
1

STATISTICAL ANALYSIS OF BLOCK CIPHERS AND HASH FUNCTIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

FATİH SULAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF PHILOSOPHY OF DOCTORATE
IN

CRYPTOGRAPHY

FEBRUARY 2011

Approval of the thesis:

STATISTICAL ANALYSIS OF BLOCK CIPHERS AND HASH FUNCTIONS

submitted by FATİH SULAK in partial fulfillment of the requirements for the degree of Phi-
losophy of Doctorate in Department of Cryptography, Middle East Technical University
by,

Prof. Dr. Ersan Akyıldız
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Ali Doğanaksoy
Supervisor, Department of Mathematics, METU

Examining Committee Members:

Prof. Dr. Ersan Akyıldız
Department of Mathematics, METU

Prof. Dr. Ferruh Özbudak
Department of Mathematics, METU

Assoc. Prof. Dr. Ali Doğanaksoy
Department of Mathematics, METU

Assis. Prof. Dr. Ali Aydın Selçuk
Department of Computer Engineering, Bilkent University

Assis. Prof. Dr. Şahin Emrah
Department of Computer Engineering, Ankara University

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: FATİH SULAK

Signature :

iii

ABSTRACT

STATISTICAL ANALYSIS OF BLOCK CIPHERS AND HASH FUNCTIONS

Sulak, Fatih

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

February 2011, 64 pages

One of the most basic properties expected from block ciphers and hash functions is passing

statistical randomness testing, as they are supposed to behave like random mappings. Previ-

ously, testing of AES candidate block ciphers was done by using the statistical tests defined

in the NIST Test Suite. As some of the tests in this suite require long sequences, data sets

are formed by concatenating the outputs of the algorithms obtained from various input types.

However, the nature of block cipher and hash function algorithms necessitates devising tests

and test parameters focused particularly on short sequences, therefore we propose a pack-

age of statistical randomness tests which produce reliable results for short sequences and test

the outputs of the algorithms directly rather than concatenations. Moreover, we propose an

alternative method to evaluate the test results and state the required computations of related

probabilities for the new evaluation method.

We also propose another package of statistical tests which are designed basing on certain

cryptographic properties of block ciphers and hash functions to evaluate their randomness,

namely the cryptographic randomness testing. The packages are applied to the AES finalists,

and produced more precise results than those obtained in similar applications. Moreover, the

iv

packages are also applied to SHA-3 second round candidate algorithms.

Keywords: Statistical Randomness Tests, Cryptographic Randomness Tests, Block Ciphers,

Hash Functions, AES Finalists

v

ÖZ

BLOK TİPİ ALGORİTMALARIN VE ÖZET FONKSİYONLARIN İSTATİSTİKSEL
ANALİZİ

Sulak, Fatih

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Ali Doğanaksoy

Şubat 2011, 64 sayfa

Blok tipi algoritmaların ve özet fonksiyonların rastgele fonksiyonlar gibi davranmaları bek-

lendiği için bu algoritmaların sağlaması gereken temel özelliklerden birisi de istatistiksel

rassallık testlerinden geçmeleridir. AES yarışmasında aday olan blok tipi algoritmaların is-

tatistiksel analizi NIST test paketi kullanılarak yapılmıştı. Fakat bu paketteki bazı testler

uzun dizilere uygulanabildiği için algoritmaların çıktıları arka arkaya eklenerek uzun diziler

oluşturulmuştu. Ancak blok tipi algoritmaların ve özet fonksiyonların doğası gereği kısa

dizilere uygun testlerden oluşan bir paket daha sağlıklı sonuçlar vereceği için, bu çalışmada

kısa diziler için sağlıklı sonuçlar üreten testlerden oluşan yeni bir istatistiksel test paketi

önerdik ve bu paketi algoritmaların çıktılarına doğrudan uyguladık. Ayrıca yeni bir değer-

lendirme metodu önerdik ve bu metod için gerekli olasılık hesaplamalarını yaptık.

Bunun dışında blok tipi algoritmaların ve özet fonksiyonların belirli kriptografik özelliklerine

dayanan yeni bir test paketi, kriptografik test paketi, önerdik. Bu paketleri AES yarışmasında

finale kalan algoritmalara uyguladık ve önceki çalışmalardan daha iyi sonuçlar elde ettik.

Ayrıca paketleri SHA-3 yarışmasında ikinci aşamaya kalan algoritmalara da uyguladık.

vi

Anahtar Kelimeler: İstatistiksel rassallık testleri, Kriptografik rassallık testleri, Blok Tipi Al-

goritmalar, Özet Fonksiyonlar, AES finalistleri

vii

ACKNOWLEDGMENTS

First of all, I owe my sincerest gratitude to my supervisor Ali Doğanaksoy who patiently

guides, motivates, and encourages me throughout not only this thesis but also all my academic

studies. Without his patience and guidance, it would be impossible to finish this work.

I am heartily thankful to Onur Koçak and Barış Ege for being so cooperative during the studies

we have done together. I am very lucky to have colleagues and friends like them.

I thank all the members of the SAKDAT group at IAM, especially to Çağdaş Çalık and Meltem

Sönmez Turan for their valuable comments. I also wish to thank all the colleagues and friends

I have met over many years at IAM, that I could not mention individually.

Special thanks should be given to Köksal Muş for his support, and most importantly for his

friendship.

Last but not the least, I would like to thank my family for their love and support during my

whole life.

viii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Random Sequences . 1

1.2 Random Number Generators . 2

1.3 Statistical Randomness Tests . 3

1.4 Test Suites . 4

1.5 Motivation of the Thesis . 5

2 STATISTICAL RANDOMNESS TESTING 6

2.1 Statistical Randomness Testing . 7

2.1.1 Frequency Test . 7

2.1.2 Frequency Test within a Block 9

2.1.3 Periodic Frequency Test 9

2.1.4 Runs Test . 10

2.1.5 Test for the Longest Run of Ones in a Block 11

2.1.6 Serial Test . 12

2.1.7 Approximate Entropy Test 14

2.1.8 Non-overlapping Template Matching Test 14

2.1.9 Overlapping Template Matching Test 15

ix

2.1.10 Linear Complexity Test 16

2.1.11 Linear Complexity Profile Test 17

2.1.12 Rotation Test . 20

2.1.13 Lempel-Ziv Compression Test 21

2.1.14 Test Related to Random Walk 22

2.1.14.1 Random Walk Excursion Test 22

2.1.14.2 Cumulative Sums Test 23

2.1.15 Test Related to Integers 24

2.1.15.1 Integer Frequency Test 24

2.1.15.2 Maximum of t Test 25

2.1.15.3 Maximum Difference Test 26

2.1.15.4 Coupon Collector Test 26

2.1.15.5 Repeating Point Test 27

2.1.15.6 Saturation Point Test 28

2.2 Classification of Statistical Randomness Tests 29

3 CRYPTOGRAPHIC RANDOMNESS TESTING 30

3.1 Cryptographic Randomness Testing 30

3.2 SAC Test . 31

3.3 Linear Span Test . 32

3.4 Collision Test . 34

3.5 Coverage Test . 35

4 APPLICATION to BLOCK CIPHERS and HASH FUNCTIONS 37

4.1 Data Sets . 37

4.1.1 Low Density Message 37

4.1.2 High Density Message 38

4.1.3 1-Bit Message Avalanche 38

4.1.4 8-Bit Message Avalanche 38

4.1.5 Message Rotation . 39

4.2 Evaluation Method . 39

4.3 Application to AES Finalist Algorithms 40

x

4.3.1 MARS . 40

4.3.2 RC6 . 40

4.3.3 Rijndael . 41

4.3.4 Serpent . 41

4.3.5 Twofish . 41

4.3.6 Comparison with the previous work 42

4.4 Application to SHA3 Second Round Candidate Algorithms 42

4.4.1 Statistical Randomness Test Results 43

4.4.2 Cryptographic Randomness Test Results 44

5 CONCLUSION . 47

REFERENCES . 49

APPENDICES . 52

A Subinterval Probabilities . 52

B P-Value Tables . 55

C Statistical Randomness Test Results . 61

D Cryptographic Randomness Test Results . 62

VITA . 63

xi

LIST OF TABLES

TABLES

Table 2.1 p-values of Linear Complexity Test for n = 256 18

Table 2.2 LC and LCP values for n = 4 . 19

Table 2.3 Correlation analysis results of p-values obtained from random data and

transformations . 29

Table 3.1 Ranges and probabilities of SAC Test for 220 trials 32

Table 3.2 Probabilities used in Linear Span Test (m > 19) 33

Table 3.3 Ranges and probabilities of Collision Test for 16 and 20 bits 34

Table 3.4 Ranges and probabilities of Coverage Test for 12 and 14 bits 36

Table 4.1 The number of sequences for different message lengths 38

Table 4.2 Selection of k for 1-Bit Message Avalanche and Message Rotation 38

Table 4.3 Selection of k for 8-Bit Message Avalanche 39

Table 4.4 Combined table stating the number of rounds which the algorithms achieve

randomness . 42

Table 4.5 Statistical randomness test results for the 256-bit versions of the algorithms 44

Table 4.6 Number of times the core of the tests repeated with corresponding testing

parameters . 45

Table 4.7 Cryptographic randomness test results for the compression functions of the

256-bit versions of the algorithms . 45

Table A.1 Subinterval Probabilities for Frequency Test, Frequency Test within a Block,

Periodic Frequency Test, and Runs Test . 52

xii

Table A.2 Subinterval Probabilities for Test for the Longest Run of Ones in a Block,

Serial 1 Test, and Approximate Entropy Test . 52

Table A.3 Subinterval Probabilities for Rotation Test, Cumulative Sums Test, and In-

teger Frequency Test . 53

Table A.4 Subinterval Probabilities for Non-overlapping Template Matching Test, and

Linear Complexity Test . 53

Table A.5 Subinterval Probabilities for Linear Complexity Profile Test, and Maximum

of t Test . 54

Table A.6 Subinterval Probabilities for Maximum Difference Test and Repeating Point

Test . 54

Table A.7 Subinterval Probabilities for Coupon Collector Test and Saturation Point Test 54

Table B.1 P-Value Table for the Linear Complexity Profile Test 55

Table B.2 P-Value Table for the Maximum of t Test 56

Table B.3 P-Value Table for the Maximum Difference Test 57

Table B.4 P-Value Table for the Coupon Collector Test 58

Table B.5 P-Value Table for the Repeating Point Test 59

Table B.6 P-Value Table for the Saturation Point Test 60

Table C.1 Statistical Randomness Test Results for AES Finalist Algorithms 61

Table D.1 Cryptographic Randomness Test Results for AES Finalist Algorithms . . . 62

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Random walk represented in a grid . 24

xiv

CHAPTER 1

INTRODUCTION

1.1 Random Sequences

A sequence whose terms are chosen from a finite set in such a manner that, each term takes

any value from the set with an equal probability, is said to be random. If the set is {0, 1}, then

the sequence is called a binary random sequence, or in other words, {an} is called a binary

random sequence if for any i, Pr(ai = 0) = Pr(ai = 1) = 1/2.

Binary random sequences have the following properties [1]:

• Independence: The terms (bits) of a binary random sequence are independent, that is

for any i , j, Pr(ai = a j) = 1/2.

• Unpredictability: If t bits of the sequence are known, it is impossible to predict another

bit.

• Uniformity: Zeroes and ones are uniformly distributed among the entire sequence.

An integer which is taken from the interval [0, n−1] with every integer having probability 1/n

to be chosen is called a random number. Binary random sequences can be used to generate

random numbers.

Random sequences and random numbers are used in a large variety of areas, such as quan-

tum mechanics, game theory, statistics, cryptography, and so on. In cryptography, random

sequences are needed for several applications, such as the generation of primes in RSA en-

cryption, secret keys in symmetric encryption, challenges in challenge-response protocols,

1

initialization vectors, salts in hash functions and the like, but the most common application is

the generation of secret keys.

Secret keys should be generated randomly so that the best option of the attacker should not

be better than trying all possible elements in the set from which the key is chosen. If an at-

tacker narrows down the number of possible keys, then the protocol is assumed to be broken.

In 1996, Goldberg and Wagner [2] showed that the “random numbers” used to generate the

keys in Netscape SSL protocol were based on the time of the processor and therefore pre-

dictable, which helped them to find a major weakness in the protocol. Thus, it is vital to use

an algorithm which produces random numbers properly.

1.2 Random Number Generators

Generation of random numbers for cryptographic purposes is a difficult task. Random num-

bers are ideally generated using true random sources, called true random number generators

(TRNGs), which use a nondeterministic source to produce random numbers. One method

to produce random numbers is measuring the elapsed time between emission of particles,

as the radioactive decay time is unpredictable. The other methods also typically consist of

some physical quantity, such as atmospheric noise, thermal noise from a semiconductor diode,

sound from a microphone, noise in an electrical circuit and so on.

On the one hand generation of random numbers using TRNGs is inefficient and on the other

hand it is impractical to store and transmit large number of random bits. Therefore, determin-

istic algorithms, which are called pseudorandom number generators (PRNGs), are preferred

to TRNGs. PRNGs take a truly random binary sequence (seed) of length k and produce a

periodic “random looking” binary sequence of length l >> k [3]. In most applications, the

seed is produced by TRNGs. The length of the seed should be sufficiently large and the output

should be unpredictable to an adversary with a limited computational power.

The characteristics of PRNGs are different from TRNGs. First, PRNGs are efficient compared

to TRNGs, taking shorter time to produce numbers. They are also deterministic, meaning that

a given sequence of numbers is reproducible. PRNGs are periodic while TRNGs have no

period.

2

An example of a PRNG is the linear congruential generator [3] which produces a pseudoran-

dom sequence of numbers x1, x2, x3, . . . according to the linear recurrence

xn = a · xn−1 + b (mod m)

where x0 is the seed and a, b, and m are parameters of the generator.

Another method to generate pseudorandom sequences is to utilize one way functions by se-

lecting a random seed s, and applying the function to the sequence s, s + 1, s + 2, . . . thus

obtaining the pseudorandom sequence f (s), f (s + 1), f (s + 2),

1.3 Statistical Randomness Tests

The output sequences of PRNGs should be statistically indistinguishable from truly random

sequences, therefore statistical analysis of PRNGs are crucial. Analysis of PRNGs is per-

formed by producing a sample sequence, and evaluating this sequence by statistical random-

ness tests.

A statistical randomness test is developed to test a null hypothesis (H0) which states the input

sequence is random. The test takes a binary sequence as an input and “accepts” or “rejects”

the hypothesis. Randomness tests are probabilistic and there are two types of errors. If the

data is random and H0 is rejected type I error is occured and if the data is nonrandom and

H0 is accepted type II error is occured. The probability of a type I error is called the level of

significance of the test and denoted by α. A statistical test produces a real number between

0 and 1 which is called p-value. If p − value > α then H0 is accepted, otherwise rejected.

