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ABSTRACT 

 

AUTOMATIC BAYESIAN SEGMENTATION OF HUMAN FACIAL TISSUE 

USING 3D MR-CT FUSION BY INCORPORATING MODELS OF 

MEASUREMENT BLURRING, NOISE AND PARTIAL VOLUME 

 

 

Şener, Emre 

Ph.D., Department of Engineering Sciences 

Supervisor: Assoc. Prof. Dr. Utku Kânoğlu 

Co-Supervisor: Assoc. Prof. Dr. Ü. Erkan Mumcuoğlu 

 

September 2012, 102 pages 

 

Segmentation of human head on medical images is an important process in a wide 

array of applications such as diagnosis, facial surgery planning, prosthesis design, 

and forensic identification.  In this study, a new Bayesian method for 

segmentation of facial tissues is presented. Segmentation classes include muscle, 

bone, fat, air and skin. The method incorporates a model to account for image 

blurring during data acquisition, a prior helping to reduce noise as well as a partial 

volume model. Regularization based on isotropic and directional Markov Random 

Field priors are integrated to the algorithm and their effects on segmentation 

accuracy are investigated. The Bayesian model is solved iteratively yielding tissue 

class labels at every voxel of an image. Sub-methods as variations of the main 

method are generated by switching on/off a combination of the models. Testing of 

the sub-methods are performed on two patients using single modality three-

dimensional (3D) images as well as registered multi-modal 3D images (Magnetic 

Resonance and Computerized Tomography). Numerical, visual and statistical 

analyses of the methods are conducted. Improved segmentation accuracy is 

obtained through the use of the proposed image models and multi-modal data. The 
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methods are also compared with the Level Set method and an adaptive Bayesian 

segmentation method proposed in a previous study. 

 

 

Keywords: Medical Image Segmentation, Bayesian, Data Fusion, Partial Volume, 

Deblurring, Human Facial Tissue, Directional Prior, Magnetic Resonance 

Imaging, Computed Tomography 
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ÖZ 

 

İNSAN YÜZ DOKULARININ BULANIKLAŞMA, GÜRÜLTÜ VE KİSMI 

HACİM MODELLERİ İÇEREN BAYESÇİ 3B MR-BT GÖRÜNTÜ 

BİRLEŞMESİ YÖNTEMİ KULLANILARAK OTOMATİK BÖLÜTLENMESİ 

 

 

Şener, Emre 

Doktora, Mühendislik Bilimleri Bölümü 

Tez Yöneticisi: Doç. Dr. Utku Kânoğlu 

Ortak Tez Yöneticisi: Doç. Dr. Ü. Erkan Mumcuoğlu 

 

Eylül 2012, 102 pages 

 

Tıbbi görüntülerde insan kafasının bölütlenmesi tıbbi teşhis, yüz ameliyatı 

planlaması, protez tasarımı ve adli tıpta kimlik teşhisi gibi geniş bir yelpazeye 

yayılan uygulamalarda önemli bir işlemdir. Bu çalışmada, yüzdeki dokuların 

bölütlenmesi için yeni bir Bayesçi yöntem sunulmaktadır. Kullanılacak bölütleme 

sınıfları kas, kemik, yağ, hava ve deri olarak belirlenmiştir. Yöntem, görüntü 

alımında oluşan görüntü bozulma modeli, gürültü azaltmaya yardımcı önsel 

bilginin yanı sıra, kısmi hacim modeli de içermektedir. Eşyönlü ve yönsel Markov 

Rasgele Alanı önsel bilgilerine dayalı bölütleme düzenlemesi yönteme dahil 

edilmiştir ve bölütleme doğruluğu üzerindeki etkileri araştırılmıştır. Bayesçi 

modeli görüntünün her vokselindeki doku sınıfını verecek şekilde yinelemeli 

olarak çözülmüştür. Model kombinasyonlarını açıp kapatarak ana yöntemin alt 

yöntemleri elde edilmiştir. Alt yöntemlerin denemesi tek modalitede üç-boyutlu  

(3B) görüntüler ve birbirine çakıştırılmış çoklu-modalitede 3B görüntülerde 

(Manyetik Rezonans ve Bilgisayarlı Tomografi) yapılmıştır. Yöntemlerin sayısal, 

görsel ve istatistiksel  analizi sunulmuştur. Önerilen görüntü modelleriyle ve 

çoklu modalite veri kullanımıyla bölütleme doğruluğu iyileştirilmiştir. Ayrıca 
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yöntemler daha önceki bir çalışmada sunulan Level Set ve adaptif Bayesçi 

bölütlemeleriyle karşılaştırılmıştır. 

 

Anahtar Kelimeler: Tıbbi Görüntü Bölütleme, Bayesçi, Veri Birleşmesi, Kısmi 

Hacim, Görüntü Netleştirme, İnsan Yüz Dokusu, Yönsel Önbilgi, Manyetik 

Rezonans Görüntüleme, Bilgisayarlı Tomografi 
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CHAPTER 1 

 

 

INTRODUCTION 

 

CHAPTER 1 Introduction 

1.1 Motivation 

 

Segmentation of medical images containing human head tissues is an active 

research area. An accurately obtained head model is useful in several applications. 

For example, the masticatory muscles are the biggest muscles in human face and 

they play an important role in chewing and facial expressions [1]. Simulation of 

facial expressions to aid in craniofacial surgery planning is another possible 

application and it was the aim of a study by Gladilin et al. [2] in which tissue 

deformations according to a biomechanical model are calculated by the finite 

element method. The mimic muscle model and an example of facial expression 

simulation obtained in [2] are shown in Figure 1.1.  These techniques are also 

applicable to character animation which can be used in gaming and movie 

industries. Another simulation study fused motion captured animations and 

muscle activation signals in order to simulate speech [3]. Three-dimensional (3D) 

models used in [3] were obtained from a Magnetic Resonance (MR) scan and 

manually segmented. In another face modelling study, Zhang et al. [4] suggested 

a 3D facial biomechanical model to be used in expression animations. In this 

model, the skull structure was included to constrain the skin motion. The muscles 

were classified into groups such as linear and sheet-like.  

 

Measurements on face tissues are important to diagnose, analyse and treat patients 

with neuromuscular disorders. Farrugia et al. [5] aimed to do measurements on 
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facial muscles such as tongue, pterygoids and masseter muscles which are smaller 

and harder to detect and are less accessible for procedures such as biopsy than 

limb muscles. Conditions such as facial and tongue muscle atrophy, fibrosis in fat 

can be observed better with these measurements. In patients with hemifacial 

microsomia which is a congenital disorder that affects the lower half of the face, 

calculating the muscle volumes is also a critical measurement and segmenting 

these muscles manually were found to be time consuming [6].  

 

      (a)                          (b) 

Figure 1.1 Facial expression simulation. 

(a) Mimic muscle model and (b) sample face expression simulations (original 

image by [2]) 

 

Maxillofacial surgery is a type of surgery which focuses on treating defects and 

abnormalities in hard tissues of the face and jaws. The demand from surgeons for 

preoperative predictions on person specific models has led to studies such as [7]. 

Although Computerized Tomography (CT) or MR images are generally used to 

segment facial tissues, there have also been studies which calculate masseter 

muscle volume from ultrasonography and analyse its relationship with facial 

morphology [8]. According to these studies, stronger muscles tend to have a 

correlation with features of the short face syndrome such as parallelism of jaws. 

Craniofacial Surgery Planner software was the product of a study on simulation 

and prediction of craniofacial surgeries [9]. Meshes of the bones and soft-tissues 

were generated by a thresholding algorithm. The artefacts of the algorithm were 
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removed by eliminating small connected regions. The removal of these regions 

were performed with manual supervision. 

 

Applications which use facial models are not only limited to medical. Facial 

reconstruction carries a lot of importance in forensics when there is little evidence 

to work with. De Greef and Willems [10] mentioned obtaining facial features such 

as nose projection, eye protrusion and mouth width being critical in identification 

of an unknown body. Another application in forensics or anthropology is 

parameterizing the properties of head tissues. Stephan [11] stated that the masseter 

muscle plays an important role in facial reconstruction processes because of its 

position and size. Stephan [11] also claimed that despite its importance, the 

predictions on the masseter muscle in facial reconstruction methods had been 

superficial. 

 

The reconstruction of the head from medical images is found to also have a 

critical role in dental treatments. Zepa et al. [12] obtained masseter muscle, 

medial pterygoid muscle, mandible volumes and sizes from manually segmented 

CT images. Zepa et al. [12] found that there were correlations between the facial 

tissue sizes and dental patient groups.  

 

The mentioned studies employ manual segmentation of volumes or at least slices. 

Manual segmentation of 3D images or several two-dimensional (2D) slices is a 

time consuming process. Automatic and semi-automatic algorithms help to reduce 

the time spent by the users. The motivation of this study is the lack of variety of 

automatic segmentation methods specialized on human face muscles. Therefore, it 

is aimed to develop an algorithm which employs the fusion of CT and MR 

images. 

 

Magnetic Resonance Imaging (MRI) and CT were used mainly for anatomic 

imaging of human head. MRI has good soft-tissue contrast, but for bone and air 

segmentation, CT is certainly superior. CT has a better resolution than MRI and it 
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also provides some soft-tissue contrast. MR-CT image fusion has been attempted 

by a few studies such as [13] and [14], in which the fusion was in the form of 

extracting bone-air information from CT images and skin/soft-tissue information 

from MR images. However, considering that both modalities provide soft-tissue 

information and air-bone information (to a lesser extent by MRI), a fusion scheme 

where all the available information from both modalities is utilized for every 

tissue type is certainly desirable [15]. 

 

The Bayesian Markov Random Field segmentation model proposed in this study 

is an extension of the model described in [15], which was motivated by methods 

in [16]. In [15], Kale et al. developed Level Set and Bayesian methods by MR-CT 

image fusion which also included modelling of partial volume classes. A sample 

segmentation result taken from [15] is shown in Figure 1.2. Although Bayesian 

results were quite good and better than Level Set, there were some shortcomings: 

(i) Segmentation of very thin (one pixel thick) structures was achieved by using 

an ad hoc mean intensity shift adaptively for thin structure regions. A more 

systematic method is necessary by accounting for image resolution; (ii) the 

resolution difference between MR and CT images was not considered; (iii) 

correlated CT noise could not be integrated into the segmentation model with the 

partial volume model adapted; (iv) more sophisticated priors that could improve 

the segmentation results of very thin structures were not tested.  

 

Here, methods are provided addressing all of the above issues in order to provide 

further improvements and make them more general. In that regard, a Bayesian 

segmentation method which includes models of image resolution, noise and 

partial volume is proposed. The method is developed further by including image 

fusion as well as uniform and directional priors. 
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Figure 1.2 Volume rendering of segmented facial muscles.  

Segmentation is performed by the Bayesian method proposed in [15] with muscle 

region indices which correspong to: (1) zygomaticus minor, (2) zygomaticus 

major, (3) orbicularis oris, (4) depressor anguli oris, (5) levator labii superioris, 

(6) depressor labii inferioris, (7) mentalis, (8) buccinators, (9) masseter, (10) 

ductus parotideus (original images by [15]) 
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1.2 Related Work and Background 

 

There are several types of classifications of automatic image segmentation 

algorithms. The methods are categorized according to various criteria in several 

image segmentation review and survey studies ( [17], [18], [19]). The categories 

of the methods which were employed in human head segmentation are 

summarized in this section. 

