in [8] by Willett et

al. where they fed the spatial a posteriori information of the tracking filter,

back to a Bayesian detector as an a priori information. This results in a spa-

tially adaptive detection threshold adjustment scheme such that the threshold

3



is decreased near locations where the target is expected and increased near

locations where it is unexpected.

A line of recent articles [9, 10] show the growing interest into the concept

of cognitive radar [11], which aims to make a radar system smarter and more

adaptive by dynamically optimizing the “transmitter” as well. We should note

however that steps towards this goal are not entirely new. In the context of

overall system optimization, the optimization of transmitter waveforms was

first introduced in [12] and applied to the PDAF in [13]. Another recent

study is [14] where the design of waveform and detection threshold for range

and range-rate tracking in clutter is formulated and numerically solved as a

finite horizon optimization problem. The concept of waveform optimization

for tracking is well summarized in [15].

In the present thesis, we consider these exciting theoretical and experimen-

tal steps towards the goal of spatially and temporally adaptive radar. In

particular, we focus on the interaction between the detector and the tracker

subsystems and consider the problem of tracker-aware (TA) optimization of

detector threshold per target track and per resolution cell. We strongly believe

that this is an important subarea of the research consisting of steps that are

necessary for the ultimate goal of cognitive radar. We build on two important

NSPP methodologies for the PDAF, namely, MRE of Fortmann [5] and HYCA

of Li [6]. For each methodology, we consider both static (offline) and dynamic

(online) threshold optimization schemes in a unified theoretical and experi-

mental framework. Fig. 1.2 illustrates the algorithmic space of research for

these optimization schemes with highlights on those introduced in the present

study.
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Figure 1.2: The algorithmic space of tracker-aware detector threshold opti-
mization (TA-DETOP) schemes for the PDAF. The schemes written in bold
are proposed in this thesis. Here, the abbreviations TOC, LUT, LS and CF
correspond to “tracker operating characteristic”, “look-up table”, “line search”
and “closed-form”, respectively.

1.1 Outline of the Thesis

The thesis is organized as follows. In Chapter 2, NSPP methodologies in

general and for the PDAF in particular are given. This chapter constitutes

a preliminary information for the rest of the thesis. In Chapter 3, tracker-

aware detector threshold optimization (TA-DETOP) schemes based on NSPP

methodologies are explained. Both static and dynamic formulations of the

problem are given. Furthermore, a comprehensive comparison of existing and

newly proposed TA-DETOP schemes is made in a unified theoretical and ex-

perimental framework. The simulation results showed that there is a trade-off

between having a low steady-state root mean square (RMS) estimation error

(i.e. good steady-state performance) versus having a low track loss percentage

(TLP) (i.e., good transient performance). Although the dynamic threshold

optimization (DTOP) schemes are found to be well-located on this trade-

off plane, it is noted that they are computationally expensive. To partially

overcome this problem, in Chapter 4, an approximate closed-form solution

is presented for the MRE-based DTOP problem for a special detector type.

The proposed solution, dramatically reduces the computational complexity

and hence increases the feasibility for an online application of the approach.

Furthermore, it is shown that the proposed closed-form solution possess a the-
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oretical lower bound on the operating SNR concerning when the whole system

should be switched to the track before detect (TBD) mode. In Chapter 5, TA-

DETOP problem is extended to the maneuvering target tracking case. One

heuristic and one theoretically rigorous solution are proposed. It is shown

that the rigorous solution is well-integrated into the multiple model filtering

algorithms and improves robustness of the famous interacting multiple model

probabilistic data association filter (IMM-PDAF) against track loss. In Chap-

ter 6, the important results of the thesis are summarized and possible future

studies from the present point are discussed. Finally, the structure of the de-

veloped software — tracking and fusion simulator (TAFSIM) and other related

background materials on the PDAF and the interacting multiple model (IMM)

estimator are given in the appendices.

1.2 Contributions

The primary contributions of the thesis can be summarized as follows:

• A comprehensive comparison of TA-DETOP schemes is made in a unified

experimental and theoretical framework. Within the presented frame-

work, the TOC curves are experimentally obtained for the HYCA ap-

proach leading to the optimization scheme STATIC-HYCA-TOC. This is

an extension to the work presented in [7], where threshold optimization

based on HYCA was made using look-up tables (STATIC-HYCA-LUT

[7]). Moreover, for the dynamic optimization case, a new method, named

as DYNAMIC-HYCA-LS, is proposed by formulating and solving the

problem for the HYCA approach. This is done within the same unified

framework such that results are directly comparable with those of the

MRE approach (DYNAMIC-MRE-LS [1]).

• For the MRE-based dynamic threshold optimization, an alternative closed-

form solution (DYNAMIC-MRE-CF ) is introduced. The proposed solu-
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tion is shown to be computationally much more efficient than the existing

schemes (DYNAMIC-MRE-LS [1]).

• A theoretical lower bound on the operating SNR is found for the track-

ing system, which consists of a Neyman-Pearson detector (NPD) and

a PDAF, concerning when the system should be switched to the track

before detect (TBD) mode.

• TA-DETOP problem is formulated and solved for tracking maneuvering

targets. Two extensions are presented: A heuristic one and a multiple

model filter integrated one. It is shown that the integrated extension

makes IMM-PDAF more robust against track loss.

Overall, we present a comprehensive comparative study of all the newly pro-

posed methods and the existing ones through extensive simulation experi-

ments. To the best of author’s knowledge, such a comparative study has not

been done before in the literature.
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CHAPTER 2

OFFLINE PERFORMANCE EVALUATION

OF TRACKING ALGORITHMS

2.1 Introduction

Involving both continuous and discrete uncertainties,1 real-world tracking is

a hybrid [19] estimation problem. Tracking algorithms which operate under

these uncertainties are necessarily stochastic. As the performance of these

algorithms can not be evaluated confidently with a single run, the common

practice for performance evaluation is to run extensive number of Monte Carlo

simulations and take the ensemble average of a performance measure(s) over

the runs.

Although this methodology is very simple and straightforward, it may be very

time-consuming and costly in some cases. More importantly, if a design, an

optimization2 or a sensitivity analysis of a tracking algorithm is of interest,

Monte Carlo simulations based approach does not give much insight into the

1 Examples of continuous uncertainties are inaccuracy in the measurements and “small”
perturbations in the target motion which are usually modeled as an additive measurement
noise and process noise, respectively. These type of uncertainties are well-understood and
solved in the literature over the past four decades under the title of classical state estimation
[16], [17], [18]. However, major challenges of tracking arise from two discrete-valued uncer-
tainties: Measurement origin uncertainty, which is, in the words of Li and Bar-Shalom [6],
the crux of tracking, and target maneuver which appears as an abrupt and “large” deviation
in the target motion.

2 In this thesis, we consider this aspect, i.e., tracker-aware optimization of detection
thresholds where we extensively use offline performance evaluation tools. This is actually
why we reserve a separate chapter for this topic here.
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problem. In such a case, analytic expressions and deterministic tools are much

more useful. Therefore, the techniques for performance evaluation that do not

require stochastic simulations are needed.

The title “offline performance evaluation of a tracking algorithm” is related to

this need, and defined as to evaluate the performance of a tracking filter with-

out recourse to extensive and expensive Monte Carlo simulations. There are

numerous works done in this context in the literature. However, the available

tools for offline evaluation of the performance can be roughly classified into

three categories [20]:

• Error Bounding Techniques: These techniques are the most popu-

lar offline performance evaluation tools. They provide Cramér-Rao like

bounds on the performance. There are lots of works done under different

titles (possibly having much in common), such as nonlinear filtering [21],

[22], [23], [24], filtering with intermittent observations [25], [26], [24], [27],

[28], [29], tracking in clutter [30], [31], [32], bearing-only tracking [30],

[33], [34], multitarget tracking [35], [36], [37], [38] and maneuvering target

tracking [34], [39]. Rather than predicting the filter performance, these

techniques put some best-achievable borders for the problem at hand.

The tightness of such bounds is usually not known and questionable.

In this aspect, they can provide at most semi-quantitative measures for

offline performance evaluation of a tracking filter.

• Analytic Model Approach: The second class of tools is referred to as

analytic model approach [20]. In this methodology, the aim is to establish

some (possibly approximate) analytic relationships between the perfor-

mance measure and some “key” parameters of the algorithm (see, e.g.

[40], [41], [42]). Although these techniques provide analytically useful

expressions, they are obtained along several assumptions and approxi-

mations due to complexity of the big picture. Therefore, their accuracies

are still not good as the performance prediction approach.
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• Performance Prediction Approach: This is an algorithmic approach.

It aims to obtain an offline (or a deterministic) algorithm for calcula-

tion of one of the performance measures of the tracking filter, usually

the estimation error covariance matrix. Developing such a deterministic

algorithm for the covariance propagation is in general a hard task. How-

ever, this methodology is proven to produce much more accurate results

as compared to the previous two techniques mentioned above (see, for

example, [5], [6] and [43]).

In this chapter (and also in the entire thesis), our focus will be on the per-

formance prediction category. From now on, we refer to this category as non-

simulation performance prediction (NSPP) methodologies.

2.2 An Overview of Non-Simulation Perfor-

mance Prediction (NSPP) Methodologies

Non-simulation performance prediction (NSPP) methodologies are currently

the most effective and reliable offline performance evaluation tools among their

alternatives. Similar to error bounding or analytic modeling techniques, NSPP

approach also aims to evaluate the performance of a tracking filter without re-

course to expensive Monte Carlo simulations. However, different from these

two techniques, NSPP approach relies on obtaining a well-developed deter-

ministic algorithm for the performance measure of interest. Naturally, this

measure is often taken as (some function of) the estimation error covariance

of the tracking filter under concern. Therefore, the key point is to obtain a

deterministic relationship3 for the estimation error covariance, which then can

be used to quantify the filter’s performance in an offline manner.

3 This is either in the form of a recursive algorithm or, if possible, in the form of a
non-recursive expression.
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In the simplest case, when there is no clutter and no variation in target dy-

namics (i.e., no “target maneuver” in tracking terminology), the Kalman filter

[44] has already a deterministic covariance recursion in the form of a (matrix)

Riccati equation [16]. However, for the more complex situations in which there

is clutter or the target dynamics is time-varying, the error covariance calcu-

lation of the filter under concern is no longer deterministic. This is due to

the presence of discrete type uncertainties introduced into the problem4 which

makes the covariance calculation dependent on the measurements received,

hence stochastic.

To be able to make a NSPP for the filters in these situations, there are two main

methodologies proposed so far. The first methodology, which also pioneered

NSPP topic, is the work of Fortmann et al. [5] where both type of uncertain-

ties (discrete and continuous) in the problem are globally averaged out. In

this pioneering work [5], they applied this methodology for the probabilistic

data association filter (PDAF) [45] and obtained a Riccati-like recursion for

the deterministic calculation of its covariance. This recursion was named as

the modified Riccati equation (MRE) [5]. The MRE approach is further ex-

tended to multi-sensor case (Multisensor PDAF – MSPDAF) by Frei [46], and

recently studied in the context of NSPP for Kalman filtering with intermittent

observations [29], [25], [26].

Inspired by the work of Fortmann et al., the second methodology was proposed

by Li et al. in [6] where only the continuous type of uncertainties are averaged,

while the discrete type of uncertainties are retained in the propagation of the

covariance. Similar to Fortmann et al, in the proposal paper of their algorithm

[6], they first derive it for the PDAF and name it as the hybrid conditional

averaging (HYCA) algorithm. However, they also note and show that rather

than being applicable only for the PDAF, HYCA is actually a methodology

that can be applied for NSPP of various hybrid filters, such as, the interacting

4 Together with the continuous type of uncertainties, the overall problem is said to be
hybrid [6] in nature.
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multiple model (IMM) filter [43], MSPDAF [46], the nearest neighbor filter

(NNF) [47] and the strongest neighbor filter (SNF) [48].

2.3 Application Areas of NSPP Techniques

and Thesis Focus

NSPP techniques have found several important application areas in the litera-

ture such as detector threshold optimization [5], [7], [1], waveform optimization

[12], [13], [49], [14], [50], multisensor tracking (as a sensor selection criteria)

[51], [52], [53], multitarget tracking (for the occlusion problem) [54], and multi-

function radar resource allocation [55]. Although our research interest extends

beyond, in this thesis, we focus on the area of detector threshold optimization.

There are two common properties of the optimization problems that we con-

sider in this thesis: First, they all aim to maximize the performance of a

tracking filter over detection thresholds.5 Second, the cost (or objective) func-

tions of the optimization problems are all based on an offline approximation

of the filter’s covariance, which is produced by an NSPP methodology.

We investigate the optimization problems in two domains:

• In the first domain, the problem is investigated for the simplest possible

case: Single-sensor tracking of non-maneuvering, non-crossing6 targets

in clutter. One of the most cost effective and popularly used filters in

this domain is the PDAF (see, e.g. [4], [3]). Therefore, in this domain,

we consider the detector-PDAF pair as the tracking system whose per-

formance is to be maximized.

5 This in essence results in a feedback from the tracking filter to the detector. This is
why we call these optimization schemes as tracker-aware [56], [57], [58], [59].

6 The term non-crossing targets is used for the targets whose tracking gates have no
common validated measurements.
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• In the second domain, we relax the “no maneuver” assumption of the

first domain and consider maneuvering (but still non-crossing) targets

in clutter. In this domain, we investigate the multiple model filtering

approach which is the state of the art choice for tracking maneuvering

targets. To be able to use the knowledge gained by the NSPP of the

PDAF considered in the first domain, we use PDAFs as modules [4] (or

elemental filters [19]) in the multiple model filtering structures in general

and the IMM filter structure in particular like in [60].

In any case, in this thesis, we extensively use the NSPP techniques for the

PDAF (in either considering a single PDAF, like in the first domain or consid-

ering a bank of PDAFs in a multiple model filtering structure such as IMM, in

the second domain). Therefore, in the rest of this chapter, our emphasis will

be on the NSPP techniques for the PDAF.

The chapter is organized as follows. First, in Section 2.4, we give a brief

theoretical background about standard Riccati equation (SRE) which is the

baseline NSPP tool for the Kalman filter in classical state estimation problems.

Then, we explain two NSPP approaches for the PDAF in detail, namely, the

modified Riccati equation (MRE) [5] and the hybrid conditional averaging

(HYCA) algorithm [6], in Section 2.5.1 and 2.5.2, respectively.

2.4 The Baseline NSPP Tool for the Kalman

Filter: The Riccati Equation

Consider a discrete-time linear time-invariant (LTI) dynamic system, described

by the plant and measurement equations

x(k + 1) = Fx(k) + Gv(k), k = 0, 1, . . . , (2.1)

z(k) = Hx(k) + w(k), k = 1, 2, . . . , (2.2)
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where x(k) and z(k) are the state and measurement vectors whose dimensions

are nx and nz, respectively. The sequences {v(k)} and {w(k)}, known as pro-

cess and measurement noises, respectively, are assumed to be white, stationary7

and distributed as

v(k) ∼ N (0, Q), (2.3)

w(k) ∼ N (0, R) (2.4)

for all k where the notation x ∼ N (x̄, Σ) means that “the random variable x is

normally (Gaussian) distributed with mean x̄ and covariance Σ.” The initial

state x(0), which is generally unknown, is modeled as

x(0) ∼ N (x̂(0|0), P (0|0)) (2.5)

where the mean x̂(0|0) and the covariance P (0|0) are assumed to be known.

Furthermore, two noise sequences {v(k)} and {w(k)} and the initial state x(0)

are assumed to be mutually independent for all k.

Under these assumptions, at each time step k, the optimal minimum mean

square error (MMSE) estimate of the state x(k), which is given by [16]:

x̂MMSE(k|k) = E
[
x(k)

∣∣Zk
]

(2.6)

with

Zk ,
{

z(1), z(2), . . . , z(k)
}

, (2.7)

can be recursively obtained by the Kalman filter. The Kalman filter provides

not only the optimum estimate x̂(k|k), but also the corresponding estimation

error covariance, defined by

P (k|k) , E
[(

x(k)− x̂(k|k)
)(

x(k)− x̂(k|k)
)T

∣∣∣Zk
]

(2.8)

which reflects how good its estimate is. In standard Kalman filter, this covari-

ance can be recursively calculated from the covariance prediction and update

7 Non-stationary case can be treated similarly. In that case covariance matrices of the
noise sequences will be time-varying.
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equations of the form

P (k|k − 1) = FP (k − 1|k − 1)F T + GQGT , (2.9)

P (k|k) = P (k|k − 1)−W (k)S(k)W T (k) (2.10)

where P (k|k−1) is the state prediction covariance, and W (k) and S(k), known

as the Kalman gain and innovation covariance, respectively, are given by

W (k) = P (k|k − 1)HT S−1(k), (2.11)

S(k) = HP (k|k − 1)HT + R. (2.12)

Substituting (2.11) and (2.12) into (2.10) and the result into (2.9), the following

deterministic recursion for the state prediction covariance is obtained:

P (k + 1|k) = F

[
P (k|k − 1)− P (k|k − 1)HT

(
HP (k|k − 1)HT + R

)−1

×HP (k|k − 1)

]
F T + GQGT (2.13)

with P (1|0) , FP (0|0)F T + GQGT . This is the discrete-time (difference)

matrix Riccati equation [18]. Note that, to be able to propagate this recursion

in time, one needs only F , G, H, Q, R and P (0|0) which are all assumed to

be known and independent of the measurement received, therefore it can be

performed offline.8 The solution converges to a finite steady-state covariance,

P , limk→∞ P (k + 1|k), if,

• The pair {F, H} is completely observable, and

• The pair {F, C}, where GQGT , CCT , is completely controllable.

The steady-state covariance P is a unique positive definite symmetric matrix

independent of the initial covariance P (0|0) and is the solution of the following

algebraic matrix Riccati equation:

P = F
[
P − PHT

(
HPHT + R

)−1

HP
]
F T + GQGT (2.14)

8 That is, “without recourse to Monte Carlo simulations.”
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A non-recursive solution of (2.14) is given in [61] as

P = L21L
−1
11 (2.15)

where Lij’s are the nx × nx partitions of

L =


 L11 L12

L21 L22


 (2.16)

which is the eigenvector matrix for the Hamiltonian of the system:

H =


 F−T F−T (HT R−1H)

GQGT F−T F + GQGT F−T (HT R−1H)


 . (2.17)

The columns of L are the eigenvectors of H and they should be ordered such

that, the first nx columns are the ones that correspond to unstable (outside

the unit circle) eigenvalues of H.

2.5 NSPP Techniques for the PDAF

2.5.1 The Modified Riccati Equation (MRE)

Thanks to its deterministic nature, the standard Riccati recursion can be per-

formed offline. This property allows us to make NSPP for the Kalman filter

in clutter-free environments.

The situation is more complicated for the case of cluttered environments. In

a cluttered environment, in addition to continuous-valued uncertainties, such

as measurement noise and process noise, there exists a discrete-valued uncer-

tainty, called the measurement origin uncertainty [4].9 Numerous efforts have

9 This is the crux of a tracking problem [6] and posses the greatest challenge for tracking
community [19]. As its name suggests, this problem is related to the uncertainty in the origin
of the received measurements as whether they are originated from the target of interest,
interfering targets, countermeasures, or due to false alarms is not known with certainty.
Note that this uncertainty is clearly discrete in nature. The tracking algorithms tackling
such discrete uncertainties as well as continuous ones (i.e., process and measurement noises)
are referred to as hybrid algorithms [6].
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been made to deal with this problem over the past three decades. One of

the most well-known and accepted algorithm is the probabilistic data associ-

ation filter (PDAF) proposed in [45]. Unlike the conventional Kalman filter,

the estimation error covariance of the PDAF is measurement-dependent. This

stochastic nature of the covariance recursion comes from its update stage given

by [4]:

P (k|k) = P (k|k − 1)− (1− β0(k)) W (k)S(k)W T (k) + P̃ (k) (2.18)

where the measurement-dependent10 terms are P̃ (k) and β0(k). To be able

to obtain a deterministic recursion, a solution was first proposed in [5] by

replacing P̃ (k) and β0(k) with their conditional expectations,

P̄ (k) , E[P̃ (k)|Zk−1], (2.19)

β̄0(k) , E[β0(k)|Zk−1], (2.20)

over both the locations and the number of measurements,11 where

Zk ,
{

Z(1), Z(2), . . . , Z(k)
}

(2.21)

is the cumulative set of validated measurements12 through time step k and

Z(k) ,
{

z1(k), z2(k), . . . , zmk
(k)

}
(2.22)

is the set of validated measurements at time step k. Note that the notation

given in (2.21) has a different meaning than its clutter-free counterpart of (2.7).

The new covariance update equation, after some approximations, becomes (see

[5] for the details)

P̄ (k|k) , E[P (k|k)|Zk−1]

≈ P (k|k − 1)− q2(k)W (k)S(k)W T (k) (2.23)

10 The measurement dependency of these terms is due to their dependency on the mea-
surement innovations. Further details can be found in Appendix B.

11 In HYCA [6] approach, averaging (i.e., expectations) is performed over only measure-
ment locations – the continuous part of the uncertainty, while retaining the dependency on
the number of validated measurements – the discrete part of the uncertainty.