Therefore, level of significance varies according to application, however for cryptographic

applications it is usually set to 0,01.

One of the first attempts to measure randomness of binary sequences is the postulates pro-

posed by Golomb, which state three necessary conditions for randomness of a periodic binary

sequence. Let a1, a2, a3, . . . be a periodic binary sequence with period N, and let a “run” be an

uninterrupted maximal sequence of identical bits. Then for the subsequence a1, a2, . . . , aN :

1. The number of ones differs from the number of zeroes by at most 1.

2. At least 1/2n of the runs have length n, and for each length, the runs of zeroes and the

3

runs of ones are equal.

3. The autocorrelation function is two-valued.

The outputs of linear feedback shift registers satisfy all three postulates, therefore the postu-

lates are not sufficient to measure randomness. Golomb’s postulates are used to define ran-

domness tests. The first postulate states that the weight of an n-bit sequence is approximately

n/2 and Frequency Test takes n-bit binary sequence as input, calculates the weight of the se-

quence and using normal distribution produces a p-value. Similarly some other randomness

tests are defined using the second and the third postulates.

1.4 Test Suites

A test suite is a collection of statistical randomness test that are designed to test the random-

ness properties of sequences. There are several test suites in the literature:

• The first collection of randomness tests were presented by Knuth in his famous book

[4]. The randomness tests mentioned in this book are Frequency Test, Serial Test, Gap

Test, Poker Test, Coupon Collector’s Test, Permutation Test, Run Test, Maximum of t

Test, Collision Test, Birthday Spacings Test, and Serial Correlation Test.

• CRYPT-X [5], a test suite developed in Queensland University of Technology, consists

of Frequency Test, Binary Derivative Test, Change Point Test, Runs Test, Sequence

Complexity Test, Linear Complexity Test, Sub-blocks Test, and Entropy Test.

• DIEHARD Test Suite [6] was developed by Marsaglia and published in 1995 on a CD-

ROM. The tests in this suite are Birthday Spacings Test, The Overlapping 5 Permutation

Test, Binary Matrix Rank Test, Bitstream Test, Overlapping Pairs Sparse Occupancy

Test, Overlapping Quadruples Sparse Occupancy Test, DNA Test, Count the Ones Test,

Parking Lot Test, Minimum Distance Test, 3D Spheres Test, Squeeze Test, The Over-

lapping Sums Test, Run Test, and Craps Test. The randomness tests in the suite are

designed to evaluate 32-bit integers.

• NIST Test Suite [7] (published in 2001) originally consisted of 16 tests but the Fast

Fourier Transform Test was later discarded due to a problem discovered by NIST in

4

2009. The randomness tests in the suite are Frequency Test, Frequency Test within a

Block, Runs Test, Test for the Longest Run of Ones in a Block, Binary Matrix Rank

Test, Discrete Fourier Transform Test, Non-overlapping Template Matching Test, Over-

lapping Template Matching Test, Maurer’s Universal Statistical Test, Lempel-Ziv Com-

pression Test, Linear Complexity Test, Approximate Entropy Test, Cumulative Sums

Test, Random Excursions Test, and Random Excursions Variant Test. This suite is used

by Soto and Bassham [8] to evaluate the AES finalists block ciphers.

• TESTU01 [9] is a recently designed test suite, which has two categories: Those that

apply to a sequence of real numbers in (0, 1) and those designed for a sequence of bits.

1.5 Motivation of the Thesis

The test suites in the literature are designed to evaluate the randomness of PRNGs and se-

quences. Our motivation is to test block ciphers and hash functions which produce short se-

quences. To attain this, we determine the statistical randomness tests which produce reliable

results for short sequences and propose a new evaluation method.

The outline of the thesis is as follows: In chapter 2, we give the definitions of the statistical

randomness tests, which produce reliable results for short sequences, with the required com-

putations of related probabilities for the new evaluation method. We also present a method

to classify these statistical randomness tests. In chapter 3, we propose a package of crypto-

graphic randomness tests, designed based on certain cryptographic properties of block ciphers

and hash functions to evaluate their randomness. In chapter 4, we apply the packages defined

in chapter 2 and chapter 3 to the finalist algorithms in AES competition and the second round

candidate algorithms in SHA-3 competition. To reach this goal, first we define how to produce

data sets from the algorithms for statistical randomness testing, then we give the number of

rounds where the algorithms achieve randomness. Finally we conclude the thesis in chapter

5.

5

CHAPTER 2

STATISTICAL RANDOMNESS TESTING

The outputs of cryptographic primitives such as block ciphers and hash functions should be

random looking so that when the outputs are analyzed, predicting the algorithm should not

be possible. Such an algorithm is said to be indistinguishable from a random permutation (or

a random mapping). Therefore, the evaluation of the outputs of the algorithms by statistical

randomness tests is of great importance. This process consists of two parts: taking a sample

sequence from the algorithm, and analyzing this sample by statistical randomness tests.

During Advanced Encryption Standard (AES) competition, statistical testing of the candidate

block ciphers is done by J. Soto[8], using the statistical tests defined in the NIST Test Suite

[7]. However, as approximations and asymptotic approaches used in the distribution functions

of statistical randomness tests force the user to use long sequences, some of the tests in the

suite require sequences of length at least 106 bits for testing, where the block size of the AES

candidates were 128 bits. Soto proposed a solution to this problem by forming data sets as

concatenation of the outputs of the candidate algorithms, which correspond to various input

types like key avalanche, high weight, low weight and the like.

However, the nature of block cipher and hash function algorithms necessitates devising tests

and test parameters focused particularly on sequences of lengths between 128 bits and 512

bits, so called “short sequences”. Our aim is to test block ciphers and hash functions which

produce short sequences, by testing the outputs directly instead of concatenation. To attain

this, we determine the statistical randomness tests, which produce reliable results for short

sequences and propose an alternative evaluation method.

6

2.1 Statistical Randomness Testing

In this section, first we give the definition of the Frequency Test, a basic test for binary se-

quences, and the application of this test to block ciphers and hash functions with an alternative

method for evaluation. Then, we give the definitions of the statistical randomness tests, which

produce reliable results for short sequences, with the required computations of related proba-

bilities for the new evaluation method. The probabilities are presented in Appendix A. In all

the tests it is assumed that the sequence subject to the test is an n-bit sequence.

2.1.1 Frequency Test

Frequency Test [7] compares the Hamming weight W of the sequence with the expected

weight of a random sequence. For a given weight w, there are
(

n
w

)
many n-bit sequences, and

Pr(W = w) =

(
n
w

)
2n , therefore the probability distribution function of this test is the binomial

distribution.

When n > 30, the binomial distribution can be approximated by the normal distribution

function. If we use the normal distribution function to produce p-value, we assign different

p-values to the sequences with W = n − t and W = n + t. However, for cryptographic

purposes these sequences are identical in terms of randomness. Therefore, we use the two

tailed distribution function instead of the standard normal distribution to produce p-value.

In order to test block ciphers and hash functions, a set of n-bit sequences are evaluated using

randomness tests, and a set of p-values are obtained. Two approaches are suggested in the

NIST Test Suite [7] to evaluate test results: examination of the proportion of sequences with a

p-value greater than a certain bound; and the distribution of p-values. The latter one assumes

that p-values are uniformly distributed. A goodness of fit distribution test is performed to

measure whether the p-values are uniform or not by dividing the interval [0, 1] into 10 equal

subintervals.

Let m be the number of sequences tested, and Fi be the number of p-values in subinterval i

for i = 1, 2, . . . , 10. Then the χ2 value and the corresponding p-value are calculated as

χ2 =

10∑
i=1

(Fi −
m
10)2

m
10

and p-value = igamc

(
9
2
,
χ2

2

)

7

where igamc is the incomplete gamma function. If p-value≥0.0001, the test results are con-

sidered to be uniformly distributed.

However, when short sequences are in question, two main problems arise. First problem is

noted in [7], “the asymptotic reference distributions would be inappropriate and would need

to be replaced by exact distributions that would commonly be difficult to compute”. The

second problem arises from the fact that, for short sequences, the probability of a p-value to

be in a subinterval is not the same for all subintervals, since the exact distribution is discrete

where the asymptotic reference distribution is continuous.

In our approach, we choose the difficult way and compute the probability of a p-value to be in

a given subinterval, for each test. NIST assumes that this probability is 1
10 for 10 subintervals

but this is not the case for short sequences. Hence, we compute the subinterval probabilities

for each test.

By making a table consisting of all possible test variables and the corresponding p-values,

together with the probabilities, we find the distribution of p-values. Thus, for each i =

0, 1, . . . , 9, we need to compute

Pr
(

i
10
≤ p-value <

i + 1
10

)
1.

Using these probabilities for subintervals we propose an improved method for evaluation of

the test results. Let pi be the probability of a p-value to be in subinterval i, then

χ2 =

10∑
i=1

(Fi − m · pi)2

m · pi
and p-value = igamc

(
9
2
,
χ2

2

)
.

For specific sequence lengths, pi might be zero for some i. In that case, degree of freedom

should be modified accordingly.

For the Frequency Test, the p-value of the sequence depends only on the weight W of the

sequence as a variable. As for a given weight w, there are
(

n
w

)
many n-bit sequences, the

probability Pr(W = w) is

Pr(W = w) =

(
n
w

)
2n .

For example, for n = 256, the p-value of a sequence is in the interval [0.8, 0.9) if and

1 In the last subinterval we need to compute Pr(0, 9 ≤ p-value ≤ 1)

8

only if the weight of the sequence is 126 or 130. In that case Pr(0.8 ≤ p-value < 0.9) =(
256
126

)
+

(
256
130

)
2256 ≈ 0.0966.

2.1.2 Frequency Test within a Block

Frequency Test within a Block [7] separates the sequence into m-bit blocks and compares

the proportion of ‘one’s in each block with the expected values for a random sequence. The

variables used for computing p-values are the weights Wi of each block. Then

Pr(Wi = wi) =

b n
mc∏

i=1

(
m
wi

)
2n . (2.1)

We choose m = 32 and calculate the corresponding subinterval probabilities. However, as

there are 8 subsequences, it is not feasible to use the equation 2.1. But the variable subject to

χ2 is an integer and the complexity of equation 2.1 is reduced by partitioning that integer as

sums of perfect squares.

2.1.3 Periodic Frequency Test

Periodic Frequency Test, a similar test to the Frequency Test within a Block, separates the

sequence into m-bit blocks and compares the weights of the subsequences {ani} formed by

taking every ith bits of each block with the expected weights of random sequences. The

variables used for computing p-values are the weights Wi of each subsequence. We choose

m = 8, and the calculation of the corresponding subinterval probabilities is given in equation

2.1.

9

�

�

�

�

Algorithm 2.1.1: P F T({a1, a2, . . . , an}, k)

for i← 1 to N

do{
bi = 1 − 2ai;

for j← 1 to
⌊

N
B

⌋
do

e j = 0;

for i← 1 to B

do{
si =

∑i
k=1 b(j−1)B+k;

for i← 1 to B

doif si = 0

then e j = e j + 1;

Apply χ2 o f Goodness o f Fit test to e j values;

return (p − value)

2.1.4 Runs Test

A run is an uninterrupted maximal sequence of identical bits. In the Runs Test [7], the number

of runs in the sequence is compared with the expected number of runs in a random sequence.

The p-value is determined by the variables W and V , which denote the weight of the sequence

and the number of runs in the sequence respectively. Now we need to compute Pr(W =

w1,V = v1) for a given sequence, and calculate the probabilities of subintervals. We consider

the question in two cases:

1. v1 = 2a: Since there is an even number of runs, the number of runs of ‘zero’s and

‘one’s are equal to each other. First we write ‘one’s and ‘zero’s consecutively to define

2a runs. Now, we find the distribution of (w1 − a) many ‘one’s and (n − w1 − a) many

‘zero’s so that the number of runs remains the same. The number of such distributions

10

is equal to the number of nonnegative integer solutions of the system

x1 + x2 + · · · + xa = w1 − a

y1 + y2 + · · · + ya = n − w1 − a.

The first bit can be zero or one, then the probability is computed as;

Pr(W = w1,V = 2a) =
2
(
w1−1
a−1

)(
n−w1−1

a−1

)
2n .

2. v1 = 2a + 1: If v1 = 1, the only possibilities are all one and all zero sequences. Hence

the probability for this case is Pr(W = w1,V = 1) = 2
2n . Now, assume that a > 0. Then,

considering the first bit, the problem can be handled in two parts using the previous

method. If the first bit is one, there are (a + 1) runs of ‘one’s and a runs of ‘zero’s; if the

first bit is zero, there are a runs of ‘one’s and (a+1) runs of ‘zero’s. The number of such

distributions is equal to the number of nonnegative integer solutions of the systems

x1 + x2 + · · · + xa+1 = w1 − a − 1

y1 + y2 + · · · + ya = n − w1 − a

x1 + x2 + · · · + xa = w1 − a

y1 + y2 + · · · + ya+1 = n − w1 − a − 1.

Therefore, the probability is computed as;

Pr(W = w1,V = 2a + 1) =


(
w1−1

a

)(
n−w1−1

a−1

)
+

(
w1−1
a−1

)(
n−w1−1

a

)
2n if a , 0

2
2n if a = 0.

As stated in NIST test suite, if
∣∣∣W

n −
1
2

∣∣∣ ≥ 2√
n
, the p-value is set to 0. Hence, the subinterval

probabilities are calculated regarding this.

2.1.5 Test for the Longest Run of Ones in a Block

Test for the Longest Run of Ones in a Block [7] separates the sequence into m-bit blocks,

and compares whether the length of the longest run of ‘one’s of the blocks are consistent

with the expected number of those for a random sequence. We choose m = 8 and use the

same categories, as NIST suggested [7]. Therefore, denoting the length of the longest run of

11

‘one’s within a block as V , we get q0 = Pr(V ≤ 1) = 55/256, q1 = Pr(V = 2) = 94/256,

q2 = Pr(V = 3) = 59/256 and q3 = Pr(V ≥ 4) = 48/256. Here, the only variables for the

calculation of p-values are the frequencies of the longest runs of ‘one’s in each category (Vi).

In that case, d = bn/8c implies that, for each i = 0, . . . , 3 we have

Pr(Vi = xi) =

(
d
x0

)(
d−x0

x1

)(
d−x0−x1

x2

)(
d−x0−x1−x2

x3

)
q0

x0q1
x1q2

x2q3
x3

2n .

2.1.6 Serial Test

The subject of the Serial Test [7] is the frequency of all possible overlapping m and (m − 1)-

bit blocks of a sequence. Two p-values are produced for this test. We take m = 3, and the

p-values are determined by the frequencies of 1-bit, 2-bit and 3-bit blocks. We first calculate

the probability of frequencies for m = 2, then m = 3.