 

Thresholding techniques are some of the simplest labelling methods and used 

often in image segmentation. They have sub categories such as shape-based, 

clustering and spatial [20]. Thresholding has been used in a study combined with 

morphological operations in order to segment skull in MR images [21]. Brain and 

scalp were segmented first. Then, thresholding and closing/opening operations 

were performed on the remaining regions. The resulting segmentation was then 

masked with the prior brain and scalp segmentations. 

 

There are also other methods such as watershed transform which is a 

transformation that models a flooding process on an image with morphological 

operations [22]. Region growing is another class of methods where the 

segmentation spreads from a seed point often selected by the user [23]. Marching 

cubes algorithm is similar to region growing but it is generally used to obtain 

isosurfaces. Olszewski et al. [13] used this method to segment bone, skin and 

other tissues from CT and MR images separately in order to use in aid of 

maxillofacial orthognathic surgery which is performed to correct facial bone 

conditions. According to this study, the surgery was to be planned by simulation 

of jaw movements using motion curves, inverse kinematics and collision 

detection. Although using single modalities or multiple modalities separately 

often yields reasonable segmentation accuracy, an extensive review on 3D image 

fusion processes in orthodontics and orthognathic surgery planning concludes that 

image fusion is the most accurate method for analysis [14]. The importance of 

orthognathic surgery simulation even led to studies which modelled the head by 
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using the data obtained by a laser scanner instead of a medical image [24]. The 

analysis of the tissue movements was made in [24] in order to plan the operative 

methods. 

 

Clustering methods are often used in image segmentation. k-means and fuzzy c-

means are among these clustering algorithms [25]. Banerjee et al. [26] used fuzzy 

c-means approach for multimodal segmentation. They formed features of voxels 

from average grey values in the voxel neighbourhood and busyness value which is 

affected by the orientation of the voxel. Segmentation was initially performed 

separately in CT and MR images and was assessed visually. A fusion operator 

was also defined in order to process the data from multimodal sources. The 

images were registered and fused prior to segmentation and fuzzy c-means was 

applied to obtain the tissue classes. Pham [27] suggested an algorithm which uses 

adaptive clustering according to edges. The algorithm simultaneously updates an 

edge field which adds robustness and accuracy.  

 

Level Set is a method which is used in calculating and tracking curves and 

surfaces [28]. In a general segmentation algorithm that could be applied to 

medical image segmentation, Gibou and Fedkiw [29] suggested a hybrid k-means, 

level set and nonlinear diffusion algorithm. These methods were combined to 

achieve high computational speed of k-means and robustness of level set. The 

number of sub segmentations was adjusted by diffusion pre-processing 

parameters. Another approach to segmentation problems is solution by active 

contours and snakes [30]. These are models that find the contours in an image by 

minimizing an energy function which tries to snap to boundaries while preserving 

a regularized shape. In one of the studies in which this approach was used, Yezzi 

et al. [31] improved the curve evolution with binary and ternary flows by 

introducing constraints. Although the contour methods often use gradients to find 

boundaries, [31] allowed the capturing of these boundaries without very high 

gradients. 
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Variational models form another category of segmentation algorithms. The 

following are some of the studies on segmentation using variational principles. 

Samson et al. suggested two variational methods that use contour and region 

information which integrated image restoration into classification [32]. The 

methods included an edge-preserving regularization function and were applied on 

multispectral images with supervision. Holtzman Gazit et al. [33] aimed to 

segment thin structures in medical images by combining Chan-Vese minimal 

variance and geodesic active surface model. They used three terms which 

represent the edge information, minimal variance and active surface energy 

function. The solution was obtained by level-set method and a hierarchical 

approach was integrated to the method in order to segment multiple objects. 

 

There are quite number of studies on semi-automatic segmentation tools which 

decrease the user interaction time significantly. Yushkevich et al. [34] developed 

the software ITK Snap based on active contour models which uses Level Set 

method. The method is based on seed points which were input by the user. 

Weights of active contour energy terms were also supplied. The software was 

deemed to be capable of full manual segmentation. Kan et al. [35] proposed a 

variety of 3D editing tools for image segmentation. The tools included hole-filling 

with 3D morphological closing with line elements, point bridging, surface 

dragging. A quantitative analysis of these tools with respect to intra-operator and 

inter-operator use was supplied. One of the studies on semi-automatic methods 

[36] aims to obtain 3D appearance of the lip muscles from MRI using the software 

3D Slicer which is a framework for image visualisation and processing [37]. This 

segmentation result is then to be used to help in the diagnosis of facial nerve palsy 

and facial expression restoring treatment planning. Live-wire is a widely used tool 

in image editing software. Barrett et al. [38] proposed a variation of live-wire to 

be used in segmentation of 2D medical images. The proposed live-wire variation 

tracks the boundaries of regions using recent user input in addition to gradient 

information. Here, a similar approach as in [39] that required minimal user input 
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by adaptively transforming the user provided seed points to the neighbouring 

slices with success. 

 

The term regularization usually points to an extra term or step used in 

segmentation algorithms which introduces a spatial relationship between voxels. 

This term/step regularizes the classification such that voxels close to each other 

affect the labelling of each other. This effect may be through the use of the labels 

in the previous iteration step, gradients, edges, the labels or other features of the 

image. The spatial relationships between neighbouring voxels usually carry 

important information in image segmentation. Therefore, taking these 

relationships into account is critical in the accuracy of a method. This claim is 

backed up by several studies which use the neighbourhood information. One of 

such methods is the inclusion of Markov Random Fields (MRF) in the 

segmentation formulation [40]. MRF is a model used for adding spatial 

dependency and regularization. Chiverton et al. [41] suggested using an adaptive 

MRF regularization in order to solve the partial volume (PV) problem in a fully 

automatic algorithm, and integrated a regularization scheme which uses the 

gradients for locally adaptive neighbourhood continuity into the Bayesian 

formulation. A clustering algorithm was then implemented to calculate parameters 

such as tissue class means in MR data. Rezaeitabar and Ulusoy [42] suggested 

using a region growing algorithm which employed a MRF model and works with 

manually placed seed points. MRF modelled spatial relationships between a voxel 

and its neighbours as well as the voxels at the same location in other MR images 

which are registered to each other. The registered images were used for training 

after manual segmentation of a reference image. Region growing was performed 

on a slice and the seed point was transferred to other slices bounds of which were 

decided by the user. 

 

Statistical and probabilistic models find themselves a place in image 

segmentation. Bayesian and finite mixture (FM) are among the primary examples 

of such models. The equations to obtain the parameters of the model cannot be 
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solved directly in most practical situations. Expectation maximization algorithm is 

one of the methods which can be used to calculate the parameters in those cases. 

In a study by Zhang et al. [43], FM model is used for segmenting MR head 

images. A hidden MRF with Gaussian distribution and expectation maximization 

(EM) algorithm were integrated. The model parameters were obtained by EM and 

labelling was done by applying Iterated Conditional Modes (ICM) to the 

maximum a-posteriori (MAP) criterion. The method was also modified to include 

bias correction. Another statistical approach was suggested in [44] to segment the 

head into nine tissue types such as brain tissues, muscle, fat, eye, etc. Pre-

processing was performed on the MR image to separate brain, bone and scalp. EM 

was used to segment brain tissues. The remaining classes were segmented using 

spatial and statistical prior and applying filling and morphological operations. 

Jiang et al. [45] proposed a method for deblurring of spiral CT images. The 

method maximizes edge-to-noise ratio by quantifying the noise effect using a 

discrepancy measure and EM algorithm and is primarily focused on improving 

cochlea features on images. 

 

 

1.3 Bayesian Segmentation and Markov Random Field Priors 

 

Statistical models which originate from Bayes’ rule have been employed in 

several studies in image segmentation. Laidlaw et al. [46] uses a Bayesian 

approach and accounts in the PV effects. They assigned vector features to voxels 

and obtained tissue mixtures by fitting multi-dimensional histograms. These 

histograms helped in preventing the co-linearity of means in one-dimensional 

histograms. Hurn et al. [47] focused on hierarchical Bayesian formulation for 

fusion of multimodal images for segmentation. MAP estimates were used and the 

estimations were done by the ICM method. The method was tested on synthetic 

and real data for CT and high-resolution/low-resolution MR image fusion.  
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Discretization of a continuous anatomical region by a voxelated volume usually 

results in some voxels, especially the ones close to tissue boundaries, which 

contain information about multiple tissues. These voxels are deemed to contain 

partial volumes and their segmentation labels are referred as partial volume 

classes. Shattuck et al. [16] proposed a method which includes a PV model to 

segment MR head images. The MR image was subject to bias correction and skull 

removal pre-processes. A MAP classifier with a Gibbs prior was used to calculate 

the voxel labels. The probability density function for voxels which contain partial 

volume information was calculated by marginalization of the PV ratio of tissue 

types. 

 

The study by Ruan et al. [48] modelled the mixture tissue classes as a Gaussian 

function and applied a MAP estimator. MRF was also included to ensure spatial 

coherence. The MRF model had an additional component based on the shape of 

the local intensity pattern. The voxels of the image were first classified into pure 

and mixed tissue types and a second step was executed to reclassify the mixed 

classes into pure classes. Efforts to integrate segmentation and registration in an 

MRF framework by MAP estimation were also made [49]. The proposed method 

used joint class histograms similar to the joint intensity histograms in mutual 

information theory. Non-rigid registration was also implemented but it was found 

to be ineffective in this particular case. The algorithm was applied at multiple 

levels and voxels at the same coordinate were granted parent-child relationship 

with each other through the hierarchy levels as well as spatial relationship with 

the neighbour voxels at the same level in the Markov prior. ICM was used to 

obtain the segmentation labels which minimize the likelihood model based on 

Gaussian mixture model. Van Leemput et al. [50] studied on a framework in 

which voxels were initially classified into pure tissue types and performed PV 

classification on the down-sampled version of the pure class segmentation. This 

was done by simultaneously approximating model parameters during 

classification.  
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There are variations of MRF priors that depend on the location and shape of the 

region to be segmented. Priors favouring especially thin structures have been 

suggested in multiple studies. Most of these priors use a tensor to enhance the 

effects of the orientations in the image. Wong et al. [51] used such MRF priors in 

conjunction with Bayesian segmentation for segmentation of tubular structures. 

The method estimates local structures with an orientation tensor constructed by a 

quadrature filter and give more weight to the direction of orientations in the MRF 

prior. Descoteaux et al. [52] worked on the segmentation of pituitary gland and 

thin sinus bones to aid in surgery simulations. The sinus bones are thin sheet-like 

structures. Therefore, the Hessian matrix at each voxel is used to determine the 

sheetness measure. A geometric flow model is then applied to obtain the thickness 

of the sheet structure. In the study by Frangi et al. [53], a vessel enhancement 

filter was proposed that is constructed from Hessian matrix eigenvalues. Different 

measures were calculated according to the eigenvalues and second order ellipsoid 

modelling of vessels. The vesselness (or tube-likeness) of each voxel was 

calculated at multiple scales. Another multi-scale study [54] focused on adaptive 

orientation selection based on Hessian matrix eigenvalues applied on Gaussian 

smoothed images. The method was tested on thin structures such as brain vessels 

on MR images and liver vessels on CT images. 

