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ABSTRACT

SPECIFICATION AND SCHEDULING OF WORKFLOWS UNDER RESOURCE

ALLOCATION CONSTRAINTS

Şenkul, Pınar (Karagöz)

Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. İsmail Hakkı Toroslu

June 2003, 141 pages

Workflow is a collection of tasks organized to accomplish some business process. It also

defines the order of task invocation or conditions under which task must be invoked,

task synchronization, and information flow. Before the execution of the workflow, a

correct execution schema, in other words, the schedule of the workflow, must be deter-

mined. Workflow scheduling is finding an execution sequence of tasks that obeys the

business logic of workflow. Research on specification and scheduling of workflows has

concentrated on temporal and causality constraints, which specify existence and order

dependencies among tasks. However, another set of constraints that specify resource al-

location is also equally important. The resources in a workflow environment are agents

such as person, machine, software, etc. that execute the task. Execution of a task has
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a cost and this may vary depending on the resources allocated in order to execute that

task. Resource allocation constraints define restrictions on how to allocate resources,

and scheduling under resource allocation constraints provide proper resource allocation

to tasks. In this thesis, we present two approaches to specify and schedule workflows

under resource allocation constraints as well as temporal and causality constraints. In

the first approach, we present an architecture whose core and novel parts are a specifi-

cation language with the ability to express resources and resource allocation constraints

and a scheduler module that contains a constraint solver in order to find correct re-

source assignments. In the second approach, we developed a new logical formalism,

called Concurrent Constraint Transaction Logic (CCTR) which integrates constraint

logic programming (CLP) and Concurrent Transaction Logic, and a logic-based work-

flow scheduler that is based on this new formalism. CCTR has the constructs to specify

resource allocation constraints as well as workflows and it provides semantics for these

specifications so that validity of a schedule can be checked.

Keywords: workflow, scheduling, logic, constraint programming, resource, resource

allocation constraints
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ÖZ

KAYNAK AYRIM KISITLARI ALTINDA İŞAKIŞLARININ TANIMLANMASI VE

PLANLANMASI

Şenkul, Pınar (Karagöz)

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. İsmail Hakkı Toroslu

Haziran 2003, 141 sayfa

İşakışı, karmaşık ticari işlemleri oluşturmak üzere biraraya gelmiş görevler toplulu-

ğudur. İşakışları, aynı zamanda, görevlerin çalıştırılma sıraları, hangi şartlar altında

çalışması gerektiği, görev senkronizasyonu ve görevler arası bilgi akışına dair tanımla-

maları da içerir. İşakışı çalışmadan önce, doğru bir çalışma şeması, diğer bir deyişle,

işakışı planı belirlenmelidir. İşakışı planlama, görevlerin çalışma sıralarının, işakışı

mantığına uygun olarak bulunmasıdır. İşakışı modelleme ve planlama üzerine yapılan

araştırmalar, zaman ve nedensellik kısıtları üstünde yoğunlaşmıştır. Ancak, kaynak

ayrımını tanımlayan diğer bir kısıt tipi de işakışları için eşit derecede önemlidir. Bir

işakışı ortamında, görevlerin yapılması için gerekli olan personel, makina, yazılım ve
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benzeri ihtiyaçlara kaynak adı verilir. Bir görevin yerine getirilmesinin bir maliyeti

vardır ve bu maliyet genellikle, görevin yerine getirilmesi için ayrılan kaynağa bağlı

olarak değişir. Kaynak ayrım kısıtları, kaynakların dağılımına dair sınırlamalar tanımlar

ve bu kısıtlar altında yapılan işakışı planlaması, görevler için doğru kaynak ayrımını

sağlar. Bu çalışmada, zaman ve nedensellik kısıtlarının yanı sıra, kaynak ayrım kısıtları

altında işakışı modelleme ve planlamayı sağlamak amacıyla iki yaklaşım sunulmak-

tadır. Birinci yaklaşımda, temel ve yenilik taşıyan parçaları, kaynakları ve kaynak ayrım

kısıtlarını ifade edebilen bir işakışı tanımlama dili ve tanımlanan kısıtlar altında doğru

kaynak ayrımını bulmak için, kısıt çözücü içeren bir planlayıcı olan bir işakışı yönetim

sistemi mimarisi anlatılmıştır. İkinci kısımda ise, Concurrent Constraint Transac-

tion Logic (CCTR, Eşzamanlı Kısıt İşlem Mantığı) adıni verdiğmiz, Constraint Logic

Programming (CLP, Kısıt Mantık Programlama) ve Concurrent Transaction Logic’i

(CTR, Eşzamanlı İşlem Mantığı) birleştiren bir formalizasyon ve bu formalizasyonu

temel alarak geliştirilen bir işakışı planlayıcısı anlatılmaktadır. CCTR ile kaynak ayrım

kısıtlarını tanımlamak, anlamlarını modellemek, böylece bu kısıtlar altındaki bir işakışı

planını doğrulamak mümkün olmaktadir.