Let X denote the number of ‘zero’s, and Y denote the number of ‘one’s in a sequence. Simi-

larly, let A, B, C and D denote the number of 00, 01, 10 and 11 blocks respectively. In the case

of m = 2, the p-value is computed depending on variables X, Y , A, B, C and D. Therefore,

our aim is to compute Pr(X = X1,Y = Y1, A = A1, B = B1,C = C1,D =1). We first note some

immediate facts:

Fact 2.1.1 For any sequence the number of 01 blocks is equal to the number of 10 blocks

(that is, B = C).

Proof. Each run in the sequence defines either a 01 or a 10 block, if the sequence contains

more than one runs. Also, in two consecutive runs, there will be a 01 and a 10 block. Consid-

ering the overlapping blocks, the number of runs will be even, which implies B = C. �

Fact 2.1.2 X=A+B.

Proof. Any 00 or 10 block is defined by a 0 bit. Therefore, the total number of 00 and 10

blocks sum up to the number of ‘zero’s. �

Since A+B+C+D = n, if n, X, and B are known, the values of the other parameters can easily

be computed using the facts above. Hence, to produce the probabilities for each subinterval,

12

one needs a probability table which covers Pr(B = B1, X = X1) values for all (B1, X1) tuples

and the p-value derived from the sequence.

Our aim is to compute the probability Pr(B = B1, X = X1). Now, if B1 = 0, the sequence is

either an all one or an all zero sequence. Thus the probability Pr(B = 0, X = X1) = 2/2n.

If B1 > 0, the probability Pr(B = B1, X = X1) is computed in three steps assuming the bits

are arranged on a circle to visualize the overlapping characteristic of the test. First, locate B1

many 01 blocks on the circle. Then place (X1 − B1) many ‘zero’s between 01 blocks. The

number of possible arrangements is equal to the number of nonnegative integer solutions of

the equation x1 + x2 + · · · + xB1 = X1 − B1 which is
(

X1−1
B1−1

)
. Afterwards, locate the remaining

(n−X1−B1) many ‘one’s. These bits can not be placed between ‘zero’s, otherwise the number

of 01 blocks would increase. Therefore, these ‘one’s should be placed adjacent to other ‘one’s

on the circle. The number of such arrangements is equal to the number of nonnegative integer

solutions of the equation x1 + x2 + · · · + xB1 = n − X1 − B1 which is equal to
(
n−X1−1

B1−1

)
.

Here, each arrangement on the circle gives n sequences. However, since there are b many 01

blocks, B1 of these sequences are identical. Therefore, the probability Pr(B = B1, X = X1) is

equal to the number of possible arrangements divided by all possible n bit sequences which

gives,

Pr(B = B1, X = X1) =


(

X1−1
B1−1

)(
n−X1−1

B1−1

)
n

B1

2n if B1 > 0
2
2n otherwise.

In the case of m = 3, the probability can be computed similarly. Let E0 be the event that the

number of 01 blocks is B1 and the numbers of 000, 001, 010, 011, 100, 101, 110, 111 blocks

are a, b, c, d, e, f , g, h respectively. Assume that b > 0 and locate b many 001 blocks on the

circle. Then place a many ‘zero’s to form 000 blocks. The number of such arrangements is

equal to the number of nonnegative solutions of the equation x1 + x2 + · · · + xb = a which is

equal to
(
a+b−1

a

)
.

All possible 00 blocks are located. The remaining ‘zero’s should be located such that the

number of 00 blocks remains same. This can be accomplished by locating B1 − b many 01

blocks between b many 00 · · · 01 blocks. The number of such arrangements is equal to the

number of nonnegative solutions of the equation x1 + x2 + · · · + xb = B1 − b which is equal to(
B1−1
b−1

)
.

13

All ‘zero’s are located. Remaining ‘one’s will be located in two steps. First locate d many

011 blocks. Since all 01 blocks are located, d of these blocks are selected to form a 011 block.

The number of such arrangements is equal to
(

B1
d

)
. Then locate h many 111 blocks. This is

accomplished by placing h ‘one’s adjacent to 011 blocks. The number of such arrangements

is equal to the number of nonnegative solutions of the equation x1 + x2 + · · · + xd = h which

is equal to
(
h+d−1

h

)
.

Finally, each circular solution gives n arrangements. However, since there are b many 001

blocks in the sequence, s of these arrangements are identical. Thus if b > 0,

Pr(E0) =

(
a+b−1

a

)(
B1−1
b−1

)(
B1
d

)(
h+d−1

h

)
n
b

2n

is obtained.

2.1.7 Approximate Entropy Test

Similar to the Serial Test, Approximate Entropy Test [7] compares the frequencies of over-

lapping m and (m + 1)-bit blocks of a sequence with the expected frequencies of those in a

random sequence. We take m = 2, and the p-values are determined by the frequencies of

1-bit, 2-bit and 3-bit blocks. Therefore the calculation of probabilities is the same with the

Serial Test.

2.1.8 Non-overlapping Template Matching Test

The subject of the Non-overlapping Template Matching Test [7] is the frequency of a pre-

specified block in the sequence. An m-bit window is used to search the m-bit overlapping

blocks of the sequence. The pre-specified block is chosen in a manner that if the pattern

is observed somewhere in the sequence, then it should not be seen before the template is

completed, therefore the window slides m bits in that case.

We choose m = 4 and the pre-specified block as 0001. Let K denote the number of 0001

blocks in the sequence and assume that we know the weight W and the number of runs V of

the sequence. If the sequence is not all zero or all one sequence the number of runs is even. If

we compute Pr(K = k|W = w,V = 2r) then by summing over all possible weights and runs,

we obtain Pr(K = k). Similar to the Serial Test, the bits are arranged on a circle and we write

14

‘one’s and ‘zero’s consecutively to define 2r runs. As all the 0001 blocks contain 01 blocks,

if a run of ‘zero’s has more than 2 ‘zero’s, it produces one 0001 block.

Now, we find the distribution of n − w − r many ‘zero’s and w − r many ‘one’s so that the

number of 0001 blocks is k and V = 2r. The number of such arrangements is equal to the

number of integer solutions of the system

x1 + x2 + · · · + xr = n − w − r, 0 ≤ yi

y1 + y2 + · · · + yr = w − r, xα j ≥ 2, 0 ≤ xαs ≤ 1

where (α1, α2, . . . , αr) is a permutation of (1, 2, . . . , r), and 1 ≤ i ≤ r, 1 ≤ j ≤ k, k + 1 ≤ s ≤ r.

The second equation has
(
w−1
r−1

)
solutions. In order to find the number of solutions of the first

equation, inclusion-exclusion principle can be applied but assuming that a of xαs , are one and

the remaining are zero, the number of integer solutions of the first equation is the same with

the number of non-negative integer solutions of the equation

z1 + z2 + . . . + zk = n − w − r − 2k − a,

which is
(
n−w−r−a−k−1

k−1

)
.

Considering the circular symmetry, other than all zero or all one sequence, we have

Pr(K = k) =
n
r

n−1∑
w=1

n/2∑
r=1

(
w − 1
r − 1

)(
r
k

) r−k∑
a=0

(
r − k

a

)(
n − w − r − a − k − 1

k − 1

)
.

2.1.9 Overlapping Template Matching Test

The subject of the Overlapping Template Matching Test [7] is the frequency of a pre-specified

block in the sequence, and similar to the Non-overlapping Template Matching Test, an m-bit

window is used to search the m-bit overlapping blocks of the sequence. However, if the pattern

is observed then the window slides only one bit.

We choose m = 4 and the pre-specified block as 1111. Similar to the Non-overlapping Tem-

plate Test, let K denote the number of 1111 blocks in the sequence. Assuming that we know

the weight W and the number of runs V of the sequence, our aim is to find Pr(K = k|W =

w,V = 2r). First, the bits are arranged on a circle and we write ‘one’s and ‘zero’s consecu-

tively to define 2r runs. Each run of ‘one’s with length l ≥ 4 defines l − 3 1111 blocks. Now,

15

we find the distribution of n − w − r many ‘zero’s and w − r many ‘one’s so that the number

of 1111 blocks is k and V = 2r. The number of such distributions is equal to the number of

integer solutions of the system

x1 + x2 + · · · + xr = n − w − r

y1 + y2 + · · · + yr = w − r

with t of yi ≥ 3, 1 ≤ i ≤ r.

The first equation has
(
n−w−1

r−1

)
solutions. Without loss of generality (or multiplying by

(
r
t

)
),

assume y j ≥ 3, 1 ≤ j ≤ t, and 0 ≤ ys ≤ 2, t + 1 ≤ s ≤ r. We find the number of solutions of

the second equation in two parts:

In order to have k many 1111 blocks, we should have

y1 − 2 + y2 − 2 + · · · + yt − 2 = k, y j ≥ 3

y1 + y2 + · · · + yt = k + 2t, y j ≥ 3

z1 + z2 + · · · + zt = k − t, z j ≥ 0;

therefore, the number of solutions are
(
k−1
t−1

)
(and t = 0⇔ k = 0).

As the weight of the sequence is w, we have:

yt+1 + yt+2 + · · · + yr = w − r − k − 2t

with 0 ≤ yi ≤ 2, t + a ≤ i ≤ r. We apply the Inclusion Exclusion principle to find the number

of the solutions and obtain:

bw−r−k−2t
3 c∑

i=0

(
w − k − 3t − 3i − 1

r − t − 1

)(
r − t

i

)
(−1)i.

Considering the circular symmetry, other than all zero or all one sequence, we have

Pr(K = k) =
n
r

n−1∑
w=1

n/2∑
r=1

(
n − w − 1

r − 1

) r∑
t=0

(
r
t

) bw−r−k−2t
3 c∑

i=0

(
w − k − 3t − 3i − 1

r − t − 1

)(
r − t

i

)
(−1)i.

2.1.10 Linear Complexity Test

The linear complexity of a finite binary sequence of length n, denoted by L, is the length of

the shortest linear feedback shift register (LFSR) that generates a sequence whose first n terms

are the given sequence.

16

Definition 2.1.3 Let a0, a1, . . . , an be a binary sequence. For C(D) = 1+c1D+ · · ·+cLDL, let

‘L,C(D)’be an LFSR that generates a0, a1, . . . , an. The next discrepancy dn is the difference

between an and (n + 1)th term generated by the LFSR [3].

Linear complexity profile of a sequence can be computed using the following algorithm [3]:

Ln+1 =


Ln i f Ln > n/2,

Ln i f Ln ≤ n/2 and dn = 0,

n + 1 − Ln i f Ln ≤ n/2 and dn = 1,

(2.2)

where dn is the next discrepancy.

Berlekamp Massey algorithm [3] is widely used to find the linear complexity of a sequence.

However, as the complexity of this algorithm is O(n2) bit operations, it is not feasible for

large values of n. Therefore, in NIST Test Suite the Linear Complexity Test is applied by

dividing the sequence into M-bit subsequences (where 500 ≤ M ≤ 5000), obtaining the linear

complexity of each subsequence and applying χ2 Goodness of Fit Test [7].

In [10], the number of sequences of length n and having linear complexity L, denoted by

Nn(L) is given as

Nn(L) =

 2min(2n−2L,2L−1) i f n ≥ L > 0,

1 i f L = 0.

As we apply Linear Complexity Test to 256-bit sequences, we use this equation to determine

the p-value and calculate the subinterval probabilities. Let l be the linear complexity of the

sequence. If l ≤ EV , then p-value = 2 ·
l∑

i=0

pi, where EV is the expected value of the linear

complexity and pi is the probability Pr(LC = i). Similarly if l > EV , then p-value = 2 ·
256∑
i=l

pi.

But since Pr(LC = n/2) = 1/2, we get p-value> 1 for l = n/2, therefore the p-value is set to

1 in this case. p-values of Linear Complexity Test for n = 256 is presented in Table 2.1.

2.1.11 Linear Complexity Profile Test

Let a1, a2, . . . , an be a binary sequence and Lt denote the linear complexity of the subse-

quence a1, a2, . . . , at. The sequence L1, L2, . . . , Ln is called the linear complexity profile of

the sequence. The subject of Linear Complexity Profile Test is the number of the distinct

elements in the linear complexity profile of a sequence, which is denoted by LCP.

17

Table 2.1: p-values of Linear Complexity Test for n = 256

Linear Complexity Probability p-value
123 0,00048828 0,001302
124 0,00195313 0,005208
125 0,0078125 0,020833
126 0,03125 0,083333
127 0,125 0,333333
128 0,5 1
129 0,25 0,666667
130 0,0625 0,166667
131 0,015625 0,041667
132 0,00390625 0,010417
133 0,00097656 0,002604

Example 2.1.4 Let an = {1, 0, 0, 1, 1, 0, 1, 0}, then the linear complexity profile of an is 1, 1,

1, 3, 3, 3, 4, 4 and LCP = 3.

We use equation 2.2 to find Pr(LCP = s). First, we prove a theorem to find this probability.

Theorem 2.1.5

Pr(L = t, LCP = i, l = n) =



2t

2n i f i = 1, t ≤ 1,

2t+1
(
t−2
i−2

)
2n i f i > 1, t ≤ n

2 ,

2n+1−t
(
n−t−1

i−2

)
2n i f i > 1, n

2 < t ≤ n − 1,
1
2n i f i = 2, t = n,

0 otherwise.

Proof. If LCP = 1 then LC = 0 and the sequence is {0, 0, . . . , 0} or LC = 1 and the sequence

is {1, 0, . . . , 0} or LC = 1 and the sequence is {1, 1, . . . , 1}. If LC = n then the sequence is

{0, 0, . . . , 1} and LCP = 2. If LCP > 1 and LC , n we prove the theorem, using induction on

n. All possible LC and LCPs for n = 4 is given in table 2.2 and the claim is true for n = 4.

Assume, the claim is true for n = N − 1. For n = N, there are three cases.

If t < n
2 the claim is true by Berlekamp Massey algorithm.

18

Table 2.2: LC and LCP values for n = 4

LC LCP #
0 1 1
1 1 2
2 2 8
3 2 4
4 2 1

If t = n
2 , which is valid for even n, we have

Pr(L = n/2, LCP = i, l = n) = 2 · Pr(L = n/2, LCP = i, l = n − 1)

= 2 · 2n− n
2

(
n − n

2 − 2
i − 2

)
= 2

n
2 +1

(n
2 − 2
i − 2

)
,

as Ln−1 should be n/2.

If t > n
2 , we have

Pr (L = t, LCP = i, l = n)

= 2 · Pr(L = t, LCP = i, l = n − 1) + Pr(L = n − t, LCP = i − 1, l = n − 1)

= 2 · 2n−t
(
n − t − 2

i − 2

)
+ 2n−t+1

(
n − t − 2

i − 3

)
= 2n−t+1

(
n − t − 1

i − 2

)
.