 

The usage of Hessian matrix and quadratic filters was employed in several more 

studies. Lorenz et al. [55] segmented line-like structures in 2D and 3D by 

calculating the measure of similarity of a line structure from eigenvalues of the 

Hessian matrix. The centreline was extracted by using this method and body of 

the structure is obtained by applying active contours. Westin et al. [56] classified 

the local structures using 3D quadratic filters. The filters were obtained from 

orientation tensors and voxels in the image were categorized as belonging to 

planar, linear or isotropic structures. Adaptive thresholding was applied 

depending on the local structure type. 
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1.4 Aims and Scope 

 

Here, it is aimed to segment the facial tissues with an automatic method. A 

Bayesian model is selected for this purpose because it was concluded that the 

multimodal image fusion, noise modelling and neighbourhood relationships can 

be integrated well within that model. The formulated Bayesian rule includes 

deblurring (for each modality, using as input the resolution sigma of each system), 

denoising, multi-modal image information and MRF prior components. The 

optimal labelling is obtained with a MAP classifier. The problem in this state 

becomes similar to an image restoration problem. The solution is found iteratively 

through substitution of the restored intensities by label mean intensities in the 

formulation. The set of voxel labels which minimize the model function is taken 

as the segmentation result. Partial volume effect is added by introducing mixed 

classes to the iterations. The results are analysed over multiple regions of interest 

on two subjects. Pre-processes such as intensity correction and registration are 

applied as well as post-processes like connected components, local morphological 

opening/closing. The effects of isotropic and adaptive directional priors are also 

investigated.  

 

Although the results of the previous study [15] which used MRF prior, multi 

modality fusion and partial volume modelling were very promising, it has some 

drawbacks. It required some parameter tuning, specifically, mean tissue intensity 

shift for very thin structure regions, difference in resolution of MRI and CT was 

not modelled, CT image noise was not modelled properly, and potentially more 

useful other priors were not tested. In this study, significant model extensions of 

the mentioned Bayesian method were investigated: (i) resolution deblurring model 

for MRI and CT which also eliminates system or scan setting dependant 

parameter tuning; (ii) more realistic CT image noise model (correlated); (iii) an 

adaptive directional prior particularly targeted for very thin structures. The first 

two extensions required a different type of partial volume model which was also 

investigated. 
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The human head contains tissues such as muscles, skin, tendons, fat, bones, 

marrow, teeth, vessels, veins, facia, nerves, glands and ducts. Groups of these 

tissues have similar densities/intensities on MR and CT images. One of these 

groups includes muscles, skin, vessels, nerves, glands, ducts and tendons. This 

group of tissues are gathered under the “muscle” class. The only exception to this 

grouping is the skin. Since it covers the head, this anatomical information is used 

to segment the skin with a basic method and separate it from the other muscle-like 

tissues. Bones, teeth and skull form the “bone” class. Although marrow has a 

different intensity than bone, it is contained in the bones and is also included in 

the bone class. Air and fat are easier to distinguish from these groups and each 

other. Therefore, they are assigned their own classes. With these groups, the main 

tissue classes can be listed as: muscle, bone, fat, air and skin. The skin is the 

special case, it being classified initially as muscle and segmented as skin later. 

Segmentation of other tissues in the head such as eyes is beyond the scope of this 

study. 
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CHAPTER 2 

 

 

METHOD 

 

CHAPTER 2 Method 

2.1 Human Data for Algorithm Test 

 

The CT images used in this study were acquired by using standard protocols from 

patients who were already required to have a full head CT scan as part of their 

diagnosis and treatment planning. The CT scans were performed by using 

standard CT protocols. The MR images were then acquired. The imaging 

protocols have been approved by the institutional ethics committee, and the 

subjects gave their informed consent prior to the MRI scans.  

 

The CT and MR scans were taken from two subjects. First subject was a 32 year-

old female in prosthetic dental treatment. The axial CT slices of her scan spanned 

from orbita inferior to maxillar and mandibular region. The scanning of this 

region is regularly used in this kind of treatment. The other patient was a 21 year-

old male with chronic headache and suspected sinus pathology. Paranazal sinus 

CT protocol was applied and the scan covered the head region which starts at 

upper frontal sinus and ends at mandibular region. During MR imaging, full heads 

of the subjects were scanned. 
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2.1.1 Image Parameters 

 

The CT images were acquired by Philips mx8000IDT (Philips Medical Systems, 

Best, Netherlands) which is a 16 channel multi-detector computerized tomography 

device. The settings used when obtaining the images were:  

- Dose parameters of 120 kV and 221 mA-s, 

- Rotation of 0.5 s, 

- Collimation of 16x0.75, 

- Slice thickness of 1.5 mm, 

- Reconstructed slice thickness 0.75 mm, 

- Field of view (FOV) of 250 mm, 

- Matrix size 512x512, 

- and reconstructed voxel size 0.49x0.49x0.75 mm, in x , y  and z  

directions respectively. 

 

The MR images were acquired by a Philips Intera 1.5 Tesla device (Philips 

Medical Systems, Best, Netherlands) and head coil. T1-weighted protocols were 

successfully used previously [1], [13] and [15]. The T1-weighted (3D, Fast-Field 

Echo) protocol parameters were: 

- TR of 25 ms, 

- TE  of 4.6 ms (in-phase), 

- Flip angle  of 30 degrees, 

- Field of view of 240 mm, 

- Matrix size of 256x256, 

- Measured voxel size of 0.94x0.94x1.88 mm (in x , y  and z  directions), 

- Reconstructed voxel size of 0.94x0.94x0.94 mm (in x , y  and z  

directions), 

- Transverse slice orientation, 

- and 15 minutes of scan duration. 
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2.1.2 Regions of Interest 

 

A total of sixteen regions of interest (ROI) were used to test the segmentation 

method. Eleven of them belong to the first patient and 5 belong to the second. The 

ROIs were formed by cropping 5 consecutive slices with an approximate size of 

40x40 pixels (corresponding to a 37x37mm area). The regions were mostly 

selected so that they include thin facial muscles although some regions include 

larger tissues for testing. 16 regions and the tissues they contain are given in Table 

2.1. The ground truth segmentation of these ROIs are performed manually by a 

physician who is an expert in radiology. ITK Snap [34] is used for manual 

segmentation. 

 

Table 2.1 ROIs and the tissues they contain 

ROI 

Index 

Subject Contained Muscles/Tissues 

1 1 levator labii superioris, buccinators, zygomaticus 

major/minor muscles 

2 1 masseter, buccinator, zygomaticus major/minor muscles, 

ductus parotideus (partial), facial blood vessels 

3 1 masseter, buccinator, zygomaticus major/minor muscles, 

ductus parotideus (majority), facial blood vessels 

4 1 buccinator, zygomaticus major/minor muscles, ductus 

parotideus (proximal segment), facial blood vessels 

5-11 1 masseter, zygomaticus major/minor, orbicularis oculi 

muscles, facial blood vessels 

12-13 2 masseter, buccinator, zygomaticus major/minor muscles, 

facial blood vessels, maxillary bone 

14-16 2 maxillary bone, maxillary sinus, zygomatic bone, masseter, 

zygomaticus major/minor (proximal segment), orbicularis 

oculi muscles, facial blood vessels 
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2.1.3 Pre-processing 

 

The intensities in the MR images have spatial variations or “a bias field” because 

of the magnetic field non-uniformity. The multiplicative bias value at each voxel 

must be known to correct the intensities. There were many studies which propose 

methods to calculate and correct the field such as [16] and [57]. The method 

presented in [57] is known as N3. N3 was proposed as an iterative approach to 

estimate the bias field and tissue intensities.  

 

In order to apply the proposed segmentation method in this study, the CT and MR 

images registered to each other after bias field correction. The transformation 

which brings the images to the same coordinate system was applied to the CT 

image so that both images are at equal resolutions. The details of the bias 

correction and rigid/non-rigid registration methods are explained in Appendix A 

and Appendix B. 

 

 

2.2 Bayesian Segmentation 

 

In Bayesian model of segmentation, images are assumed to be random variables. 

The intensities of the pixels in a 3D image, I


, are written in vector form of size 

1M  where M is the number of pixels. Similarly, the segmentation class labels 

are denoted by a vector, 


. The Bayes’ rule according to this model can be 

written as 

  
)(

)()/(
/

Ip

pIp
Ip 


 

  . 2.1 

 

)/( Ip


  and )/( 


Ip  are called posterior probability and likelihood respectively. 

)(


p  is the term that contains the prior information on class labels. The main 

goal of segmentation is maximizing the posterior probability. Maximizing the 
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posterior probability )/( Ip


  is called MAP estimation and it differs from 

maximizing the likelihood term )/( 


Ip  with maximum likelihood (ML) by the 

inclusion of the prior term. Maximizing an expression is equivalent to maximizing 

its logarithm. Therefore, in order to simplify Equation 2.1, the logarithms of both 

sides are taken. The equation then becomes: 

    )(log)(log)/(logmaxarg/logmaxarg IppIpIp



 
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. 2.2 

 

)(Ip


 is independent of  


 and can be ignored for the maximization. In the case of 

Gaussian distribution, the likelihood can be written as 
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where 

 




 is the vector of mean values of the segmentation classes and it is of size 

M  .   is the covariance matrix of I


. If constants in Equation 2.3 are ignored and 

a Gibbs [58]  prior is used, maximizing posterior probability is equivalent to 

minimizing the following function 

     


 
M

i

i

T

ICIIf
1

1 )(


, 2.4 

 

where i  are pairs of voxels in the neighbourhood of a voxel, namely cliques. The 

cliques are summed in the neighbourhood of a voxel to obtain the Gibbs prior of 

that voxel. The second term is the sum of the Gibbs priors which contains prior 

neighbourhood potentials of the cliques of all voxels.   is the weight of the prior 

term. Basic Bayesian segmentation is obtained through the optimization of the 

cost function in Equation 2.4. Modifications and additions to the basic 

formulation will be explained in the following sections. 
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2.3 Restoration Based Segmentation Model 

 

Imaging systems may introduce distortion to their output in forms of 

transformations, blurring and/or noise. The process which is used to model and 

rectify the distortion is called image restoration [59]. Image restoration problem is 

defined as obtaining a high-resolution image from N  lower resolution images. In 

the segmentation context and with the images being written in vector form, the 

high-resolution image is the vector of class means, 


, and the low-resolution 

image is the image to be segmented, I


. In image restoration the low-resolution 

images originate from 


 and they are the results of geometric transformation, 

blurring, decimation and noise addition on 


. The relation between 


 and kI


 can 

be written as 

 kkkkk ETBDI


             ( Nk ,..,1 ) 2.5 

 

where kT , kB , kD  and kE


 are transformation, blurring, decimation matrices and 

additive noise respectively [59]. Combining these matrices into a single matrix as 

kkkk TBDA   yields 

 kkk EAI


  . 2.6 

 

Here, in transforming the image restoration problem to a segmentation problem, 

three assumptions are made. (i) The size of 


 in each dimension is assumed to be 

equal to the sizes of kI


 since the aim of segmentation methods is usually finding 

one label for each pixel. (ii) The pixel labels are required to be in the same 

coordinate system with the image. Therefore, the transformation T  is identity. 