12 The measurement z(k) is said to be a validated measurement, if it is inside a validation
gate defined by VG(k, γG) ,

[
z(k) :

(
z(k) − ẑ(k|k − 1)

)T
S−1(k)

(
z(k) − ẑ(k|k − 1)

) ≤ γG

]

where γG is the gate threshold and ẑ(k|k−1) , HFx̂(k−1|k−1) is the predicted measurement
at time step k [4].
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where P̄ (k|k) is a deterministic approximation of P (k|k) in which the stochas-

tic terms are averaged out according to (2.19) and (2.20), and q2(k) is a time-

varying scalar taking the values between 0 and 1. Furthermore, if we replace

the covariance prediction by

P̄ (k|k − 1) = FP̄ (k − 1|k − 1)F T + GQGT , (2.24)

then similar to the standard Riccati equation, we obtain an offline recursion

of the form

P̄ (k + 1|k) = F

[
P̄ (k|k − 1)− q2(k)P̄ (k|k − 1)HT

(
HP̄ (k|k − 1)HT + R

)−1

×HP̄ (k|k − 1)

]
F T + GQGT (2.25)

with P̄ (1|0) , FP (0|0)F T + GQGT . This is the modified Riccati equation

(MRE) [5]. The only modification from the standard Riccati is the scalar

factor q2(k) which is a function of probability of detection (PD), the spatial

clutter density (λ) and offline-calculated gate volume (V̄ (k)). This scalar is

called information reduction factor [4] and its functional form is given as [5]

q2

(
λV̄ (k), PD

)
, PD

cnz

(2π)nz/2

∞∑
mk=1

e−λV̄ (k)
(
λV̄ (k)

)mk−1

(mk − 1)!

(
nz

gnz

)mk−1

× I2(λV̄ (k), PD,mk) (2.26)

with

I2(λV̄ (k), PD,mk) ,
∫ g

0

· · ·
∫ g

0

exp(−r2
1)r

2
1

b
(
λV̄ (k), PD

)
+

∑mk

j=1 exp(−r2
j/2)

× (
r1r2 . . . rmk

)nz−1
dr1dr2 . . . drmk

(2.27)

b
(
λV̄ (k), PD

)
, (2π)nz/2 λV̄ (k)

cnzg
nz

(1− PDPG)

PD

(2.28)

where cnz , πnz/2/Γ(nz/2+1), with Γ(·) being gamma function, is the volume

of the nz-dimensional unit hypersphere (c1 = 2, c2 = π, c3 = 4π/3, etc.), and

g , √
γG is referred to as “number of sigmas” (standard deviations) of the gate

and linked to the gate probability13 via chi-square tables. The offline-calculated

13 The gate probability (PG) is defined as the probability that the target-originated mea-
surement falls inside the validation gate given that the target is detected
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volume of the validation gate is given by

V̄ (k) , cnzg
nz |S̄(k)|1/2 (2.29)

where S̄(k) , HP̄ (k|k − 1)HT + R is the offline-calculated innovation covari-

ance. The relationship between λ and probability of false alarm (PFA) is given

by

λ , PFA

VC

(2.30)

where VC is the resolution (or detection) cell volume.

2.5.1.1 Evaluation of Information Reduction Factor

It is claimed in [5] that the information reduction factor expression given in

(2.26) has no closed-form solution, therefore it should be evaluated numeri-

cally. A positive fact is that q2(λV̄ (k), PD) can be evaluated offline, tabulated

in the form of a look-up table (LUT) and then used when necessary, as it is

independent of the measurement received. However this is not a computation-

ally cheap operation either. It involves mk-fold integration (mk = 1, 2, . . .).

One of the computationally efficient way of taking such integrals is the Monte

Carlo integration method. Based on 1× 106 Monte Carlo integration, the plot

of q2(λV̄ (k), PD) obtained for various values of PD is shown in Fig. 2.1.

The infinite summation in (2.26) is truncated at mk = 15 similar to [5] and

[62]. Note that information reduction factor decreases as the average number

of false alarms in the gate (λV̄ ) increases and it increases when PD increases.

Furthermore, for PD = 1 and λV̄ = 0 (corresponding to the ideal case – no

clutter and perfect detection14), q2 becomes unity (its maximum value), and

for λV̄ → ∞ (corresponding to maximal clutter case), q2 becomes zero (its

minimum value) independent of PD. For the former case, covariance update

equations (2.10) and (2.23) become identical as expected, and for the latter

case, the covariance is not updated, that is, there is no information extracted

14 In that case the gate probability (PG) is also assumed to be 1.
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Figure 2.1: Dependence of information reduction factor on average number of
false alarms for various detection probabilities. The plot is obtained for two
dimensional measurement vector, i.e., nz = 2, and g = 4 sigma gate.

from the measurements. These limiting cases illustrate that q2 can be viewed

as an indicator of the amount of information extracted from the measurements

but with an inverse relationship, hence the name information reduction factor.

2.5.1.2 Stability of the MRE

The standard Riccati equation (2.13) is well-known to be stable, i.e., it will

always converge to a steady-state covariance, provided appropriate control-

lability and observability conditions hold. Furthermore, the solution can be

given in a non-recursive form (see (2.15)). This is not the case for the mod-

ified Riccati equation. Indeed, the stability analysis of the modified Riccati

equation is still a subject of ongoing research. In its most challenging form

of (2.25), this analysis seems to be difficult, because the recursion includes

the scalar factor q2(k) which implicitly depends on the solution itself. This

20



difficulty is clearly stated in [5]. However, only a graphical demonstration is

presented, that being for one dimensional state space case. An analysis is still

lacking.

More recently, certain theoretical frameworks have been constructed for the

simpler version of this equation which arises when there is no clutter (PFA = 0)

but the measurement is intermittent [29], i.e., it is available with a less than

unity probability of detection (PD < 1). This tractable problem has been

attacked in a number of studies [29], [25], [26]. In this case, the modified

Riccati equation simplifies to

P̄ (k + 1|k) = F

[
P̄ (k|k − 1)− PDP̄ (k|k − 1)HT

(
HP̄ (k|k − 1)HT + R

)−1

×HP̄ (k|k − 1)

]
F T + GQGT (2.31)

where the modification is done with the time-invariant scalar PD which is inde-

pendent of P̄ (k|k− 1). This tractable version of the modified Riccati equation

resembles the standard one more as compared to (2.25). However, it is still not

in the Riccati form, and indeed it was noted that it can not be transformed by

smart manipulations into an equation that is of the Riccati form [26]. There-

fore, the aforementioned controllability and observability conditions can still

not be applied directly for this case, but in [26], some “Riccati-like” properties

are reported. In [29], several theorems are proposed for statistical convergence

properties of (2.31) showing the existence of a critical value for the arrival rate

of the observations, beyond which a transition to an unbounded state error

covariance occurs.

2.5.1.3 Offline Recursion of the MRE

Although the stability analysis is not completed theoretically yet, the recursion

of the equation (2.25) can still be performed and convergence or divergence

phenomena can be observed numerically. The modified Riccati recursion can

be performed offline given that P (0|0), PFA, PD, F , G, Q, H, R, and VC are
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Figure 2.2: The algorithmic flow of obtaining the tracker operating character-
istic (TOC) curves from the offline modified Riccati recursion.

known. This is illustrated in Fig. 2.2.

Although algebraically equivalent to (2.25), due to better numerical properties

noted [18], the recursion is performed in the following manner:

• Covariance Update:

S̄(k) = HP̄ (k|k − 1)HT + R, (2.32)

W̄ (k) = P̄ (k|k − 1)HT S̄−1(k), (2.33)

V̄ (k) = cnzg
nz |S̄(k)|1/2, (2.34)

q2(k) = QLUT
2 (λV̄ (k), PD), (2.35)

Σ(k) =
[
I − W̄ (k)H

]
P̄ (k|k − 1)

[
I − W̄ (k)H

]T

+ W̄ (k)RW̄ T (k), (2.36)

P̄ (k|k) , P̄MRE(k|k)

=
[
1− q2(k)

]
P̄ (k|k − 1)− q2(k)Σ(k), (2.37)

• Covariance Prediction:

P̄ (k + 1|k) = FP̄ (k|k)F T + GQGT . (2.38)

The MRE recursion is initialized with P̄ (1|0) , FP (0|0)F T + GQGT . The

terms S̄(k), W̄ (k), P̄ (k|k − 1), P̄ (k|k) and P̄ (k + 1|k) are the offline versions

of the terms S(k), W (k), P (k|k − 1), P (k|k) and P (k + 1|k), respectively. At
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each time step k, the value of the information reduction factor q2(k) is obtained

from a two dimensional (2D) LUT, QLUT
2 (·, ·) via interpolation.

2.5.1.4 Tracker Operating Characteristic (TOC) Curves

The modified Riccati recursion, if it converges, gives a steady-state covariance,

P̄MRE(PFA, PD) , lim
k→∞

P̄ (k + 1|k) (2.39)

where the notation P̄MRE(PFA, PD) denotes the steady-state covariance ma-

trix obtained for a specific (PFA, PD) pair. One can deduce several scalar

performance measures from P̄MRE(PFA, PD) such as tr{P̄MRE(PFA, PD)} and

|P̄MRE(PFA, PD)|. Tracker operating characteristic (TOC) curves are defined

as the contours on PFA − PD plane corresponding to constant values of these

metrics. An example plot is given in Fig. 2.3a for the case of steady-state

RMS position error metric, defined by

σ̄ss
POS(PFA, PD) ,

√ ∑
i∈SPOS

p̄ii
MRE(PFA, PD) (2.40)

where SPOS is the set of state vector indices corresponding to position compo-

nents and p̄ii
MRE(PFA, PD) is the ith diagonal element of P̄MRE(PFA, PD). For

example, for SPOS = {1, 3}, i.e., the first and the third elements of the state

vector are the position components, we have

σ̄ss
POS(PFA, PD) ,

√
p̄11

MRE(PFA, PD) + p̄33
MRE(PFA, PD) (2.41)

Note that in Fig. 2.3a, there exists an instability region, corresponding to

low probability of detection and high probability of false alarm (i.e., lower

right corner) on PFA − PD plane. This indicates that in those values of PFA

and PD, the modified Riccati recursion does not converge to a steady state

covariance. This region can be viewed as the set of detector operating points

causing divergence or track loss for the PDAF.
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Figure 2.3: Illustration of (a): TOC curves obtained as steady-state RMS
position error contours, (b): ROC curves for a CA-CFAR detector

2.5.1.5 Superimposing TOC and ROC Curves

The domain of TOC and ROC curves are the same, i.e., PFA − PD plane. So

they can be superimposed in one plot. This is illustrated in Fig. 2.4.

In this figure, the ROC curves belong to a cell-averaging constant false alarm

rate (CA-CFAR) detector with a reference cell length of NR = 16. Their

analytic expression is given by

PD =

(
1 +

P
−1/NR

FA − 1

1 + ζ

)−NR

(2.42)

where ζ denotes the SNR.

Remark 2.1 The ROC curve relation given in (2.42) is valid under the as-

sumption of homogeneous and Gaussian background detector noise, a Swerling-

I target fluctuation and square-law detection scheme. In radar detection the-

ory, these assumptions are made frequently when obtaining the ROC curves

for a specific detector [63]. Therefore, from now on, we refer to this joint

assumption shortly as HOGSQL
I .

Fig. 2.4 tells us graphically how tracking performance depends on the operat-

ing point of the detector (i.e., on the detection threshold). For a given SNR,

the optimum detector operating point which gives the minimum steady-state
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Figure 2.4: The superimposition of TOC and ROC curves.

RMS position error is clearly the tangential point of corresponding TOC and

ROC curves.

2.5.2 The Hybrid Conditional Averaging (HYCA) Al-

gorithm

The HYCA algorithm, introduced in [6], extends NSPP capability of MRE [5],

which is limited to the steady-state, to the transient. By this feature, HYCA

algorithm can quantify some transient phenomena as well, such as, track loss

and track lifetime [6], which are not handled by the MRE approach. The

fundamental difference of HYCA from MRE is that, in obtaining determinis-

tic approximations for the stochastic quantities, averaging is performed over

only the continuous part of the uncertainty, while retaining dependency on

the discrete part. This is achieved by taking the conditional expectations con-

ditioned on each possible value of the discrete uncertainties and propagating

(not combining) each expectation as a separate hypothesis with its correspond-
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ing likelihood. By this way, the information conveyed by each realization of

the discrete uncertainties is retained. This methodology was first applied for

NSPP of the PDAF [6]. In this case, the conditional expected values of the

state prediction covariances, P (k + 1|k); conditioned on each possible value of

the number of validated measurements, mk = 0, 1, . . . , N ; are computed. That

is, we have

P̄ (k + 1|k, mk) , E
[
P (k + 1|k)

∣∣∣Zk,mk

]
, (2.43)

where the expectation is taken over only measurement locations, z(k) (a con-

tinuous random variable). Here mk is a discrete random variable and N is a

parameter of the algorithm which limits the number of possible hypothesis.

2.5.2.1 Analogy with the IMM Filtering

In HYCA algorithm, the conditional expectations P̄ (k + 1|k,mk) for mk =

0, 1, . . . , N are recursively propagated together with the marginal probabili-

ties15 Pr
{
mk

}
, mk = 0, 1, . . . , N , so that, at any time step k, they can be

combined into one covariance16 P̄HY CA(k + 1|k) for output purposes. In this

respect, we argue that the structure and the motivating idea of HYCA algo-

rithm closely resemble those of the so-called interacting multiple model (IMM)

filtering [64]. For example, in IMM filtering, there are multiple interacting

channels in each of which a conditional state estimation, conditioned on one

possible value of the modal state (discrete uncertainty), is carried out. Simi-

larly, in HYCA algorithm, there are multiple interacting channels in each of

which a conditional deterministic covariance approximation, conditioned on

one possible value of the number of validated measurements is performed. At

any time step k, in IMM filtering, the output (the state estimate) can be

obtained by combining all channel estimates with the model likelihoods prop-

agated by the algorithm. In a similar way, in HYCA approach, at any time

15 These are defined as the probabilities of having mk = 0, 1, . . . , N validated measure-
ments at time step k, respectively.

16 As shown in Fig. 2.5, depending on the need, the output can be P̄HY CA(k|k) as well.

26



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Covariance Update 

 

Covariance Lumping 

 

Output 
Covariance 
Calculation 

Covariance 
Prediction 

Covariance 
Update 

Covariance 
Prediction 

( )1| , ,k kP k k m m−  

1z−  

( )| 1P k k −

 

( )2 ,LUT
DQ V Pλ

 2D LUT 

( )|HYCAP k k  

output 
covariance 

1z−  1z−  

{ }1Pr |k km m −

 

( )2 , ,LUT
DU V P mλ  

3D LUT 

{ }1Pr km −  

( )| , kP k k m  

( )1| 1, kP k k m −−  

{ }Pr km  

( )1| , kP k k m+  

predicted 
covariances 

output 
covariance 

( )|MREP k k  

( )|P k k  

( )1|P k k+  

HYCA recursion MRE recursion 

information 
reduction factor 

information 
reduction factor 

delay 
element 

( )1 1N + ×  

( ) ( )1 1N N+ × +  

( )1 1N + ×  ( )1 1N + ×  ( )1 1N + ×  

( )1 1N + ×  ( ) ( )1 1N N+ × +  

Figure 2.5: Block diagrams of two offline covariance recursion algorithms for
the PDAF: HYCA (left) and MRE (right). The corresponding output of each
algorithm, denoted by P̄HY CA(k|k) and P̄MRE(k|k), is a deterministic approx-
imation to the filter calculated covariance, P (k|k) of the PDAF.

step k, the output (the deterministic covariance approximation) can be ob-

tained by combining all channel covariance approximations with the marginal

probabilities propagated by the algorithm.

2.5.2.2 Offline Recursion of the HYCA Algorithm

The block diagram of HYCA algorithm is given in Fig. 2.5 in comparison with

the MRE algorithm. Note that there are two delay elements corresponding to

two main recursions in the algorithm:

• The recursion of the prediction covariances
{
P̄ (k|k − 1,mk−1)

}N

mk−1=0
,

• The recursion of the marginal probabilities
{
Pr{mk−1}

}N

mk−1=0
.

Therefore, given
{
P̄ (k|k − 1,mk−1)

}N

mk−1=0
and

{
Pr{mk−1}

}N

mk−1=0
at time

step k − 1, one step recursion of HYCA produces
{
P̄ (k + 1|k, mk)

}N

mk=0
and
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{
Pr{mk}

}N

mk=0
at time step k. The recursions are initialized with P̄ (1|0,m0) ,

FP (0|0)F T + GQGT and Pr{m0} , 1/(N + 1) for m0 = 0, 1, . . . , N .

The algorithm consists of four main parts, whose derivations are given in detail

in [6]:

• Covariance Update: This is the computationally most intensive part

of the algorithm. For each mk−1 = 0, 1, . . . , N , the prediction covari-

ance P̄ (k|k − 1,mk−1) is updated to P̄ (k|k, mk−1, mk) for each mk =

0, 1, . . . , N . That is, all possible updates of all propagated covariances

are done in a matrix fashion. Furthermore, for each of these possible up-

date paths from mk−1 to mk, the corresponding conditional probability

Pr{mk|mk−1} is also calculated. For particular values of mk−1 and mk,

i.e., for a single entry in that matrix, the computation is done as follows.

S̄(k,mk−1) = HP̄ (k|k − 1,mk−1)H
T + R, (2.44)

W̄ (k,mk−1) = P̄ (k|k − 1,mk−1)H
T S̄−1(k, mk−1), (2.45)

V̄ (k,mk−1) = cnzg
nz |S̄(k, mk−1)|1/2, (2.46)

u2(k, mk) = ULUT
2

(
λV̄ (k, mk−1), PD,mk

)
, (2.47)

Σ(k,mk−1) =
[
I − W̄ (k,mk−1)H

]
P̄ (k|k − 1,mk−1)

×
[
I − W̄ (k, mk−1)H

]T

+ W̄ (k, mk−1)RW̄ T (k, mk−1), (2.48)

P̄ (k|k, mk−1,mk) =
[
1− u2(k, mk)

]
P̄ (k|k − 1,mk−1)

− u2(k, mk)Σ(k, mk−1), (2.49)

Pr{mk|mk−1} =

[
1 + PDPG

(
mk

λV̄ (k,mk−1)
− 1

)]

× µF

(
mk, λV̄ (k, mk−1)

)
. (2.50)

where

µF

(
mk, λV̄ (k, mk−1)

)
, exp

(−λV̄ (k, mk−1)
)(

λV̄ (k, mk−1)
)mk

mk!
(2.51)
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is the Poisson probability mass function (pmf) for the number of false

measurements. Note that apart from (2.50), the operations done in the

covariance update part of HYCA are very similar to those of MRE given

by the equations (2.32)–(2.37). The term Pr{mk|mk−1} is the conditional

probability of the event that having mk validated measurements at time

step k, conditioned on the event that there were mk−1 validated mea-

surements at k− 1. This probability is used for lumping the covariances

P̄ (k|k, mk−1,mk) to form P̄ (k|k,mk), and can be calculated for different

values of mk as

Pr{mk|mk−1} =





(1− PDPG)µF

(
mk, λV̄ (k, mk−1)

)
, mk = 0

(1− PDPG)µF

(
mk, λV̄ (k, mk−1)

)

+ PDPGµF

(
mk − 1, λV̄ (k, mk−1)

)
, mk = 1, 2, . . .

(2.52)

It can be shown that this expression can be further simplified to the

unified form given in (2.50) by utilizing the definition (2.51). Similar to

MRE, in HYCA algorithm, the covariances are updated with an infor-

mation reduction factor u2(k, mk) whose functional form is given as [65]

(after some manipulations on the original form given in [6])

u2

(
λV̄ (k, mk−1), PD,mk

)
=

mk

b
(
λV (k), PD

)
+ 1

cnz

(
2π
g2

)nz/2
PGmk

× 1

nz

( nz

gnz

)mk

I2

(
λV (k), PD,mk

)
(2.53)

where the terms I2(·, ·, ·) and b(·, ·) are previously defined in (2.27) and

(2.28), respectively. The three dimensional (3D) LUT, ULUT
2 (·, ·, ·) can be

obtained offline by evaluating the information reduction factor expression

given in (2.53) over a grid of values.

• Covariance Lumping: In this part, first the probabilities Pr{mk−1}
are updated to Pr{mk}, then for each mk = 0, 1, . . . , N , updated covari-

ances P̄ (k|k, mk−1, mk) are averaged over mk−1 to yield the covariances
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P̄ (k|k, mk). That is,

Pr{mk} =
∑
mk−1

Pr{mk|mk−1}Pr{mk−1}, (2.54)

Pr{mk−1|mk} =
Pr{mk−1}Pr{mk|mk−1}

Pr{mk} , (2.55)

P̄ (k|k, mk) =
∑
mk−1

P̄ (k|k,mk−1,mk)Pr{mk−1|mk}. (2.56)

• Covariance Prediction: This is the one-step ahead prediction of the

covariances P̄ (k|k, mk) for each mk = 0, 1, . . . , N , i.e.,

P̄ (k + 1|k, mk) = FP̄ (k|k, mk)F
T + GQGT . (2.57)

• Output Covariance Calculation: This is an optional part in the sense

that it is only for output purposes – it is not part of the algorithm recur-

sions. The output17 P̄HY CA(k|k) which is a deterministic approximation

to the estimation error covariance P (k|k) of the PDAF is obtained by

further averaging of the covariances
{
P̄ (k|k, mk)

}
over mk as

P̄HY CA(k|k) =
∑
mk

P̄ (k|k, mk)Pr{mk}. (2.58)

Note that, in the MRE approach, there is no need for such an outputting

block, as it already produces its output in the algorithm recursion.