Anahtar Kelimeler: işakışı planlama, mantık, kısıt programlama, kaynak, kaynak ayrım

kısıtları
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Selçuk, for accompanying me during my stay at Stony Brook and being right beside

me at my ups and downs during this thesis work.

vii



To my family

viii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
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CHAPTER 1

Introduction

Workflow can be defined as a coordinated set of activities that act together to perform a

well-defined and complex process while satisfying a set of constraints which represents

the business logic of the workflow. Real life processes such as multi-agent banking

transactions, trip planning, catalog ordering and fulfillment processes in an enterprise

are typical examples of workflows.

A workflow management system (WfMS) [47, 41, 5] defines a model and tools for

the specification, analysis and execution of workflows. However, specification models

of today’s WfMS’s are not fully sufficient for the specification of all kinds of constraints

a workflow may contain. They ignore a very important class of constraints, those that

arise from resource allocation. Physical objects like devices and personnel who carry

out tasks can be considered as resources. Sometimes resources are called agents. In real

life applications, usually costs like time and money are associated with the execution

of a task by an agent. Since typically resources not limitless, scheduling of a workflow

execution should involve decisions as to which resources to use and when.
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Scheduling of workflows is a problem of finding a correct execution sequence for

the workflow tasks, i.e., execution that obeys the constraints that embody the busi-

ness logic of the workflow. Most research on workflow scheduling has concentrated on

temporal and causality constraints, which specify the correct ordering of tasks ignor-

ing the resource allocation constraints [7, 72, 73, 77, 1, 75, 29, 11]. Although resource

management has been recognized as an important aspect of a WfMS [24, 4, 77], most

of the work has focused on modeling the various resources [82, 34, 48] with no or little

attention devoted to scheduling under the constraints associated with such resources.

Temporal and causality constraints help to describe the execution flow of a workflow.

For example constraints like tasks 1 and 2 must both execute, and, if task 1 executes

then tasks 2 and 3 must execute as well are typical examples of temporal/causality

constraints. On the other hand, resource allocation constraints are needed in order to

determine which resources should be used to execute the tasks and when [55, 70]. For

example, a human agent or a machine might not be used for executing different tasks

simultaneously since undivided attention could be required by tasks defined in parallel.

For such cases we should be able to specify that the same agents cannot be assigned

to parallel branches of the workflow. Similarly, we might want to define a limit on the

cost of agent allocation.

Most of the previous work on workflows concentrated on issues related to run-time

check of the constraints. If a workflow is executed before it is verified, its constraints

may be checked and a schedule might be obtained incrementally during the execution.

However, a workflow specification might be unexecutable because of its incorrect design

or conflicting constraints. At some point of the execution, if it is detected that the
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workflow cannot be completed because of design errors, some rollback operations might

be needed before abandoning the execution of the workflow. Obviously such cases cause

waste of resources. Therefore, it is important to verify the given workflow specification,

and this verification can be done by obtaining a feasible workflow schedule providing

proper resource allocation, prior to the execution.

In this thesis, two approaches have been studied in order to pre-schedule the work-

flows under resource allocation constraints. The first approach develops a scheduler

architecture whose core component is a constraint solver. The second approach is based

on a logic-based framework. This framework is realization of a logic-based language

developed within the scope of this thesis in order to model and schedule workflows

under resource allocation constraints.

In the first approach, we present a workflow management system architecture that

provides modules to model resources and resource allocation constraints and to find

schedules fulfilling these constraints. In order to find schedules, constraint programming

approach is used. That is, scheduler incorporates an off-the-shelf constraint solver to

obtain a feasible schedule for the workflow satisfying both resource allocation and tem-

poral/causality constraints. Operations Research (OR) and constraint programming

have been successfully used for problems such as job-shop scheduling, in which proper

machine (i.e., resource) allocation constitutes an important part of the solution. (For

more information on constraint programming, reader may refer to [50, 40, 10, 16]).

Although we were inspired by these previous work, in this thesis, we study a new do-

main, namely workflow scheduling under resource allocation constraints, and contrary

to most OR problems, our goal is to find a feasible resource allocation rather than

3



finding the optimal solution.

The main contributions of this method can be summarized as follows:

• As a part of the architecture, we have developed a specification language that can

model cost information for resources and specify resource allocation constraints,

which is not provided by previous workflow definition languages.

• The architecture contains a translator module that produces a constraint program

corresponding to the workflow specification. The scheduler module, which incor-

porates a constraint solver, gets this program and produces a schedule satisfying

resource allocation constraints.

In the second part, we develop a new logical framework, Concurrent Constraint

Transaction Logic (abbr., CCTR), that extends Concurrent Transaction Logic (abbr.,

CTR) [13] by incorporating ideas from Constraint Logic Programming (CLP) [49, 50].

This new framework can be used for the specification, verification and the scheduling

of workflows containing resource allocation constraints in addition to ordinary tempo-

ral/causality constraints.