�

Theorem 2.1.6 For even n,

Pr(LCP = s) =



3/2n i f s = 1,

3 ·
∑n/2

i=2 2i + 1
2n i f s = 2,

3 ·
∑n/2

i=2 2i
(

i−2
s−2

)
2n i f s > 2.

19

Proof. We use theorem 2.1.5 to calculate Pr(LCP = s). If s = 1 we have Pr(LCP = 1) =

3/2n. If s > 2 we have

Pr(LCP = s) =

n∑
i=0

Pr(L = i, LCP = s)

=

∑n/2
i=0 2i+1

(
i−2
s−2

)
2n +

∑n−1
i=n/2+1 2n+1−i

(
n−1−i

s−2

)
2n

=
2 ·

∑n/2
i=2 2i

(
i−2
s−2

)
2n +

∑n/2−1
i=1 2n/2+1−i

(
n/2−1−i

s−2

)
2n

=
2 ·

∑n/2
i=2 2i

(
i−2
s−2

)
2n +

∑−1
i=−n/2+1 2n/2+1+i

(
n/2−1+i

s−2

)
2n

=
2 ·

∑n/2
i=2 2i

(
i−2
s−2

)
2n +

∑n/2
i=2 2i

(
i−2
s−2

)
2n

=
3 ·

∑n/2
i=2 2i

(
i−2
s−2

)
2n .

If s = 2 we also have Pr(L = n, LCP = 2) = 1/2n, thus we add 1/2n to this probability. �

We use theorem 2.1.6 to determine the p-values and find the sunbinterval probabilities.

�

�

�

�

Algorithm 2.1.2: L C P T({a1, a2, . . . , an})

for i← 1 to n

do{
Li = BerlekampMassey(a1, a2, . . . , ai);

LCP = 1

for j← 2 to n

doif Li , Li−1

then LCP = LCP + 1;

Use table B.1 to determine the p − value;

return (p − value)

2.1.12 Rotation Test

The derivative of a finite binary sequence a1, a2, . . . , an is defined as bi = ai ⊕ ai+1 for 1 ≤

i ≤ n − 1 and bn = an ⊕ a0. The subject of the Binary Derivative Test [5] is the weight of

20

the derivative of a sequence. The weight of the first derivative is the number of runs in the

sequence.

As 2k th derivative is bn = an⊕an+2k , we propose Rotation Test, where the sequence is rotated

t bits and the new sequence is XORed to the original sequence. In other words bn = an ⊕ an+t

and the Frequency Test is applied to bn. We choose t = 8, and the subinterval probabilities

are the same with the Frequency Test.

�

�

�

�

Algorithm 2.1.3: R T({a1, a2, . . . , an}, t)

for i← 1 to n

do{
bi = ai ⊕ ai+t(mod n);

weight =
∑n

i=1 bi;

p − value = er f c(2·weight−n
√

2
)

return (p − value)

2.1.13 Lempel-Ziv Compression Test

Lempel-Ziv complexity, which is a basis of LZ77 compression algorithm, is an important

measure used in cryptography. Lempel-Ziv complexity is the subject of the Lempel-Ziv Com-

pression Test [7], which is excluded from the NIST Test suite.

Doğanaksoy et. al [11] calculated the subinterval probabilities for short sequences. Let A(n, r)

denote the set of binary sequences of length n, and Lempel-Ziv complexity r, C(n, r) denote

the set of closed sequences (the sequences with the property that if n is increased by 1 then r

also increases). Then in [11] it is found that:

a(n, r) = 2c(n − 1, r − 1) + 2 (a(n − 1, r) − c(n − 1, r))

c(n, r) = 2c(n − r, r − 1) +
∑

0≤a≤n

∑
1≤p<r

(
r
p

)
c(a − p, p − 1)c(n − a − r + p, r − p − 1)

where a(n, r) = |A(n, r)| and c(n, r) = |C(n, r)|. Using these equations, the subinterval proba-

bilities are presented in [11].

21

2.1.14 Test Related to Random Walk

Consider a binary sequence a1, a2, . . . an and let bi = 1 − 2ai with bi ∈ {−1, 1}, for i =

1, 2, . . . , n and s j =
∑ j

i=1 bi for j = 1, 2, . . . , n. Then in x − y plane, the path formed by

(1, s1), (2, s2), . . . , (n, sn) represents a random walk if Pr(ai = 0) = Pr(ai = 1) = 1/2 for all

1 ≤ i ≤ n.

The points at which the path intersects the x-axis correspond to s j = 0. The part of the se-

quence between two such successive points is referred to an excursion. Length of an excursion

starting at bi and ending at b j is j − i. The maximum value of |sn| is defined as the height of a

random walk.

2.1.14.1 Random Walk Excursion Test

Random Walk Excursion Test, defined by Doğanaksoy et. al. [12], evaluates the sequence

as a random walk and the subject of the test is the number of excursions. The probability

distribution for the length of the random excursions, P(l), is given by

P(l) =


Ck−1
22k−1 i f l = 2k

0 otherwise

where Ci is the Catalan number defined as 1
i+1

(
2i
i

)
[12].

Let Pk be the probability of a random excursion to be of length greater than k. Obviously,

P2k = 1 −
k∑

i=1

P(2i)

and P2k = P2k+1.

Given a sequence of even length N, to compute the probability P(N, k) of having exactly k

excursions in the sequence, two cases are considered:

• The sequence is balanced. This means that the sequence consists of k complete excur-

sions. If N/2 = p1 + p2 + · · ·+ pk is a partition of N/2 into k positive integers p1, . . . , pk

we have N = 2p1 + 2p2 + · · · + 2pk. Then the probability of having k successive ex-

cursions of respective lengths 2p1, . . . , 2pk is P(2p1).P(2p2) . . . P(2pk). Consequently,

22

the required probability is given by the sum
∑

P(2p1) ∧ P(2pk) where the summation

ranges over all ordered partitions (p1, . . . , pk) of N/2 into k positive integers.

• The sequence is not balanced. This means that the sequence consists of k − 1 (not

excluding the possibility that k − 1 = 0) complete excursions of total length N − 2m

and an incomplete (last) one of length 2m (m > 0). In this case the required probability

is
∑N/2

m=1 PN−m
∑

P(2p1) ∧ P(2pk−1) where the inner summation runs over all ordered

partitions p1, . . . , pk−1 of N/2 − m into k − 1 positive integers.

The subinterval probabilities are presented in [12].

2.1.14.2 Cumulative Sums Test

Cumulative Sums Test [7] evaluates the sequence as a random walk and compares the height

of the random walk to the expected value for a random sequence. The only variable for

computing the p-value is the variable z, which is the maximum distance of random walk from

the x-axis. Note that the test produces two p-values; one from producing the random walk

from left to right, and one from right to left. Assume we know the weight W of the sequence,

we need to calculate Pr(z = r|W = w) for a given sequence of length n.

We represent random walk in a w× (n−w) grid as a path starting from the bottom left corner,

(stepping one unit up for a 0 term and stepping one unit right for a 1 in the sequence) and

ending at the top right corner. A path which intersects the upper inclined line shown in the

figure corresponds to a random walk with S max ≥ r. The number of such paths is known to

be equal to
(

n
w−r

)
.

Let us investigate a more general case. We want to find the number of paths starting from A,

finishing at B and not cutting the two given lines, that is a random walk with weight w and

taking values between [−r + 1, r − 1]. Using inclusion-exclusion principle the probability is

given as:

Pr(z < r|W = w) =


(

n
w

)
−

∑∞
i=1

([(
n

w−ir

)
+

(
n

n−w−ir

)]
(−1)i+1

)
2n if r > |n − 2w|

0 otherwise.

23

Figure 2.1: Random walk represented in a grid

Considering all possible weights of an n-bit sequence, we get

Pr(z < r) =

n∑
w=0

Pr(z < r|W = w).

Finally, we have Pr(z = r) = Pr(z < r + 1) − Pr(z < r).

2.1.15 Test Related to Integers

For all the tests in this subsection, first the binary sequence {a1, a2, . . . , an} is divided into k-bit

blocks and the corresponding integer values of the subsequences evaluated (the remaining bits

are discarded). Then, an integer sequence of {t1, t2, . . . , tbn/kc} with 0 ≤ ti ≤ 2k − 1 is tested.

2.1.15.1 Integer Frequency Test

This test is a frequency test on the integers and the subject of this test is the weights of each

integer. Let Fi denote the frequency of integer i, then

Pr(Fi = t) =

(
bn/kc

t

) (
1
2k

)t (
1 −

1
2k

)bn/kc−t

.

24

A χ2 Goodness of Fit Test with k2 bins is applied to produce p-value. For n = 256, we choose

k = 3 and calculate the subinterval probabilities.

�

�

�

�

Algorithm 2.1.4: I F T({a1, a2, . . . , an}, k)

for i← 1 to
⌊

n
k

⌋
do{

ti =
∑k

j=1 2k− ja j+(i−1)k;

for i← 0 to 2k − 1

do

ei = 0;

for j← 1 to
⌊

n
k

⌋
doif t j = i

then ei = ei + 1;

Apply χ2 o f Goodness o f Fit test to ei values;

return (p − value)

2.1.15.2 Maximum of t Test

Maximum of t Test is first defined by Knuth [4]. The subject of the test is the maximum

integer in the sequence, denoted by Max. First we calculate Pr(Max ≤ t). This means

that all the elements are chosen from the subset {0, 1, . . . t}, and the probability is given as

Pr(Max ≤ t) =
(

t+1
2k

)bn/kc
. Therefore,

Pr(Max = t) = Pr(Max ≤ t + 1) − Pr(Max ≤ t)

=

(
t + 1
2k

)bn/kc
−

(t
2k

)bn/kc
=

(t + 1)bn/kc − tbn/kc

2n

For n = 256 we choose k = 10, and calculate the subinterval probabilities. p-values are

calculated similar to the method mentioned in the Linear Complexity Test and given in Table

B.2.

25

2.1.15.3 Maximum Difference Test

The subjects of the test are the maximum and the minimum integers in the sequence, denoted

by Max and Min respectively. Pr(Max = t) is calculated in the Max of t Test and Pr(Min = t)

is calculated similarly. We need to calculate Pr(Max−Min = t), and this probability is given

as

Pr(Max − Min = t) =

n−1−t∑
i=0

Pr(Max = t + i) · Pr(Min = i).

For n = 256 we choose k = 8, and calculate the subinterval probabilities.

�

�

�

�

Algorithm 2.1.5: M D T({a1, a2, . . . , an}, k)

for i← 1 to
⌊

n
k

⌋
do{

ti =
∑k

j=1 2k− ja j+(i−1)k;

Max = 0;

for i← 0 to
⌊

n
k

⌋
doif ti > Max

then Max = ti;

Min = 0;

for i← 0 to
⌊

n
k

⌋
doif ti < Min

then Min = ti;

Di f f erence = Max − Min;

Use table B.3 to determine the p − value;

return (p − value)

2.1.15.4 Coupon Collector Test

The subject of the test is the different number of integers, denoted by Cov. We know that [4]

Pr(Cov = t) =
2k · (2k − 1) · · · (2k − (t − 1))

(2k)bn/kc

{
bn/kc

t

}
,

26

where
{
bn/kc

t

}
denote is the Stirling number of the second kind.

For n = 256 we choose k = 6, and calculate the subinterval probabilities. p-values are

calculated similar to the method mentioned in the Linear Complexity Test and given in Table

B.4.

2.1.15.5 Repeating Point Test

The subject of this test is the index of integer, denoted by RP, where the first repeating integer

occurs. In order to calculate the subinterval probabilities, we need to find Pr(RP = t). In that

case the first t − 1 integer should be different and the tth integer should be the same with one

of the first t − 1 integers. Then

Pr(RP = t) =
P(2k, t − 1) · (t − 1)

2kt .

For n = 256 we choose k = 6, and calculate the subinterval probabilities. If there is no

repeating integer in the sequence, we represent it by > 42 in Table A.6.

�

�

�

�

Algorithm 2.1.6: R P T({a1, a2, . . . , an}, k)

for i← 1 to
⌊

n
k

⌋
do{

ti =
∑k

j=1 2k− ja j+(i−1)k;

RP = 0;

for i← 2 to
⌊

n
k

⌋
do

for j← 1 to i − 1

doif ti = t j

then RP = i; break

Use table B.5 to determine the p − value;

return (p − value)

27

2.1.15.6 Saturation Point Test

The subject of this test is the index of integer, denoted by S P, where all possible integers

occur in the given sequence. In order to have S P = t, the coverage of the sequence for first

t − 1 integers should be 2k − 1 and the integer with index t should be the remaining integer.

Following the same notation with Coupon Collector Test,

Pr(S P = t) = Pr(Cov = 2k − 1|K = t − 1) ·
1
2k =

2k!
{

t−1
2k−1

}
2kt ,

where K denotes the number of integers in the sequence, is obtained. For n = 256 we choose

k = 4, and calculate the subinterval probabilities. If all the integers do not occur in the

sequence we represent it by > 64 in Table A.7.

�

�

�

�

Algorithm 2.1.7: S P T({a1, a2, . . . , an}, k)

for i← 1 to
⌊

n
k

⌋
do{

ti =
∑k

j=1 2k− ja j+(i−1)k;

for i← 1 to 2k

do
index[i] =

⌊
n
k

⌋
+ 1;

comment: initialization o f index array

S P = 1;

for i← 1 to 2k

do

for j← 1 to
⌊

n
k

⌋
doif t j = i

then index[i] = j; break

for i← 1 to 2k

doif index[i] > S P

then S P = index[i];

Use table B.6 to determine the p − value;

return (p − value)

28

Table 2.3: Correlation analysis results of p-values obtained from random data and transfor-
mations

Comp 8 Comp 16 Comp 32 Swap 8 Swap 16 Rot 1 256 Rot 1 8
Fre 0,790 0,633 0,416 1,000 1,000 1,000 1,000

CuSum 0,802 0,653 0,432 0,952 0,906 0,989 0,992
BlFre 0,869 0,744 0,536 0,880 0,772 0,929 1,000
ApE 0,695 0,491 0,239 0,715 0,529 1,000 0,463
Ser1 0,624 0,384 0,156 0,636 0,409 1,000 0,337
Ser2 0,586 0,318 0,083 0,577 0,350 1,000 0,262
Run 0,660 0,443 0,216 0,653 0,458 0,983 0,435
LC 0,002 -0,003 0,005 0,001 -0,002 0,001 0,002

LCP 0,004 0,000 -0,002 -0,002 0,000 0,003 0,006
LonRun 0,694 0,487 0,237 0,717 0,525 0,469 0,517

Max 0,809 0,670 0,452 0,825 0,684 0,424 0,342
IntFre 0,782 0,608 0,361 0,807 0,652 0,544 0,394

2.2 Classification of Statistical Randomness Tests

Classification of statistical randomness tests is important to form a reasonable test suite. In

this section we present just an introductory work. In order to classify the statistical ran-

domness tests, we define certain transformations and observe how the tests are affected with

respect to these transformations. We choose 105 random 256-bit data taken from [6] and pro-

duce new data sets defined by the transformations. Then we apply the statistical randomness

tests to these data sets and perform a linear correlation analysis to p-values obtained from

the original data and the new data, to measure the effect of the transformation. The results

are presented in Table 2.3 where Comp X represents complementing random X bits, Swap X

represents swapping random X bits, and Rot X Y represents rotating left X bits for each Y bits.