17 A similar outputting can be done for the covariances
{
P̄ (k + 1|k,mk)

}
to produce

P̄HY CA(k + 1|k) which is a deterministic approximation to the prediction error covariance
P (k + 1|k) of the PDAF.
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CHAPTER 3

A COMPARISON OF TA-DETOP

SCHEMES IN A UNIFIED THEORETICAL

AND EXPERIMENTAL FRAMEWORK

In the conventional approaches to the detection theory such as Neyman-Pearson

(NP) and Constant False Alarm Rate (CFAR) formulations, first a desired (ac-

ceptable) false alarm probability (P d
FA) value is specified, then the probability

of detection (PD) is maximized with this constraint [63]. The value of P d
FA

is usually selected in view of the radar processor’s ability in handling maxi-

mum number of false alarms. Although this seems a reasonable criterion, it

is only a heuristic one in that it doesn’t account for the properties of down-

stream tracker. Tracker-aware detector threshold optimization (TA-DETOP)

aims at optimally selecting this operating false alarm probability (which in

turn determines the detector operating point and the detection threshold), so

that the performance of the downstream tracker, hence of the combined target

state estimation system, is maximized. The key point is to minimize a cost

function based on the deterministic approximation of the tracking filter’s co-

variance matrix. From the practical applications (i.e., causality) point of view,

having a deterministic (and therefore measurement-independent) covariance is

crucial, as it is used in optimization of detection thresholds, which produce

measurements.

In the following sections, we introduce a unifying formulation of the problem as
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static and dynamic threshold optimization. We claim that the existing studies

in the literature can be well-understood and easily extended in this framework.

3.1 Static Threshold Optimization (STOP)

The problem is to determine the optimum operating P ∗
FA value such that

P ∗
FA = arg min

PFA

{
fS

[
P̄NSPP

]}
, subject to

PD = fROC(PFA, ζ) and 0 ≤ PFA ≤ 1. (3.1)

Here, fS[·] is any scalar measure that can be deduced from a matrix (such

as, trace or determinant) and P̄NSPP is the steady-state covariance matrix

obtained by propagating one of the NSPP recursions, i.e.,

P̄NSPP , lim
k→∞

P̄NSPP (k|k), (3.2)

where P̄NSPP (k|k) corresponds to the output of either HYCA or MRE ap-

proaches at time step k. The equality constraint of the optimization problem

is nothing but a ROC curve relation which links PD to PFA, or vice-versa,

through current SNR (ζ), and the inequality constraint ensures that the re-

sultant operating false alarm value is a valid probability. Note that the op-

timization problem given in (3.1) is a line search. Provided that the cost

function is unimodal, the global optimum point can be found directly apply-

ing well-known numerical techniques, such as, Golden-Section or Fibonacci

Search methods [66]. For each function evaluation at an arbitrary point P i
FA,

one needs to obtain the steady-state covariance matrix P̄NSPP (P i
FA, P i

D) from

(3.2) with P i
D , fROC(P i

FA, ζ).

Another alternative is to utilize a graphical approach. In this case, first, the

scalar performance measure surface fS(PFA, PD) is constructed by evaluating

the cost function at each point of a sufficiently fine mesh grid on the PFA-PD

plane. Then, the contours of this surface, which constitute TOC curves [5],
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Figure 3.1: The flow of static threshold optimization (STOP) for graphical
(TOC-curve) approach. The procedure given in this figure is repeated for dif-
ferent SNR values to obtain the optimum operating curve on PFA-PD plane.
Then, this optimum operating curve is used together with ROC curve relation
to find the STOP curve which is the ultimate goal of STOP. The STOP curve
provides an SNR-dependent optimum PFA setting which makes the thresh-
old optimization online possible under varying SNR conditions. A numerical
example is given in Section 3.3.1.

are obtained. Finally, for the current operating SNR, the tangential point of

the corresponding ROC curve with TOC curves is found. This point is the op-

timum (P ∗
FA, P ∗

D) pair satisfying the ROC curve relation, hence the constraint

of the optimization problem. The procedure is summarized in Fig. 3.1.

Although this graphical technique is computationally more expensive, from

the practical applicability point of view, this is not a problem since the opti-

mization is made offline and only once. Furthermore, the graphical approach is

more preferable compared to the direct utilization of the line search algorithms,

as it allows easier interpretation and gives better insight into the problem. For

both approaches, however, at some points in the PFA-PD plane, cost function

evaluation may be problematic due to non-existance of the limit given in (3.2),

which causes an instability region [5].

The TOC-curve approach was first used in [5] for solving the STOP problem

for the PDAF case. In this work, MRE is used as an NSPP algorithm leading

to threshold optimization scheme STATIC-MRE-TOC (see Fig. 1.2). In this

chapter, we apply TOC-curve approach to the HYCA case which results in

the optimization scheme STATIC-HYCA-TOC. As mentioned before, this is

33



an extended version of the work given in [7] (HYCA-STATIC-LUT) where

the optimization is made using look-up tables. To the best of our knowledge,

utilizing the HYCA methodology in this manner is a new look and has not

been done in the literature. We believe that the comparison of HYCA and

MRE approaches for STOP can be made more reasonably in this unifying

framework.

3.2 Dynamic Threshold Optimization (DTOP)

In this case, the problem is to determine the optimum operating P ∗
FA(k) value

such that

P ∗
FA(k) = arg min

PFA

{
fS

[
P̄NSPP (k|k)

]}
, subject to

PD = fROC(PFA, ζ) and 0 ≤ PFA ≤ 1. (3.3)

Note that the dynamic threshold optimization differs only from its static coun-

terpart in making the optimization not in the steady-state, but at every time

step k.

3.2.1 MRE-Based Formulation

The problem formulation based on the MRE approach was first proposed in [1]

with the choices of fS[·] as the trace operator and P̄NSPP (k|k) as the output

of the MRE algorithm at time step k. Due to mathematical intractability,

the problem was solved by utilizing some line search algorithms that require

only the evaluation of the cost function (e.g., Golden-Section or Fibonacci

Search methods) [1]. We call this scheme as DYNAMIC-MRE-LS (see Fig.

1.2). A computationally much more efficient alternative to this scheme is the

DYNAMIC-MRE-CF proposed in [56]. where the same problem is solved in

an approximate closed-form. As we will see in the next chapter, by utilizing
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such a closed-form solution, one can achieve considerable gain in terms of

computational complexity without sacrificing the tracking performance.

3.2.2 HYCA-Based Formulation

Inspired from the formulation for the MRE case by Gelfand [1], we formulate

DTOP for HYCA case as follows: Find the optimum operating false alarm

probability P ∗
FA(k) such that

P ∗
FA(k) = arg min

PFA

{
J (k, PFA)

}
, subject to

PD = fROC(PFA, ζ) and 0 ≤ PFA ≤ 1. (3.4)

where J (k, PFA) , tr
{
P̄HY CA(k|k)

}
. This problem can be solved by applying

line search algorithms, e.g. Fibonacci Search method, which results in the

scheme DYNAMIC-HYCA-LS. Furthermore, for efficient implementation and

avoiding loops, the cost function can be restated in vector-matrix notations as

J (k, PFA) = pT (k)
[
TP (k)ΠT (k, PFA)c−TB(k)U(k, PFA)Π(k, PFA)

]
(3.5)

where p is an (N + 1) dimensional column vector whose jth entry is pj ,
Pr{mk−1 = j} for j = 0, 1, . . . , N and c is an (N + 1) dimensional con-

stant column vector with all entries being equal to 1. TP and TB are both

(N + 1) by (N + 1) diagonal matrices with the ith diagonal elements for

i = 0, 1, . . . , N are given by tr
{
P̄ (k|k − 1, i)

}
for TP and tr

{
B̄(k, i)

}
for TB,

where B̄(k, i) , W̄ (k, i)S̄(k, i)W̄ T (k, i). Finally, the matrices Π = [pij] and

U = [uij] are both (N + 1) by (N + 1) with pij , Pr
{
mk = i|mk−1 = j

}
and

uij , u2

(
λV̄ (k, i), PD, j

)
for i, j = 0, 1, . . . , N .

3.3 Simulation Results

We consider the problem of tracking a single target in clutter using a 2D radar.

The target state vector is composed of position and velocity components in
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East (ξ) and North (η) directions:

x(k) ,
[

ξ(k) ξ̇(k) η(k) η̇(k)
]T

. (3.6)

The target motion is a coordinated turn with a constant turn rate:

F =




1 sin(ΩT )
Ω

0 −1−cos(ΩT )
Ω

0 cos(ΩT ) 0 − sin(ΩT )

0 1−cos(ΩT )
Ω

1 sin(ΩT )
Ω

0 sin(ΩT ) 0 cos(ΩT )




, G =




T 2/2 0

T 0

0 T 2/2

0 T




(3.7)

where the turn rate is selected as Ω = 1 deg/s and the sampling period is

T = 1 s. Note that in the state vector, we do not estimate the turn rate,

i.e., it is assumed to be known, therefore the state dynamics is linear. This is

adopted to decouple the maneuver problem from the clutter problem on which

our focus is. The process noise v(k) , [ vξ(k) vη(k) ]T is a zero mean white

Gaussian random vector sequence with covariance matrix

Q =


 1 0

0 1


 q2 (3.8)

for all k. The factor q is selected as 0.1 m/s2.

Measurements are taken from a radar located at the center of the target motion

(see Fig. 3.2), and assumed to be consist of position values in East and North

directions, i.e.,

z(k) ,
[

ξm(k) ηm(k)
]T

(3.9)

which implies

H =


 1 0 0 0

0 0 1 0


 . (3.10)

Note that the scenario geometry given in Fig. 3.2 ensures the range of the

target to be constant during the simulation. Such an artificial scenario is

selected to have a constant SNR during the simulation, assuming that the

SNR depends only on range as

ζ(r) =
Cζ

r4
(3.11)
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Figure 3.2: Scenario geometry: Assumed constant SNR target trajectories and
location of the radar.

where Cζ is a constant representing all the other factors in the SNR equation

and r is the range to the target. To determine Cζ , ζ is assumed to be 50 for 5

km, which yields Cζ = 3.125× 1016 m4.

The measurement noise w(k) , [ wξ(k) wη(k) ]T is a zero mean white Gaus-

sian random vector sequence with covariance matrix

R =




(
∆rξ/

√
12

)2
0

0
(
∆rη/

√
12

)2


 (3.12)

for all k, where ∆rξ and ∆rη are the range resolutions in East and North

directions, respectively and taken as ∆rξ = ∆rη = 50 m which results in a

resolution cell volume of VC = 2500 m2. Note that the covariance matrix given

in (3.12) is the result of the assumption that the true measurement is uniformly

distributed in the resolution cell [4, pp. 472]. The a priori information about

the state, i.e., the mean x̂(0|0) and the covariance P (0|0) of the initial state

x(0), is obtained by two point differencing [18] as

x̂(0|0) ,
[

ξm(0) ξm(0)−ξm(−1)
T

ηm(0) ηm(0)−ηm(−1)
T

]T

(3.13)
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with

P (0|0) =




r11 r11/T 0 0

r11/T 2r11/T
2 0 0

0 0 r22 r22/T

0 0 r22/T 2r22/T
2




(3.14)

where rij , R(i, j). It is known [18] that such an initialization guarantees

the initial filter consistency.1 Note that initialization of the state presumes

availability of two measurements z(−1) and z(0). These measurements can be

obtained separately before the simulation starts and then used in the initial-

ization of the state in (3.13).

3.3.1 Obtaining TOC Curves

After defining all the necessary variables, TOC curves can be obtained for both

MRE and HYCA methodologies, as illustrated in the flow diagram given in

Fig. 3.1. The parameter, N of the HYCA algorithm is taken as 15. We run

both of the recursions on a 500 × 500 regular PFA-PD grid. The borders of

the grid are from 0 to 0.1 for PFA and from 0 to 1 for PD. Both recursions

are run over each point in this grid until convergence. As mentioned before,

the recursions do not converge to a steady-state covariance for some of the

grid points, due to non-existence of the limit given in (3.2). This causes an

instability region (see Fig. 3.3). Note that this region is located at lower right

corner on PFA-PD plane which corresponds to low PD and high PFA values.

We define the scalar performance function (fS[·]) as the steady-state position

estimation error, i.e.,

fS[P̄NSPP ] , σss
POS =

√
p̄11

NSPP + p̄33
NSPP (3.15)

where p̄ii
NSPP is the ith diagonal element of P̄NSPP . The TOC curves are

obtained as the contours of the corresponding performance measure surface.

1 The consistency of a tracking filter can be viewed as a honesty [18] measure of degree
of the filter’s statement “I estimate the state with this much error (covariance).”
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The superimposition of these curves onto the ROC curves is shown in Fig. 3.3

where the functional form of the ROC curves is given by2

PD = P
1/(1+ζ)
FA . (3.16)

Note that the collection of optimum operating points for different SNR values,

consisting of the tangential points of TOC and ROC curves, are well-behaved.

A line fitting works quite well and results in approximations

PD = −9.523PFA + 1.002 for MRE case, (3.17)

PD = −5.943PFA + 0.979 for HYCA case. (3.18)

Each of these optimum operating line equations can be combined with the

ROC curve relation given in (3.16) to obtain a relation between PFA and ζ as

P
1/(1+ζ)
FA + 9.523PFA − 1.002 = 0 for MRE case, (3.19)

P
1/(1+ζ)
FA + 5.943PFA − 0.979 = 0 for HYCA case. (3.20)

The numerical solution of these equations constitutes the static threshold op-

timization (STOP) curves given in Fig. 3.4.

Note that STOP curves suggest that the desired false alarm probability of the

detector should be readjusted according to SNR variations. This is different

than the conventional approach in which the desired false alarm probabilities

are fixed.3 The resulting overall system target tracking performance corre-

sponding to the two static methods is also of interest and is investigated in

detail in subsequent experimental sections. At this point however, it can be

observed that for a practical range of operating SNR values, HYCA based opti-

mization consistently suggests a higher PFA and therefore results in more false

2 This is valid for a special case of a Neyman-Pearson (NP) detector under HOGSQL
I where

the homogeneous Gaussian background detector noise and Swerling-I target fluctuation are
passed through a square-law detection scheme [63].

3 Of course, changing SNR readjusts the detection thresholds in conventional approaches
(such as in CA-CFAR), but the desired false alarm probability is not adapted.
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(a) MRE case.
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(b) HYCA case.

Figure 3.3: STOP using TOC curves. Note that, the instability region for
the HYCA case has a slightly larger area than that of MRE. One can fit a
line equation for the optimum operating curves in both approaches. Then this
equation together with the ROC curve relation determine STOP curve which
can be used to find the optimum operating point for an arbitrary SNR value.
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Figure 3.4: STOP curves for MRE and HYCA approaches. Note that for a
practical range of operating SNR values, the HYCA based approach consis-
tently suggests a higher PFA.

detections for the radar processor to handle.4 For both approaches, STOP

curves can be tabulated as a LUT for an online usage (i.e., in varying SNR

conditions). A closed form functional approximation to STOP curves can also

be considered. In our example, we have verified that an exponential fit of

the form PFA(ζ) = aebζ + cedζ can be found for each STOP curve, with the

coefficients given in Table 3.1.

Table 3.1: Exponential fit coefficients for STOP curves.

Methodology a b c d

MRE 0.1418 −0.1555 −0.0751 −0.3755

HYCA 0.5273 −0.2059 −0.4316 −0.2683

4 This is an important practical problem in the radar. Under excessive number of false
detections, the radar may initiate lots of false tracks. This causes the radar to allocate its
resources, e.g. dwell time, transmission power, unnecessarily and inefficiently. In the scope
of this thesis study, we do not consider track initiation and resource allocation problems.
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Table 3.2: Experiment-I: Compared tracking systems. The name of the pro-
posed system is written in italic.

System Name Desired False Alarm Probability, P d
FA

PDAKF-HEURISTIC-E8 PFA(k) = 10−8

PDAKF-HEURISTIC-E6 PFA(k) = 10−6

PDAKF-HEURISTIC-E4 PFA(k) = 10−4

PDAKF-STATIC-MRE [5] PFA(k) = fMRE(ζ(k))

PDAKF-STATIC-HYCA PFA(k) = fHY CA(ζ(k))

3.3.2 Experiment1: Comparison of STOP with Conven-

tional Approaches

In this experiment, we compare five tracking systems each consisting of a PDA

tracking filter and a Neyman-Pearson (NP) front-end detector. The description

of the systems is given in Table 3.2.

In the first three systems, the detectors use conventional (i.e., heuristically

selected) constant desired false alarm probabilities of PFA = 10−8, PFA = 10−6

and PFA = 10−4, which are the typical values used in practice [2]. On the

other hand, the last two systems utilize tracker-aware (TA) detectors for

which the desired false alarm probabilities are determined using STOP curves,

fMRE(ζ(k)) and fHY CA(ζ(k)), given in Fig. 3.4. Note that the last system

based on HYCA approach is proposed in this study. We choose four different

constant SNR scenarios of 5, 10, 15 an 20 dB. In each scenario, the target

follows the corresponding constant SNR trajectory for 200 time steps as illus-

trated in Fig. 3.2. We have conducted 500 Monte Carlo runs for each scenario.

Fig. 3.5 shows the simulation results pertaining to the heuristic methods.

In Fig. 3.5a, the RMS position error plots are obtained by ensemble averaging

over only the runs that do not result in track loss.5 The track loss percentage

5 Except for the track loss percentage (TLP), in all performance measures presented in
the experimental results, we consider only track-loss-free runs. We accept that the track is
lost for the ith Monte Carlo run, if εi

POS > ρ where ρ ,
√

tr{R} is the measurement error
level and εi

POS is the average position estimation error for the ith Monte Carlo run.
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Figure 3.5: Experiment-I: The effect of selecting different operating PFA values
on downstream tracking: (a) The transient RMS position error plots (ζ =
10 dB case), (b) track loss percentages, (c) the average and (d) the steady-
state, RMS position error levels. In each subfigure, the performance of the
corresponding Kalman filter (KF) which uses perfect data association is also
shown as a baseline.
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(TLP) measure is defined as

TLP , NTL

NMC

× 100 (3.21)

where NTL is the number of Monte Carlo runs that result in track loss and

NMC is the total number of Monte Carlo runs performed. TLPs for heuristic

approaches are given in Fig. 3.5b. The results show clearly susceptibility of

the tracking filter’s performance to the selection of the operating PFA value.

The selection becomes more critical for low SNR values. For example in 5 dB

scenario, selecting PFA as 10−4 instead of 10−8 saves almost 60 percent of the

tracks from being lost (Fig. 3.5b), while it provides approximately 50 percent

reduction in the steady-state RMS position error (Fig. 3.5d).

Optimizing operating PFA seems to be promising. Indeed, in terms of RMS

position error, both PDAKF-STATIC-MRE [5] and PDAKF-STATIC-HYCA

perform better than the best heuristic system, PDAKF-HEURISTIC-E4. This

is illustrated in Fig. 3.6 where the time-averaged and the steady-state values

of the RMS position errors are plotted as a function of SNR. Note that, the

improvement gained by STOP is substantial especially when the SNR is low.

This is primarily due to the optimization of operating PFA, which renders the

extracted measurements to be more informative for downstream tracking.

The optimum operating PFA values suggested by STOP schemes are shown in

Fig. 3.7. STOP schemes suggest considerably higher PFA values than those

common for a conventional system to achieve optimal system performance.

Moreover, it is observed that PDAKF-STATIC-MRE [5] suggests marginally

lower PFA values than the proposed scheme PDAKF-STATIC-HYCA and

achieves still similar performance in terms of RMS position error. This is

an advantage since it results in lower load for the radar processor.

If we look at the TLP measure, it is observed that statically optimized systems

may not be as good as heuristic ones as illustrated in Fig. 3.8. The system

PDAKF-HEURISTIC-E4 has the lowest TLP in all the scenarios considered.

However, in low SNR conditions, the system with the highest TLP is also a
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Figure 3.6: Experiment-I: The performance comparison of statically optimized
systems and the best heuristic system in terms of (a) average and (b) steady-
state, RMS position error levels.
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Figure 3.7: Experiment-I: The optimum operating PFA values suggested by
STOP schemes for different SNR values.
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Figure 3.8: Experiment-I: The performance comparison of statically optimized
and heuristic tracking systems in terms of TLP.
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Table 3.3: Experiment-II: Compared tracking systems. The name of the pro-
posed system is written in italic.

System Name Desired False Alarm Probability

PDAKF-HEURISTIC-E4 PFA(k) = 10−4

PDAKF-STATIC-MRE [5] PFA(k) = fMRE(ζ(k))

PDAKF-STATIC-HYCA PFA(k) = fHY CA(ζ(k))

PDAKF-DYNAMIC-MRE [1] PFA(k) = arg minPFA
tr

{
P̄MRE(k|k)

}

heuristic one, suggesting that it may be difficult to achieve this benefit with

a heuristic setting. If we compare two tracker-aware optimization schemes,

we may conclude that PDAKF-STATIC-MRE [5] performs marginally better

than the proposed system PDAKF-STATIC-HYCA in terms of TLP.

We conclude that, as compared to heuristics, the systems PDAKF-STATIC-

MRE [5] and PDAKF-STATIC-HYCA, which are optimized for minimizing

the steady-state RMS position error, indeed perform better in terms of average

and steady-state RMS position error criteria. On the other hand, they show

suboptimal behavior in terms of TLP, suggesting that an optimization which

also considers the transient behavior is necessary. As shown by the following

experiments, this can be achieved by dynamic threshold optimization (DTOP)

schemes, which perform the optimization at every time step, i.e., online.

3.3.3 Experiment2: Comparison of STOP with the

MRE-Based DTOP

In this experiment, we compare STOP schemes with the MRE-based DTOP

scheme presented in [1]. The HYCA-based DTOP which is a proposal of the

present study will be presented in the next experiment.