The first two assumptions leave only the effects of the blurring matrix kB  in kA . 

The Bayesian segmentation model given in Equation 2.4 already has an integrated 

noise model. Therefore, kE


 is also ignored. (iii) It is assumed that the original 
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image 


 is composed of pixels with intensities equal to the mean intensity values 

of the tissue type that the pixels contain. Therefore, the elements of 


 are allowed 

only to have the values of mean intensities of the class labels k . The class labels 

are chosen from the label set  musclefatboneair  ,,, .  

 

Since only the effects of blurring remain in kA , that effect is integrated into the 

Bayesian segmentation model by substituting 


 with  


kA  in Equation 2.4. The 

minimization of this equation with respect to 


 gives the segmentation solution 

with MAP as 

     )]([minarg 1 





CAIWAI
T

MAP   . 2.7 

  

Here W  is the autocorrelation of the noise and )(


C  is the prior potentials in the 

Gibbs prior.  

 

As an example of single image input, Equation 2.4 can be rewritten as a function 

of segmentation labels for the MR image as 

 )()()()(
1




CAIWAIf MRMRMR

T

MRMR 
 . 2.8 

 

For notation convenience, the likelihood and prior terms of the posterior 

probability function will be separated as 

 )()()( 


Cuf  . 2.9 

 

The matrices and vectors in )(


u  can be shown in a more explicit form as follows 
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where M  is the number of pixels in the MR image and  j  is the mean 

intensity of the selected label for pixel j . Any combination of j  defines a 

segmentation of the whole image.  The chosen segmentation is the set of labels 

that minimize )(


u .  

 

The CT and MR information are used together by introducing the data and 

parameters of a second image in the formulation. This can be achieved by 

registration of the images, which is explained in Appendix B. Ideally, the images 

should be kept in their original resolutions and the transformation matrix obtained 

by registration should be included in the formulation. However, in this study it is 

assumed that the CT and MR images have the same height and width in terms of 

pixel numbers. This is achieved by using the transformation applied version of the 

registered image. The size of the output label set is also set to the same height and 

width of the CT and MR images. This leaves matrix A  to only include the effects 

of blurring. For CT-MR fusion, the image vector I


 is obtained by concatenation 

of the vectors of two images as 

 









CT

MR

I

I
I 


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. 
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With the concatenation, the likelihood term becomes a multivariate Gaussian. 

However, the CT and MR images are uncorrelated. Therefore, the covariance 

matrix of the multivariate Gaussian is block-diagonal. Then, the segmentation 

result obtained from the extended log-likelihood (Equation 2.4) with the 

multivariate Gaussian is simplified to 
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This becomes an optimization problem with
 

M
 
parameters which are the labels 

of the M

 

pixels in the image. The optimization is performed by using the Iterated 

Conditional Modes (ICM) [60]. It is a deterministic algorithm which aims to do 

local optimizations sequentially until convergence. The ICM algorithm updates 

the label of a pixel at a time according to the minimization of the cost function 

and goes through all pixels in the image. The process continues until the iteration 

in which only a small portion of pixels change labels. 

 

 

2.3.1 Measurement Noise Model and Autocorrelation Matrix 

 

The autocorrelation matrices used in the restoration formulation are related to the 

noise models of the images. The noise structure in MR images can be assumed as 

independent noise [16]. The studies on the measurement noise of the detector bins 

in the CT devices show that there is no correlation for the data noise [61]. 

However, this is valid only for the raw data. Since access to raw data is not always 

possible, the noise model of the image is needed. The CT images are constructed 

using a method called Filtered Back Projection (FBP). The method is based on 

projecting sensor measurements onto an image and involves summation of the 

back projected values when calculating pixel intensity values. Hence, noise model 

of the reconstructed CT image is correlated [62].  

 

In order to calculate the autocorrelation matrix for a CT image, a homogeneous 

region in the image is selected as shown in Figure 2.1. The autocorrelation for a 

horizontal shift q  and vertical shift r  at voxel coordinate ),( yx  is calculated by 
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where m  and n  are the width and height of the selected region respectively, and 

  is the estimated mean within the region. 

 

 

Figure 2.1 A selected homogeneous region to calculate autocorrelation 

 

When the intensity values of the pixels of the image are scaled to the interval [0, 

1], the autocorrelations for different q , r  values are 0.046700 R , 0.003210 R , 

0.001220 R  and 3000.030 R  for the selected region in Figure 2.1. The 

magnitude continues to decline rapidly for p  and/or q values that are greater than 

3. The autocorrelation is also calculated along the lines above and below the 

horizontal center and in the y -direction (vertical). The values obtained can be 

represented in spatial coordinates as follows: 
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The zero values in the matrix and the values for 3q  or 3r  which remain 

outside the matrix are found to be negligible. Next, the autocorrelation matrix is 

constructed using the values of the R matrix. In raster scanned pixel order 

representation, the autocorrelation matrix (for an R matrix of zero values for 

2, rq ) becomes a banded matrix: 
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The matrix W  should be modified so that the values corresponding to spatially 

unrelated pixel pairs are set to zero. Although the pixel at the end of a line and the 

pixel at the start of a next line have consecutive indices, they are on separate parts 

of an image. This raster scan format of image pixels in vector format and the 

neighbourhood relationships are described in detail in section 2.4.2. 
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The autocorrelation matrices W are obtained with the noise parameters which are 

used in creating the artificial data. The matrix is 3-banded for correlated 

(coloured) CT noise and diagonal for independent MR noise case. 
 

 

 

2.3.2 Image Blurring Estimation and Matrix 

 

The smoothing matrix A  is formed in raster scan pixel representation from the 

kernels with which the artificial images are smoothed. This formation is similar to 

the formation of autocorrelation matrices. The   values are found as 8.0CT
 

pixels (0.75mm) and 3.1MR  pixels (1.22mm) with the assumption of isotropic 

Gaussian blurring. These are approximate values experimentally measured from 

tissue boundaries in CT and MR images (such as bone-muscle). The 5x5 kernels 

corresponding to these   values are calculated as 
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2.3.3 Partial Volume  

 

The intensity values of partial volume voxels can be calculated by linear 

interpolation of intensities of the pure tissue classes with respect to the ratio that 

they occupy when the effects of blurring due to system resolution, noise and other 
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modifications caused by the sensors are ignored. The PV model presented by [16] 

proposed the marginalization of the partial volume classes in the minimization 

function. However, the marginalization of the minimization function is not 

possible in the case of correlated noise and blurring model that we considered 

here. Therefore, it was decided to model the partial classes by introducing a finite 

set of PV classes with mean values that fall between pure classes. The mean 

values are calculated by 

 BAAB  )1(  , 2.17 

 

where A  and B  are pure tissue classes,   is the fraction of the voxel that is 

occupied by tissue class A   10  .  

 

In order to decide on the specific partial volume classes to be used, the mean 

intensities of the pure tissue classes in the CT and MR images are plotted (Figure 

2.2). In the cases where only the CT or MR image is used, some partial volume 

classes may cause potential problems. For example, using a bone-fat partial 

volume class will result in overlapping intensities with a muscle-fat class since 

muscle intensity is between bone and fat intensities in both modalities. Therefore, 

partial volumes (for single modality cases) are only defined for pure classes that 

have adjacent intensity intervals (e.g. air-bone, bone-muscle, muscle-fat PV 

classes in MR).  

 

The intensity plot for the CT-MR fusion case (Figure 2.3) yields a 2D graph 

where potential overlaps caused by partial classes are at a minimum. Here, as an 

implementation, more partial volume classes are used between fat-muscle than 

other mixed classes since those are the pure classes which have the longest 

boundary between themselves. In order to balance the accuracy and computation 

complexity, using 2 partial volume classes between most combinations of pure 

tissue classes is found to be ideal. Only between fat-muscle pure classes, 6 partial 

classes are used. Partial volume classes of some pure class combinations such as 
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air-muscle are not used because they do not have a common boundary in an ideal 

image. All classes are listed in Table 2.2. Note that in the ICM update of the 

segmentation, each pixel is updated by the class which gives the minimum cost 

function value. Since the cost for every class is calculated, the computation times 

are directly proportional to the number of classes used. 

 

Table 2.2 Number of pure and partial volume classes used for single image and 

fusion cases 

Tissue Class Class Count 

MR or CT (Single image) 

Pure classes 4 

Bone-muscle 2 

Muscle-fat 6 

Total 12 

MR+CT (Fusion) 

Pure classes 4 

Bone-muscle 2 

Muscle-fat 6 

Air-fat 2 

Air-bone 2 

Total 16 
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(a) 

 

(b) 

Figure 2.2 Relative positions of pure classes on a normalized intensity scale in (a) 

MR and (b) CT modality
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Figure 2.3 Pure and partial volume classes used in the method and corresponding 

MR-CT normalized intensities 

 

2.3.4 Regularization 

 

A Potts prior has been used by Shattuck et al. [16] in the segmentation of brain 

tissues with a partial volume model. The prior sums the weighted label 

relationship function for a pixel neighbourhood. The relationship function returns 

the value -2 for identical labels, -1 for labels that share a tissue type (e.g. muscle-

fat and pure muscle) and +1 for not having any common tissues. The function can 

be written as  
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Here,
 

j  and k  are indices of the neighbouring pixels. For thin structures and 

regions close to boundaries, isotropic regularization may have disadvantages. A 

pixel belonging to a thin structure may be surrounded by mostly background 

pixels and only a few foreground pixels. This will result in the background pixels 

affecting the cost function more than foreground pixels and the labelling process 

may become inaccurate. A solution to this problem is using a priori knowledge 

based on the structural orientation of the pixel. Wong et al. [51] used directional 

priors to obtain vessel segmentation. They focused on using Hessian or orientation 

matrices at each pixel to obtain structural orientation and assigning higher priority 

to the neighbour pixel in that direction. It is aimed to combine that approach with 

the Potts prior. In that regard, as the first step, the Hessian matrix at a pixel is 

calculated by  

 









yyxy

xyxx

HH

HH
H , 2.19 

 

where xxH
 
and 

yyH  are the second partial derivatives in the x  and y  directions 

respectively and 
xyH  and 

yxH
 

are the mixed partial derivative in the same 

directions. These derivatives are calculated by finite difference. The eigenvalues 

1e  and 2e  and the corresponding eigenvectors 1v


 and 2v


 of the Hessian matrix 

are then obtained such that 21 ee  . The orientation of the thj  pixel, jo


, is 

selected as the orthogonal direction to 1v


 if the following conditions are satisfied: 

 Te 1   and  2
2

1 
e

e
 2.20 

 

where T  is a threshold value which adjusts the selection of the orientations. tjs ,   

form a mask on the image to indicate whether isotropic or directional prior is to be 

used and they are defined as binary values according to eigenvalue conditions at 

pixels of an image as follows 
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if conditions in 2.20 are true for modality t , 

otherwise, 

 

 

 

2.21 

 

where index t
 
stands for modality type (CT or MR).