We define four classes by the correlation analysis results presented in Table 2.3:

1. Uniformity Tests: Frequency Test, Cumulative Sums Test, Frequency Test within a

Block

2. Entropy Tests: Approximate Entropy Test, Serial Test, Runs Test

3. Complexity Tests: Linear Complexity Test, Linear Complexity Profile Test,

4. Other Tests: Test for the Longest Run of Ones in a Block, Maximum of t Test, Integer

Frequency Test

29

CHAPTER 3

CRYPTOGRAPHIC RANDOMNESS TESTING

In chapter 2, we propose a new test package for block ciphers and hash functions, which

evaluates the algorithms as PRNGs. In this chapter, we propose a package of cryptographic

randomness tests, designed based on certain cryptographic properties of block ciphers and

hash functions to evaluate their randomness.

3.1 Cryptographic Randomness Testing

In addition to the randomness of their outputs, block ciphers and hash functions should satisfy

certain cryptographic properties as well. When block ciphers are considered, diffusion and

confusion are among the most important properties, while for hash functions one of the basic

design criteria is collision resistance. The cryptographic properties mentioned in this chapter

are as follows:

• Whenever one input bit is changed, every output bit should change with probability

a half to achieve ideal diffusion. This criterion is called the strict avalanche criterion

(SAC).

• The distance of a boolean function to the set of all affine functions should be large. This

property is measured in terms of nonlinearity, and it is a concept related to confusion.

• Finding two inputs that have the same output should be hard, which is called the colli-

sion resistance property.

• Block ciphers with a fixed plaintext and hash functions are one way functions and they

are required to behave like a random mapping.

30

Corresponding to these four cryptographic criteria, we consider four randomness tests for

block ciphers and hash functions:

• The aim of the SAC Test is to measure if an algorithm satisfies the SAC property.

• The Linear Span Test evaluates an algorithm by examining the linear dependence of the

outputs formed from a highly linearly dependent set of inputs.

• The subject of the Collision Test is the number of collisions in a portion of the output

corresponding to a random subset of the input set.

• Coverage Test takes a subset of the input set and examines the size of the corresponding

output set.

In each section, the general idea, the mathematical background and application details of

individual tests are given. For a better understanding of the concepts, it is assumed that the

function under test is a function f : Fn
2 ×Fm

2 7→ Fn
2 , where in the case of block cipher, n stands

for the block size, and m stands for the key size. Similarly for the case of hash function, m

and n stand for the message block size and the chaining variable size respectively.

3.2 SAC Test

The abbreviation SAC stands for strict avalanche criterion, which was originally proposed for

S -boxes by Webster and Tavares in 1986 [13]. SAC states that for a particular S -box, when-

ever one input bit is changed, every output bit must change with probability 1
2 . Therefore,

extending this idea to the round functions of block ciphers (or the compression functions of

hash functions) as previously done for stream ciphers [14], this test evaluates the given func-

tion by examining the effect of a single bit flip on the output bits. To achieve this, an m × n

matrix called the SAC Matrix is formed in the following way: first all entries of the SAC Ma-

trix are set to 0, a random input is taken and the output is computed. Then, after flipping the

ith bit of the input, the corresponding output is XORed to the original output. Afterwards, for

each non-zero bit j of the output, (i, j)th entry of the SAC Matrix is incremented by 1. This is

done for each input bit i, and the whole process is repeated for 220 different random inputs1.
1 This process should be repeated as many times as possible to detect small biases. If the performance of the

function under testing is not good, the process is repeated for a less number of random inputs. Also, if the process
is repeated more than 220 times, the probabilities should be calculated with more than 6 digit precision.

31

Table 3.1: Ranges and probabilities of SAC Test for 220 trials

Bin Range Probability
1 0-523857 0.200224
2 523858-524158 0.199937
3 524159-524417 0.199677
4 524418-524718 0.199937
5 524719-1048576 0.200224

Here, let K be the number of hits that an entry get, then

Pr(K = k) =

(
n
k

)
2n .

Therefore the expected value of each entry of the matrix is 219, and the distribution of the

values of the matrix should follow a binomial distribution.

Following the construction of the SAC Matrix, χ2 Goodness of Fit Test with the probabilities

derived from Table 3.1 is used to evaluate the distribution of the values of the entire matrix.

If a matrix produces a p-value less than 0.01, then it is considered non-random [14].

This method may fail to catch the correlation between a particular input and a particular output

bit since the matrix is evaluated as a whole, therefore another method is proposed to evaluate

each entry in the matrix. The entries outside a specific interval are flagged. The expected

interval is taken as [219 − 5009, 219 + 5009], and is computed so that a 220-bit sequence with

a weight out of this interval would be assigned a p-value less than 10−6 from the Frequency

Test. Since in the SAC Matrix, the number of entries is close to 106, it is not much unexpected

to observe a term smaller than 10−6. Therefore, the test is applied once more to check whether

such a case is coincidental or not. If a flagged entry deviates from the expected value once

more significantly, it is evident that a specific input bit and a specific output bit are correlated,

which is a major cryptographic weakness, so the matrix is considered to be non-random.

3.3 Linear Span Test

Nonlinearity is one of the basic design criteria for cryptographic primitives. In order to test

block ciphers and hash functions for randomness based on nonlinearity, the outputs of a highly

linearly dependent set of inputs are examined. For this purpose, similar to the Linear Span

32

Test proposed for stream ciphers[1], linearly independent t plaintexts are chosen and an input

set of size m = 2t is obtained by computing all linear combinations of these plaintexts. An

m × m matrix is formed using the corresponding ciphertexts and the rank of this matrix is

compared to the rank of a random binary matrix. After determining the rank of the output

matrix, the corresponding bin value, which is initially set to 0, is incremented by one. After

the test is repeated as many times as possible, the resulting bin values are put through a χ2

Goodness of Fit Test with the probabilities given in Table 3.2 to produce the p-value. A

p-value less than 0.01 is considered to indicate a non-random mapping.

Table 3.2: Probabilities used in Linear Span Test (m > 19)

Rank ≤ m − 2 m − 1 m
Probability 0.133636 0.577576 0.288788

The computation of the probability of a random binary matrix to have rank R for arbitrary R

is not straightforward. However, an m × m random binary matrix has either rank m or m − 1

over 85% of the time, therefore this test is applied with only three bins for the χ2 Goodness

of Fit Test and the probabilities for Pr(R = m) and Pr(R = m − 1) cases are needed. In the

case Pr(R = m), all ciphertexts are linearly independent. There are 2m − 1 choices for the

first plaintext, 2m − 2 choices for second plaintext, . . ., 2m − 2i−1 choices for ith plaintext, . . .,

2m − 2m−1 choices for the last plaintext, therefore

Pr(R = m) =

∏m
i=1(2m − 2i−1)

2m2

is obtained.

In the case Pr(R = m − 1), first m − 1 linearly independent ciphertexts are chosen similar

to the first case. The last ciphertext should be chosen so that, it is linearly dependent with

the previously selected set. If the linearly dependent ciphertext is the ith one, there are 2i−1

choices, thus there are 1 + 2 + 22 + · · · + 2m−1 = 2m − 1 choices for it, therefore

Pr(R = m − 1) =

∏m−1
i=1 (2m − 2i−1)

2m2 · (2m − 1)

is obtained.

33

3.4 Collision Test

Collision resistance is an important design criterion for hash functions, which means that

it should be hard to find two messages with the same hash value, and the Collision Test is

designed to evaluate the randomness based on collision resistance. The subject of this test

is the number of collisions in specific bits of the output, which can be considered as near

collision. In other words, an input set of size n is evaluated through f , and the number of

collisions (C) in t bits of the output is evaluated.

The same method with Knuth is used to calculate the probability that c collisions occur when

n distinct random inputs are mapped into an output set of size m = 2t in [4]. The probability

of c collisions occur is given as,

Pr(C = c) =
m(m − 1) · · · (m − n + c + 1)

mn

{
n

n − c

}
,

where
{

n
n − c

}
is the Stirling number of the second kind. This probability is used to obtain

the results given in Table 3.3. Here, as it affects directly the running time of the test, the

selection of the parameter n should be done carefully. If it is chosen to be too large, it may

not be possible to repeat the testing steps enough times to be able to detect subtle evidences

of non-randomness. Therefore, 212 and 214 is chosen for the values of n in the calculations

to have reasonable running times for the tests. The parameter m is chosen depending on the

parameter n such that the probabilities are close enough to each other to be used in a 5-bin χ2

Goodness of Fit Test.

Table 3.3: Ranges and probabilities of Collision Test for 16 and 20 bits

n = 212 , m = 216 n = 214 , m = 220

Bin Range Probability Range Probability
1 0-116 0.206246 0-117 0.190231
2 117-122 0.194005 118-124 0.215008
3 123-128 0.219834 125-130 0.211585
4 129-134 0.183968 131-137 0.202689
5 135-4096 0.195947 138-16384 0.180487

The test is applied as follows: first, a random input is taken and then an input set of size 212 (or

214) is formed by assigning all possible values to its first 12-bits (or 14-bits respectively). Af-

ter the outputs of these inputs are computed through f , number of collisions is obtained with

34

the help of an array or a hash table. Afterwards, the corresponding bin value, is incremented.

Above steps are repeated for 220 random inputs and the resulting bin values are evaluated

through a χ2 Goodness of Fit Test with the expected values derived from Table 3.3 to produce

the p-value. A p-value less than 0.01 is considered to indicate a non-random mapping.

3.5 Coverage Test

The Coverage Test evaluates a given function f through examining the size of the output set

(coverage) formed from a subset of its domain. For a random mapping, the output set size is

expected to be about 63% (1 − 1/e � 0.63212) of the input set. Block ciphers loaded with a

fixed plaintext and hash functions are one-way functions and required to behave like a random

mapping. In the case of block ciphers, if the key is fixed, the function f becomes a random

permutation and this case should be carefully investigated before moving on to the details of

the test.

For a random permutation, the coverage is equal to the size of the input set, when all output

bits are considered. For example, assume that the function f under test has block size n. Then,

the coverage of an input set formed by 2l distinct random values is obviously 2l if all output

bits are taken as reference. But, if n − k output bits are considered when forming the output

set, the maximum possible number of hits that an (n− k)-bit output can have is 2k. Therefore,

whenever l > k, f is expected to behave like a random mapping.

Hence, when applying this test, functions used in both block ciphers and hash functions are

expected to behave like a random mapping, which implies that the expected coverage is about

63% of the size of the input set.

The calculations for the intervals and their probabilities are the same with the Coverage Test

proposed by Turan et al. in [14] for stream ciphers. Let Ak be the number of mappings from

an n-element set to an n-element set. Here, Ak is defined recursively as

Ak =

(
n
k

) kn −

k−1∑
i=1

(
k
i

)
Ak−i(

n
k−i

)  .
Therefore, the probability of the coverage being k is

Pr(C = k) =
Ak

nn ,

35

for k = 1, 2, . . . , n. The probabilities and intervals for the bins to be used for the test are given

in Table 3.4. This table is slightly different than the one given in [14], since a typo is spotted

and corrected when verifying the results given in that paper.

Table 3.4: Ranges and probabilities of Coverage Test for 12 and 14 bits

12 - bits 14 - bits
Bin Range Probability Range Probability
1 1-2572 0.199176 1-10323 0.201674
2 2573-2584 0.204681 10324-10346 0.195976
3 2585-2594 0.197862 10347-10367 0.207530
4 2595-2606 0.203232 10368-10390 0.195266
5 2607-4096 0.195049 10391-16384 0.199554

The test is applied as follows: first, a random input is taken and then an input set of size 212

(or 214) is formed by assigning all possible values to its first 12-bits (or 14-bits respectively).

After applying f to this input set, the coverage is computed and the corresponding bin value

is incremented.

The resulting bin values are evaluated through a χ2 Goodness of Fit Test with the expected

values derived from Table 3.4 to produce the p-value. A p-value less than 0.01 is considered

to indicate a non-random mapping.

36

CHAPTER 4

APPLICATION to BLOCK CIPHERS and HASH FUNCTIONS

In this chapter we apply the packages defined in chapter 2 and chapter 3 to the finalist algo-

rithms in AES competition and the second round candidate algorithms in SHA-3 competition.

First, we define how to produce data sets from the algorithms for statistical randomness test-

ing, then we give the number of rounds where the algorithms achieve randomness.

4.1 Data Sets

Any cryptographic module must have the property that the redundancies at the input should

not leak to the output. Depending on this understanding, we construct data sets having certain

structures. Then we try to observe whether this structure is inherited by the module. In all of

the tests, it is assumed that the algorithm subject to the test is a mapping Fm
2 × Fn

2 7−→ Fn
2 ,

where in the case of hash functions, m is the size of the message block and n is the size of the

chaining variable, and in the case of block ciphers m is the size of the key and n is the size of

the plaintext.

4.1.1 Low Density Message

Low Density Message (LW) data set is formed by binary strings of low weight. The message

length of SHA-3 candidate algorithms are 32, 256, 512, 1088 and 1536 bits, and the plaintext

length of AES finalist algoritms is 128 bits. In the 32-bit case, the data set consists of 32-bit

binary strings of weight not exceeding 5. In 256-bit case, this bound is 3 and in the remaining

cases the strings of weights 1 and 2 are taken. The number of sequences for different message

lengths are given in Table 4.1.

37

Table 4.1: The number of sequences for different message lengths

m weight # Sequences
32 ≤ 5 242 824
256 ≤ 3 2 796 416
512 ≤ 2 131 328
1088 ≤ 2 592 416
1536 ≤ 2 1 242 676

Table 4.2: Selection of k for 1-Bit Message Avalanche and Message Rotation

m k mk
32 32768 1 048 576

256 4096 1 048 576
512 2048 1 048 576
1088 963 1 047 744
1536 682 1 047 552

4.1.2 High Density Message

High Density Message (HW) data set is formed by choosing high density messages (or plain-

texts) and they are formed similar to the low density message case. In other words, the inputs

of the low density messages are complemented bitwise.

4.1.3 1-Bit Message Avalanche

In order to form 1-Bit Message Avalanche (Av1) data set, first a random message (or plaintext)

R of length m is chosen. Then each time by flipping another bit of R, a set of m messages

(or plaintexts) is formed and the corresponding hash values (or ciphertexts) are obtained. The

same procedure is applied to k different messages (or plaintexts) to get a set of mk sequences.