We compare four tracking systems given in Table 3.3. The first system is the

heuristic system which shows the best TLP in the previous experiment. All

the other systems utilize TA detectors. Among them, the second and the third
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Figure 3.9: Experiment-II: Performance comparison of STOP schemes with
the MRE-based DTOP scheme presented in [1] in terms of (a) average (b)
steady-state, RMS position error levels and (c) TLP. The average operating
PFA values suggested by the optimization schemes are also shown in (d).
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one are statically optimized while the last one is dynamically optimized at each

time step. The dynamic optimization is solved using Fibonacci Search where

we take the initial interval of uncertainty for PFA as IPFA
, [10−6, 10−1] and

the maximum error tolerance6 as ∆PFA , 10−7.

We consider the same set of SNR scenarios given in the previous experiment

and perform 500 Monte Carlo runs for each scenario. The results are given in

Fig. 3.9. The dynamic approach, PDAKF-DYNAMIC-MRE [1] outperforms

the heuristic one and have a similar performance with STOP schemes in terms

of RMS position estimation error. Moreover, PDAKF-DYNAMIC-MRE [1]

is the best one when TLPs are considered (Fig. 3.9c). This is a powerful

aspect of DTOP schemes where the online feedback from the tracker to the

detector provides considerable performance improvement in terms of track loss.

This transient benefit is achieved while a good RMS position estimation error

performance is maintained.

If we consider the optimum operating PFA values suggested by the algorithms,

it is observed that the dynamic approach lies between two STOP schemes on

the average (see Fig. 3.9d). This means that PDAKF-DYNAMIC-MRE [1]

brings moderate processor load in terms of false alarms. However, the actual

computational power is needed prior to detection, i.e, in finding the optimum

desired PFA value. Indeed, an important aspect of practical applicability of

DTOP schemes is their computational complexities. The dynamic approach

PDAKF-DYNAMIC-MRE [1] is computationally much more expensive than

STOP approaches. This is mainly due to the iterative line search algorithm

involved. In a recent study [56], we have presented a step towards alleviating

this difficulty where the MRE-based DTOP problem is solved by means of a

6 Given an initial interval of uncertainty, [a, b] and the number of function evaluations, N ,
the Fibonacci Search algorithm reduces the length of the uncertainty interval to (b−a)/FN ,
where FN is the (N +1)th number in the Fibonacci sequence {Fn}, n ∈ N. Therefore, given
number N , the length of the final uncertainty interval, so the maximum error in finding the
extremum point, is determined. Here, we do the other way around. That is, we specify the
maximum error tolerance that we are required to have at the end of the algorithm which in
turn determines the minimum required number of function evaluations, N .
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Table 3.4: Experiment-III: Compared tracking systems. The system whose
name is written in italic is proposed in this study.

System Name Desired False Alarm Probability

PDAKF-DYNAMIC-MRE [1] PFA(k) = arg minPFA
tr

{
P̄MRE(k|k)

}

PDAKF-DYNAMIC-HYCA PFA(k) = arg minPFA
tr

{
P̄HY CA(k|k)

}

closed-form approximation for a special NP detector case (DYNAMIC-MRE-

CF [56]). This solution is presented in detail in the next chapter.

3.3.4 Experiment3: Comparison of DTOP Schemes

In this experiment, we compare two DTOP schemes based on MRE and HYCA

methodologies, the latter one being a formulation and proposal of the present

study. We compare the tracking systems given in Table 3.4 under the same

SNR scenarios considered in the previous experiments.

For both approaches, the optimization problem is solved using Fibonacci Search

method whose parameters IPFA
and ∆PFA are taken as the same with the pre-

vious experiment. We have performed 500 Monte Carlo runs in each scenario.

As an example, for 10 dB scenario, ensemble averaged (track loss cases ex-

cluded) RMS position error plots are shown in Fig. 3.10. Note that in terms

of RMS position error, both dynamic optimization schemes have better tran-

sient characteristic as compared to static ones. This is an important aspect of

DTOP schemes and leads to improved track loss performance.

If we examine the optimum PFA sequences given in Fig. 3.11, it is observed

that in the steady-state, the optimum PFA values suggested by DTOP schemes

get closer to the those of STOP schemes. In this respect, STOP schemes

can be regarded as the steady-state versions of their dynamic counterparts.

This is a very close analogy to having a dynamic gain versus static one in

Kalman and α−β filters, respectively. Remember that these gains are obtained

from either the current or the steady-state output (i.e., the solution) of the
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Figure 3.10: Experiment-III: The transient RMS position error levels for 10
dB scenario.

0 50 100 150 200

10
−2

Time step, k

R
M

S
 F

al
se

 A
la

rm
 P

ro
ba

bi
lit

y,
 P

F
A

R
M

S

PDAKF−STATIC−MRE

PDAKF−STATIC−HYCA
PDAKF−DYNAMIC−MRE

PDAKF−DYNAMIC−HYCA
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Figure 3.12: Experiment-III: The average PFA values suggested by the DTOP
schemes as a function of SNR. Except for the lowest SNR case, HYCA based
method suggests marginally higher PFA values on the average (over transient
and steady-state regions).

standard Riccati recursion. Here, in the case of threshold optimization, the

optimum PFA values are obtained from either the current or the steady-state

output of the NSPP recursions (MRE or HYCA). In the transient region,

PDAKF-DYNAMIC-HYCA suggests lower PFA values than those suggested

by PDAKF-DYNAMIC-MRE [1], while in the steady-state the situation is

reversed (see Fig. 3.11). This is a consistent behavior that we have observed

in all scenarios.

The variation of the average operating PFA values suggested by the algorithms

over the considered SNR range is shown in Fig. 3.12. Note that for the low-

est SNR case, PDAKF-DYNAMIC-HYCA suggests a lower PFA value than

PDAKF-DYNAMIC-MRE [1] and still achieves a lower steady-state RMS po-

sition error value (see Fig. 3.13a). This is an advantage in terms of keeping the

number of false tracks low which may be very critical in low SNR conditions.

The cost paid for this achievement is having marginally higher TLP as shown
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Figure 3.13: Experiment-III: Performance comparison of DTOP schemes in
terms of RMS position error and TLP. Note that the plots given in (a) and
(c) represent the trade-off between achieving a low steady-state RMS position
error level versus having a low TLP.
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in Fig. 3.13c. This trade-off is observed for all SNR scenarios and can be

seen from examining (a) and (c) parts of the Fig. 3.13. Note also from Fig.

3.13d that, both DTOP approaches are significantly lower TLP values than

their statically optimized counterparts and the best heuristic system of the

first experiment. This figure clearly shows the robustness of the dynamically

optimized systems against track loss.

We were initially motivated to formulate the static and dynamic optimization

methods based on HYCA due to its promise in modeling and therefore im-

proving transient behavior of the overall system better than MRE. In practice,

we could not observe this improvement to the extend hoped for. Formulating

and solving the detector threshold optimization (DETOP) problem based on

either MRE or HYCA does not result in a big difference in system perfor-

mance. However, these methods are not only important because they promise

to provide a performance improvement but rather, their formulation and ex-

perimental evaluation complete a broad and rigorous evaluation of a family of

closely related methods (see Fig. 1.2).

3.3.5 Combining the Results

As a highlight of this chapter, in this section, we combine the results of all

the experiments in one plot for each SNR scenario. The axes of this plot are

chosen as the steady-state RMS position error and TLP which can be seen as

the steady-state and the transient performance measures, respectively. This is

motivated by seeing and showing the trade-off between these measures more

clearly, although we have already emphasized this trade-off in the experimental

results.

The plots corresponding to each SNR scenario are given in Fig. 3.14. In these

plots, the lower left corner represents the ultimate performance, i.e., low TLP

and low steady-state RMS position error. Note that the points (algorithm
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Figure 3.14: Algorithms on the performance plane: The steady-state RMS
position error versus TLP. Here, the prefixes “H”, “S” and “D” correspond
to “heuristic”, “static” and “dynamic” approaches, respectively. Note that, as
SNR increases, the performance of the algorithms gets closer to each other and
to the the best achievable performance point, the Kalman filter with perfect
data association.
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Figure 3.15: The performance of the algorithms in 5 dB case. At some portions
of the performance trajectory of heuristic approaches, there are sharp bends,
resulting in a significant change in the performance. Therefore, in general one
can not guarantee a reliable performance with an heuristic approach.

performances) get closer and eventually converge to the performance of the

Kalman filter with perfect data association, when SNR increases. We may

conclude that threshold optimization is less critical when the SNR is high,

e.g., between 15 and 20 dB. On the other hand, in the lowest SNR scenario,

threshold optimization greatly improves the performance. This is obvious from

Fig. 3.15 where algorithm performances are well-separated from each other.

The superiority of the DTOP schemes is clearly seen from this figure. In fact,

they are the only algorithms whose performances are located nearly at the

lower left corner of the trade-off plane. Although the static schemes have low

steady-state RMS position error level, they may not provide low TLP as shown

in the figure.

Note that performance of heuristic approaches can vary widely. Looking at

the performance trajectory of heuristic algorithms, it can be seen that DTOP

schemes are better than the most successful point in this trajectory. This shows
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clearly the power of dynamic threshold optimization. It is observed that STOP

schemes correspond to approximately the points on the performance trajectory

where the steady-state position error is minimized. But of course, this does not

mean that they are the best points in this trajectory, as they can not provide

low TLP. In fact, from the practical point of view, the track loss measure is

more critical than the steady-state position error measure. So in that respect,

DTOP schemes seem to be the only choice in practice.

3.4 Conclusion

By considering both STOP and DTOP schemes in a unified and rigorous simu-

lation based experimental framework, in this chapter, we observed the trade-off

between having low steady-state RMS position estimation error vs. having low

TLP. DTOP schemes are found to be well-located on this trade-off plane by

providing considerably low TLP and low level of steady-state estimation error.

The disadvantages of these schemes are their computational complexities.

Apart from a comprehensive experimental survey, a primary contribution of

this chapter is the proposal of the static and dynamic threshold optimization

schemes based on the HYCA approach which is itself a NNSP technique for

the PDAF. Contrary to expectations, the results concluded that only marginal

gains can be achieved by HYCA-based approaches as compared to MRE-based

ones. However, their formulation and evaluation completes a rigorous evalua-

tion of a closely related family of techniques. To the best of author’s knowledge,

such a comparative study on threshold optimization schemes has not been done

before in the literature.
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CHAPTER 4

A CLOSED-FORM SOLUTION FOR THE

MRE-BASED DYNAMIC THRESHOLD

OPTIMIZATION PROBLEM

As mentioned in the Introduction Chapter, traditionally, the radar data pro-

cessing chain is usually viewed as a concatenation of two subsystems: Signal

processing and information processing. A promising line of research attempts

to bridge the gap between these two subsystems by means of considering jointly

optimal parameter settings for both of them. In the previous chapter, we have

presented and proposed a number of frameworks which fulfill this promise by

considering static and dynamic threshold optimization schemes. The experi-

mental results show that there exists a trade-off between having low steady-

state estimation error versus having low track loss percentage (TLP), and the

dynamic threshold optimization (DTOP) schemes are found to be well-located

on this trade-off plane by providing considerably low TLP and acceptable level

of steady-state estimation error.

The primary disadvantage of the dynamic schemes, as compared to static ones,

may be their online computational requirements. Although, in both dynamic

and static schemes, the underlying optimization problem is one dimensional,

the dynamic schemes are supposed to make this optimization in real time.

Therefore, computationally cheaper approaches are preferred. Along this line,

in this chapter, we consider one of the dynamic optimization schemes based
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on the modified Riccati Equation (MRE) and bring a closed-form solution

to the problem. Proposed closed-form solution is approximate but of course,

computationally much more efficient than solving the same problem using an

iterative optimization algorithm. We will demonstrate this efficiency quanti-

tatively through the experimental results at the end of the chapter. But first,

we begin with an introduction which summarizes the literature development

of the MRE-based dynamic scheme that we will consider.

4.1 Introduction

Along the line of joint optimization of radar detector and tracker, the pio-

neering study is the work of Fortmann et al. [5] where for the first time they

established a feedback from the information processing subsystem to the signal

processing subsystem. The primary motivation in [5] is to find a deterministic

recursion for the covariance of the probabilistic data association filter (PDAF)

[45], similar to the one for the Kalman filter, which is nothing but the standard

Riccati equation (SRE). It turns out that the end product, the modified Riccati

equation (MRE), differs from the SRE only by a scalar variable [5], called the

information reduction factor (IRF) [4]. This scalar depends explicitly on the

probability of false alarm (PFA) and the probability of detection (PD). Using

this dependence, the authors of [5] have introduced a graphical technique (i.e.,

TOC-curve approach mentioned in the previous chapter) for optimization of

the detector thresholds in linear time-invariant systems. In this static thresh-

old optimization (STOP) scheme, which is based on iterating the MRE to its

steady-state, for a possible range of signal-to-noise ratio (SNR) values, the op-

timum detector operating points can be found and tabulated offline, and then

used when necessary in an online application with varying SNR conditions.

When the steady-state analysis is inappropriate, such as in time-varying or

nonlinear systems, a suggested solution is to apply the same methodology by

iterating the MRE not to its steady-state but for n steps into the future [5].
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In the case of n = 1, this leads to a dynamic1 threshold optimization (DTOP)

scheme.

In [1], Gelfand et al. have proposed two DTOP problems, namely, prior and

posterior threshold optimization which minimize the mean-square state esti-

mation error over detection thresholds, based on the measurements up to the

previous and current time step, respectively. It was shown that for the prior

case, the problem reduces into a single line search which maximizes the IRF

[1]. Due to claimed mathematical intractability of obtaining a full closed-form

solution, in [1], this problem was solved using iterative numerical optimization

techniques, such as Golden Section and Fibonacci Search methods [66].

In this chapter, we consider the prior threshold optimization problem pro-

posed in [1] for a special case of Neyman-Pearson (NP) detector. For this

detector, we propose a computationally much more efficient alternative solu-

tion, based on the functional approximation presented in [62]. We show that

this approximate closed-form solution leads to considerable simplification in

computational complexity without any noticeable loss in performance. This

increases the feasibility of the approach for an online application. Moreover, an

analysis made on the proposed closed-form expression reveals that it possess

a dynamic criterion on the operating SNR for switching the whole system to

the track before detect (TBD) mode [67], [68]. These constitute the primary

contributions of the present chapter. An early and short version of this work

has been discussed in [56].

The chapter is organized as follows: In Section 4.2, we give a brief review of

the MRE formulation [5]. In Section 4.3, the formulation of the problem and

the proposed closed form solution for an NP detector are given. We present

our simulation results in Section 4.5, and finally the concluding remarks are

given in Section 5.4.

1 It is also called adaptive [1]
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4.2 The Modified Riccati Equation (MRE)

Consider a discrete-time linear time-invariant dynamic system, described by

the plant and measurement equations

x(k + 1) = Fx(k) + Gv(k), k = 0, 1, . . . , (4.1)

z(k) = Hx(k) + w(k), k = 1, 2, . . . , (4.2)

where x(k) and z(k) are the state and measurement vectors whose dimensions

are nx and nz, respectively. The sequences {v(k)} and {w(k)}, known as pro-

cess and measurement noises, respectively are assumed to be white, stationary

and distributed as v(k) ∼ N (0, Q) and w(k) ∼ N (0, R) for all k. The ini-

tial state x(0) is modeled as x(0) ∼ N (x̂(0|0), P (0|0)) where the mean x̂(0|0)

and the covariance P (0|0) are assumed to be known. Furthermore, two noise

sequences {v(k)} and {w(k)} and the initial state x(0) are assumed to be

mutually independent for all k.

Under these assumptions, at each time step k, the optimal MMSE estimate of

the state x(k), which is defined by [16]:

x̂(k|k) = x̂MMSE(k|k) , E
[
x(k)

∣∣Zk
]

(4.3)

with Zk , {z(1), z(2), . . . , z(k)}, can be recursively obtained by the Kalman

filter. In the Kalman filter, the covariance corresponding to (4.3), which is

defined by

P (k|k) , E
[(

x(k)− x̂(k|k)
)(

x(k)− x̂(k|k)
)T

∣∣∣Zk
]
, (4.4)

can also be recursively obtained from the covariance prediction and update

equations of the form

P (k|k − 1) = FP (k − 1|k − 1)F T + GQGT , (4.5)

P (k|k) = P (k|k − 1)−W (k)S(k)W T (k) (4.6)
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where P (k|k − 1) is the state prediction covariance, and

W (k) = P (k|k − 1)HT S−1(k) and (4.7)

S(k) = HP (k|k − 1)HT + R (4.8)

are called the Kalman gain and innovation covariance, respectively. The equa-

tions (4.5)–(4.8) constitute a recursion in P (k|k − 1) in the form of a (ma-

trix) Riccati equation whose solution can be obtained uniquely (and even in

a non-recursive form [61]) under some controllability and observability con-

ditions [18]. An important and interesting property is that this recursion

is measurement-independent. In other words, given only the description of

the dynamical system and measurement model, we can have an idea about

the filter performance without running the filter. This property allows us to

make a non-simulation performance prediction (NSPP) for the Kalman filter

in clutter-free environments.

The situation is more complicated in cluttered environments. In this case,

the filter performance depends not only on the noise covariances, but also on

the uncertainty in the measurement origin [5], which is usually described by

the detection parameters, PFA and PD. Under these situations the covariance

calculation of the filter is measurement-dependent, hence stochastic.

Obtaining a deterministic (measurement-independent) recursion for the co-

variance of the filter is the key to make a NSPP for the filter under concern.

Along this line, the first attempt was made in [5] for the PDAF whose co-

variance recursion is stochastic due to its measurement-dependent covariance

update equation [4]:

P (k|k) = P (k|k − 1)− (1− β0(k)) W (k)S(k)W T (k) + P̃ (k) (4.9)

where the measurement-dependent terms are P̃ (k) and β0(k). To be able to

obtain a deterministic recursion, in [5], these terms were replaced with their
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conditional expectations,

P̄ (k) , E[P̃ (k)|Zk−1], (4.10)

β̄0(k) , E[β0(k)|Zk−1], (4.11)

over both the locations and the number of measurements where Zk−1 is the

cumulative set of validated measurements through the time step k − 1. The

new covariance update equation, after some approximations, becomes [5]

P̄ (k|k) , E[P (k|k)|Zk−1] ≈ P (k|k − 1)− q2(k)W (k)S(k)W T (k) (4.12)

where P̄ (k|k) is a deterministic approximation of P (k|k) in which the stochas-

tic terms are averaged out according to (4.10) and (4.11), and q2(k) is a time-

varying scalar taking the values between 0 and 1. Furthermore, replacing the

covariance prediction of the PDAF with

P̄ (k|k − 1) = FP̄ (k − 1|k − 1)F T + GQGT , (4.13)

and combining with (4.12) yields a deterministic recursion for the covariance

as

P̄ (k + 1|k) = F

[
P̄ (k|k − 1)− q2(k)P̄ (k|k − 1)HT

(
HP̄ (k|k − 1)HT + R

)−1

×HP̄ (k|k − 1)

]
F T + GQGT (4.14)

with P̄ (0| − 1) , FP (0|0)F T + GQGT . This is the modified Riccati equation

(MRE) [5]. The only modification from the standard Riccati is the time-

varying scalar q2(k) which is called the information reduction factor (IRF) [4].

The functional form of the IRF is given as [5]

q2

(
PFANC(k), PD

)
, PDcnz

(2π)nz/2

∞∑
mk=1

µF

(
mk − 1, PFANC(k)

) (
nz

gnz

)mk−1

× I2

(
PFANC(k), PD,mk

)
(4.15)
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with

I2

(
PFANC(k), PD,mk

)
,

∫ g

0

· · ·
∫ g

0

exp(−r2
1)r

2
1

b
(
PFANC(k), PD

)
+

∑mk

j=1 exp(−r2
j/2)

× (r1r2 . . . rmk
)nz−1 dr1dr2 . . . drmk

(4.16)

b
(
PFANC(k), PD

)
, (2π)nz/2 PFANC(k)

cnzg
nz

(1− PDPG)

PD

(4.17)

where cnz , πnz/2/Γ(nz/2+1), with Γ(·) being gamma function, is the volume

of the nz-dimensional unit hypersphere (c1 = 2, c2 = π, c3 = 4π/3, etc.) and

µF

(
mF , λF

)
,

exp
(−λF

)(
λF

)mF

mF !
(4.18)

is the Poisson probability mass function (pmf) for the number of false mea-

surements (mF ) with mean λF . Furthermore,

NC(k) , V̄ (k)

VC

(4.19)

is the number of resolution cells enclosed by the validation gate at time step

k where

V̄ (k) , cnzg
nz |S̄(k)|1/2 (4.20)

is the offline-calculated2 gate volume, VC is the resolution (or detection) cell

volume and g , √
γG is the gate size.3

4.3 Problem Formulation and Solution

Our aim is to set optimally the operating PFA value of a detector, which

is concatenated with a PDAF, so that the performance of the overall target

tracking system is maximized. This problem was first investigated and solved

in [5] using a static optimization scheme. As an extension to this work, in [1],

Gelfand et al. attacked the same problem in the DTOP domain. The authors

2 This is based on the offline-calculated innovation covariance defined by S̄(k) ,
HP̄ (k|k − 1)HT + R.

3 This is linked to the gate probability PG via chi-square tables where PG is defined as
the probability that the correct measurement falls inside the validation gate given that it is
detected.
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of [1] formulated and solved the problem in two versions, namely, prior and

posterior threshold optimization. In the following sections, we reconsider the

prior threshold optimization case and bring an alternative solution to the

problem.