 
The decision method of the 

regularization type and orientation that will be used at any pixel is given in Figure 

2.4. According to this process, if 
CTjs ,

 and/or 
MRjs ,

 is equal to 1, directional prior 

in the orientation direction is to be used. If both of them are zero, the pixel is 

checked for another orientation condition. In order to check this condition, the 

orientations in a 5x5 neighbourhood of the pixel are normalized to unit length and 

vector summed. If the magnitude of the sum is greater than 0.25, which is chosen 

empirically, the use of directional prior is confirmed. In the opposite case, it is 

decided that the uniform prior is the prior function choice. The 0.25 magnitude 

and 024.0T  thresholds are chosen empirically so that most boundaries are 

marked for directional regularization.  

 

The effect of the T  threshold on orientations is shown in Figure 2.5. A threshold 

value of 0.02 results in some pixels in homogeneous regions having orientations. 

If the threshold is increased to 0.028, the orientations on apparent edges begin to 

disappear. The empirically obtained threshold of 0.024 yields the most acceptable 

results on visual inspection. A sample set of orientations after orientation post-

processing that are calculated on a sample MR slice are shown in Figure 2.6. 

 

The orientations are used in obtaining the relationship with the neighbouring 

pixels through an orientation similarity function [51]. This function which returns 

the relationship between two pixels is 

 
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where 
jku


 is the unit vector in the direction from pixel j  to pixel k  and jo


 is the 

orientation at pixel j . ),( ou


  is the orientation discrepancy function which 
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returns decreasing values for increasing compatibility between u


 and o


, and is 

given by Wong et al. [51] as 

 ouou T 
1),( . 2.23 

 

The combination of the orientation similarity and the Potts prior functions is 

achieved by multiplying them. The reciprocal of the distance between the pixels is 

used as the weight of the Potts prior. Summation of the combined directional 

priors for the neighbourhood of a pixel gives the total effect of the proximity 

labelling. The use of directional prior aims to enhance the effect of pixels in the 

orthogonal direction to the eigenvectors corresponding to the dominant 

eigenvalues of the Hessian matrix. Then, final version of the optimized 

segmentation becomes 
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2.24 

where M  is the number of pixels, jN  is the number of neighbourhood pixels 

around the thj  pixel and ),( kjz  is the Potts prior. 

 

 

2.4 Application of the Method 

 

The details of the application of the method such as label means, localized version 

of the ICM, metrics to be calculated from the segmentation results and ground 

truth and some parameters are given in the following subsections. 
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Figure 2.4 Decision workflow for prior selection depending on pixel orientations 
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(a) 

 
(b) 

 
(c) 

Figure 2.5 The orientations calculated from a MR slice with different threshold 

values, T , (a) 0.02, (b) 0.028 and (c) 0.024 
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Figure 2.6 Orientations calculated using the Hessian matrix of pixels on an MR 

slice 

 

2.4.1 Setting the Tissue Class Mean Values 

 

The intensities in the images are normalized such that the minimum and 

maximum intensities correspond to 0 and 1 respectively. The mean intensities for 

the fat and muscle classes are obtained from the homogeneous regions that are 

marked for autocorrelation calculations in section 2.3.1. The bone and air mean 

intensities are obtained from the intensity histogram of the volume. The 

normalized mean intensities of the tissue classes are shown in Table 2.3. 
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Table 2.3 Pure tissue types and their normalized mean intensities 

Pure Tissue Type MR Normalized 

Intensity 

CT Normalized 

Intensity 

Bone 0.027 0.588 

Air 0 0 

Muscle 0.196 0.247 

Fat 0.608 0.215 

 

 

2.4.2 Localized Iterated Conditional Modes 

 

As explained in section 2.3.1, a 55  matrix can be used for the autocorrelation 

matrix since the values for further sizes can be neglected. Similarly, resolution 

extent is also within this limit. Therefore, only the 55  neighbourhood of a voxel 

affects the calculated label of that voxel in Iterated Conditional Mode (ICM) 

iterations. This neighbourhood grid is shown in Figure 2.7. The voxels in the grid 

are numbered starting from top left. In Equation 2.24, the size of I and   

becomes 125  and the size of the square matrices A  and W   become 2525 . 

The matrices and vectors are formed according to the grid numbering in raster 

scan format. The blurring model matrix and autocorrelation matrix are constructed 

such that the 55  kernel elements are spread along diagonal directions and the 

elements corresponding to non-neighbour relations are set to zero, e.g. the 10
th

 

column of the 11
th

 row should be set to zero (Figure 2.7) because despite having 

consecutive indices, they are not in neighbourhood of each other. 

 

The inverse of W  matrix has to be calculated only once for the whole image. As 

an additional optimization, Equation 2.24 is written in an explicit form such that 

its parts which are affected by the label of the center pixel, which is pixel 13 of 

the 55  region, and the parts which are not affected by it are separated as 
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 ncc fff )(


,

 

2.25 

where cf  are the terms that are functions of the label of the center pixel and ncf  

are the remaining terms. ncf  is calculated once for a pixel at every iteration. Then, 

for each class to be tried, cf  is obtained according to the class mean intensity. The 

pixel is labelled with the class which yields the minimum cost function value. 

After this process is repeated for every pixel, the current labels of the pixels 

compared to the labels of the previous iteration. The iterations are terminated if 

98% of the pixels do not change labels. 

 

Figure 2.7 Localized voxel grid for ICM in raster scan format. All 25 pixels are 

used to update the center pixel only 

 

2.4.3 Metrics to Evaluate Segmentation Performance 

 

The metric choice for segmentation evaluation is based on the metrics which were 

used in a liver segmentation competition [63]. Especially, the metrics that aim to 

evaluate the contour accuracy are considered. One of those metrics of that type is 
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Average Symmetric Surface Distance (ASSD). The initial step for this metric is to 

obtain the border pixels of the test and reference images. Border pixel of a tissue 

type is defined as a pixel with a neighbour pixel of different tissue types. For the 

pixels of the first border, the closest pixel of the other border is found using 

Euclidean distance. This process is repeated for the second border and all 

distances are averaged. 

 

The Root Mean Square Symmetric Surface Distance (RMSSSD) is a similar 

metric to ASSD. The only difference is that the squared distances are averaged 

and the square root of the average is the metric. Maximum Symmetric Surface 

Distance (MSSD) is the metric which returns the maximum of distance obtained 

in the calculation of ASSD. 

 

Dice coefficient measures the ratio of the intersection and union of two sets which 

are the ground truth labels and labels obtained by the segmentation process. 

Although Dice coefficient is widely used in segmentation and it is an efficient 

evaluation metric, it has some drawbacks for thin and small structures. Even few 

inaccurate pixels affect drastically the Dice coefficient in small structures 

drastically while the effect becomes minimal for large tissues with similar contour 

segmentations errors. This is because of the fact that the ratio of the number of 

false positive and negative pixels to the number of total pixels is smaller in large 

areas. 

 

Another possible metric to be calculated is the Partial Volume Difference (PVD). 

The partial volume ratios of synthetic image pixels are known during the 

construction of the image. An error metric is to be calculated as the difference of 

these known partial volume ratios and the partial volumes found by the 

segmentation method. Applicability on real data depends on the manual 

segmentation method and whether the manual method allows partial volume 

pixels. 
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The results are presented in RMSSSD and Dice metrics because of the parallelism 

in RMSSSD and ASSD results. The lack of sub-voxel manual segmentation 

prevented the PV metric from being used. In order to convert the RMSSSD  and 

Dice metrics into a single value, these metrics are first normalized in a [0, 100] 

interval. This is done by selecting a region in which there is a mixture of thick and 

thin muscles and the ratio of the thick muscles is slightly favoured so that the 

method performs well for all cases. ROI 2 is selected when these conditions are 

considered. A sample slice of ROI 2 is shown in Figure 2.8. The average Dice 

coefficient of all methods in this ROI (0.914) is assigned a score of 90. A Dice 

score of 1.0 is given a perfect 100 score. Any Dice score obtained is converted to 

this score by interpolation or extrapolation. Similarly, the average RMSSSD 

metric (0.829) is assigned 90 as the combined score. The RMSSSD value for a 

perfect segmentation is 0, so the 100 score is matched with that value. Any 

RMSSSD score obtained is converted to this score by interpolation or 

extrapolation. The combined score is then calculated as the average of the 

normalized Dice and RMSSSD scores.  

 

 

2.4.4 Simulation Data 

 

Here, before proceeding with the testing of the methodology with real data, 

method is tested on synthetic data which would also help in determining the 

optimum algorithm parameters. For one of the synthetic images, two thin elliptic 

strips which represent the muscle tissue are created and connected to each other. 

The background is assumed to be fat tissue. The pixels which are inside the 

muscle region are marked in high resolution and down-sampled to a lower 

resolution by pixel averaging. The down-sampling yields an image with pixel 

values in the interval of [0, 1] and this image represents the partial volume ratio of 

the muscle tissue at every pixel. These ratios are to be used to give the effect of 

partial volumes to the synthetic CT and MR images.  The high and low resolution 

muscle masks are given in Figure 2.9. 
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Figure 2.8 A slice from ROI 2, the region around which the combined scores are 

calculated 

 

 

(a)       (b) 

Figure 2.9 (a) High resolution and (b) low resolution of synthetic muscle 

 

The CT and MR images corresponding to the muscle-fat partial volume maps are 

created by setting the pixel intensities to the weighted sum of the mean intensities. 

For example, the intensity of a pixel in the CT image with muscle volume ratio 

muscle  and fat volume ratio muscle1  is set to 
CTCT fatmusclemusclemuscle  )1(  . 
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The images are then smoothed by 55  Gaussian kernels with the  values 

obtained in section 2.3.2. 

 

To complete the synthetic data, independent noise is added to the MR image while 

coloured noise is added to the CT image using the estimated noise statistics of 

patient data. The maximum artificial noise magnitudes are 5% and 15% of the 

image intensities for the CT and MR images respectively. Although the noise 

percentages appear to be low, the magnitudes of the added noise are 

approximately 30% of the difference between muscle and fat mean intensities. 

The blurred and noise added images can be seen in Figure 2.10. Another set of 

artificial data is created to model thin muscles surrounded by fat and bone in 3D. 

Similar to the first artificial set, the labels are prepared in higher resolution than 

the final image. The down-sampled, smoothed and noise added CT and MR 

versions of the original label image are shown in Figure 2.11. 
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Figure 2.10 Blurred and noise-added artificial (top) CT and (bottom) MR images
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(a) 

 
(b)     (c) 

 
(d)    (e)

 
(f)    (g) 

Figure 2.11 Synthetic image creation steps. (a) High resolution labeled image, (b) 

down-sampled MR, (c) down-sampled CT, (d) blurred MR, (e) blurred CT, (f) 

noise-added MR and (g) noise-added CT simulations 
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2.4.5 Setting the Parameters 

 

The coefficient of the prior term   (for both uniform and directional priors) is 

one of the most important parameters of the method presented here. It is a weight 

value to set the balance between the likelihood and prior terms in the cost 

function. Setting the value too low may result in noisy segmentations which are 

based mostly on the intensity value of a pixel while setting its value too high may 

cause some regions to overgrow as iterations progress. In order to optimize the 

value of the parameter, several runs are made within an interval. The metrics 

presented in section 2.4.3 are calculated and placed on a graph to visualize the 

optimal solution. The graphs of different metrics vs. 
 
values for CT only, MR 

only and MR+CT fusion cases with directional MRF prior are given in Figure 

2.12, Figure 2.13 and Figure 2.14 respectively. For each case, the metrics are 

normalized and summed to obtain a unified metric. The optimal   values which 

optimize these metrics are then obtained. Dice coefficient for fat tissue was not 

used because it did not vary significantly with  . 