The values of k for different input lengths are given in Table 4.2.

4.1.4 8-Bit Message Avalanche

In order to form 8-Bit Message Avalanche (Av8) data set, first a random message (or plaintext)

R = b0b1 . . . bs of length m = 8s is chosen, where bi is a 8-bit word for i = 0, 1, . . . , s. Then,

38

Table 4.3: Selection of k for 8-Bit Message Avalanche

m k mk
32 1028 1 048 560
256 128 1 044 480
512 64 1 044 480

1088 30 1 040 400
1536 21 1 028 160

by assigning all possible 256 values to each word, 255·m8 different messages (or plaintexts) are

formed and the corresponding hash values (or ciphertexts) are obtained. The same procedure

is applied to k different messages (or plaintexts) and the values of k for different input lengths

are given in Table 4.3.

4.1.5 Message Rotation

A random message (or plaintext) R of length m is chosen to form Message Rotation (Rot) data

set, and a set of m messages is formed by consecutive 1-bit rotations of R and the correspond-

ing hash values (or ciphertexts) are obtained. The same procedure is applied to k different

messages (or plaintexts) to get a set of mk sequences.

4.2 Evaluation Method

Each data set produces a large set of p-values. Our first task is to obtain a single p-value asso-

ciated with the data set under consideration. We apply χ2 Goodness of Fit Test by partitioning

the interval [0,1] into 10 equal subintervals as mentioned in chapter 2.

If we assume that the tests are independent, then the probability of Type I error (the data

is random, but the null hypothesis is rejected) is computed as 1 − (1 − α)s, where α is the

level of level of significance, and s is the number of tests. We choose α = 0, 0001, in other

words, if p-value≥ 0, 0001 we conclude the data is random, and 0,0799% random data will

be concluded as nonrandom.

In the case of α = 0, 001, 0,797% of random data will be concluded as nonrandom. Since

we test several reduced versions of the algorithms, it is not much surprising to obtain a p-

39

value< 0, 001. In that case we put a flag and repeat the test with a different data set (In the

case of LW and HW, as it is not possible to change the data set, we change the weights of the

strings to obtain new data sets.). If p-value< 0, 001 is obtained for the same test, we conclude

that the data is non-random.

4.3 Application to AES Finalist Algorithms

In this section, application of the statistical and cryptographic randomness tests to the AES

finalist algorithms and their results are given. Brief descriptions are followed by a compar-

ison with the previous work on the subject. The p-values are presented in Appendix C and

Appendix D.

4.3.1 MARS

The block cipher MARS[15] uses three main function when encrypting a block of plain-

text. First, an unkeyed mixing operation called the forward mixing is applied following a key

whitening operation. Then, the keyed transformation called the cryptographic core is applied

to the state. Finally, another unkeyed mixing called the backward mixing is applied and the

ciphertext is obtained after another key whitening operation. In this work, as it is desired to

test the cryptographic randomness properties of the selected block ciphers, only the crypto-

graphic core of the algorithm is tested. In other words, the forward and backward mixing

operations are excluded when applying the tests.

As Table 4.4 suggests, the cryptographic core of the algorithm satisfies the SAC property after

6 rounds. Since the cryptographic core has a type-3 Feistel network structure, this result is not

unexpected. On the other hand, the suggested number of rounds for the cryptographic core is

16, which seems like a safe enough security margin.

4.3.2 RC6

RC6[16] is a 128 bit block cipher which uses 128,192 or 256 bit key sizes. The algorithm

can be parametrized for other word and key sizes. The encryption process stars with a key

whitening. Then, the round function is applied 20 times. The round function consists of

40

modular multiplication, modular addition, XOR and rotations operations. 20 rounds is followed

by another key whitening which concludes the encryption process.

The test results given in Table 4.4 show that at least 5 rounds of the round function is enough

to achieve randomness.

4.3.3 Rijndael

Rijndael[17] consists of four main operations: SubBytes, ShiftRows, MixColumns and Ad-

dRoundkey. The SubBytes operation is the confusion step, which uses an 8 × 8 s-box with

very good cryptographic properties. The ShiftRows and MixColumns steps are mainly for

satisfying the diffusion property. Finally, AddRoundkey is simply a key XOR at the end of

each round. The MixColumn operation is skipped in the final round of encryption.

The results given in Table 4.4 suggests that randomness is achieved after 3 rounds. Moreover,

the SAC property is satisfied after 4 rounds when the MixColumns operation is skipped in the

last (fourth) round.

4.3.4 Serpent

Serpent[18] is an SP-Network using 32 rounds of successive substitution and permutation

layers. Substitution layer consists of 32 4 × 4 s-boxes with good cryptographic properties.

Permutation layer consists of a linear transformation using shift, rotation and XOR operations.

Serpent achieves randomness after 4 out of 32 rounds, which is a large enough security margin

for block ciphers. The results are given in Table 4.4.

4.3.5 Twofish

Twofish[19] is a 128-bit block cipher that can handle variable-length key up to 256 bits. The

cipher is a 16-round Feistel network that uses key-dependent 8× 8 s-boxes, a 4× 4 maximum

distance separable matrix, a pseudo-Hadamard transform and rotations.

Due to the fact that the round function of the Twofish algorithm has a Feistel network struc-

ture, only the even number of its rounds are tested. The results given in Table 4.4 suggest that

41

the algorithm produces random outputs after 4 out of 16 rounds of its round function.

4.3.6 Comparison with the previous work

During the AES selection process, J. Soto proposed a method to test block ciphers for random-

ness using the NIST Test Suite[8]. However, as the tests defined in that suite are more suitable

to test long sequences, the block ciphers are considered as PRNGs and the outputs obtained

from various input types are concatenated to form long sequences. After the sequences are

generated, the statistical randomness tests defined in the NIST Test Suite are applied to these

sequences. As a result for this testing process, a total of 189 p-values are produced from 16

tests for each input type.

Contrary to the above mentioned work on the subject, the cryptographic randomness tests

proposed in this work are defined solely for the purpose of testing the cryptographic prop-

erties of the algorithms. Four tests are applied to the algorithms and a total of six p-values

are produced. Although the number of p-values produced is relatively small, the results ob-

tained from the cryptographic randomness tests are more precise than the results of the above

mentioned work (see Table 4.4). We also present the results of statistical randomness tests in

Table 4.4.

Table 4.4: Combined table stating the number of rounds which the algorithms achieve ran-
domness

SAC Lin Span Collision Coverage Stat Rand Pre Work[8]
Algorithms - - 16 20 12 14 - -

MARS 6 2 3 3 3 3 4 4
RC6 5 2 5 5 5 5 4 4

Rijndael 4 2 3 3 3 3 3 3
Serpent 4 2 4 4 4 4 4 4
Twofish 4 2 4 4 4 4 4 4

4.4 Application to SHA3 Second Round Candidate Algorithms

In this section, we apply statistical analysis to the SHA-3 second round candidate algorithms.

For this purpose, first we define reduced versions of the candidates. Then, we apply statistical

randomness tests and cryptographic randomness tests to observe the number of rounds that

42

the algorithms achieve randomness.

When defining reduced versions of the algorithms, we only reduce the number of compression

function rounds and ignore the finalization functions, if exist. Reduced rounds of finalization

functions can also be taken into account, but this process together with the reduced rounds of

compression functions increases the complexity of the tests by introducing plenty of versions

for only one algorithm.

On the other hand, BMW and SHAvite-3 have two tunable parameters for the compression

function that can be changed when reducing the algorithms. Therefore, to have a level testing

field, we fix the first parameter and make the second one variable when defining the reduced

versions of these algorithms. Also for SIMD, as the feed forward operation has a significant

importance in the security of the algorithm, we do not exclude this operation in the reduced

versions. Hence, 1 round of SIMD refers to 1 round of its compression function besides the

feed forward operation.

For the sake of simplicity and ease of computations, we apply statistical analysis only to the

256-bit versions of the algorithms. In the case of cryptographic randomness testing, we apply

the package directly to the compression functions of the candidate algorithms. Therefore,

initialization and padding are excluded. In the case of statistical randomness testing, all the

algorithms are tested for 256-bit output values, since the internal state size of the algorithms

vary from 256 bits to 1600 bits and one needs to find the exact bin values of all the statistical

randomness tests for each state size, which is not feasible.

In order to spot the indistinguishability of the compression functions, the initial values and

salts are taken as zero vectors. Also finalization or output functions are excluded. Moreover,

the padding operation is discarded and the output is generated from a single message block

which is iterated only once.

4.4.1 Statistical Randomness Test Results

When applying statistical randomness tests to the candidates, we reduce the algorithms by

excluding finalization, setting IV and salt values to 0. Moreover, we discard the padding

operation and the output is generated from a single message block which is iterated only

once.

43

Table 4.5: Statistical randomness test results for the 256-bit versions of the algorithms

Algorithm # Rounds # Rounds Random Data Sets
Blake [20] 10 3 Av1
BMW [21] 2/14 2/1 All
CubeHash [22] 16 6 LW
ECHO [23] 8 4 Av1
Fugue [24] 2 >2 All
Grøstl [25] 10 3 LW, HW, Av1, Rot
Hamsi [26] 3 1 All
JH [27] 35.5 8 LW, HW, Av1, Av8
Keccak [28] 24 3 LW, HW, Av1, Av8
Luffa [29] 8 3 LW, HW
Shabal [30] 3 1 All
Shavite3 [31] 3/12 3/1 All
SIMD [32] 4 1 All
Skein [33] 72 8 All

For statistical tests, we produce approximately 224 256-bit outputs for each algorithm from

the data sets mentioned in Section 4.1. In Table 4.5, for each algorithm, the number of rounds

that the randomness is achieved is given together with the data sets which produce the corre-

sponding results. According to these results, Fugue does not achieve randomness after its full

rounds of compression functions. However, we observe that two rounds of G1 finalization or

a single round of G2 finalization is enough for it to have random looking outputs.

4.4.2 Cryptographic Randomness Test Results

Different from statistical testing of the outputs of the algorithms, cryptographic randomness

tests are applied directly to the compression functions of the candidate algorithms. As men-

tioned before, the core operations of each test are advised to be repeated 220 times. However,

especially in Coverage Test and Collision Test, 212 calls (or 214 calls depending on the cho-

sen parameter) to the compression functions of the algorithms is required. This poses some

limitations towards the number of times the cores of the tests can be repeated, since the perfor-

mances of the reference codes provided in the submissions of the candidate algorithms vary

significantly. Hence, we repeat the core operations of the tests as given in Table 4.6 to have

reasonable running times for all algorithms.

44

Table 4.6: Number of times the core of the tests repeated with corresponding testing parame-
ters

Test (Parameter) # Repetitions
SAC Test (-) 220

Linear Span Test (-) 216

Collision Test (16) 216

Collision Test (20) 212

Coverage Test (12) 216

Coverage Test (14) 212

Table 4.7: Cryptographic randomness test results for the compression functions of the 256-bit
versions of the algorithms

Algorithm # Rounds # Rounds Random Tests that give the best results
Blake 10 2 Col. Test, Cov. Test, SAC Test
BMW 2/14 2/5 SAC Test
CubeHash 16 7 SAC Test
ECHO 8 2 Col. Test, Cov. Test, SAC Test
Fugue 2 > 2 Col. Test, Cov. Test, SAC Test
Grostl 10 3 Col. Test (20)
Hamsi 3 > 3 Col. Test, Cov. Test
JH 35.5 11 Cov. Test (12), SAC Test
Keccak 24 4 SAC Test
Luffa 8 4 SAC Test
Shabal 3 > 3 Col. Test, Cov. Test, SAC Test
Shavite-3 3/12 3/3 SAC Test
SIMD 4 1 Col. Test, Cov. Test, SAC Test, LS Test
Skein 72 9 SAC Test

45

In Table 4.7, the number of rounds that the compression functions achieve randomness is

given together with the tests from which the best results are obtained for each algorithm. The

abbreviations LS Test, Col. Test and Cov. Test in the table stand for Linear Span Test, Colli-

sion Test and Coverage Test respectively. According to these results, compression functions

of Fugue, Hamsi and Shabal do not achieve randomness after their full rounds, but each of

these algorithms have finalization rounds after all message blocks are processed. Therefore,

we believe it is highly unlikely that these observations on the compression functions will lead

to a cryptanalysis effort on the hash function.

The results in Table Table 4.7 shows how conservative the compression functions are. Ac-

cording to these results Keccak, SIMD and Skein are the most conservative designs. On

the other hand, the results obtained from Fugue, Shabal and Hamsi indicate relatively weak

compression functions used for their designs. However they make up for this with use of

cryptographically strong finalization functions.

46

CHAPTER 5

CONCLUSION

In this thesis, we have studied the methods to evaluate block ciphers and hash functions statis-

tically. For this purpose, we determine the statistical randomness tests, which produce reliable

results for short sequences and propose an alternative evaluation method. Then, we propose

a method to classify the statistical randomness tests. Afterwards, we propose a new test suite

and apply this suite to the finalist algorithms in AES competition and the second round can-

didate algorithms in SHA-3 competition, by constructing data sets having certain structures

and evaluating the corresponding outputs of these sets.

We also propose another package of statistical tests which are designed based on certain cryp-

tographic properties of block ciphers and hash functions method to evaluate their randomness,

namely the cryptographic randomness testing. Throughout the work, we adapt SAC Test, Lin-

ear Span Test and Coverage Test, which were previously proposed for stream ciphers, to test

the round functions of block ciphers and compression functions of hash functions. Also, we

adapt Collision Test, which was originally proposed by Knuth for testing sequences, to test

algorithms. Afterwards, we apply the package to AES finalists and we observed that the

number of rounds where the randomness is achieved for MARS, RC6 and Rijndael is more

precise than the previous results. We also apply the package to SHA-3 second round candidate

algorithms.

The contributions of the thesis are as follows:

• We propose two new test suites to evaluate block ciphers and hash functions statistically.

• We propose an alternative evaluation method for generators which produce short se-

quences.

47

• We calculate the exact distributions for statistical randomness tests which produce reli-

able results for short sequences and calculate the subinterval probabilities for the new

evaluation method.

• We propose 7 new statistical randomness tests (Periodic Frequency Test, Linear Com-

plexity Profile Test, Rotation Test, Integer Frequency Test, Maximum Difference Test,

Repeating Point Test, Saturation Point Test) for short sequences.

• We propose a method to classify the statistical randomness tests.

48

REFERENCES

[1] M. S. Turan. On Statistical Analysis of Synchronous Stream Ciphers. PhD thesis, Mid-
dle East Technical University, Ankara, Turkey, April 2008.

[2] I. Goldberg and D. Wagner. Randomness and the netscape browser. In Dr. Dobb’s
Journal, pages 66–70, 1996.

[3] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 2001.

[4] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Program-
ming. Addison-Wesley, 1981.