4.3.1 Prior Detection Threshold Optimization

This problem was first formulated in [1]. We redefine the same problem with

a minor change in the notation as follows. Our aim is to find an optimum

operating P ∗
FA(k) value such that

P ∗
FA(k) = arg min

PFA

{
E

[
‖x(k)− x̂(k|k)‖2

∣∣∣Zk−1
]}

, subject to

PD = fROC(PFA, ζ) and 0 ≤ PFA ≤ 1 (4.21)

where x̂(k|k) is the state estimated by a PDAF at time step k and Zk−1 is the

cumulative set of validated measurements up to k − 1 (i.e., prior to k).4 The

equality constraint of the optimization problem is nothing but the receiver

operating characteristic (ROC) curve which links PD to PFA, or vice-versa,

through current SNR value (ζ), and the inequality constraint ensures that the

resultant operating false alarm value is a valid probability. This optimization

problem can be restated in another equivalent but more useful form [1]. For

the sake of clarity, we emphasize this important result as a separate lemma.

Lemma 4.1 The optimization problem given in (4.21) is equivalent to,

P ∗
FA(k) = arg max

PFA

q2

(
PFANC(k), PD

)
, subject to

PD = fROC(PFA, ζ) and 0 ≤ PFA ≤ 1 (4.22)

where q2

(
PFANC(k), PD

)
is the IRF given in (4.15).

4 In the posterior threshold optimization, the conditioning is made on Zk [1]. In other
words, in the posterior case we optimize the detector thresholds based on the measurements
which will be produced by these thresholds. This is a noncausal operation and therefore the
use of posterior threshold optimization is not feasible in practice. However, it can still be
simulated and constitutes an upper bound for the best performance that can be obtained
by detection threshold optimization [1].
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Proof The cost function J (k, PFA) , E
[
‖x(k) − x̂(k|k)‖2

∣∣∣Zk−1
]
, given in

(4.21), can be rewritten as

J (k, PFA) = E

[
tr

{∥∥x(k)− x̂(k|k)
∥∥2

}∣∣∣∣Zk−1

]

= E

[
tr

{(
x(k)− x̂(k|k)

)T (
x(k)− x̂(k|k)

)}∣∣∣∣Zk−1

]

= E

[
tr

{(
x(k)− x̂(k|k)

)(
x(k)− x̂(k|k)

)T
}∣∣∣∣Zk−1

]

= tr

{
E

[(
x(k)− x̂(k|k)

)(
x(k)− x̂(k|k)

)T
∣∣∣Zk−1

]}

= tr

{
E

[
E

[(
x(k)− x̂(k|k)

)(
x(k)− x̂(k|k)

)T
∣∣∣Zk

]∣∣∣∣Zk−1

]}

= tr
{
E[P (k|k)|Zk−1]

}

= tr
{
P̄ (k|k)

}

= tr
{
P (k|k − 1)

}− q2

(
PFANC(k), PD

)
tr

{
W (k)S(k)W T (k)

}

where the first equality is due to the property that the trace of a scalar is

itself, the third one is due the property that tr{AB} = tr{BA}, the fourth

one is due to linearity of tr{·} and E[·] operators and the fifth one follows from

the smoothing property5 of expectations. Note that W (k)S(k)W T (k) ≥ 0

implies tr
{
W (k)S(k)W T (k)

} ≥ 0 and q2

(
PFANC(k), PD

)
is the only term

that depends on PFA. Hence the minimization of J (k, PFA) can be achieved

by maximizing q2

(
PFANC(k), PD

)
over PFA, which completes the proof. ¤

Remark 4.1 Note that the prior threshold optimization problem given in (4.21)

(and hence in (4.22)) is a line search. Furthermore, the above proof clearly

shows that it is a special case of DTOP problem defined in (3.3) with the

choices of fS[·] , tr{·} and P̄NSPP (k|k) , P̄ (k|k), i.e., the output of the MRE

algorithm at time step k.

The functional form of q2

(
PFANC(k), PD

)
, which is given in (4.15), is mathe-

matically intractable to take derivative over PFA, however, it can be evaluated

5 The smoothing property of expectations states that the expected value of a conditional
expected value is the unconditional expected value [18]. That is to say, E [E [x|y]] = E[x]
where an additional conditioning in the outer expectation is also permissible.
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numerically at any point of interest. Therefore any line search algorithm that

requires only the values of the function to be maximized, such as, Golden-

Section or Fibonacci Search methods [66], can be applied to this problem.

Provided that the cost function is unimodal,6 these algorithms converge to the

global optimum. Arguing along these lines, the problem is solved in [1] using

line search algorithms.

In the present work, we adopt a different approach. Instead of using iterative

solution algorithms, we attempt to obtain an approximate closed-form solution

by using a functional approximation proposed in [62].

4.3.2 A Functional Approximation to the IRF

Although the functional form of q2

(
PFANC(k), PD

)
seems very complicated,

when numerically evaluated and plotted it can be seen that it has a monotonic

and nice behaviour (see Fig. 2.1). This makes a functional approximation to

the IRF feasible. Indeed, in [62], the following closed-form approximation was

suggested:

q̂2

(
λV̄ (k), PD

)
=

0.997PD

1 + 0.37P−1.57
D λV̄ (k)

(4.23)

where λ , PFA/VC is the spatial clutter density. This expression can be used

for online calculation purposes of the IRF without performing Monte-Carlo

integration procedure mentioned previously in Section 2.5.1.1.

The plot of the approximation given in (4.23) together with the actual IRF

curves are shown in Fig. 4.1. Note that the approximation is good enough

when the average number of false alarms is less than 10 (i.e., λV̄ = PFANC <

10).

6 It can be experimentally verified that this requirement is satisfied for q2 (PFANC(k), PD)
(see, e.g. Fig. 4.5).
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Figure 4.1: Dependence of information reduction factor on average number
of false alarms for various detection probabilities. The plot is obtained for 2-
dimensional measurement vector with g = 4 sigma gate. Result of a functional
approximation to these curves is shown with dashed lines.

4.3.3 Obtaining a Closed-Form Solution

Being a mathematically-tractable expression, now it is a reasonable idea to

try to find the maximum of the functional approximation given in (4.23) in

closed-form. Although this seems quite a simple idea, to the best of author’s

knowledge, no one tries this way in the literature. In this respect, the work

of [1], where the prior optimization problem given in (4.21) and (4.22) was

first proposed, and the work of [62], where the functional approximation given

in (4.23) was suggested, seem to be unaware of each other. So, as a “close”

alternative to (4.22), we propose the following optimization problem:

P ∗
FA(k) = arg max

PFA

q̂2

(
PFANC(k), PD

)
, subject to

PD = fROC(PFA, ζ) and 0 ≤ PFA ≤ 1 (4.24)
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where

q̂2

(
PFANC(k), PD

)
=

0.997PD

1 + 0.37NC(k)P−1.57
D PFA

(4.25)

which can easily be obtained from (4.23) by making the substitution λV̄ (k) =

PFANC(k). To find the single maximum,7 we apply the necessary condition

for existence of an extremum, namely we take the derivative of both sides of

(4.25) with respect to PFA and equate to zero:

dq̂2

dPFA

=
0.997 dPD

dPFA

[
1 + 0.37NC(k)P−1.57

D PFA

]

[
1 + 0.37NC(k)P−1.57

D PFA

]2

−
0.997PD × 0.37NC(k)

[
−1.57P−2.57

D
dPD

dPFA
PFA + P−1.57

D

]

[
1 + 0.37NC(k)P−1.57

D PFA

]2 = 0. (4.26)

Equating the numerator to zero and rearranging the terms gives the following

differential equation for PD:

[
1 + 2.57× 0.37NC(k)P−1.57

D PFA

] dPD

dPFA

− 0.37NC(k)P−0.57
D = 0 (4.27)

where the derivative term dPD/dPFA can be evaluated from a given detector’s

ROC curve of the form PD = fROC(PFA, ζ).

4.3.4 Considering Different Detectors

Note that the differential equation given in (4.27) is general (i.e., independent

of the detector used), while the ROC curve is clearly detector-specific. The joint

solution of these two equations provides the optimum false alarm probability

P ∗
FA for a specific detector-PDAF pair. At this point, one can try to find

a closed-form solution for various type of detectors, each having a different

ROC curve expression. However, the problem turns out to be very difficult for

7 We know from the shape (see Fig. 4.5) of the cost function q̂2

(
PFANC(k), PD

)
that it

is unimodal, and for practical values of NC and PD, it has a single local maximum in the
interior of the PFA domain of interest (typically the interval [10−8, 1]). Therefore, in this
section we only look at the necessary condition according to Fermat’s Theorem and skip the
“second derivative test.”
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some of the cases considered. For example, the ROC curve of the famous Cell-

Averaging Constant False Alarm Rate (CA-CFAR) detector, which is, under

HOGSQL
I , given by [63]

PD =

[
1 +

P
(−1/NR)
FA − 1

1 + ζ

]−NR

(4.28)

where NR is the reference window size [69], is quite complex to be able to

obtain a closed-form solution for PFA in (4.27). Such a difficulty also arises

when we pick the detectors whose ROC curves can not be given in a closed-

form relation of the form PD = fROC(PFA, ζ), but rather they are expressed

as a combination of two parameterized equations for PFA and PD as

PFA = fFA(α) (4.29)

PD = fD(α, ζ) (4.30)

where α is a scale factor or threshold multiplier [2] used to determine the

thresholding level. An example of this kind of ROC curve is that of the Order

Statistic Constant False Alarm Rate (OS-CFAR) detector, which is, under

HOGSQL
I , given by

PFA = fFA(α) =
K−1∏
j=0

NR − j

NR − j + α
(4.31)

PD = fD(α, ζ) =
K−1∏
j=0

NR − j

NR − j + α/(1 + ζ)
(4.32)

where K is the order number. Again, it seems very difficult to obtain a closed-

form solution for PFA in (4.27).

Remark 4.2 In any difficulty case mentioned above, the problem can still be

solved using optimization algorithms. But remember that our concern in this

chapter, is to obtain a closed-form solution for the problem.

After such pessimistic examples, now we can switch to the Neyman-Pearson

(NP) detector case for which it is possible to solve the problem in closed-form.
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4.3.5 Neyman-Pearson (NP) Detector Case

Under HOGSQL
I , the ROC curve for the optimum Neyman-Pearson (NP) de-

tector is given by the following famous relation [63]

PD = P
1/(1+ζ)
FA . (4.33)

Note that this ROC curve relation is very simple (may be the most simple one

among all detectors). This increases the possibility of obtaining a closed-form

solution for the optimization problem defined in (4.24). Indeed, if we proceed

from (4.33), we get
dPD

dPFA

=
1

1 + ζ
P
−ζ/(1+ζ)
FA (4.34)

and substituting PD and dPD/dPFA terms into (4.27) we obtain

[
1+2.57×0.37NC(k)P

−1.57/(1+ζ)
FA PFA

] 1

1 + ζ
P
−ζ/(1+ζ)
FA = 0.37NC(k)P

−0.57/(1+ζ)
FA .

(4.35)

This equation can be solved for PFA in closed-form as

PFA(k) =
[
0.37NC(k)(ζ − 1.57)

](1+ζ)/(0.57−ζ)

. (4.36)

Note that this solution already satisfies the equality constraint (i.e., the ROC

curve) of the optimization problem defined in (4.24). For the inequality con-

straint, we should have PFA ∈ [0, 1]. For PFA ≥ 0 part, the base term of (4.36)

should be non-negative. Since NC is by definition always strictly positive, we

should have ζ ≥ 1.57 for PFA ≥ 0. Note that with this constraint on the SNR,

the exponent term (1+ζ)/(0.57−ζ) is strictly negative. Therefore, for PFA ≤ 1

part, the base term should be greater than or equal to 1, or we should have

ζ ≥ 1.57+1/(0.37NC). Joint consideration of this last constraint and the pre-

vious one, i.e., ζ ≥ 1.57, yields that we should have ζ ≥ 1.57 + 1/(0.37NC) for

PFA ∈ [0, 1]. Hence, we propose the following optimal setting for the operating

PFA value:

PFA(k) =





[
0.37NC(k)(ζ − 1.57)

](1+ζ)/(0.57−ζ)
if ζ ≥ 1.57 + 1/

[
0.37NC(k)

]

1 otherwise.

(4.37)
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4.4 Interpretation of the Result and Practical

Issues

The optimal PFA setting proposed in (4.37) gives some useful insights into

prior detection threshold optimization. Firstly, this expression provides an

optimum operating false alarm probability for an NP detector, which is con-

catenated with a PDAF, under the assumption of HOGSQL
I . Furthermore, this

setting is valid for the measurement spaces of dimension nz = 2 and when the

validation is performed with a gate size of g = 4.8 The optimal operating false

alarm probability PFA is computed at every time step by taking into account of

current SNR (ζ) and the number of resolution cells enclosed by the validation

gate, denoted by NC . Note that such a setting for PFA is tracker-dependent,

and it is totally different than the traditional detection theoretic approach

where the operating false alarm probabilities are selected on the basis of expe-

rience, intuition and/or other system constraints such as tolerable false alarm

limit of the radar data processor.

One can argue that NP detector has no practical usage due to its unrealistic

assumption of constant and known detection noise power level [2]. Although

this is true and so the ROC curve given in (4.33) is not attainable in the

real-world, many popularly used practical detection systems operate on some

other ROC curves which approximate this optimal one, such as those of CFAR

detectors. Hence, the ROC curve given in (4.33) is still of special attention

and importance.

Now consider the plot of optimal PFA surface as a function of ζ and NC which

is illustrated in Fig. 4.2a where the third data dimension (optimal PFA values)

are represented by colors.

8 These assumptions do not originate from the present study but rather from those for
obtaining the IRF and the corresponding functional approximation in [62]. For the other
values of nz and g, the extension is conceptually easy but the whole procedure (i.e., obtaining
the IRF and the corresponding functional approximation) should be repeated.
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Figure 4.2: (a) The surface of optimal PFA values as a function of ζ and NC ,
(b) PFA contours in the practical operating region. The region where the
optimization suggests PFA = 1 is also shown in (b) as a shaded area. Note
that this region corresponds to applying no thresholding at all, where the whole
system operates in track before detect (TBD) mode.
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Note that the optimization consistently suggests to increase PFA when the

SNR decreases or the filter goes from its transient operation to its steady-state

operation.9 Note also that, considering a practical operating region, where

SNR values are below 20 dB, the threshold optimization suggests considerably

higher PFA values than the ones used commonly in practice (i.e., between 10−8

and 10−4 [2]). Similar values like 10−8 are only suggested when the SNR is very

high (> 60 dB) and the gate volume is large, i.e. in the transient phase of the

filter. This clearly shows that the practically chosen PFA values are far from

an optimal setting in terms of the overall radar system tracking performance.

The main reason for choosing considerably low PFA values in practice is the

computational limitations of the radar data processor in handling large number

of false alarms. Although this may still be of considerable concern today, it is

our belief that diminishing silicon prices and increasing computational power

will enable performance optimal algorithms to be the choice over heuristic

approaches. At low SNR values, the tracking performance gain of operating

at these high but optimal false alarm values may be substantial as illustrated

by the experimental results that follow.

A very interesting result of the proposed closed-form expression can also be

observed from Fig. 4.2. Namely, the solution is also a generalization of the

track before detect (TBD) approach suggested in the literature for very low

SNR scenarios [67], [68]. Note that in some portion of the NC − ζ plane, PFA

is set to 1. This means that the optimal solution applies no thresholding on

the raw radar signals, effectively making a seamless and automatic transition

to the TBD approach, which appears as a degenerate case of the optimal PFA

setting given in (4.37).

9 It can be argued that a decreasing value of NC , namely decreasing number of resolution
cells falling inside a validation gate, suggests that the gate volume (hence the Gaussian
hyper-ellipse suggested by the filter covariance) is diminishing. This in turn suggests the
convergence of the filter to its steady-state although this may not be guaranteed to be the
correct state estimate. Conversely, by the same argument, a large value of NC suggests a
large gate volume, which in turn suggests that the filter is comparatively in its transient
phase.
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4.5 Simulation Results

Here, we consider exactly the same tracking problem as in the previous chapter

with the same simulation parameters. For the sake of completeness, it is

repeated in this section.

We consider the problem of tracking a single target in clutter using a 2D radar.

The target state vector is composed of position and velocity components in

East (ξ) and North (η) directions:

x(k) ,
[

ξ(k) ξ̇(k) η(k) η̇(k)
]T

(4.38)

and we assume to measure the target position in Cartesian coordinates,10 i.e.,

z(k) , [ ξm(k) ηm(k) ]T .

Remember that the optimal PFA setting proposed in (4.37) depends on two

variables, namely, the SNR (ζ) and NC . To be able to analyze the effects of

these parameters independently, first we fix the SNR during a specific scenario

and let the threshold optimization be made by considering this fixed SNR and

time-varying NC value, then we repeat this procedure for different constant

SNR scenarios. In other words, we change the SNR from scenario to scenario,

while NC changes in each scenario. Again we assume that the SNR depends

only on range as given in (3.11) with the same constant factor (i.e., Cζ =

3.125× 1016 m4).

Note that such an artificial geometry ensures the range of the target, hence

the SNR, to be constant during a specific scenario. To determine Cζ , which

represents all the other factors in the SNR equation, ζ is assumed to be 50

(16.99 dB) for 5 km, which yields Cζ = 3.125× 1016 m4.

10 In a typical 2D radar, the measurements are normally in polar coordinates (range and
azimuth). Here, the Cartesian measurements are used to have a linear measurement model.
For further discussion on coordinate conversions, see [4, ch. 1, pp. 36] and [18, ch. 10, pp.
397].
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Figure 4.3: Scenario geometry: Assumed constant SNR target trajectories and
location of the radar.

The circular target motion given in Fig. 4.3 is modeled by a coordinated turn:

F =




1 sin(ΩT )
Ω

0 −1−cos(ΩT )
Ω

0 cos(ΩT ) 0 − sin(ΩT )

0 1−cos(ΩT )
Ω

1 sin(ΩT )
Ω

0 sin(ΩT ) 0 cos(ΩT )




, G =




T 2/2 0

T 0

0 T 2/2

0 T




(4.39)

where the turn rate is selected as Ω = 1 deg/s and the sampling period is

T = 1 s. Note that in the state vector, we do not estimate the turn rate, i.e.,

it is assumed to be known, therefore the state dynamics is also linear. This is

adopted to decouple the maneuver problem from the clutter problem on which

our focus is.

The process noise v(k) , [ vξ(k) vη(k) ]T and the measurement noise w(k) ,
[ wξ(k) wη(k) ]T are both zero mean white Gaussian sequences with covari-

ance matrixes,

Q =


 1 0

0 1


 q2 and R =




(
∆rξ/

√
12

)2
0

0
(
∆rη/

√
12

)2


 , (4.40)

respectively, where the factor q is selected as 0.1 m/s2 and the range resolutions

in East (∆rξ) and North (∆rη) directions are taken as 50 m which yields a
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Table 4.1: Experiment I: Compared tracking systems.

System Name Desired False Alarm Probability, P d
FA

PDAF-E8 PFA(k) = 10−8

PDAF-E6 PFA(k) = 10−6

PDAF-E4 PFA(k) = 10−4

PDAF-OP PFA(k) = [0.37NC(k)(ζ − 1.57)](1+ζ)/(0.57−ζ)

resolution cell volume of VC = 2500 m2. Note that the measurement covariance

matrix given in (4.40) is the result of the assumption that the true measurement

is uniformly distributed in the resolution cell [4, ch. 8, pp. 472]. Finally, the

a priori information about the state, i.e., the mean x̂(0|0) and the covariance

P (0|0) of the initial state x(0), is obtained by two point differencing [18],

similar to the previous chapter.

4.5.1 Experiment1: Comparison with Conventional Ap-

proaches

The objective of this experiment is to demonstrate how much is gained in over-

all system tracking performance by the use of an optimal approach to threshold

selection, in particular our approximate closed-form formulation. We leave the

discussion of how much is gained computationally by this approximate closed-

form method to the next experiment.

We compare four tracking systems given in Table 4.1 each consisting of a prob-

abilistic data association (PDA) tracking filter and an NP front-end detector

with particular choices of the operating PFA values. The first three systems use

constant and conventionally selected desired PFA values of 10−8, 10−6 and 10−4

which are the typical values used in practice [2]. On the other hand, the last

system has a tracker-aware optimal detector for which the desired PFA value

is determined according to the proposed closed-form expression (4.37). The

corresponding PD values for each system can be obtained from their common
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(a) ζ = 16.99 dB.
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(b) ζ = 13.82 dB.
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(c) ζ = 11.14 dB.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Time step, k

R
M

S
 P

os
iti

on
 E

rr
or

, σ
P

O
S [m

]

PDAF−E8 (60.6% Track Loss)
PDAF−E6 (25.8% Track Loss)
PDAF−E4 (4.6% Track Loss)
PDAF−OP (1.1% Track Loss)
Measurement Error Level

(d) ζ = 8.82 dB.

Figure 4.4: Impact of various detector false alarm probability settings on RMS
position errors of their downstream tracking filters. For all SNR scenarios,
the tracking system PDAF-OP, which uses the proposed detector threshold
adaptation scheme, gives the best performance in terms of both RMS position
error and TLP.
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Table 4.2: Experiment II: Compared tracking systems.

System Name Desired False Alarm Probability, P d
FA

PDAF-OP-GOL [1] PFA(k) = arg maxPFA
q2 (PFANC(k), PD)

(solved using Golden-Section Search)

PDAF-OP-FIB [1] PFA(k) = arg maxPFA
q2 (PFANC(k), PD)

(solved using Fibonacci Search)

PDAF-OP PFA(k) = arg maxPFA
q̂2 (PFANC(k), PD)

= [0.37NC(k)(ζ − 1.57)](1+ζ)/(0.57−ζ)

ROC curve (4.33) for a given SNR. We consider four constant SNR scenarios:

16.99, 13.82, 11.14 and 8.82 dB. In each scenario, the target follows the corre-

sponding constant SNR trajectory (see Fig. 4.3) for 100 time steps. We have

conducted 1000 Monte Carlo runs for each scenario. The RMS position error

plots, averaged over track-loss free runs, are shown in Fig. 4.4.