 

The optimal   
values for uniform and directional neighbourhood models and for 

different image modalities are given in Table 2.4. 

 

Table 2.4 Optimal  
values for various modality and MRF prior cases 

Modality MRF Prior β 

CT Directional 0.19 

MR Directional 0.18 

CT+MR Directional 0.22 

All Uniform 0.32 

 

 


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Figure 2.12 Three metrics vs.   in CT only case for the directional prior 
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Figure 2.13 Three metrics vs.  in MR only case for the directional prior 
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Figure 2.14 Three metrics vs.  in CT+MR fusion case for the directional prior 
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2.4.6 Post Processing 

 

The intensity values belonging to skin voxels are similar to muscle intensities in 

both modalities. The primary aim of this study is proposing and testing a 

segmentation method for facial muscles. Therefore, the skin is removed with a 

post-process in order to be able to assess the muscle segmentation more 

accurately. The removal of the skin is done by using morphological erosion 

operation and pixel connectivity of the muscle-like tissue segmentation result. 

 

Bones contain marrow, which has muscle-like intensity and is usually classified as 

muscle tissue by the method. Therefore, a simple filling algorithm is performed 

for the bone class in order to change the labelling of the marrow from muscle to 

bone.  

 

Another post-process step is the label reassignment of the pixels on bone 

boundary. The pixels on the bone-fat interface are sometimes misclassified as 

muscle pixels. Therefore, the bone segmentation is binarized and expanded by one 

voxel. The voxels to which the expansion occurs are given new labels with a 

voting scheme in their neighbourhood. They are assigned the label that appears 

the most times in the adjacent voxels. 

 

The segmentation result may contain noisy small components. A post-process step 

is performed to remove components of one pixel size. This is performed on the 

3D segmentation result so that thin structures with continuity in the axial direction 

do not get removed. 
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CHAPTER 3 

 

 

RESULTS 

CHAPTER 3 Results 

 

3.1 Test Cases 

 

The method will be applied by using a combination of blurring estimation model, 

partial volume class modelling, single image/fusion modelling and regularization 

components. The effect of the contribution of these components will be examined 

on test images.
 
The eight main cases and the models and images used in them are 

shown in Table 3.1. The CT and MR image cases only have regularization model 

as a variable because the lack of other components yield very low metric results 

and they were excluded from the comparisons. Each case is assigned with an 

index and a short name. The short names encode which models are used in the 

case and they are given in Table 3.1. The three letters represent the blurring, PV 

and regularization models respectively. The test cases will be denoted either by 

index number or short name. The initialization of the algorithm is performed by 

using the case where none of the models are used and is not included in Table 3.1. 

 

 

3.2 Results 

 

Sixteen ROIs were defined in Table 2.1. Dice, RMSSD, combined scores and 

standard deviations of these scores that are calculated of 8 cases over these ROIs 

are given in Table 3.2. The individual results of muscle, fat and bone regions in 

ROIs are given in from Figure 3.1 to Figure 3.9. The air results do not differ 
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significantly between the different methods. Hence, they are not provided in 

detail. The calculated mean and standard deviation values over all ROIs are given 

in Figure 3.10 to Figure 3.12 also. 

 

Table 3.1 Test cases: models and image modalities used in them. In the second 

and third columns, ‘+’ indicates that the corresponding model is used and ‘-‘ 

indicates the opposite case. The letters of the short names represent the blurring, 

PV and regularization models. 

Case 

Index 

Blurring 

Estimation 

(A matrix) 

PV 

Model 

Images  

Used 

Regularization 

Model (prior) 

Short 

Name 

1 + + MR Uniform ooU 

2 + + MR Directional ooD 

3 + + CT Uniform ooU 

4 + + CT Directional ooD 

5 - - MR+CT 

(Fusion)  

Uniform xxU 

6 - + MR+CT 

(Fusion) 

Uniform xoU 

7 + + MR+CT 

(Fusion) 

Uniform ooU 

8 + + MR+CT 

(Fusion) 

Directional ooD 
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Table 3.2 (From top to bottom) Muscle, fat and bone score averages and standard 

deviations over all ROIs (RMSSSD values are in pixels) 

Case 

Index Case 

Dice 

Mean 

Dice  

Std. 

RMSSSD 

Mean 

RMSSSD 

Std. 

Combined 

Mean 

Combined 

Std. 

1 MR (ooU) 0.767 0.111 1.428 0.589 77.894 9.862 

2 MR (ooD) 0.777 0.103 1.417 0.602 78.538 9.473 

3 CT (ooU) 0.750 0.106 1.483 0.636 76.545 9.480 

4 CT (ooD) 0.750 0.106 1.471 0.628 76.646 9.394 

5 Fusion (xxU) 0.839 0.079 1.324 0.556 82.694 7.591 

6 Fusion (xoU) 0.857 0.057 1.033 0.275 85.496 4.546 

7 Fusion (ooU) 0.868 0.048 0.912 0.293 86.864 4.010 

8 Fusion (ooD) 0.865 0.050 0.899 0.286 86.771 4.159 

 

Case 

Index Case 

Dice 

Mean 

Dice  

Std. 

RMSSSD 

Mean 

RMSSSD 

Std. 

Combined 

Mean 

Combined 

Std. 

1 MR (ooU) 0.913 0.022 0.607 0.067 91.295 1.351 

2 MR (ooD) 0.914 0.021 0.607 0.061 91.349 1.248 

3 CT (ooU) 0.850 0.089 1.845 1.520 80.143 14.173 

4 CT (ooD) 0.850 0.089 1.844 1.518 80.159 14.141 

5 Fusion (xxU) 0.929 0.022 0.633 0.113 92.062 1.385 

6 Fusion (xoU) 0.930 0.021 0.627 0.102 92.152 1.475 

7 Fusion (ooU) 0.927 0.023 0.572 0.078 92.310 1.603 

8 Fusion (ooD) 0.925 0.024 0.571 0.072 92.230 1.665 

 

Case 

Index Case 

Dice 

Mean 

Dice  

Std. 

RMSSSD 

Mean 

RMSSSD 

Std. 

Combined 

Mean 

Combined 

Std. 

1 MR (ooU) 0.550 0.247 4.545 3.591 46.459 30.238 

2 MR (ooD) 0.554 0.238 4.448 3.345 47.314 27.970 

3 CT (ooU) 0.789 0.247 0.754 0.339 83.224 13.740 

4 CT (ooD) 0.789 0.247 0.757 0.344 83.190 13.739 

5 Fusion (xxU) 0.738 0.299 0.922 0.568 79.222 16.180 

6 Fusion (xoU) 0.779 0.308 1.201 2.041 79.942 27.115 

7 Fusion (ooU) 0.799 0.252 0.705 0.362 84.105 14.415 

8 Fusion (ooD) 0.800 0.252 0.690 0.344 84.217 14.397 
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Figure 3.1 Dice coefficient results for muscle in all ROIs 
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Figure 3.2 RMSSSD results for muscle in all ROIs 
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Figure 3.3 Combined metric results for muscle in all ROIs 
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Figure 3.4 Dice coefficient results for fat in all ROIs 
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Figure 3.5 RMSSSD results for fat in all ROIs 
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Figure 3.6 Combined metric results for fat in all ROIs 
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Figure 3.7 Dice coefficient results for bone in all ROIs 
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Figure 3.8 RMSSSD results for bone in all ROIs 
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Figure 3.9 Combined metric results for bone in all ROIs 
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Figure 3.10 Mean and standard deviation plot of different metrics (calculated 

over all ROIs) for 8 test cases (Muscle class) 
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Figure 3.11 Mean and standard deviation plot of different metrics (calculated 

over all ROIs) for 8 test cases (Fat class) 
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Figure 3.12 Mean and standard deviation plot of different metrics (calculated 

over all ROIs) for 8 test cases (Bone class) 
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Figure 3.10 and Figure 3.11 show that CT-only cases (cases 3 and 4) yields the 

worst muscle and fat segmentation results. MR-only case (cases 1 and 2) results 

are better because of the better soft tissue contrast of the modality. CT-MR fusion 

(cases from 5 to 8) resulted in progressively better scores for muscle and fat as PV 

and resolution models are added. For the bone class, MR-only cases performed 

the worst as expected. CT images are superior in distinguishing bone tissues from 

other tissues and this can be observed by the higher scores obtained by the CT-

only cases. Although MR images have very poor bone-air contrast, they 

unexpectedly contribute to the bone scores in the fusion cases. 

 

Although numerical results are important for the analysis of the method, visual 

observation is also critical for the algorithm accuracy assessment. In that regard 

visual inspections on the regions of interest are made. The tissue classes are 

shown as coloured overlays on the original CT and MR images. The colours 

corresponding to each tissue class are shown in Table 3.3 and a sample 

segmentation result is shown in Figure 3.13.  

 

Table 3.3 Segmentation labels and their colors 

Muscle 
 

Bone 
 

Skin 
 

Air 
 

Fat 
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Figure 3.13 Sample ground truth slice colored with segmentation labels 

 

  

  (a)     (b) 

  (c)     (d)
 

Figure 3.14 ROI 6 original (a) CT and (b) MR; ground truth overlay on original 

(c) CT and (d) MR 
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(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 

  
(g)     (h)

 

Figure 3.15 ROI 6 Segmentation results for the cases 1 through 8. (a) MR (ooU), 

(b) MR (ooD), (c) CT (ooU) (d) CT (ooD), (e) Fusion (xxU), (f) Fusion (xoU), (g) 

Fusion (ooU) and (h) Fusion (ooD) 
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The original CT and MR images and those images with overlays of manually 

segmented muscle (red) and bone (green) classes are shown in Figure 3.14. Thin 

muscles and muscle-like tissues exist in this region. The segmentation results for 

each case listed in Table 3.1 are shown in Figure 3.15. MR only cases (case 1 and 

2) have inferior bone segmentation accuracy and mostly inaccurate segmentations 

of bone-air regions. The CT only cases (3 and 4) provide superior bone-air 

segmentation results, but are unable to identify big parts of thin muscle structures. 

In the absence of resolution model (blurring matrix), although CT and MR fusion 

(the cases 5 and 6) yields improved results over the cases 1-4, there are still big 

gaps between thin muscle parts which should form a single structure according to 

the ground truth segmentation. The cases 7 and 8 for which the blurring matrix is 

non-identity are quite successful in connecting the previously disconnected very 

thin muscle structures. The gap between them is reduced to a single pixel. 