[5] W. Caelli, E. Dawson, L. Nielsen, and H. Gustafson. CRYPT–X statistical package
manual, measuring the strength of stream and block ciphers, 1992.

[6] G. Marsaglia. The Marsaglia random number CDROM including the DIEHARD battery
of tests of randomness. 1996.

[7] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Van-
gel, D. Banks, A. Heckert, J. Dray, and S. Vo. A statistical test suite for random and
pseudorandom number generators for cryptographic applications. 2001.

[8] Juan Soto and Lawrence Bassham. Randomness testing of the advanced encryption
standard finalist candidates. In NIST IR 6483, National Institute of Standards and Tech-
nology, 1999.

[9] P. L’Ecuyer and R. Simard. Testu01: A c library for empirical testing of random number
generators. ACM Trans. Math. Softw., 33(4):22, 2007.

[10] Meidl W. and Niederreiter H. Counting functions and expected values for the k-error
linear complexity. Finite Fields and Their Applications, 8:142–154(13), April 2002.

[11] A. Doğanaksoy and F. Göloğlu. On lempel-ziv complexity of sequences. In Hong-
Yeop Song Guang Gong, Tor Helleseth and Kyeongcheol Yang, editors, SETA, volume
4086 of Lecture Notes in Computer Science, pages 180–189. Springer, 2006.

[12] A. Doğanaksoy, Ç. Çalık, F. Sulak, and M. S. Turan. New randomness tests using
random walk. In National Cryptology Symposium II, TURKEY, 2006.

[13] A. F. Webster and S. E. Tavares. On the design of s-boxes. In Lecture notes in computer
sciences; 218 on Advances in cryptology—CRYPTO 85, pages 523–534, New York, NY,
USA, 1986. Springer-Verlag New York, Inc.

[14] M. Sönmez Turan, Ç. Çalık, N. Buz Saran, and A. Doğanaksoy. New distinguishers
based on random mappings against stream ciphers. In Solomon W. Golomb, Matthew G.
Parker, Alexander Pott, and Arne Winterhof, editors, SETA, volume 5203 of Lecture
Notes in Computer Science, pages 30–41. Springer, 2008.

49

[15] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro, Shai
Halevi, Charanjit Jutla, Stephen M. Matyas Jr, Luke O’Connor, Mohammad Peyravian,
Jr. Luke, O’connor Mohammad Peyravian, David Stafford, and Nevenko Zunic. Mars -
a candidate cipher for aes. NIST AES Proposal, 1999.

[16] Block Cipher, Ronald L. Rivest, M. J. B. Robshaw, Y.L. Yin, and R. Sidney. The rc6
block cipher, 1998.

[17] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, 2002.

[18] Eli Biham, Ross Anderson, and Lars Knudsen. Serpent: A new block cipher proposal.
In In Fast Software Encryption 98, pages 222–238. Springer-Verlag, 1998.

[19] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels Fer-
guson. Twofish: A 128-bit block cipher. In in First Advanced Encryption Standard
(AES) Conference, 1998.

[20] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. Sha-3
proposal blake. Submission to NIST, 2008.

[21] Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog, Mohamed El-Hadedy, Jorn
Amundsen, and Stig Frode Mjolsnes. Cryptographic hash function blue midnight wish.
Submission to NIST (Round 2), 2009.

[22] Daniel J. Bernstein. Cubehash specification (2.b.1). Submission to NIST (Round 2),
2009.

[23] Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin, Matt
Robshaw, and Yannick Seurin. Sha-3 proposal: Echo. Submission to NIST (updated),
2009.

[24] Shai Halevi, William E. Hall, and Charanjit S. Jutla. The hash function fugue. Submis-
sion to NIST (updated), 2009.

[25] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Chris-
tian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl – a sha-3 candidate.
Submission to NIST, 2008.

[26] Özgül Küçük. The hash function hamsi. Submission to NIST (updated), 2009.

[27] Hongjun Wu. The hash function jh. Submission to NIST (updated), 2009.

[28] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak specifications. Submis-
sion to NIST (Round 2), 2009.

[29] Christophe De Canniere, Hisayoshi Sato, and Dai Watanabe. Hash function luffa: Spec-
ification. Submission to NIST (Round 2), 2009.

[30] Emmanuel Bresson, Anne Canteaut, Benoı̂t Chevallier-Mames, Christophe Clavier,
Thomas Fuhr, Aline Gouget, Thomas Icart, Jean-François Misarsky, Marı̀a Naya-
Plasencia, Pascal Paillier, Thomas Pornin, Jean-René Reinhard, Céline Thuillet, and
Marion Videau. Shabal, a submission to nist cryptographic hash algorithm competition.
Submission to NIST, 2008.

50

[31] Eli Biham and Orr Dunkelman. The shavite-3 hash function. Submission to NIST
(Round 2), 2009.

[32] Gaëtan Leurent, Charles Bouillaguet, and Pierre-Alain Fouque. Simd is a message di-
gest. Submission to NIST (Round 2), 2009.

[33] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi
Kohno, Jon Callas, and Jesse Walker. The skein hash function family. Submission to
NIST (Round 2), 2009.

51

Appendix A

Subinterval Probabilities

Table A.1: Subinterval Probabilities for Frequency Test, Frequency Test within a Block, Pe-
riodic Frequency Test, and Runs Test

p-value Freq Bl Freq Per Freq Runs
0,0 - 0,1 0,091312 0,099498 0,099498 0,099315
0,1 - 0,2 0,097936 0,097137 0,097137 0,099622
0,2 - 0,3 0,098741 0,100424 0,100424 0,100594
0,3 - 0,4 0,128568 0,109070 0,109070 0,110248
0,4 - 0,5 0,075286 0,101255 0,101255 0,089509
0,5 - 0,6 0,082019 0,095544 0,095544 0,096585
0,6 - 0,7 0,087971 0,097023 0,097023 0,095026
0,7 - 0,8 0,092898 0,106247 0,106247 0,106260
0,8 - 0,9 0,096584 0,100846 0,100846 0,102243
0,9 - 1,0 0,148685 0,092955 0,092955 0,100598

Table A.2: Subinterval Probabilities for Test for the Longest Run of Ones in a Block, Serial 1
Test, and Approximate Entropy Test

p-value Lon Run Serial 1 App Ent
0,0 - 0,1 0,094347 0,097450 0,099245
0,1 - 0,2 0,104510 0,098970 0,097256
0,2 - 0,3 0,105749 0,099146 0,102839
0,3 - 0,4 0,101619 0,091051 0,103637
0,4 - 0,5 0,090870 0,114303 0,098356
0,5 - 0,6 0,112755 0,093207 0,098838
0,6 - 0,7 0,096412 0,094892 0,096122
0,7 - 0,8 0,097298 0,118739 0,103614
0,8 - 0,9 0,098344 0,093366 0,101217
0,9 - 1,0 0,098095 0,098876 0,098876

52

Table A.3: Subinterval Probabilities for Rotation Test, Cumulative Sums Test, and Integer
Frequency Test

p-value Rotation Cu Sums Int Freq
0,0 - 0,1 0,091312 0,091424 0,100618
0,1 - 0,2 0,097936 0,091200 0,093300
0,2 - 0,3 0,098741 0,085796 0,107104
0,3 - 0,4 0,128568 0,109924 0,104243
0,4 - 0,5 0,075286 0,090897 0,101561
0,5 - 0,6 0,082019 0,103963 0,090387
0,6 - 0,7 0,087971 0,114207 0,114157
0,7 - 0,8 0,092898 0,060357 0,089471
0,8 - 0,9 0,096584 0,111896 0,094973
0,9 - 1,0 0,148685 0,140337 0,104186

Table A.4: Subinterval Probabilities for Non-overlapping Template Matching Test, and Linear
Complexity Test

Nonover Temp Lin Comp
Obs Min Obs Max Prob Obs Min Obs Max Prob

0 11 0,064163 1 126 0,083333
12 12 0,056124 127 127 0,250000
13 13 0,082799 128 128 0,500000
14 14 0,108476 129 129 0,125000
15 15 0,126699 130 256 0,041667
16 16 0,132354
17 17 0,123983
18 18 0,104367
19 19 0,079080
20 256 0,121954

53

Table A.5: Subinterval Probabilities for Linear Complexity Profile Test, and Maximum of t
Test

Lin Comp Pro Maximum
Obs Min Obs Max Prob Obs Min Obs Max Prob

0 57 0,095660 0 933 0,100270
58 60 0,124544 934 959 0,098926
61 62 0,118769 960 975 0,101928
63 64 0,137401 976 986 0,097377
65 65 0,070877 987 995 0,101515
66 66 0,069403 996 1002 0,095679
67 68 0,126403 1003 1009 0,113124
69 70 0,100505 1010 1014 0,093140
71 72 0,070485 1015 1019 0,104828
73 128 0,085952 1020 1023 0,093213

Table A.6: Subinterval Probabilities for Maximum Difference Test and Repeating Point Test

Max Differ Rep Point
Obs Min Obs Max Prob Obs Min Obs Max Prob

0 226 0,10442 2 4 0,091087
227 233 0,11068 5 6 0,123378
234 237 0,10026 7 7 0,073644
238 240 0,09718 8 8 0,077863
241 243 0,11674 9 9 0,079253
244 245 0,08744 10 10 0,078015
246 247 0,0926 11 12 0,143633
248 249 0,09357 13 14 0,117440
250 251 0,08766 15 17 0,118928
252 255 0,10945 18 > 42 0,096759

Table A.7: Subinterval Probabilities for Coupon Collector Test and Saturation Point Test

Coup Coll Sat Point
Obs Min Obs Max Prob Obs Min Obs Max Prob

1 28 0,125799 16 38 0,193609
29 29 0,120168 39 45 0,179686
30 30 0,164722 46 53 0,196007
31 31 0,183675 54 64 0,195881
32 32 0,165988 > 64 0,234818
33 33 0,120914
34 42 0,118734

54

Appendix B

P-Value Tables

Table B.1: P-Value Table for the Linear Complexity Profile Test

T -value p-value T -value p-value
140 0,000000 68 0,634981

41 0,000026 69 0,513884
42 0,000058 70 0,405999
43 0,000125 71 0,312874
44 0,000260 72 0,234996
45 0,000521 73 0,171904
46 0,001011 74 0,122393
47 0,001899 75 0,084763
48 0,003454 76 0,057066
49 0,006085 77 0,037329
50 0,010390 78 0,023712
51 0,017203 79 0,014619
52 0,027636 80 0,008744
53 0,043096 81 0,005071
54 0,065269 82 0,002850
55 0,096054 83 0,001552
56 0,137440 84 0,000818
57 0,191320 85 0,000417
58 0,259256 86 0,000206
59 0,342232 87 0,000098
60 0,440408 88 0,000045
61 0,552950 89 0,000020
62 0,677947 90 0,000009
63 0,812468 91 0,000004
64 0,952748 92 0,000001
65 1,000000 93 0,000001
66 0,905497 94-128 0,000000
67 0,766690

55

Table B.2: P-Value Table for the Maximum of t Test

T -value p-value T -value p-value T -value p-value T -value p-value T -value p-value T -value p-value
1-556 0,000000 634 0,000013 712 0,000235 790 0,003147 868 0,033039 946 0,283322