It can be oberved that for all SNR scenarios, the tracking system PDAF-OP

shows the best performance in terms of RMS position error and TLP. Note

that feeding the desired PFA value back to the detector in a tracker-aware

manner significantly improves track loss performance and makes the system

more robust against SNR variations. The improvements are more evident and

becomes more important for low SNR conditions.

4.5.2 Experiment2: Comparison with Line Search Op-

timization Schemes

The objective of this second experiment is to now make a comparison between

online optimal threshold selection methods only, in particular between the

iterative line-search based methods used in [1] and the approximate closed-

form solution proposed in the present study.

We compare three optimal tracking systems given in Table 4.2 in terms of over-

all tracking performance and computational complexity. Each tracking system
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Figure 4.5: Variation of the IRF q2 (PFANC(k), PD) and its functional approx-
imation q̂2 (PFANC(k), PD) over a NP detector ROC curve for NC = 10 and
ζ = 10 dB case.

consists of a PDA tracking filter and an NP detector. In each system, the opti-

mum PFA value found by threshold optimization is fed to the detector at every

time step. The main differences between these tracking systems are thresh-

old optimization problem formulations that they consider and their solution

methodology. For example, PDAF-OP-GOL [1] and PDAF-OP-FIB [1] solve

the threshold optimization problem defined in (4.22) using Golden-Section and

Fibonacci Search methods, respectively. On the other hand, PDAF-OP, which

is proposed in the present study, solves the optimization problem defined in

(4.24) in closed-form.

Two cost functions, q2 (PFANC(k), PD) and q̂2 (PFANC(k), PD) are illustrated

in Fig. 4.5. Both cost functions are evaluated on the NP detector ROC curve

given in (4.33) and for NC = 10 and ζ = 10 dB values. Note that the true cost

function q2 (PFANC(k), PD) is unimodal in the PFA range shown in Fig. 4.5.

Therefore both line search algorithms converge to the global optimum of this

function. Note also that the global optimum found by the closed-form solution

slightly differs from that of the actual function. At this point, we seek answers

to the following questions:
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• Whether there is notable loss of tracking performance by solving the

approximate optimization problem rather than the original one,

• If no such loss is observed, what is the amount of computational gain

obtained by using a closed-form solution to the approximated problem

as compared to iterative solution of the original problem.

To answer these questions, we configure an experiment that is described in

this section. Firstly we note that the variation of both cost functions given in

Fig. 4.5 is best viewed in log scale for PFA axis. Use of a linear scale in PFA

squeezes the global optimum peaks in a very small interval so that they can not

be observed. The same effect also slow down the line search algorithms hence

causes unfair evaluation. This observation leads us to operate line search

algorithms not in linear scale but in logarithmic scale. That is, it is much

more efficient to search the global optimum over the exponent term of PFA.

Therefore, for the iterative methods based on Golden-Section and Fibonacci

Search, we take the initial interval of uncertainty for the exponent of PFA as

Ie = [−8, 0] and the maximum error tolerance on the exponent as ∆e = 0.01.

We consider five constant SNR scenarios of 5, 8, 11, 14, 17 dB and perform 500

Monte Carlo runs for each scenario. The simulation results are given in Fig.

4.6. All systems exhibit similar performance in terms of RMS position error

and TLP. Hence, as an answer to the first question above, we may conclude

that the proposed closed-form solution does not imply a tracking performance

penalty.

The superiority of PDAF-OP becomes obvious when we consider execution

times11 given in Fig. 4.6d. Note that PDAF-OP, which uses closed-form adap-

tation scheme in detector threshold optimization, clearly outperforms PDAF-

OP-GOL and PDAF-OP-FIB approaches, which use one dimensional search

algorithms for the same task. The computational gains are significant.

11 All executions times are measured on the same hardware (i.e., computer) with all
auxiliary processes killed.
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(c) Steady-state RMS position errors.
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Figure 4.6: Comparison of tracking systems for Ie = [−8, 0] and ∆e = 0.01.
Although there is no notable difference in terms of RMS position error and
TLP, the closed-form approach (PDAF-OP) is computationally much more
efficient than the iterative algorithms.
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For the iterative search methods, the computation time critically depends on

number of function evaluations which is determined by Ie and ∆e. In this

particular selection of these parameters, the gain in terms of computational

power is (approximately) as much as 115 times. To obtain a fairer comparison

we attempted to observe the trade-off between tracking performance and com-

putation times by changing the error tolerance parameter, ∆e. Since we have

already observed that the proper setting of PFA becomes more crucial for low

SNR conditions, a very low SNR scenario of (5 dB) is chosen for this compar-

ison and the same experiment is repeated for Ie = [−8, 0] and error tolerance

values of ∆e = {0.1, 1, 2, 3, 4}. The corresponding computational gains are

approximately {85, 66, 64} times for ∆e = {0.1, 1, 2}. For the other tolerance

values ∆e = {3, 4}, line search algorithms produce unacceptable results and

the optimization fails. Therefore, we conclude that even for the crude toler-

ance case of ∆e = 2, the closed-form solution is approximately 64 times more

efficient than the iterative algorithms. Note that a very crude error tolerance

usually obtains an arbitrary point near the mid-point of the initial search in-

terval rather than the true maximum point. This behavior can be expected

to impact performance especially when the maxima lies close to the interval

boundaries, such as the one illustrated in Fig. 4.5.

4.6 Conclusion

In this chapter, we proposed a closed-form solution for the prior detector

threshold optimization problem defined in [1]. This problem can also be viewed

as an MRE-based DTOP (DYNAMIC-MRE-CF ), explained in the previous

chapter. Our proposed solution relies on a functional approximation for the

IRF which was introduced previously in [62] but not applied to the problem.

Compared with the existing iterative solution approaches (DYNAMIC-MRE-

LS [1]), this led to a significantly more computationally efficient adaptation

scheme with no observable performance degradation. Furthermore, a numeri-
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cal analysis on the proposed expression shows that this solution brings a theo-

retical lower bound on the operating SNR concerning when the whole system

should be switched to the track before detect (TBD) mode.
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CHAPTER 5

EXTENSIONS TO MANEUVERING

TARGET TRACKING CASE

In the previous chapters, we considered tracker-aware detection threshold op-

timization problem when tracking non-maneuvering targets in clutter. In this

chapter, we relax this assumption and consider the same problem for now

maneuvering targets.

5.1 Introduction

Up to now, we assumed that the model describing the state transition and

measurement system is completely known to the filter. In other words, given

the following state space representation

x(k + 1) = F (k)x(k) + G(k)u(k) + v(k) (5.1)

z(k) = H(k)x(k) + w(k), (5.2)

where

v(k) ∼ N (0, Q(k)) (5.3)

w(k) ∼ N (0, R(k)), (5.4)

the matrices F (k), G(k), H(k), Q(k) and R(k) and the input vector u(k) are

all assumed to be exactly known by the filtering algorithm. This means that,
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no modeling uncertainty (or modeling error) is assumed. Indeed, this is one

of the fundamental assumptions made in the derivation of the Kalman filter

[18] in classical state estimation, as well as many other algorithms in tracking,1

such as, the probabilistic data association filter (PDAF) [45], the joint PDAF

(JPDAF) [70] and the multiple hypothesis tracking (MHT) [71] algorithm.

In practical problems, however, there are many cases that the dynamic system

model related with the state transition and/or state measurement can not be

known with certainty all times. For example, in a practical tracking scenario,

this assumption may not be valid due to unknown target maneuver which ap-

pears as an abrupt change in the motion dynamics (state transition model).

Similarly, in the field of fault diagnosis, the system is accepted to be in either

a “faulty” or “non-faulty” operating mode and the unknown switching mech-

anism between these modes (e.g., failure of the system) is usually modeled by

an abrupt change in the system output (measurement model).

In any case, when the filter-assumed state space model does not match the

actual phenomena (target motion, system working mode, etc.), the filtering

algorithm often produces unacceptable results leading to divergence or track

loss.

In this chapter, our aim is to propose solutions for the problem of detector

threshold optimization when tracking a maneuvering target in clutter. This

problem contains both of two challenging issues in tracking, namely, the prob-

lem of measurement origin uncertainty or data association [4] and target mo-

tion uncertainty, i.e., maneuver. For the first issue, a popularly used solution

is the probabilistic data association (PDA) filter (or PDAF) [45]. Unlike sim-

ple data association rules which make “hard” decisions, such as the nearest

neighbor and the strongest neighbor approaches, the PDA is an all-neighbor

1 In [18], tracking is defined as “the state estimation of a moving object using remote
sensors.” Although tracking can be viewed as a special case of state estimation, it is wider
in scope: Not only it uses all the tools from the state estimation theory, but also it requires
the extensive use of statistical decision theory when some of the practical problems like data
association [4] are considered.
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approach – it uses all the validated measurements in the association process.

By this feature, the PDA is often interpreted as a “soft” decision logic. The

filter which uses this logic, called the PDAF, is proven to be very robust and

consistent2 [72], and produces much better results than simple hard-decision-

based logics do. The details of the PDAF algorithm are given in Appendix

B.

When the second issue, i.e., maneuver problem, comes into the picture, the

PDAF alone is not competent to solve the problem due to the mentioned

mismatch between the filter-assumed system model and true system mode.

The literature related to solving this problem is abundant [4], [3], [73], [18].

However, methodologically, the proposed solutions can be categorized into a

few broad categories [4].

In the first methodology, the maneuver is treated as a random process which

enters the state dynamics given in (5.1) as an additional process noise. In this

case, the problem turns out to be either readjusting the process noise level in

a continuous space – continuous level adjustment or switching between several

discrete noise levels – discrete level adjustment [18]. Relying on this crude noise

assumption, this methodology usually results in poor tracking performance

because a maneuver is, in general, not noise. The second methodology takes

this fact into account and models the maneuver as a constant deterministic

acceleration continuing over a certain period of time. Using this treatment,

the unknown acceleration input is estimated either separately by another filter

or simultaneously within the state. Then, the state estimation is corrected

with this input estimation.

Different than the previous two methodologies, the third one uses multiple

model filtering approach. In this solution approach, multiple filters each

matched to a different motion model are run in parallel and their outputs are

2 In general, a state estimator (filter) is called consistent if its state estimation error,
x̃(k|k) , x(k) − x̂(k|k) has zero mean (i.e., the estimate is unbiased) and has a covariance
matrix as calculated by the filter (i.e., the filter should be “honest”!) [18].
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combined to obtain the global estimate. The algorithms in this category are

proven to be better than the previous two approaches. In particular, the inter-

acting multiple model (IMM) structure [64] provides a superior performance

with less computation among its alternatives. The details of this algorithm

can be found in Appendix C.

5.2 Proposed Optimization Schemes

As it is emphasized above, two elegant solutions for clutter and maneuver

problems are the PDAF and multiple model filtering (and particularly IMM

filter), respectively. For tracking maneuvering targets in clutter, a general

approach is to use these solutions together. This can be achieved by running

multiple model PDAFs in parallel and combine their estimates in forming the

global estimate. In this section, we present two dynamic threshold optimization

(DTOP) schemes for the detectors of the tracking systems which use multiple

model PDAFs in their filtering side. The first scheme is a heuristic one in the

sense that it is based on a heuristic filter. The second scheme, on the other

hand, is a transparent extension of the DTOP schemes presented in Chapter

3 for a single model, to the multiple model filtering case.

5.2.1 A Heuristic Extension

Tracking maneuvering targets requires a good adaptation of the tracking filter

to the changes in the state transition (or motion) model. One of the most

attractive solution approaches is to use multiple model filtering where multiple

tracking filters, each matched to a different motion model, are run in parallel

and their estimates are fused to obtain the global estimate.

At this point, instead of fusing each elemental filter output, we try a heuris-

tic filtering approach based on a hard-decision mechanism, so that at every
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time step, the global estimate is produced by taking only one of the filter’s

output. Let us assume that the target behaves according to one of the two

modes: “Quiescent‘” and “maneuvering.” Then, basically, we have two ele-

mental filters (PDAFs) corresponding to each mode. Provided that a reliable

maneuver detection algorithm exists, we run only one of the filters together

with its tracker-aware detector. This is the main motivation3 in this extension.

We prefer a DTOP scheme, so that the desired false alarm probability of the

detector is determined optimally and fed to the detector at every time step.

Without having any interaction between model-matched filters, the proposed

approach closely resembles the static multiple model estimator approach [18],

but with a difference that it does not even combine the estimates of each

elemental filter in producing the final estimate.4

One may ask the natural question: “Why do we try such a filtering approach

instead of, for example, the interacting multiple model (IMM) filter, which is

already proven to be successful for the problem at hand?” The answer to this

question is twofold.

First of all, this ad-hoc idea allows direct5 use of the DTOP schemes studied

previously for single model PDAF case. So it is a quick solution approach

worthwhile to try.

Secondly, we are motivated to investigate whether such a heuristic filtering

structure with a tracker-aware detector performs better than a sophisticated

filtering structure, such as IMM filter, but with a conventional detector.

Now, the question is: How do we detect a maneuver onset/termination, and

so the criterion for switching between models? In a cluttered environment, it

3 As we have already shown that each individual tracking system (i.e., tracker-aware
detector and single model tracking filter) provides very good performance over their con-
ventional counterparts.

4 Fusing the output of each elemental filter is a common characteristic for all multiple
model filtering schemes including the static multiple model estimator (see, e..g., [18]).

5 That is, without any further derivation efforts.
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is very crucial to detect the onset/termination of the maneuver as quickly as

possible. Since the only reliable as well as fast detection mechanism available

is the IMM-PDAF, we use this filter not for the purpose of estimation but for

the maneuver detection. So in this heuristic system architecture, there exists

also an IMM-PDAF running continuously at the background, for detecting the

maneuver onset and termination as quickly and reliably as possible.

We use the IMM-PDAF model probabilities, {µj(k)} in making the decision

for switching between the quiescent and maneuvering models. Let us define

three possible (exhaustive) events as

Ej(k) , {µj(k) ≥ 1− ε} j = 1, 2, (5.5)

and E0(k) being the complementary event of {E1(k) or E2(k)}. Then, our

tracking system has three operating modes corresponding to each of these

events:

• E1 : Quiescent model based tracker-aware detection and filtering,

• E2 : Maneuvering model based tracker-aware detection and filtering,

• E0 : Transition mode.

An example operation for the choise of ε = 0.1 is illustrated over the IMM-

PDAF model probabilities in Fig 5.1 where the white regions corresponds to

the occurrence of E0.

5.2.1.1 Steps of the Algorithm

At each time step k, the algorithm makes a hard-switching between tree oper-

ating modes according to the occurrence of the events E0(k), E1(k) and E2(k).

One cycle of the algorithm is as follows.

• Operating Mode E1: This is the quiescent model based tracker-aware

detection and filtering mode.
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Figure 5.1: The operating modes of the proposed heuristic approach over the
variation of model probabilities of the IMM-PDAF. The white regions corre-
sponds to the transition mode E0.

– Reinitialization of the Filter Based on the Quiescent Model:

This is done by feeding the last estimation output and associated

covariance of the overall system back to the PDAF based on the

quiescent model as a new initial estimate and the associated, co-

variance. That is,

x̂Q(k − 1|k − 1) = x̂(k − 1|k − 1) (5.6)

PQ(k − 1|k − 1) = P (k − 1|k − 1) (5.7)

– Dynamic TA-DTO Based on the Quiescent Model: The de-

sired false alarm probability, P d
FA of the detector is set optimally by

solving the optimization problem defined in (3.3) of Chapter 3, i.e.,

P d
FA(k) = arg min

PFA

{
fS

[
P̄Q

NSPP (k|k)
]}

, subject to

PD = fROC(PFA, ζ) and 0 ≤ PFA ≤ 1 (5.8)

where as defined previously fS[·] is any scalar measure that can

be deduced from a matrix (such as, trace or determinant) and

P̄Q
NSPP (k|k) is an offline approximation of the covariance of the

PDAF based on the quiescent model. Note that P̄Q
NSPP (k|k) can
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be obtained either of the NSPP methodologies for the PDAF, i.e.,

the MRE or HYCA algorithm.6

– Detection: In this step, given the desired false alarm probabil-

ity, which is optimally set in the previous step, and the SNR, the

detector operating point, (PFA, PD), so the detection threshold is

determined, and the measurements, Z(k) are generated.

– Quiescent Model Based Filtering: Given the initial estimate,

x̂Q(k − 1|k − 1), the associated covariance, PQ(k − 1|k − 1), and

the measurements, Z(k), a probabilistic data association filtering

(PDAF) algorithm which is based on the quiescent model is carried

out to obtain the updated estimate and the associated covariance,

x̂Q(k|k) and PQ(k|k).

– Outputting: The global estimate and associated covariance of the

overall system are taken as those produced by the quiescent model

based filter as

x̂(k|k) = x̂Q(k|k) (5.9)

P (k|k) = PQ(k|k) (5.10)

• Operating Mode E2: This is the maneuvering model based tracker-

aware detection and filtering mode. The steps of this mode are exactly

the same as those of E1. The difference is the model used.

– Reinitialization of the Filter Based on the Maneuvering

Model: This is done by feeding the last estimation output and as-

sociated covariance of the overall system back to the PDAF based

on the maneuvering model as a new initial estimate and the asso-

6 For the MRE case, as mentioned in the previous chapter, instead of solving the opti-
mization problem iteratively, one can use the closed-form expression (4.37) provided that
the detector is of Neyman-Pearson type and the corresponding assumptions hold.
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ciated covariance. That is,

x̂M(k − 1|k − 1) = x̂(k − 1|k − 1) (5.11)

PM(k − 1|k − 1) = P (k − 1|k − 1) (5.12)

– Dynamic TA-DTO Based on the Maneuvering Model: The

desired false alarm probability, P d
FA of the detector is set optimally

by solving the optimization problem

P d
FA(k) = arg min

PFA

{
fS

[
P̄M

NSPP (k|k)
]}

, subject to

PD = fROC(PFA, ζ) and 0 ≤ PFA ≤ 1 (5.13)

where P̄M
NSPP (k|k) is an offline approximation of the covariance of

the PDAF based on the maneuvering model.

– Detection: In this step, given the desired false alarm probability,

and the SNR, the detector operating point, (PFA, PD), so the de-

tection threshold is determined, and the measurements, Z(k) are

generated.

– Maneuvering Model Based Filtering: Given the initial esti-

mate, x̂M(k− 1|k− 1), the associated covariance, PM(k− 1|k− 1),

and the measurements, Z(k), a PDAF algorithm which is based

on the maneuvering model is carried out to obtain the updated

estimate and the associated covariance, x̂M(k|k) and PM(k|k).

– Outputting: The global estimate and associated covariance of the

overall system are taken as those produced by the maneuvering

model based filter as

x̂(k|k) = x̂M(k|k) (5.14)

P (k|k) = PM(k|k) (5.15)

• Operating Mode E0: This is the transition mode between the quies-

cent and maneuvering modes.
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– Conventional Detection: The desired false alarm probability,

P d
FA of the detector is set conventionally, i.e., to a maximum al-

lowable value. Then given the SNR, the detector operating point,

(PFA, PD), so the detection threshold is determined, and the mea-

surements, Z(k) are generated.

– Outputting: The global estimate and associated covariance of the

overall system are taken as those produced by the IMM-PDAF run-

ning at the background.

x̂(k|k) = x̂IMM−PDAF (k|k) (5.16)

P (k|k) = P IMM−PDAF (k|k) (5.17)

5.2.2 A Multiple Model Filter Integrated Extension

Although the previous heuristic extension of dynamic threshold optimization

problem is a quick and reasonable approach, it is very cumbersome: It uses two

detection blocks and four PDAFs for tracking two-modes target motion. It is

not integrated into the multiple-model filtering rather it uses some heuristics

and a hard-switching mechanism to favor the models. As a second extension,

in this section, we try to integrate the threshold optimization within multiple

model filtering. Our problem formulation is as follows. We seek an optimum

operating false alarm probability such that

P ∗
FA(k) = arg min

PFA

[
E

[
‖x(k)− x̂(k|k)‖2

∣∣∣Zk−1
]]

, subject to,

PD = fROC(PFA, ζ) and 0 ≤ PFA ≤ 1 (5.18)

where x(k), called the base state, is the true target state at time step k, x̂(k|k)

is the state estimated by a multiple model filtering algorithm which uses the

PDAFs as modules [4] (or elemental filters [19]), such as IMM-PDAF, and
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Zk−1 is the cumulative set of commonly7 validated measurements through time

k − 1.8 Note that, this problem is a multiple model filtering extension of the

problem defined in (4.21) in the previous chapter, where the same problem

is formulated for single model (PDAF) case. Our aim is to find an optimum

false alarm probability, which in turn determines the detection threshold for a

given SNR value. The equality constraint of the optimization problem is the

ROC relation and the inequality one is used to guarantee that the resulting

false alarm is a valid probability.