 

  
(a)    (b) 

  
(c)    (d) 

Figure 3.16 ROI 3 original (a) CT and (b) MR; ground truth overlay on original 

(c) CT and (d) MR 
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(a)    (b) 

   
(c)    (d) 

   
(e)    (f) 

   
(g)    (h) 

Figure 3.17 ROI 3 segmentation results for the cases 1 through 8. (a) MR (ooU), 

(b) MR (ooD), (c) CT (ooU) (d) CT (ooD), (e) Fusion (xxU), (f) Fusion (xoU), (g) 

Fusion (ooU) and (h) Fusion (ooD) 
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Smaller structures between the main thin muscle structure and bone are partially 

segmented in these cases. Finally, when case 7 (ooU) and case 8 (ooD) are 

compared, the latter seems to provide better connectivity of a very thin muscle 

structure, but on the other hand produced some spurious thin muscle pixels that 

don’t exist in the ground truth. 

 

The segmentation results in ROI 3 show a similar trend to the results of ROI 6 

(Figure 3.16 and Figure 3.17). The thin muscle strips on the top right portion of 

the image are not segmented accurately in cases 1 through 6. The accuracy is 

enhanced with the addition of blurring matrix to the model (cases 7 and 8). Cases 

7 (ooU) and 8 (ooD) are almost identical, which suggests that prior type did not 

make any difference. 

 

 

  
(a)    (b) 

  
(c)    (d) 

Figure 3.18 ROI 8 original (a) CT and (b) MR; ground truth overlay on original 

(c) CT and (d) MR 
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(a)    (b) 

  
(c)    (d) 

  
(e)    (f) 

  
(g)    (h) 

Figure 3.19 ROI 8 segmentation results for the cases 1 through 8. (a) MR (ooU), 

(b) MR (ooD), (c) CT (ooU) (d) CT (ooD), (e) Fusion (xxU), (f) Fusion (xoU), (g) 

Fusion (ooU) and (h) Fusion (ooD) 
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In ROI 8 (Figure 3.18 and Figure 3.19), although cases 6, 7 and 8 progressively 

yield better connectivity of very thin muscles, some over-segmentations of muscle 

occur on the outer regions of the thin muscles and near the bone. This results in 

very similar numerical scores among cases 6, 7 and 8. 

 

3.3 Statistical Analysis of the Results 

 

For statistical comparison, the normality of the distribution of the combined 

scores averaged over all 16 ROIs is checked using Shapiro-Wilk test. The 

calculated p  values for all 8 cases are given in Table 3.4. 

 

Table 3.4 Results of Shapiro-Wilk normality test
 

Case Index Case Name p 

1 MR (ooU) 0.581 

2 MR (ooD) 0.791 

3 CT (ooU) 0.370 

4 CT (ooD) 0.330 

5 Fusion (xxU) 0.629 

6 Fusion (xoU) 0.905 

7 Fusion (ooU) 0.266 

8 Fusion (ooD) 0.469 

 

 

All methods are found to have normal distributions ( 05.0p ), enabling the use 

of ANOVA test. The significant differences between the means of methods are 

calculated with this test. Although means of cases 7 and 8 are slightly better than 

case 6, ANOVA test revealed that these three cases do not have significant 

difference from each other. The comparison of muscle class scores are
 
given in

 

Figure 3.20. 
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In spite of these statistical results, by qualitative analysis of ROI 3, 6 and 8, it is 

revealed that case 7 (ooD) has provided some very thin muscle pixels which were 

not labelled so in the ground truth labelling by the expert. In close analysis, those 

regions demonstrate in fact a presence of very subtle thin muscle-like structures (a 

continuous strip of pixels with different intensity than fat). It is suspected that this 

could be misjudgement by the expert, since the expert was not trained to take into 

account the effect of system resolution (Experts look for a clear separation of 

intensity from that of fat.). Therefore, the labelling of ground truth can be 

considered questionable because of expert’s knowledge of the effect of system 

resolution (and PV effect combined). Another pitfall of this evaluation is 

obviously not consulting a group of experts as opposed to just one expert. 

 

 

Figure 3.20 Bar chart representation of muscle scores. Bars represent means and 

standard deviations 
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3.4 Computational Cost 

 

There are various factors affecting the computation time of the method. The most 

important ones are the size of the image and the number of partial volumes used. 

The times spent at different steps of the method are given in Table 3.5. It takes 10 

iterations on average for the method to converge to a solution. For the standard 

fusion case, the segmentation of five slices of a 50x50 ROI takes approximately 5 

seconds. The computation time increases linearly with image size. Therefore, it 

can be assumed that five slices of a 256x256 would take approximately two 

minutes. 

 

Although the method cannot be called fast, it should be noted that the speed of the 

algorithm is bound to increase by optimization of the MATLAB code or code 

porting from MATLAB to C++.  

 

Table 3.5 Computation times of the steps of the algorithm for five slices of 50x50 

pixel image on a 2.27 GHz i5 processor 

Type of process Time Number of times the process is 

repeated 

Computation of orientations 0.23 s 1 

Calculation of 
ncf  0.17 s Iteration count 

Calculation of 
cf  0.02 s (Iteration count) x (Total number 

of labels) 

Postprocesses 0.14 s 1 
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CHAPTER 4 

 

 

CONCLUSION, DISCUSSION AND FUTURE WORK 

 

CHAPTER 4 Conclusion, Discussion and Future Work 

A method to segment the human head facial tissues and especially thin muscles 

was developed. The Bayesian segmentation model which includes MR-CT fusion, 

blurring and noise models was formulated and tested. The effect of each model 

was investigated. Although the greatest contribution was made by the addition of 

fusion, the other models such as partial volume model, blurring matrix and prior 

models helping to reduce image noise were all enhancements to the segmentation 

accuracy. Two models of MRF priors were also tested. There was not a significant 

difference between isotropic and directional prior cases. Therefore, using isotropic 

prior is more advantageous since there are fewer parameters to optimize. 

 

Although the quantitative and statistical analysis yielded very similar results for 

the uniform and directional prior cases, thin muscle structures in the segmentation 

result which did not exist in the ground truth were observed in the qualitative 

analysis. These may simply be segmentation inaccuracies or they can be the result 

of an inaccurate ground truth. In either case, the method should also be tested by 

ground truth segmentations made by multiple experts instead of segmentations 

made by a single expert. 

 

A similar comparison can also be made for the isotropic prior case of this study 

and the adaptive Bayesian case in [15]. The results of [15] were obtained in 3D. 

This makes it possible that continuity of thin structures in the axial direction is 
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preserved better. The images were segmented in a different manner here slice by 

slice. Extension of the algorithm presented here to the third dimension may 

increase the segmentation accuracy. The adaptive Bayesian method proposed by 

Kale et al. [15] achieved quite similar results as presented here (the accuracies of 

the two methods are within 2% of each other on combined scores). However, 

Emre Kale et al. [15] requires more parameters to be tuned which are medical 

imaging system and data acquisition setting dependant.  

 

Although the computation time is greater here when compared to [15], it can be 

improved by better code implementations. If the MATLAB code is implemented 

emphasizing MATLAB’s matrix computation strengths or if the algorithm is re-

coded in a programming language such as C++, the performance should increase 

by orders of magnitude. Even more speed enhancement is possible through the 

use of parallel processing with multi-threading or libraries like Nvidia Compute 

Unified Device Architecture (CUDA) [64] which use the parallel processing 

power of Graphics Processing Units (GPU). 

 

Although it is not a standard practice to have both CT and MR scans of the same 

patient, the proposed method should be tested on more subjects. Having more 

datasets would also mean that some of them could be used as training sets for 

more accurate parameter optimization (as opposed to simulation). In addition, the 

algorithm can be tested with other imaging modalities and MR imaging sequences 

(T2, spin-echo, etc.). However, it should be noted that using a modality other than 

CT may result in loss of information regarding bone and air. The segmentation 

success of using low-dose CT as opposed to a normal dose should also be tested 

when radiation is a concern, especially in the case of a full head scan. 

 

The calculations were carried out with normalized CT intensities instead of 

Hounsfield units (HU). Ideally, it would be better to use HU, which would be 

system independent. The intensity values in Hounsfield units are in similar ranges 
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on different CT settings and images. Therefore, it is possible to generalize the 

mean tissue intensities. 

 

The autocorrelation of the CT and MR images were obtained by a manual method, 

and this process needs to be repeated for imaging systems and data acquisition 

settings other than the ones used in this study. This process can be switched for a 

more robust method. The means of class labels and their standard deviations 

which were obtained similarly can be calculated by methods such as EM 

algorithm.  

 

The estimation model of the resolution   is assumed to be constant throughout 

the volume, where in fact it is typically variable in the field of view for spiral CT 

systems [65]. However, the results presented here indicate that even a constant 

assumption provided improvements in the segmentation output. 

 

The methods and tests can be carried over to the 3D to include the data coherence 

in the axial direction. In that case, the computational cost would increase, but not 

dramatically since the number of processed voxels would be the same. Only the 

kernel sizes convolved around the voxels would change. 

 

The bias correction, image registration and pre-processing steps are also important 

for the accuracy of the segmentation algorithm when multimodal fusion is used. 

Improvements on the pre-processing methods are expected to improve the 

segmentation performance. 

 

Partial volume ratio estimates at each pixel are a natural result of the method. 

Validation in terms of the partial volume ratios can be performed if these 

estimates are also available for the ground truth segmentation as in the simulated 

images. 
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The advantages and disadvantages of using orientation tensors over Hessian 

tensors in the directional prior should be investigated. Orientation tensors have 

been used in various recent studies on the segmentation of thin structures, and 

they may have a positive effect on the method. 

 

Automatic segmentation methods almost never yield perfect results. Perfect result 

itself is not easily quantifiable because the interpretation of a medical image can 

be subjective to an extent. Even when an agreement on what ground truth 

segmentation should be is reached, manual correction (called “editing”) of the 

segmentation results is usually required. A segmentation editing method which 

suits the thin structures may decrease the time spent on this step dramatically. A 

tool may be needed even in the case of accurate automatic segmentation if the 

separation of tissue subtypes such as different muscles and the other tissue types 

categorized by the method as muscle class (i.e. veins, vessels, tendon, etc.) is 

required. The performance of the automatic segmentation is still one of the most 

critical factors for the subsequent manual editing methods in decreasing the time 

spent by the experts. 
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APPENDIX A 

CHAPTER 5 Appendix 

MR INTENSITY NON-UNIFORMITY CORRECTION 

 

Appendix I MR Intensity Non-uniformity Correction 

 

The intensities in the MR images have spatial variations because of the magnetic 

field non-uniformity. The multiplicative bias value at each voxel must be known 

to correct the intensities. Shattuck et al. [16] modelled the multiplicative bias field 

as a slowly varying field. The MR volume was divided into small blocks and a 

parametric model on tissues was fitted to the histograms of the blocks. A 

regularization scheme was applied to the grid of bias values. The bias field for 

every voxel were then calculated with interpolation using B-splines. 

 

A method called non-parametric non-uniform intensity normalization (N3) was 

proposed for intensity correction in MR images [57]. N3 was claimed to be 

independent of MR pulse sequence and irregularities in the image such as 

pathologies. The method was based on the correction of the frequencies of the 

image.  