557 0,000001 635 0,000013 713 0,000243 791 0,003248 869 0,034003 947 0,290897
558 0,000001 636 0,000014 714 0,000252 792 0,003352 870 0,034993 948 0,298666
559 0,000001 637 0,000015 715 0,000261 793 0,003460 871 0,036012 949 0,306635
560 0,000001 638 0,000015 716 0,000270 794 0,003570 872 0,037058 950 0,314807
561 0,000001 639 0,000016 717 0,000280 795 0,003684 873 0,038134 951 0,323188
562 0,000001 640 0,000016 718 0,000290 796 0,003802 874 0,039240 952 0,331783
563 0,000001 641 0,000017 719 0,000300 797 0,003923 875 0,040377 953 0,340597
564 0,000001 642 0,000018 720 0,000310 798 0,004048 876 0,041545 954 0,349635
565 0,000001 643 0,000018 721 0,000321 799 0,004176 877 0,042746 955 0,358904
566 0,000001 644 0,000019 722 0,000333 800 0,004309 878 0,043980 956 0,368408
567 0,000001 645 0,000020 723 0,000344 801 0,004445 879 0,045248 957 0,378154
568 0,000001 646 0,000021 724 0,000356 802 0,004586 880 0,046551 958 0,388147
569 0,000001 647 0,000022 725 0,000369 803 0,004731 881 0,047890 959 0,398393
570 0,000001 648 0,000022 726 0,000382 804 0,004880 882 0,049266 960 0,408899
571 0,000001 649 0,000023 727 0,000395 805 0,005034 883 0,050680 961 0,419670
572 0,000001 650 0,000024 728 0,000409 806 0,005192 884 0,052133 962 0,430713
573 0,000001 651 0,000025 729 0,000423 807 0,005356 885 0,053626 963 0,442035
574 0,000001 652 0,000026 730 0,000438 808 0,005524 886 0,055160 964 0,453643
575 0,000001 653 0,000027 731 0,000453 809 0,005697 887 0,056736 965 0,465542
576 0,000001 654 0,000028 732 0,000469 810 0,005876 888 0,058355 966 0,477741
577 0,000001 655 0,000029 733 0,000485 811 0,006059 889 0,060018 967 0,490247
578 0,000001 656 0,000030 734 0,000502 812 0,006249 890 0,061727 968 0,503067
579 0,000001 657 0,000032 735 0,000519 813 0,006444 891 0,063482 969 0,516208
580 0,000001 658 0,000033 736 0,000537 814 0,006645 892 0,065286 970 0,529678
581 0,000001 659 0,000034 737 0,000556 815 0,006851 893 0,067138 971 0,543485
582 0,000002 660 0,000035 738 0,000575 816 0,007065 894 0,069041 972 0,557638
583 0,000002 661 0,000037 739 0,000595 817 0,007284 895 0,070996 973 0,572144
584 0,000002 662 0,000038 740 0,000615 818 0,007510 896 0,073003 974 0,587011
585 0,000002 663 0,000040 741 0,000636 819 0,007742 897 0,075065 975 0,602250
586 0,000002 664 0,000041 742 0,000658 820 0,007982 898 0,077183 976 0,617867
587 0,000002 665 0,000043 743 0,000681 821 0,008229 899 0,079359 977 0,633873
588 0,000002 666 0,000044 744 0,000704 822 0,008483 900 0,081593 978 0,650277
589 0,000002 667 0,000046 745 0,000728 823 0,008744 901 0,083887 979 0,667088
590 0,000002 668 0,000048 746 0,000753 824 0,009013 902 0,086243 980 0,684315
591 0,000002 669 0,000050 747 0,000778 825 0,009290 903 0,088663 981 0,701970
592 0,000002 670 0,000051 748 0,000805 826 0,009576 904 0,091148 982 0,720061
593 0,000002 671 0,000053 749 0,000832 827 0,009869 905 0,093699 983 0,738599
594 0,000003 672 0,000055 750 0,000860 828 0,010172 906 0,096319 984 0,757595
595 0,000003 673 0,000058 751 0,000889 829 0,010483 907 0,099010 985 0,777059
596 0,000003 674 0,000060 752 0,000919 830 0,010803 908 0,101772 986 0,797003
597 0,000003 675 0,000062 753 0,000950 831 0,011133 909 0,104608 987 0,817438
598 0,000003 676 0,000064 754 0,000982 832 0,011472 910 0,107520 988 0,838375
599 0,000003 677 0,000067 755 0,001015 833 0,011822 911 0,110510 989 0,859827
600 0,000003 678 0,000069 756 0,001049 834 0,012181 912 0,113580 990 0,881805
601 0,000003 679 0,000072 757 0,001085 835 0,012551 913 0,116731 991 0,904322
602 0,000004 680 0,000075 758 0,001121 836 0,012932 914 0,119966 992 0,927390
603 0,000004 681 0,000077 759 0,001158 837 0,013324 915 0,123287 993 0,951022
604 0,000004 682 0,000080 760 0,001197 838 0,013727 916 0,126696 994 0,975232
605 0,000004 683 0,000083 761 0,001237 839 0,014142 917 0,130196 995 1,000000
606 0,000004 684 0,000086 762 0,001278 840 0,014569 918 0,133789 996 0,999967
607 0,000004 685 0,000089 763 0,001321 841 0,015008 919 0,137476 997 0,974561
608 0,000005 686 0,000093 764 0,001365 842 0,015460 920 0,141261 998 0,948536
609 0,000005 687 0,000096 765 0,001410 843 0,015925 921 0,145146 999 0,921877
610 0,000005 688 0,000100 766 0,001457 844 0,016404 922 0,149133 1000 0,894570
611 0,000005 689 0,000103 767 0,001505 845 0,016896 923 0,153225 1001 0,866601
612 0,000005 690 0,000107 768 0,001555 846 0,017403 924 0,157425 1002 0,837952
613 0,000006 691 0,000111 769 0,001606 847 0,017924 925 0,161736 1003 0,808609
614 0,000006 692 0,000115 770 0,001659 848 0,018460 926 0,166159 1004 0,778555
615 0,000006 693 0,000120 771 0,001714 849 0,019011 927 0,170699 1005 0,747774
616 0,000006 694 0,000124 772 0,001770 850 0,019578 928 0,175357 1006 0,716250
617 0,000007 695 0,000128 773 0,001828 851 0,020161 929 0,180138 1007 0,683964
618 0,000007 696 0,000133 774 0,001888 852 0,020761 930 0,185043 1008 0,650899
619 0,000007 697 0,000138 775 0,001950 853 0,021379 931 0,190077 1009 0,617038
620 0,000007 698 0,000143 776 0,002014 854 0,022013 932 0,195242 1010 0,582362
621 0,000008 699 0,000148 777 0,002080 855 0,022666 933 0,200541 1011 0,546852
622 0,000008 700 0,000154 778 0,002148 856 0,023337 934 0,205978 1012 0,510488
623 0,000008 701 0,000159 779 0,002218 857 0,024028 935 0,211557 1013 0,473253
624 0,000009 702 0,000165 780 0,002290 858 0,024738 936 0,217281 1014 0,435124
625 0,000009 703 0,000171 781 0,002364 859 0,025468 937 0,223153 1015 0,396082
626 0,000009 704 0,000177 782 0,002441 860 0,026219 938 0,229177 1016 0,356106
627 0,000010 705 0,000184 783 0,002520 861 0,026991 939 0,235357 1017 0,315175
628 0,000010 706 0,000190 784 0,002602 862 0,027784 940 0,241697 1018 0,273266
629 0,000011 707 0,000197 785 0,002686 863 0,028601 941 0,248201 1019 0,230357
630 0,000011 708 0,000204 786 0,002773 864 0,029440 942 0,254873 1020 0,186426
631 0,000012 709 0,000211 787 0,002862 865 0,030302 943 0,261716 1021 0,141448
632 0,000012 710 0,000219 788 0,002954 866 0,031190 944 0,268736 1022 0,095401
633 0,000012 711 0,000227 789 0,003049 867 0,032101 945 0,275937 1023 0,048260

56

Table B.3: P-Value Table for the Maximum Difference Test

T -value p-value T -value p-value T -value p-value
1- 137 0,000000 177 0,000424 217 0,076346

138 0,000002 178 0,000488 218 0,085693
139 0,000002 179 0,000562 219 0,096100
140 0,000002 180 0,000647 220 0,107676
141 0,000002 181 0,000744 221 0,120536
142 0,000002 182 0,000856 222 0,134808
143 0,000002 183 0,000983 223 0,150624
144 0,000002 184 0,001129 224 0,168132
145 0,000004 185 0,001296 225 0,187484
146 0,000004 186 0,001486 226 0,208845
147 0,000004 187 0,001704 227 0,232388
148 0,000006 188 0,001952 228 0,258297
149 0,000006 189 0,002235 229 0,286762
150 0,000008 190 0,002558 230 0,317981
151 0,000009 191 0,002926 231 0,352158
152 0,000010 192 0,003344 232 0,389499
153 0,000012 193 0,003820 233 0,430211
154 0,000014 194 0,004361 234 0,474500
155 0,000016 195 0,004976 235 0,522563
156 0,000019 196 0,005673 236 0,574585
157 0,000022 197 0,006465 237 0,630731
158 0,000026 198 0,007362 238 0,691139
159 0,000030 199 0,008378 239 0,755911
160 0,000035 200 0,009529 240 0,825095
161 0,000041 201 0,010831 241 0,898681
162 0,000047 202 0,012302 242 0,976571
163 0,000055 203 0,013964 243 1,000000
164 0,000064 204 0,015840 244 0,941430
165 0,000074 205 0,017955 245 0,855645
166 0,000086 206 0,020339 246 0,766553
167 0,000100 207 0,023023 247 0,674821
168 0,000116 208 0,026044 248 0,581349
169 0,000134 209 0,029439 249 0,487308
170 0,000155 210 0,033252 250 0,394206
171 0,000179 211 0,037532 251 0,303944
172 0,000207 212 0,042330 252 0,218892
173 0,000239 213 0,047706 253 0,141982
174 0,000276 214 0,053722 254 0,076802
175 0,000319 215 0,060448 255 0,027716
176 0,000367 216 0,067962

57

Table B.4: P-Value Table for the Coupon Collector Test

T -value p-value T -value p-value
1 0,000000 22 0,000098
2 0,000000 23 0,000592
3 0,000000 24 0,002919
4 0,000000 25 0,011788
5 0,000000 26 0,039268
6 0,000000 27 0,108653
7 0,000000 28 0,251598
8 0,000000 29 0,491934
9 0,000000 30 0,821378

10 0,000000 31 1,000000
11 0,000000 32 0,811272
12 0,000000 33 0,479297
13 0,000000 34 0,237468
14 0,000000 35 0,096530
15 0,000000 36 0,031481
16 0,000000 37 0,008032
17 0,000000 38 0,001554
18 0,000000 39 0,000218
19 0,000000 40 0,000021
20 0,000001 41 0,000001
21 0,000013 42 0,000000

58

Table B.5: P-Value Table for the Repeating Point Test

T -value p-value T -value p-value
2 0,031250 23 0,033175
3 0,092773 24 0,021771
4 0,182175 25 0,013947
5 0,295789 26 0,008717
6 0,428930 27 0,005312
7 0,576218 28 0,003154
8 0,731944 29 0,001823
9 0,890451 30 0,001026

10 1,000000 31 0,000561
11 0,953519 32 0,000298
12 0,804531 33 0,000154
13 0,666252 34 0,000077
14 0,541330 35 0,000037
15 0,431372 36 0,000017
16 0,337010 37 0,000008
17 0,258023 38 0,000003
18 0,193517 39 0,000001
19 0,142114 40 0,000001
20 0,102145 41 0,000000
21 0,071820 42 0,000000
22 0,049377 > 42 0,000000

59

Table B.6: P-Value Table for the Saturation Point Test

T -value p-value T -value p-value
16 0,000002 41 0,536917
17 0,000019 42 0,588901
18 0,000089 43 0,641373
19 0,000292 44 0,694029
20 0,000774 45 0,746589
21 0,001752 46 0,798799
22 0,003522 47 0,850431
23 0,006442 48 0,901284
24 0,010921 49 0,951183
25 0,017385 50 0,999979
26 0,026255 51 1,000000
27 0,037918 52 0,952454
28 0,052704 53 0,906218
29 0,070868 54 0,861397
30 0,092580 55 0,818054
31 0,117922 56 0,776233
32 0,146887 57 0,735966
33 0,179384 58 0,697270
34 0,215250 59 0,660150
35 0,254260 60 0,624599
36 0,296138 61 0,590604
37 0,340570 62 0,558141
38 0,387218 63 0,527182
39 0,435729 64 0,497693
40 0,485746 > 64 0,469636

60

Appendix C

Statistical Randomness Test Results

Table C.1: Statistical Randomness Test Results for AES Finalist Algorithms

MARS
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

1 0.8698 0.3289 0.5914 0.8848 0.1702 0.3659 0.2129 0.5484
2 0.4330 0.3106 0.4138 0.4819 0.3953 0.3474 0.0906 0.3304
3 0.3328 0.9079 0.5933 0.3932 0.1405 0.2391 0.2145 0.1942

RC6
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.2504 0.2245 0.0371 0.1145 0.1413 0.0755 0.9803 0.1453
5 0.6958 0.7972 0.9787 0.1823 0.6092 0.9830 0.5004 0.3810

Rijndael
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.7717 0.4658 0.4507 0.3248 0.7001 0.1536 0.6747 0.8385
4 0.2878 0.5585 0.2322 0.3352 0.3156 0.8272 0.3832 0.6447

Serpent
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

1 0.0063 0.0000 0.1820 0.5037 0.5924 0.0000 0.0000 0.3469
2 0.3487 0.8226 0.0463 0.0599 0.5569 0.5131 0.6117 0.4858
3 0.3421 0.4239 0.5364 0.6143 0.4860 0.5027 0.4299 0.2736

Twofish
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

2 0.1557 0.4578 0.0000 0.0157 0.0000 0.0575 0.0009 0.0000
4 0.4383 0.7038 0.9565 0.7466 0.7321 0.4159 0.9779 0.6924
6 0.3933 0.0131 0.8354 0.8263 0.3163 0.0109 0.6482 0.2544

61

Appendix D

Cryptographic Randomness Test Results

Table D.1: Cryptographic Randomness Test Results for AES Finalist Algorithms

MARS
Rnds SAC Lin Span Coll 16 Coll 20 Cov 12 Cov 14

4 0,000000 - 0,855437 0,269610 0,230847 0,345577
5 0,000000 - - - - -
6 0,684260 - - - - -

RC6
Rnds SAC Lin Span Coll 16 Coll 20 Cov 12 Cov 14

4 0,000000 - 0,000000 0,000000 0,000000 0,000000
5 0,422925 - 0,954115 0,550493 0,233968 0,500533
6 0,117274 - 0,099383 0,048752 0,213578 0,821564

Rijndael
Rnds SAC Lin Span Coll 16 Coll 20 Cov 12 Cov 14

2 0,000000 0,558167 0,000000 0,000000 0,000000 0,000000
3 0,000000 0,473152 0,107429 0,933749 0,179152 0,519714
4 0,680614 - 0,198314 0,806697 0,163467 0,945009

Serpent
Rnds SAC Lin Span Coll 16 Coll 20 Cov 12 Cov 14

3 0,000000 0,051753 0,000000 0,000000 0,000000 0,000000
4 0,980746 - 0,740121 0,764551 0,562332 0,480743
5 0,715258 - 0,740121 0,298605 0,723684 0,880793

Twofish
Rnds SAC Lin Span Coll 16 Coll 20 Cov 12 Cov 14

2 0,000000 0,848862 0,000000 0,000000 0,000000 0,000000
4 0,850661 - 0,167473 0,678987 0,272416 0,951575
6 0,907163 - 0,955974 0,158482 0,891265 0,448653

62

VITA

Fatih Sulak was born in Kulu, on April 16, 1979. He received

• his BSc degree in Electrical and Electronics Engineering from Middle East Technical

University (METU) on July 2003,

• a double major degree in Mathematics Department from METU on July 2003,

• his MSc degree in Cryptography Department of METU in January 2006 with the thesis

title ‘Constructions of Bent Functions’,

• his PhD degree in Cryptography Department of METU in February 2011.

He had worked as a teaching assistant in Mathematics Department, METU between 2005

and 2010. His research interests are design and analysis of symmetric cryptosystems, and

statistical randomness testing. He received a silver medal from International Mathematical

Olympiad in 1997.

List of Publications

• ‘Evaluation of Randomness Test Results for Short Sequences’, F. Sulak , A. Doğanak-

soy, B. Ege, O. Koçak, Sequences and Their Applications, 2010.

• ‘Statistical Testing of Some SHA-3 Candidates’, A. Doğanaksoy, B. Ege, O. Koçak, F.

Sulak, 4th International Information Security and Cryptology Conference, 2010.

• ‘A Survey of the Attacks on AES’, A. Doğanaksoy, A. Darbuka, D. Özberk, N. Öztop,

F. Sulak, 3rd International Information Security and Cryptology Conference, 2008.

• ‘A Survey of the Related-Key Attacks on AES’, A. Doğanaksoy, A. Darbuka, D. Öz-

berk, N. Öztop, F. Sulak, 3rd International Information Security and Cryptology Con-

ference, 2008.

63

• ‘Cryptanalysis of the Dedicated Hash Functions’, A. Doğanaksoy, O. Özen, F. Sulak,

K. Varıcı, E. Yüce, 3rd International Information Security and Cryptology Conference,

2007.

• ‘Observations on Hellman’s Cryptanalytic Time-Memory Trade-off’, A. Doğanaksoy,

Ç. Çalık, F. Sulak, 2nd Turkish National Cryptology Conference, 2006.

• ‘New Randomness Tests Using Random Walk’, A. Doğanaksoy, Ç. Çalık, F. Sulak, M.

S. Turan, 2nd Turkish National Cryptology Conference, 2006.

• ‘A Survey on Bent Functions and Normality’, A. Doğanaksoy, B. G. Dündar, F. Göloğ-

lu, Z. Saygı, F. Sulak, M. Uğuz, 2nd Turkish National Cryptology Conference, 2006.

• ‘Constructions of Highly Nonlinear Balanced Boolean Functions’, A. Doğanaksoy, B.

G. Dündar, F. Göloğlu, Z. Saygı, F. Sulak, M. Uğuz, 1st Turkish National Cryptology

Conference, 2005.

64