The unconstraint part of the optimization problem can be rewritten as

P ∗
FA(k) = arg min

PFA

[
E

[
‖x(k)− x̂(k|k)‖2

∣∣∣Zk−1
]]

(5.19)

P ∗
FA(k) = arg min

PFA

[
E

[
tr

{
P (k|k)

}∣∣∣Zk−1
]]

(5.20)

P ∗
FA(k) = arg min

PFA

[
tr

{
E

[
P (k|k)

∣∣∣Zk−1
]}]

(5.21)

where tr{·} is the trace operator. Let M(k) ∈ {1, 2, . . . , r}, called the modal

state [43], is a discrete-time switching random process [75] which represents

the system mode at k (i.e., the model in effect during the sampling period

ending at time step k). Moreover, let Mj(k) , {M(k) = j} denote the event

that the jth model is in effect at time k. Assuming that the true system

mode obeys only one of the r possible modes defined above, the events Mj(k),

j = 1, 2, . . . , r are mutually exclusive, that is, Pr{Mi(k),Mj(k)} = 0, ∀i 6= j

and exhaustive, that is,

r∑
j=1

Pr{Mj(k)} = 1. (5.22)

7 Different techniques in obtaining a common validation region in multiple model filtering
can be found, for example in [74].

8 As mentioned in the previous chapter, this can be also named as a prior [1] detection
threshold optimization. In its posterior version the conditioning will be on Zk.
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So, we can apply total expectation theorem to (5.21) as

P ∗
FA(k) = arg min

PFA

[
tr

{ r∑
j=1

E
[
P (k|k)

∣∣∣Mj(k), Zk−1
]
Pr

{
Mj(k)

∣∣Zk−1
}}]

P ∗
FA(k) = arg min

PFA

[
tr

{ r∑
j=1

E
[
P j(k|k)

∣∣∣Zk−1
]
µj(k|k − 1)

}]

P ∗
FA(k) = arg min

PFA

[
tr

{ r∑
j=1

P̄ j(k|k)µj(k|k − 1)

}]

P ∗
FA(k) = arg min

PFA

[ r∑
j=1

tr
{
P̄ j(k|k)

}
µj(k|k − 1)

]
(5.23)

where µj(k|k − 1) , Pr
{
Mj(k)

∣∣Zk−1
}
, j = 1, 2, . . . , r are the predicted model

probabilities. The term P̄ j(k|k), which is a deterministic version of the model-

conditioned covariance P j(k|k), can be further substituted by either MRE or

HYCA approximations given in Chapter 2. For the MRE case, this term can

be approximately written as [5]

P̄ j(k|k) = P̄ j
MRE(k|k) , E

[
P j(k|k)

∣∣Zk−1
]

≈ P j(k|k − 1)− q2

(
PFAN j

C(k), PD

)
W j(k)Sj(k)W j(k)T (5.24)

where q2(·) is the information reduction factor [4] (IRF). The terms W j(k)

and Sj(k) are respectively the Kalman gain and innovation covariance corre-

sponding to the jth model-matched PDAF at time step k and

N j
C(k) , V j(k)

VC

=
cnzg

nz |Sj(k)|1/2

VC

(5.25)

is the number of resolution cells enclosed by the validation gate defined by the

jth model at time step k. Substituting (5.24) into (5.23), we have

P ∗
FA(k) = arg min

PFA

[ r∑
j=1

tr
{
P j(k|k)

}
µj(k|k − 1)

−
r∑

j=1

q2

(
PFAN j

C(k), PD

)
tr

{
W j(k)Sj(k)W j(k)T

}
µj(k|k − 1)

]
(5.26)

Note that the first summation does not depend on PFA and therefore it can

be removed from the optimization. Furthermore, the terms in the second
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summation are all non-negative. So the final form of the problem can be

expressed as

P ∗
FA(k) = arg max

PFA

[ r∑
j=1

q2

(
PFAN j

C(k), PD

)
tr

{
W j(k)Sj(k)W j(k)T

}
µj(k|k − 1)

]
.

(5.27)

Note that the optimization problem defined in (5.27) is one dimensional. As-

suming that the cost function is unimodal,9 the solution can be found using

well-known one dimensional (line) search algorithms.

5.3 Simulation Results

We consider an Air Traffic Control (ATC) scenario, illustrated in Fig. 5.2.

In this scenario, an aircraft with an initial position of pT (0) =
[

0 25000
]T

m, flights eastward with a speed of ‖vT‖ = 150 m/s for a 150 s. Then, it

performs a coordinated turn with a turn rate of Ω = 1 deg/s (which amounts

to ∼ 0.26 g maneuver at this speed) for a 150 s. Finally, it flights straight

towards southwest for a 150 s. In generating this motion, we use a white noise

acceleration (WNA) model for the straight parts and a constant turn rate10

coordinated turn (CT) model for the maneuvering part. In both WNA and

CT models, we assume a process noise with a standard deviation of q = 0.01

m/s2 in linear portions of the state transition.

The radar is located at lR =
[

23400 16400
]T

m, which corresponds approx-

imately to the center of the coordinated turn maneuver. We assume that the

radar provides position only measurements for every T = 3 seconds with a

rectangular 11 resolution cell of 50 m in each coordinate which implies that the

resolution cell volume is constant and equal to VC = 2500 m2.

9 Experimentally, it can be observed that the cost function given in (5.27) satisfies this
requirement.

10 We do not add any process noise component to the turn rate. In the case of adding
a noise to the turn rate, the motion model is often referred to as nearly coordinated turn
(NCT) model [18, p. 467]

11 We assume rectangular resolution cells to have a linear measurement model.
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Figure 5.2: A sample Air Traffic Control (ATC) scenario: “T” and “R” denote
initial aircraft (or target) position and radar location, respectively.
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Figure 5.3: The variation of the range between target and radar, and that of
SNR for Cζ = 4× 1017 case.
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Table 5.1: Minimum and maximum SNR values for different values of the SNR
constant, Cζ .

Cζ [m4] ζmin[dB] ζmax[dB]

4× 1017 0.78 18.73

5× 1017 1.75 19.70

6× 1017 2.54 20.49

7× 1017 3.21 21.16

8× 1017 3.79 21.73

9× 1017 4.30 22.25

1× 1018 4.76 22.71

Similar to the experiments presented in the previous chapters, we assume that

SNR depends only on range as

ζ(r) =
Cζ

r4
(5.28)

where Cζ is the SNR constant representing all the other factors in the SNR

equation and r is the range to the target. The variation of the range between

the radar and the aircraft and that of SNR for Cζ = 4× 1017 case, are shown

in Fig. 5.3. The minimum and maximum target range are reported to be

as rmin ≈ 8.5 km and rmax ≈ 24 km, respectively. Note that, at the begin-

ning and end of the motion, SNR is very low as the target range is high. On

the other hand, as the target approaches to the radar, SNR increases, and it

reaches and stays at the maximum value during the coordinated turn maneu-

ver. The minimum and maximum SNR values for different values of Cζ are

listed in Table 5.1. These are the different SNR conditions considered in the

experiment. We chose deliberately very low ζmin values to be able to see the

effect of threshold optimization on the system performance more clearly.

As a detector, we consider a Neyman-Person type detector whose ROC rela-

tion, under HOGSQL
I , is given by [63]

PD = P
1/(1+ζ)
FA . (5.29)
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The quantization errors induced by the finite resolution of the sensor is modeled

by the measurement noise, v(k). Assuming that the true measurement is

uniformly distributed in the resolution cell [4, pp. 472], the error covariance

of v(k) is taken as

R =




(
∆rξ/

√
12

)2
0

0
(
∆rη/

√
12

)2


 (5.30)

for all k, where ∆rξ and ∆rη are the range resolutions, assumed 50 m, in East

and North directions, respectively.

We use two elemental PDAF filters, named as PDAF-Q001 and PDAF-Q3,

which use a second order linear kinematic model (WNA) with process noise

standard deviations of q = 0.01 m/s2 and q = 3 m/s2, respectively. Each filter

is initialized with two point differencing [18] method. These elemental filters

are used either stand alone as in the heuristic approach presented in Section

5.2.1, or as modules in a multiple model filtering structure. But in any case,

they are designed to track the target in its quiescent and maneuvering modes,

respectively.12 Note that the maneuvering model filter, PDAF-Q3 is designed

to match (conservatively) for the maximum maneuver expected, i.e., ∼ 2.6

m/s2 in the scenario.

As a multiple model filtering structure, we use an IMM filter whose Markov

chain transition matrix is given by

Π =


 1− 1/E[τQ] 1/E[τQ]

1/E[τM ] 1− 1/E[τM ]


 . (5.31)

where E[τQ] and E[τM ] are the expected sojourn times [18, p. 487] (in unit of

sampling interval) of the underlying Markov chain in quiescent and maneuver-

ing modes, respectively. For our case, we take these values as E[τQ] = 100 and

E[τM ] = 50. The initial model probabilities are taken as µ(0) =
[

0.5 0.5
]T

.

12 To track the maneuvering mode, a better approach is to use a coordinated turn (CT)
model. This model is nonlinear and hence it requires to use extended Kalman filter (EKF)
based PDAF.
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Table 5.2: Experiment-I: Compared tracking systems.

System Name Desired False Alarm Probability, P d
FA

IMM-PDAF-E8 PFA(k) = 10−8

IMM-PDAF-E6 PFA(k) = 10−6

IMM-PDAF-E4 PFA(k) = 10−4

IMM-PDAF-E2 PFA(k) = 10−2

SWITCHED-PDAF PFA(k) is set as explained in Section 5.2.1

IMM-PDAF-OP PFA(k) is set as given in (5.27)

5.3.1 Experiment1: Comparison of Proposed Methods

with Conventional Approaches

In this experiment, we compare the proposed DTOP schemes with conventional

approaches, where IMM-PDAFs are used with conventional detectors.13 The

compared tracking systems are listed in Table 5.2.

The first four tracking systems are conventional and use heuristically selected

desired false alarm probabilities ranging from 10−8 to 10−2. SWITCHED-

PDAF and IMM-PDAF-OP are DTOP schemes proposed in Section 5.2.1 and

5.2.2, respectively.14 We perform 100 Monte Carlo runs over the scenario pre-

sented in Fig. 5.2 for each of the SNR conditions listed in Table 5.1. We accept

that the track is lost for the ith Monte Carlo run, if the average estimation

error for the ith Monte Carlo run exceeds the average measurement error for

the ith Monte Carlo run. Then, the track loss percentage (TLP) is defined as

the ratio of the number of Monte Carlo runs for which the track is lost to the

total number of Monte Carlo runs performed. The results are given in Fig. 5.4

for different values of Cζ .

Relying on a hard-switching mechanism between two PDAFs, the system

SWITCHING-PDAF has relatively high TLP and performs not so well. The

13 By the conventional detector, we mean the detector whose desired false alarm proba-
bility, P d

FA is set heuristically to a constant value.
14 Note that, IMM-PDAF-OP is based on the MRE approach. A comparison with the

HYCA-based approach is given in the next section.
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 SNR Constant, Cζ  

System Name 1710 10× 179 10× 178 10× 177 10× 176 10× 175 10× 174 10×
KF-BASELINE 0 0 0 0 0 0 0 
IMM-PDAF-E8 96 94 98 100 100 99 100 
IMM-PDAF-E6 80 80 85 95 97 100 100 
IMM-PDAF-E4 42 57 61 80 81 92 96 
IMM-PDAF-E2 67 73 81 92 93 99 99 
SWITCHED-PDAF 78 84 82 95 92 100 99 
IMM-PDAF-OP 40 41 51 73 75 90 97 
 

 
 

 SNR Constant, Cζ  

System Name 1710 10× 179 10× 178 10× 177 10× 176 10× 175 10× 174 10×
KF-BASELINE 12.3515 12.1405 12.1534 12.0800 12.0239 12.1279 12.1829 
IMM-PDAF-E8 17.5725 19.0719 17.8586 N/A N/A 17.4377 N/A 
IMM-PDAF-E6 18.9671 18.8323 19.0789 19.7609 18.2498 N/A N/A 
IMM-PDAF-E4 19.2023 18.8086 19.4615 19.5313 19.5268 18.6406 19.6058 
IMM-PDAF-E2 18.8176 19.5101 18.3066 19.3564 17.4124 18.9084 15.8702 
SWITCHED-PDAF 18.0528 18.4181 18.5075 18.5876 19.1925 N/A 15.3165 
IMM-PDAF-OP 18.2771 18.4509 18.8909 19.1967 18.7658 18.6134 16.4778 

Figure 5.4: TLPs [%] (the above table), and average RMS position errors [m]
(the below table) for different values of the SNR constant, Cζ .

multiple model filtering integrated extension, IMM-PDAF-OP, on the other

hand, shows a robust behavior in terms of TLP. Note that the average RMS

position error values of the systems are very close to each other and do not

give much differentiating information about performance of the algorithms.

The false alarm probabilities suggested by the proposed DTOP schemes are

given in Fig. 5.5. Note that the suggested false alarm probabilities of the al-

gorithms are close to each other. Since the heuristic approach, SWITCHING-

PDAF sets its false alarm to 1 × 10−6 in its transition mode E0, there are

jumps in these regions. Actually they are these jumps that make the heuristic

algorithm prone to track loss. Another heuristic but better approach would

be to use the most recent false alarm value in these regions. This may prevent

the jumps in the suggested false alarm probability. Note that during the ma-

neuvering part of the motion which corresponds to the time steps between 51

and 100, dynamic threshold optimizations suggest lower values for the desired

false alarm probability as compared to non-maneuvering part. This is mainly

due to an increase in the volume of the validation gate during the maneuver.
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Figure 5.5: The false alarm probabilities suggested by the proposed DTOP
schemes for (a) Cζ = 1× 1018 m4, (b) Cζ = 9× 1017 m4, (c) Cζ = 8× 1017 m4

and (d) Cζ = 7 × 1017 m4 cases. Note that except from the transition mode,
E0 the false alarm probabilities suggested by SWITCHING-PDAF are close to
those suggested by IMM-PDAF-OP algorithm.
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Table 5.3: Experiment-II: Compared tracking systems.

System Name Desired False Alarm Probability, P d
FA

IMM-PDAF-OP-MRE PFA(k) is set as given in (5.27)

IMM-PDAF-OP-HYCA PFA(k) is set as given in (5.23) where

P̄ j(k|k) , P̄ j
HY CA(k|k)

5.3.2 Experiment2: Comparison of MRE and HYCA

Based Approaches

The optimal approach IMM-PDAF-OP in the previous experiment is based

on MRE approach. As mentioned in Section 5.2.2, the one based on the

HYCA approach is also possible. In this experiment, we compare these two

approaches. The compared tracking systems are listed in Table 5.3.

We have conducted 100 Monte Carlo runs for Cζ = 1 × 1018 case. The per-

formances of the algorithms are presented in Fig. 5.6. Note that MRE and

HYCA based DTOP schemes have very similar performances and are superior

to the heuristic extension, SWITCHING-PDAF and conventional approaches.

The suggested false alarm probabilities of the proposed dynamic optimization

schemes are given in Fig. 5.7. Note that HYCA-based algorithm suggests con-

sistently lower false alarm probabilities. This is advantageous because it leads

to lower load for the radar data processor. However, this gain is compensated

by the computational requirements of the HYCA-based optimization which is

approximately 10 times higher than that of the MRE-based approach.

5.4 Conclusion

In this chapter, the ideas applied previously for optimization of detection

thresholds in non-maneuvering target tracking in clutter are extended to ma-

neuvering target tracking case.
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Figure 5.7: The suggested false alarm probabilities of the proposed solutions.
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The first extension is a heuristic approach based on a hard-switching mech-

anism between two DTOP schemes for the PDAF. The second extension, on

the other hand, is fully integrated into multiple model filtering structures and

utilizes soft switching mechanism inherently available in them.

It is experimentally observed that the heuristic approach does not give better

results than conventional approaches where the desired false alarm probabili-

ties are kept constant. Although its suggested false alarm probability follows

that of the fully integrated extension, it makes sharp jumps in its transition

mode leading to high TLP. The integrated extension performs much better

than the heuristic and conventional approaches and it makes the multiple

model filtering algorithms more robust against track loss.

The integrated extension can be derived with either MRE or HYCA approx-

imations. It is observed that this does not affect the final performance of

the algorithm. Although HYCA-based integration results in lower false alarm

probabilities, so less load for the radar to handle false tracks, this advantage

may disappear due to higher computational requirements of HYCA-based op-

timization.
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CHAPTER 6

DISCUSSION AND FUTURE WORK

In this thesis, a theoretical and an experimental framework has been presented

for joint optimization of detector and tracker subsystems. More specifically,

the optimal determination of the desired false alarm probability of the detector

is investigated in a tracker-aware manner. This exciting problem, which can

be considered within the context of more general topic of cognitive radar,

is called tracker-aware detection threshold optimization (TA-DETOP) by the

author. The problem and possible improvements are presented in two domains.

In the first domain, TA-DETOP problem is considered for non-maneuvering

target tracking, particularly for the probabilistic data association filtering

(PDAF) case. There were some prior attempts to this problem, but to the best

of author’s knowledge, comparison of these solution schemes is not available

in the literature. After categorizing the existing and newly proposed solutions

as static and dynamic optimization schemes, as the first contribution of the

thesis, a comprehensive comparison of TA-DETOP schemes is presented in a

unified experimental and theoretical framework. Contrary to expectations, the

results concluded that only marginal gains can be achieved by HYCA-based

approaches as compared to MRE-based ones. Moreover, it is observed that

there exists a trade-off between having low track loss percentage (TLP) vs.

having low steady-state tracking error.1 The dynamic schemes are found to

be well-located in this trade-off by providing considerably low TLP and low

1 These measures can be seen also as transient vs. steady-state performance, respectively.
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level of steady-state estimation error. The cost paid for this achievement is

the computational complexity. Optimizing the false alarm probability at ev-

ery time step, it turns out that dynamic schemes are computationally much

more expensive than their static counterparts. As the second contribution of

the thesis, an approximate closed-form solution is found for the MRE-based

dynamic optimization scheme to partially overcome this issue. Although the

solution is given only for the Neyman-Pearson (NP) detector case, in author’s

opinion, it can be applied for other practically used detection systems, which

mimic asymptotically the NP detector, such as, cell averaging constant false

alarm rate (CA-CFAR) system. Apart from its computational efficiency, the

proposed closed-form solution also gives some useful insides into the problem.

The most important implication is that it provides a theoretical lower bound

on the detection SNR concerning when the whole tracking system should be

switched to the track before detect (TBD) mode.

In the second domain of improvements, TA-DETOP problem is formulated for

maneuvering target tracking. By extending the ideas of the first domain, two

dynamic optimization schemes are presented. The first scheme is a heuristic

approach and seems to not provide considerable improvement over the conven-

tional systems where the false alarm is kept constant. The second scheme, on

the other hand, is truly an extension of the dynamic optimization schemes ap-

plied to the PDAF to multiple model filtering structures. Experimental results

show that this extension improves the robustness of the IMM-PDAF against

track loss.

In addition to the contributions presented, this thesis also gives rise to new re-

search directions for future studies. The ideas used in the detection threshold

optimization sections of the thesis are based on MRE and HYCA methodolo-

gies for the PDAF. The NSPP algorithms for other tracking filters, such as,

the nearest neighbor filter (NNF) or the strongest neighbor filter (SNF) are

already available in the literature. So a quick idea may be to apply these NSPP

techniques to the detection threshold optimization problem, if not applied yet.
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Furthermore, new NSPP algorithms can also be proposed. Especially, the one

for the IMM-PDAF deserve some attention. Then, it would be worthwhile to

compare the optimization schemes relying directly on this NSPP methodology

and the ones presented in this thesis.

An interesting and also a challenging extension is for the case of tracking mul-

tiple targets. When two tracks corresponding to two targets overlap, optimal

determination of the detection threshold seems to be a challenging problem.

Another important point to note is the problem of unknown SNR situation. In

all the detection optimization schemes, SNR is assumed to be known, but this

is clearly not the case in practice. Therefore, SNR should be estimated. In

this case, the TA-DETOP problem is coupled with the online SNR estimation

which brings extra challenges to the problem.
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APPENDIX A

TRACKING AND FUSION SIMULATOR

(TAFSIM)

This appendix presents the tracking and fusion simulator (TAFSIM) developed

by the author as a part of the simulation studies conducted throughout the

thesis. TAFSIM consists of a set of m-files written in MATLAB and a graphical

user interface (GUI) for easy usage. It allows to do simulations about tracking

non-maneuvering (or maneuvering), single (or multiple) target(s) in clutter (or

in clutter-free environment) with single (or multiple) radar sensor(s).

The main functionalities of the simulator can be summarized as follows:

• Loading/saving specific scenarios (different target/radar configurations).

• Loading/saving problem specific filters running on radars.

• Doing animated simulations with pause/single-step options.

• Doing non-animated Monte Carlo simulations.

• Displaying the results of the simulations in various analysis plots, such

as RMS position/velocity error, track loss percentage etc.

A snapshot view of the main simulator window is given in Fig. A.1.
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Figure A.2: 2D radar surveillance region, the square and diamond markers
correspond to the radar and targets, respectively.

In TAFSIM, we model two dimensional (2D) rotating surveillance radars which

periodically scan a surveillance region, defined as a circle centered at the radar

location and with radius equal to the maximum range spec of the radar. An

illustrative picture is shown in Fig. A.2.

Radar target tracking is accomplished by processing the detections obtained

from scanning the surveillance region periodically. This type of radar oper-

ation is called track-while-scan (TWS). The radar measurements lie in a 2D

measurement space where the dimensions are range and bearing (azimuth an-

gle). In data generation, we have modeled radar-scanning, target originated

measurement generation and clutter generation. In generating measurements,
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a parametric modeling (rather than signal modeling) approach is considered.

That is, we have just put some accepted models for each phenomenon and

produced corresponding radar measurements.

A.1 Modeling Target Kinematics

In TAFSIM, target kinematics is modeled by a state space representation of

the form

x(k + 1) = F (k)x(k) + G(k)v(k) (A.1)

with process noise v(k) ∼ N (0, Q(k)). Here, F (k) and G(k) are state transition

matrix and process noise gain matrix, respectively. Most common kinematic

models which are used in the tracking literature [18], [4] are implemented in

TAFSIM. These are listed as follows.