 

N3 is chosen as the intensity correction method in this study. The bias field is 

calculated and applied to the original MR image. The effect of the correction in 

two slices can be seen in Figure A.1. One of the slices is taken from the mandible 

level and the other from the region between the lips. The intensities at the lower 

part of this image, especially below the mouth level, had lower intensities than the 

upper part. The bias values in this region are found to be greater than 1.0, thus 

yielding brighter intensity values.  
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(a) 

 

(b) 

  

(c) 

 

(d) 

Figure A.1 Effect of N3 intensity correction. Slices from (a) mandible and (b) 

mouth levels before correction. Slices from (c) mandible and (d) mouth levels 

after correction. 
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APPENDIX B 

 

 

MR-CT REGISTRATION 

 

Appendix II MR-CT Registration 

 

The CT and MR images used in segmentation have different orientations and 

voxel sizes originally. The process known as registration is applied in order to 

bring the coordinate systems to an alignment. Image registration aims to find an 

optimal transformation between two images so that the points on the images are 

mapped onto each other spatially and with respect to intensity. Two 3D images 1I  

and 2I  can be mapped to each other by 

 ))),,(((),,( 12 zyxfIgzyxI  , B1 

 

where ),,(1 zyxI  and ),,(2 zyxI  are the functions which map their coordinates to 

intensity values, f  is the coordinate transformation and g  is the intensity 

transformation [66]. In the case of medical images, the mapped points correspond 

to the same anatomical point on each image [67]. Image registration can be 

classified according to nature of registration basis, nature of transformation, 

modalities involved and subject [68]. A classification based on the transformation 

type divides image registration methods into two categories which are called rigid 

and non-rigid methods. In rigid registration only transformations during which 

parallel lines stay parallel are used. Non-rigid registration methods involve other 

types of transformation that are more complex. In this study, registration schemes 

composed of rigid and non-rigid components are used. 
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Rigid Registration 

 

The original CT and MR images are misaligned because of the unknown position 

relationship between the images and tilting of the head around every axis. Since 

the images are taken from the same patient, structural similarity is very high 

except for possible soft tissue deformations. The situation can be different if the 

images are taken pre-operation and post-operation. However, it is aimed to use 

both CT and MR images for segmentation and it is reasonable to assume that the 

images are obtained at similar dates with no major structural differences. CT 

image will be registered to MR image. Therefore, it will have its resolution 

lowered. This helps in simulating the fusion of low-resolution CT and MR 

images. 

 

For registration purposes, the transformed image will be called as floating image 

and the other image as target image. In rigid registration the floating image is free 

to be translated along and rotated around the 3 axes. Scaling is not needed because 

the voxel sizes in millimetres are known. The transformation which will align two 

images are demonstrated in Figure B.1. This becomes an optimization problem 

with parameters as translations xt , yt and zt  ; and rotations xr , yr and zr  which 

can be combined into transformation T . The optimization of this transformation 

is to be made according to a cost function which maximizes the similarity 

between the images. 
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Figure B.1 The transformation between the registered images 

 

 

 

Similarity Metric 

The similarity metric for the rigid registration process is based on maximization of 

mutual information [69]. This is a statistical method which calculates the joint 

probability distributions of two images and measures the degree of dependence 

between them. One of the most important properties of the mutual information 

metric is that it is robust to changes in intensity values. Therefore, it is a powerful 

tool for multi-modality registration. Mutual information (MI) originates from 

information theory [70]. MI of two variables 1I  and 2I  is defined as the amount of 

information contained in the variables about each other; 

 ),()()(),( 212121 IIHIHIHIIMI  , B2 

where )( 1IH  and )( 2IH  denote the marginal entropies and ),( 21 IIH  denotes the 

joint entropy of 1I  and 2I . In image registration presented here, with reference to 

Figure B.1, suppose that 1I  is the MR image and 2TI  is the transformation 

applied CT image. The mutual information metric is enhanced further into 
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normalized mutual information. Normalized mutual information (NMI) 

),( 21 TIIG  is a modified version of MI. NMI is overlap invariant [71] meaning 

that the measure is robust when the overlap between 1I  and transformed image 

2TI  is not optimum. NMI is calculated by 

 
),(

)()(
),(

21

21
21

TIIH

TIHIH
TIIG


 . B3 

The entropies )( 1IH , )( 2TIH  and ),( 21 TIIH  are calculated by 

   )(log)()( ppH , B4 

where )( 1Ip  and )( 2TIp are marginal intensity probabilities and ),( 21 TIIp  is the 

joint intensity probability. Joint intensity probability is obtained from the joint 

histogram which is a multi-dimensional histogram of the images.  

In order to obtain the joint histogram, the intensities on the images are divided 

into intervals which are called bins. For example, if the [0, 1] intensity range is 

divided into 10 bins, intensity range [0, 0.1] is assigned to bin 1, the range [0.1, 

0.2] is assigned to bin 2, etc. If the bin counts for the two images are M and N, the 

joint histogram is initialized as a 2-dimensional array with zero values. Then the 

intensity bins of two voxels at the same coordinate in each image are paired. The 

corresponding counter in the joint histogram is increased by one for every 

intensity pair. This process is repeated for every voxel to yield the counters and 

the histogram is normalized into a probability distribution.  

 

Search Method  

The maximization of the mutual information of the two images is achieved by 

using Powell’s conjugate gradient descent method [72]. A one-dimensional search 

is performed at every iteration of the algorithm. The direction of the search at each 

step is found by combining the directions used in the previous steps. The new 
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direction is added to the list of search vectors while a previous one is deleted. One 

of the most important properties of this method is its ability to work without the 

function gradient [73] and it is not possible to supply an algorithm with the 

gradient of a function in most practical cases such as the MI function used here.  

 

Partial Volume Interpolation (PVI)  

The optimization procedure tests the cost function with floating point numbers. 

Translating an image with floating point numbers require interpolation of pixel 

values. When calculating mutual information the pixel values of the floating and 

target images are required. Using interpolated pixel values from the floating 

image and exact values from the target image may result in several local minima. 

Partial Volume Interpolation (PVI) is implemented to overcome this difficulty 

[69]. Each pixel in the target image is perturbed by a random amount less than the 

size of a pixel. This provides the smoothness of the cost function. Note that the 

Partial Volume term in this context is slightly different from the PV effect 

described in section 2.3.3. In the context of interpolation PV implies the usage of 

non-integer pixel coordinates in registration. 

 

 

Non-rigid Registration 

 

Although the images are aligned to an extent after rigid registration (Figure B.2), 

there are parts of the image with inaccurate registrations (Figure B.3). In order to 

correct the inaccuracies in the registration, a non-rigid scheme is to be employed. 

One of the most studied image registration algorithms is block matching. 
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Figure B.2 MR (top right, bottom left) and CT (top left, bottom right) images are 

shown together after registration 

 

 

Figure B.3 A slice with where mis-registration is more apparent 
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Block Matching 

 

Block matching is the process in which part of one image is searched on the 

image to determine the motion in the image. Although block matching is 

generally used in video compression using motion estimation [74], medical 

applications of the method exist such as ultrasound image registration [75]. In 

block matching, a sample block centered on a coordinate in the floating image is 

searched in the search window centered on the same coordinate of the target 

image based on a similarity metric. For an image of 256256256  voxels, the 

sample block size was chosen as 242424   empirically. Although a smaller 

blocks size would provide a finer deformation field, it was concluded through 

testing that the field became highly irregular due to the small amount of 

information contained in the block.  

 

 

Figure B.4 A sample block and search window (original image from [75]) 

 

Deformations found by rigid registration account for the larger part of the 

deformations obtained during the whole registration process. Therefore, the 

deformations to be calculated by the non-rigid part are minimal in comparison. 
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This leads to the possible use of smaller search windows. The size of the search 

windows was chosen as 8x8x8 allowing 8 voxel translations along each axis. The 

translations are performed with integer intervals. The similarity metric chosen for 

block matching is correlation coefficient (CC). Among other alternatives there are 

Sum of Squared Differences (SSD), Sum of Absolute Differences (SAD), 

Correlation Ratio (CR) and Mutual Information (MI). SSD and SAD are not 

suitable as multimodal metrics. Although MI is a multimodal metric, the blocks 

do not contain a lot of information. Therefore, MI is also ruled out because MI 

works best with more information. 

 

Likar et al. [76] proposed a hierarchical approach to elastic registration in which 

images are divided in exponentially increasing number of subparts and registered 

locally. Block matching in [76] is carried out with a 3 level hierarchical scheme. 

This reduces the number of computations substantially. However, the scheme 

used in here is a slightly altered version of the mentioned method. As a difference, 

same number of blocks is used in each level. The blocks are sampled down and 

then matched while allowing coarse translations. For the next hierarchy level, 

block sizes are doubled and translations are limited to half of the previous level. 

 

When this process is performed for all blocks, a deformation field ),( yxs  at every 

block center ),( yx   is obtained as 
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Transformations in images are performed in a reverse fashion. Applying 

transformation directly to an image results in empty voxels in the transformed 

image. Therefore, the transformation is reversed and applied to an empty image to 

find the source pixel coordinate in the original image. This process ensures that all 

the pixels in the transformed image contain information. Considering this, the 

reversed deformation field is written as  
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such that it shows the deformations from the target image to the floating image. 

The data points of this field are at irregular points so a linear interpolation method 

cannot be used to obtain the deformations at every voxel of the target image. 

Radial Basis Functions (RBF) are widely used to approximate functions with 

scattered data [77].  

 

 

Radial Basis Functions 

 

A function can be approximated as the sum of N radial basis functions 
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where ix  are the N centers and i  are the corresponding weights. The centers are 

the points where the function values are known. For the basis function   there are 

several choices, such as linear ( rr )( ), cubic spline ( 3)( rr  ), Gaussian           

( crer /2

)(  ), thin-plate spline ( rrr log)( 2 ) etc. where 
ixxr  . Thin-

plate splines are widely used because of the smoothness they provide [78]. 

Therefore, they are selected to be used for the interpolation.  

 

The function values at the centers are known as 

 )( jj xff   Nj ,..,1 , B8 

 

which can also be approximated by the sum of radial function as 
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The weights i  are the only unknowns in this set of linear equations. The 

equations can be rewritten in matrix form as 

 



















































NNNNN

N

f

f

::

..

:..:

.. 11

1

111









, B10 

 

where the basis function values are  ijij xx   . This linear system can be 

solved to obtain the unknown basis function weights. 

 

The function values in these formulations are scalar, whereas the block 

translations are 3D vectors. In order to utilize the RBFs 3 systems are obtained 

each representing a component of the vector. The three approximating functions 

become 
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where P  is the coordinate of a voxel in the image and iP  are the reversed block 

centers.  

 

Non-Rigid Registration Result 

 

The block matching registration is applied to the images so that the 

transformations are added to the transformations found in rigid registration. To 

represent the final transformations a slice is shown before (Figure B.4) and after 

(Figure B.6) non-rigid registration. Although the deformations during non-rigid 

transformations throughout the volume do not exceed a couple of pixels, they are 
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very important for the accuracy of the fusion segmentation method. Therefore, 

application of block matching is critical for the success of the overall algorithm. 

 

 

 

Figure B.5 MR slice after (a) rigid registration and (b) non-rigid registration 
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