• White noise acceleration (WNA) model, which is used when tracking

nearly constant velocity targets.

• Wiener process acceleration (WPA) model, which is used when tracking

nearly constant acceleration targets.

• Coordinated turn (CT) model, which is used when tracking bank-to-turn

maneuvering targets.

• Nearly coordinated turn (NCT) model, which is used when the turn rate

is modeled noisy, i.e., with some process noise component.

• Linear coordinated turn (LCT) model, which is used when the turn rate

is assumed to be known by the filtering algorithm.

120



 

Figure A.3: Radar scanning parameters.

A.2 Modeling Radar Scanning

The radar is assumed to start scanning at a specified time and continue scan-

ning until the end of the simulation. This scanning function is modeled by

three parameters: Starting time (tstart), minimum duration (Tmin), and maxi-

mum duration (Tmax), as illustrated in in Fig. A.3.

Starting time is the time at which the radar starts scanning. By this definition,

this parameter defines the “offset” between starting of scanning and simulation.

Other parameters, minimum and maximum duration, define scanning period

(T ) of the radar. The scanning period (or usually called sampling period) is

modeled as a random variable uniformly distributed between minimum and

maximum duration values. If a constant sampling period is required in the

simulation, minimum and maximum duration parameters should be set to the

same value.

In our simulator, all the radar measurements are assumed to be available at

the end of each scan. The radar is assumed to take a snapshot (sample) of

the surveillance region at the end of each scan.1 The time instants (or steps)

at which the measurements are taken, denoted by tk, k = 1, 2, . . . can be

expressed as

tk = tk−1 + Tk (A.2)

t0 , tstart (A.3)

where the kth sampling period is produced by

Tk = Tmin + (Tmax − Tmin)ãk. (A.4)

1 This is the usual approach in the research community and that is why the scanning
period, T is often called ”sampling” period.
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Here, ãk is the kth realization of a random variable uniformly distributed

between 0 and 1. Note that, when Tmin = Tmax = T , the sampling period

becomes constant and equal to T .

A.3 Modeling Radar Measurements

The set of radar measurements taken during the kth scanning period is stored

in nz ×mk matrix defined by

Z(k) ,
[

z1(k) z2(k) · · · zmk
(k)

]T

. (A.5)

where nz = 2 is the dimension of the measurement space and mk is the number

of received measurements during kth scanning period. Each column of this

matrix corresponds to a single measurement (or detection) composed of range

[m] and bearing [rad] components, i.e., zi(k) =
[

rm
i ψm

i

]T

. At each time

step k, the matrix Z(k) is composed of two submatrices as

Z(k) ,
[

ZT (k) | ZC(k)
]T

. (A.6)

where the first set of measurements ZT (k) denotes the target-originated mea-

surements and the second set ZC(k) denotes the measurements due to clutter.

Depending on the detection probabilities of each target and (spatial) clutter

density, these matrices can be empty for an arbitrary time step.

A.3.1 Generating Target-Originated Measurements

Let us consider a specific simulation instant during the kth scanning period as

illustrated in Fig.A.4a. True range (r) and true bearing (ψ) of the target at

time step k are defined by

r(k) ,
√(

ξt(k)− ξr(k)
)2

+
(
ηt(k)− ηr(k)

)2

(A.7)

ψ(k) , arctan

(
ηt(k)− ηr(k)

ξt(k)− ξr(k)

)
, (A.8)
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(a)
 

(b)

Figure A.4: Target-originated measurement: (a) True range, r and true bear-
ing, ψ, and (b) radar resolution cell.

respectively where superscripts t and r refer to “target” and “radar”, respec-

tively, and ξ and η correspond to East and North components of the position,

respectively. In a realistic scenario, these true quantities may not be measured

exactly due to finite range and angle resolutions of the radar and other system

noises. This is illustrated in Fig. A.4b. The radar resolution cell is defined

as a 2D closed region2 describing the range and azimuth angle resolution of

the radar. In TAFSIM, it is assumed that the true measurement is uniformly

distributed in the resolution cell of the radar. Therefore, the standard devia-

tions of the measurement error components in range and bearing are taken as

σr = ∆r/
√

12 and σψ = ∆ψ/
√

12. Here, the range resolution ∆r is defined as

∆r , c× τ

2
(A.9)

where c ≈ 3 × 108 m/s is the speed of light and τ is the radar pulse width.

Furthermore, the azimuth angle resolution ∆ψ is taken as the horizontal beam

width of the radar.

2 In TAFSIM, we consider 2D radars whose measurement space consists of range and
azimuth angle dimensions. For the radars whose measurement vector consists of some other
components like elevation angle, Doppler frequency shift etc., the resolution cell should be
defined accordingly.
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Figure A.5: Pulse and beam width parameters.

In TAFSIM, the user enters the pulse width and beam width parameters from

the GUI as illustrated in Fig. A.5. Then, any target-originated measurement is

produced by adding a measurement error noise vector to the true measurement

vector as

z(k) ,


 rm(k)

ψm(k)


 =


 r(k)

ψ(k)


 +


 r̃(k)

ψ̃(k)


 (A.10)

where r̃(k) and ψ̃(k) are the range measurement and azimuth measurement

errors which are modeled as zero mean random variables with standard devi-

ations, σr and σψ, respectively.

Another point is that when the radar operates in fluctuating SNR situations,

at some scanning periods, we may not get any measurement from a particular

target or from all of the targets. Therefore, the target-originated measurement

given in (A.10) may not always be available for the radar. This phenomenon is

modeled by the probability of detection (PD) parameter. In TAFSIM, the user

can specify a detection probability P t
D for each target t = 1, 2, . . . , Nt where

Nt is the number of targets. Then at each scanning period, the measurement

originated from the target t is produced with a probability of P t
D.

A.3.2 Generating the Measurements Due to Clutter

Clutter refers to unwanted radar returns. It may be caused by many reasons,

like terrains, atmospheric conditions (rain), artificial objects (buildings), and

even animals (birds). Modeling clutter is a wide topic and there are lots of

work in the literature. Some of them are given in [76], [77], [78]. In these works,

clutter is modeled from a signal-based perspective. Although such modeling

of clutter is not considered in TAFSIM, we have adopted a reasonable clutter
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model described in [4, p. 102] to be able to investigate real life target tracking

problems. In this model, the whole phenomenon is modeled by two parameters:

• Number of false detections: The number of false detections (or false

alarms) due to random clutter in the volume V , denoted by mF , is mod-

eled by a Poisson distribution random variable with probability mass

function given by

µF (mF ) ,
exp

(−λV
)(

λV
)mF

mF !
(A.11)

where λ is the spatial clutter density and V is the volume of the mea-

surement space under consideration.

• Location of false detections: Location of a false detection in the

measurement space, denoted by zF , is modeled by a random variable

whose probability density function is given as

p(zF ) , 1

V
. (A.12)

In other words, any false detection is assumed to be uniformly distributed

in the measurement space under concern.3

A.4 Implemented Tracking Filters

In TAFSIM various single sensor and multisensor tracking filters are imple-

mented. These are listed below.

• Single Sensor Filters:

– Kalman Filter (KF) with WNA and WPA models

– Extended Kalman Filter (EKF) with NCT model

3 This is the region in which the measurement is known to lie. This can be, depending
on the situation considered, either the radar’s surveillance region or the target’s validation
region [4].
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– Nearest Neighbor Filter (NNF)

– Probabilistic Data Association Filter (PDAF)

– Joint Probabilistic Data Association Filter (JPDAF)

– Interacting Multiple Model Filter (IMM)

– Interacting Multiple Model Probabilistic Data Association Filter

(IMM-PDAF)

– Interacting Multiple Model Joint Probabilistic Data Association Fil-

ter (IMM-JPDAF)

– Interacting Multiple Model Nearest Neighbor Joint Probabilistic

Data Association Filter (IMM-NNJPDAF)

• Multisensor (Fusion-Capable) Filters:

– Multisensor Probabilistic Data Association Filter (MSPDAF)

– Interacting Multiple Model Multisensor Probabilistic Data Associ-

ation Filter (IMM-MSPDAF)

Before doing a simulation, the user can design the experiment either from the

GUI, or from a configuration file. The configuration files are in the m-file for-

mat of MATLAB. These files allow the user to define his/her experiment from

an easy-to-read text file and save it for future usage. A sample configuration

file is shown in Fig. A.6. After the simulation is finished, the user can ana-

lyze the results over several performance measures such as RMS position error,

RMS velocity error, model probabilities of IMM filter, etc.

126



 

Figure A.6: A sample configuration file for TAFSIM. From this file, the user
can define the scenario of the experiment, tracking filters and radar parameters.
Note that, several tracking filters can be added for each radar. This artificial
structure is useful especially when a comparison of several filters with the same
measurement set is required.
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APPENDIX B

PROBABILISTIC DATA ASSOCIATION

FILTER

This appendix presents the assumptions and the algorithmic flow of the proba-

bilistic data association filter (PDAF) [45], which is a single-scan cost-effective

solution for tracking non-maneuvering targets in clutter.

B.1 Assumptions

The assumptions of the PDAF algorithm are as follows [4].

• The state of the target of interest, of dimension nx, is assumed to make

its transition in time according to the equation

x(k + 1) = F (k)x(k) + v(k) (B.1)

with the true (i.e., target originated) measurement, of dimension nz,

given by

z(k) = H(k)x(k) + w(k) (B.2)

where v(k) and z(k) are zero-mean mutually independent white Gaussian

noise sequences with known covariances Q(k) and R(k), respectively.

• At each time step k, the true measurement defined in (B.2) is available

with a known detection probability possibly less than unity, i.e., PD < 1,

and in the presence of clutter, which gives rise to false measurements.
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• The false measurements are assumed due to false alarm or clutter and are

modeled as independent identically distributed (i.i.d.) with uniform spa-

tial distribution over the measurement space under consideration, either

the validation gate or the entire surveillance region.

• The number of false measurements (mF ) in the measurement space under

consideration, either the validation gate or the entire surveillance region,

is assumed to be a Poisson distributed random variable with probability

mass function (pmf)

µF (mF ) ,
exp

(−λV
)(

λV
)mF

mF !
(B.3)

where λ is the spatial clutter density and V is the volume of the mea-

surement space under consideration. This version of the PDAF is known

as the parametric PDAF, as it requires the spatial clutter density param-

eter λ. The non-parametric PDAF is obtained either assuming a diffuse

prior model for µF (·) or simply replacing λ with m/V , where m is the

number of validated measurements.

• At each time step k, the past information about the target state is sum-

marized approximately by

p[x(k)|Zk−1] = N (
x(k); x̂(k|k − 1), P (k|k − 1)

)
(B.4)

where Zk−1 is the set of validated measurements through time k − 1

and x̂(k|k − 1) and P (k|k − 1) are the predicted state and predicted

covariance, respectively.1

B.2 Steps of the Algorithm

One cycle of the PDAF algorithm, whose block diagram is given in Fig. B.1,

consists of the following steps:

1 This is the fundamental assumption of the PDAF algorithm [6]. The actual pdf of the
target state is a Gaussian mixture with exponentially growing number of terms with time.
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• Prediction: Prediction step of the PDAF is exactly the same as that of

standard Kalman filter.

x̂(k|k − 1) = F (k − 1)x̂(k − 1|k − 1) (B.5)

ẑ(k|k − 1) = H(k)x̂(k|k − 1) (B.6)

P (k|k − 1) = F (k − 1)P (k − 1|k − 1)F T (k − 1) + Q(k − 1) (B.7)

S(k) = H(k)P (k|k − 1)HT (k) + R(k) (B.8)

W (k) = P (k|k − 1)HT (k)S−1(k) (B.9)

• Validation (Gating): This step selects the measurements to be used

in the update step. In this step, from the received measurement set

Z(k) = {zi(k), i = 1, 2, . . . , mk}, only the measurements falling inside

an ellipsoidal gate are selected. This selection can be mathematically

described as

VG(k, γG) ,
{

zi(k) :
[
zi(k)−ẑ(k|k−1)

]T
S−1(k)

[
zi(k)−ẑ(k|k−1)

] ≤ γG

}

(B.10)

where γG is defined as the gate threshold. Any measurement zi(k) sat-

isfying (B.10) is called a validated measurement. The volume of this

hyper-ellipsoid gate is given by

V (k) , cnzγ
nz/2
G |S(k)|1/2 (B.11)

where cnz , πnz/2/Γ(nz/2 + 1), with Γ(·) being gamma function, is the

volume of the nz-dimensional unit hypersphere (c1 = 2, c2 = π, c3 =

4π/3, etc.).

• Probabilistic Data Association (PDA): This part is the heart of

the PDAF algorithm. In the previous gating step, the measurements to

be used in the update are already determined. The PDAF uses all these

validated measurements in its update step by weighting (or mixing) them

statistically. The weights, called association probabilities, are determined

such that a measurement which is statistically closer to the predicted
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one, i.e., ẑ(k|k − 1), gets higher association probability or vice versa.

Association probabilities are calculated as follows.

βi(k) =





ei(k)

b(k)+
∑mk

j=1 ej(k)
i = 1, 2, . . . , mk

b(k)

b(k)+
∑mk

j=1 ej(k)
i = 0

(B.12)

with

ei(k) = exp

{
−1

2
νT

i (k)S−1(k)νi(k)

}
(B.13)

b(k) =

(
2π

γG

)nz/2
λV (k)

cnz

(1− PDPG)

PD

. (B.14)

Here, β0(k) is defined as the probability that none of the validated mea-

surements is target originated at time step k and βi(k) is the probability

that the ith validated measurement is target originated at time step k.

In this step, one can also calculate the likelihood function of the PDAF

which is the uniform-Gaussian mixture defined by

Λ(k) =
[
V (k)

]mk

[
γ0(mk) + V (k)

mk∑
i=1

P−1
G N (νi(k); 0, S(k))γi(mk)

]

(B.15)

where

γi(mk) =





PDPG[
PDPGmk+(1−PDPG)λV (k)

]−1 i = 1, 2, . . . , mk

(1−PDPG)λV (k)[
[PDPGmk+(1−PDPG)λV (k)

]−1 i = 0
(B.16)

• Update: Finally, the predicted state is updated as

x̂(k|k) = x̂(k|k − 1) + W (k)ν(k). (B.17)

Here, different from the Kalman filter, ν(k) is called the combined inno-

vation and defined by

ν(k) ,
mk∑
i=1

βi(k)νi(k), (B.18)

that is, a weighted summation of the innovations of each validated mea-

surement. The weights are the association probabilities {βi(k)} calcu-

lated in the PDA step. This is the discriminating step of the PDAF from
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the usual Kalman filter. The covariance corresponding to (B.17) is given

as

P (k|k) = β0(k)P (k|k − 1)

+ (1− β0(k))
[
P (k|k − 1)−W (k)S(k)W T (k)

]
+ P̃ (k) (B.19)

= P (k|k − 1)− (1− β0(k))W (k)S(k)W T (k) + P̃ (k) (B.20)

where the (weighted) spread of the innovations term is

P̃ (k) , W (k)

[ mk∑
i=1

βi(k)νi(k)νT
i (k)− ν(k)νT (k)

]
W T (k). (B.21)
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APPENDIX C

INTERACTING MULTIPLE MODEL

ESTIMATOR

This appendix presents the assumptions and the algorithmic flow of the inter-

acting multiple model (IMM) estimator for discrete-time jump Markov linear

systems (JMLSs).

The IMM estimator [64] is often considered to be the most significant advance-

ment in target tracking since the Kalman filter [73]. This algorithm is used

many real world problems especially in maneuvering target tracking [79] and

has become well accepted in the tracking community as the best approach

for this task when the performance and computational requirements of the

alternatives are considered [73].

C.1 Assumptions

The assumptions of the IMM algorithm are as follows.

• The dynamic system under concern obeys one of a finite number of r

modes and is modeled as a multiple-model hybrid system whose state-

space representation is given by [4]

x(k) = F [M(k)]x(k − 1) + v(k − 1,M(k)) (C.1)

z(k) = H[M(k)]x(k) + w[k, M(k)] (C.2)
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where M(k) ∈ {1, 2, . . . , r} is a discrete-time switching random process

[75] which represents the system mode at k (i.e., the model in effect

during the sampling period ending at time step k), and v(k) and w(k)

are white, uncorrelated and of known densities. Here, x(k) and M(k) are

called the base state and the modal state [43], respectively. As x(k) is

continuous-valued and M(k) is discrete-valued, the overall state φ(k) =
[

x(k)T M(k)T
]T

is hybrid, hence the name hybrid system [19].

• The event that the model j is in effect at k is denoted by

Mj(k) , {M(k) = j} (C.3)

• The mode jump process M(k) is a Markov chain with known transition

probabilities

Pr
{
M(k) = j|M(k − 1) = i

}
, Pr

{
Mj(k)|Mi(k − 1)

}
= πij (C.4)

• A Bayesian framework is used: Starting with prior probabilities of each

model being in effect, given by the vector

µ(0) ,
[

µ1(0) µ2(0) . . . µr(0)
]T

, (C.5)

where µi(0) , Pr
{
Mi(0)

}
, i.e., the prior probability that the ith model

is in effect at time 0, the posterior model probabilities are obtained.

C.2 Steps of the Algorithm

One cycle of the IMM algorithm consists of the following steps:

• Mixing Probability Calculation: The probability that the model i is

in effect at k−1 given that the model j is in effect at k conditioned on the

cumulative set of measurements through k − 1, i.e., Zk−1, is calculated
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for every possible combinations of i, j as

µi|j(k − 1|k − 1) , Pr
{
Mi(k − 1)|Mj(k), Zk−1

}
(C.6)

=
1

µj(k|k − 1)
πijµi(k − 1) i, j = 1, 2, . . . , r (C.7)

where

πij , Pr
{
Mj(k)|Mi(k − 1), Zk−1

}
(C.8)

µi(k − 1) , Pr
{
Mi(k − 1)|Zk−1

}
(C.9)

µj(k|k − 1) , Pr
{
Mj(k)|Zk−1

}

=
r∑

i=1

πijµi(k − 1) j = 1, 2, . . . , r. (C.10)

The probabilities µi|j(k− 1|k− 1), i, j = 1, 2, . . . , r, which are to be used

in mixing the estimates and covariances of the previous time step, are

called the mixing probabilities.

• Interaction (Mixing): The mode-conditioned estimates and covari-

ances from the previous time step, x̂i(k−1|k−1) and P i(k−1|k−1) are

mixed to initialize each elemental filter 1 [19] at the current time step as

x̂0j(k − 1|k − 1) =
r∑

i=1

µi|j(k − 1|k − 1)x̂i(k − 1|k − 1) (C.11)

P 0j(k − 1|k − 1) =
r∑

i=1

µi|j(k − 1|k − 1)

{
P i(k − 1|k − 1)

+
[
x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)

]

× [
x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)

]T
}

(C.12)

for j = 1, 2, . . . , r, where x̂0j(k−1|k−1) and P 0j(k−1|k−1) serve as an

initial condition (or a quasi-sufficient statistic [19]) for the filter matched

to the model j.

• Model-Matched Filtering: Using the initial condition (C.11) with

1 Or in its more popularly known name, mode-matched (or model-matched) filters [18].
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(C.12) and the measurement(s)2 at the current time step, each model-

matched filter is run separately to obtain the model-conditioned estimate

x̂j(k|k) and the associated covariance P j(k|k). Moreover, the likelihood

function corresponding to each elemental filter is computed using the

initial condition (C.11) and (C.12) as

Λj(k) , p[z(k)|Mj(k), Zk−1] (C.13)

≈ p[z(k)|Mj(k), x̂0j(k − 1|k − 1), P 0j(k − 1|k − 1)]. (C.14)

Depending on the type of the elemental filters (or modules) used in the

IMM structure, such as Kalman filters (KFs) or probabilistic data asso-

ciation filters (PDAFs), it is this stage (i.e., model-conditioned filtering)

that differ in implementation. The other stages of the IMM algorithm

are almost3 the same in implementation.

• Model Probability Update: The previous model probabilities

µi(k − 1), i = 1, 2, . . . , r are updated as follows.

µj(k) , Pr
{
Mj(k)|Zk

}

=
1

c
p[z(k)|Mj(k), Zk−1]Pr

{
Mj(k)|Zk−1

}

=
1

c
Λj(k)

r∑
i=1

Pr
{
Mj(k)|Mi(k − 1), Zk−1

}
Pr

{
Mi(k − 1)|Zk−1

}

=
1

c
Λj(k)

r∑
i=1

pijµi(k − 1)

=
1

c
Λj(k)µj(k|k − 1) j = 1, 2, . . . , r (C.15)

where the normalizing constant is

c =
r∑

j=1

Λj(k)µj(k|k − 1) (C.16)

2 Depending on type of the each elemental filter, we have either single measurement like
for the Kalman filter or set of (validated) measurements like for the filters used in cluttered
environments, such as the probabilistic data association filter (PDAF).

3 Of course, it may still be needed to do some modifications. For example, when using
PDAFs as modules in an IMM structure, gating stage should be performed commonly outside
of each elemental filter [60], [74]. This is different than stand-alone PDAF where the gating
procedure is a part of the filtering algorithm.
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• Estimate and Covariance Combination: This last step is only for

output purposes, i.e., it is not part of the algorithm recursions [18]. It

combines the model-conditioned estimates and covariances according to

the mixture equations

x̂(k|k) =
r∑

j=1

µj(k)x̂j(k|k) (C.17)

P (k|k) =
r∑

j=1

µj(k)

{
P j(k|k)

[
x̂j(k|k)− x̂(k|k)

][
x̂j(k|k)− x̂(k|k)

]T
}

(C.18)
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