The role of CCTR in our framework is to model workflows and specify all kinds of

constraints in a rigorous and precise way. The semantics of the CCTR modeling of a

workflow represents to a schedule that contains both an execution ordering that the

specified workflow can execute, and a set of resource assignments to the tasks of the

workflow satisfying all the given constraints. The realization of this framework can be

summarized in three components:

• A formula transformer, that transforms the conjunctive CCTR formula which

4
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Figure 1.1: House construction workflow

specifies the workflow in conjunction with the cost and control constraints, into

a conjunction-free CTR formula that contains exactly the same constraints.

• A CTR interpreter, that solves the non-constraint part of the formula in order to

determine the partial schedule of the workflow and extract the constraints.

• A constraint solver, that determines the resource allocations to the tasks of the

workflow by solving the constraints.

The combination of the last two steps together constitutes the solution for the

original conjunctive CCTR formula that contains both the workflow and the resource

allocation constraints.

A Motivating Example. The following example scenario, derived from [69] illustrates

the resource allocation constraints defined on workflows.

Example 1.1 House construction company A builds a house, does gardening and

moves customer’s furniture into the new house. The company subcontracts with other

companies for the various subtasks. There can be several candidate subcontractors,
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or the same company may be qualified to do several subtasks. To satisfy customer’s

requirements and to maximize its own profit, company A wants to choose the most

appropriate companies to subcontract with. The workflow is shown in Figure 1.1. In

the figure, the AND-nodes represent branches of work that can be done in parallel (but

all the parallel branches must be finished). OR-nodes represent alternative courses of

action. For instance, the facade can be painted or the customer might choose to use

vinyl siding. Tasks that must be done in sequence are connected via directed edges.

Resource allocation constraints in this workflow can include:

1. The budget for the construction should not exceed the given amount.

2. The construction should not last longer than the given duration.

3. Different companies must be chosen for parallel tasks (to speed up the construc-

tion).

Organization. The organization of this thesis is as follows: Chapter 2 presents the

related work. Preliminaries on workflow modeling and resource allocation constraints

are explained in Chapter 3. Our first approach to workflow scheduling under resource

allocation constraints is presented in Chapter 4. The second approach that involves a

logic-based framework is presented in Chapter 5. Comparison of two approaches and

some applications are given in Chapter 6. Chapter 7 concludes the thesis.
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CHAPTER 2

Previous Work

2.1 Previous Work on Workflow Modeling and Scheduling

The previous work on workflow modeling and scheduling generally involves ordering

dependencies among the workflow tasks. There are different approaches to model and

schedule under these dependencies. In this chapter, we present approaches that use

logic, event algebra, triggers and Petri nets.

2.1.1 Workflow Modeling Using Temporal Logic

In [7], Attie et al. proposed to model workflows as a set of intertask dependencies. Both

local and global constraints can be modeled in this way. The tasks in a workflow are

described in terms of significant events. A typical event is the beginning or termination

of a task, but it can also be sending an email to the boss, printing a report, etc.

When an event is received for execution, it is checked against every dependency

and based on that the event might be accepted, rejected, or delayed and scheduled

later. The dependencies are specified as formulae in Computational Tree Logic (CTL)
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[37]. The scheduler enforces these dependencies by converting them into automata and

ensuring that the sequence of scheduled events is accepted by all these automata.

This work does not explicitly deal with the verification issues, such as whether

the given set of constraints implies some other constraints, but the major issue is

whether implication of workflow dependencies can be tested more efficiently due to the

specialized form of these constraints.

Formalization

The formalization is based on the following assumptions: workflows are modeled as

streams of significant events such as start, precommit, commit, and abort ; the unique

event assumption holds; and events can be delayable, rejectable, or forcible.

A workflow is specified as a set of dependencies over the events associated with the

tasks. If e1, e2, ..., en are the significant events associated with a number of tasks, then a

dependencyD involving these events is denoted asD(e1, e2, ..., en). Computational Tree

Logic (CTL) is used to specify these dependencies. For instance, the order dependency,

e1 < e2, is specified in CTL as A2(e2 → A2¬e1), i.e., on every path it is always

true that if e2 occurs then e1 will not occur later on any continuation of that path. A

dependency, D, specified in CTL, is compiled into a finite state automaton AD, which

is a tuple 〈s0, S,Σ, ρ〉, where:

• S is a set of states.

• s0 is the initial state.

• Σ is a set of event expressions, which can have one of the following forms:

– a(e1, ..., en) says that the events e1, ..., en are accepted by AD and scheduled
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Figure 2.1: Dependency automata

for execution.

– r(e1, ..., en) says that the events e1, ..., en are rejected by AD.

– σ1 ‖ ... ‖ σn says that the event expressions σ1, ..., σn are run concurrently

in an interleaved fashion.

– σ1; ...;σn, where σi ∈ Σ says that the operations σ1, ..., σn are run in sequence.

• ρ ⊂ S × Σ× S is the transition relation.

Figure 2.1 shows two automata for two different dependencies. Here t1 denotes the

significant event of termination (i.e., abort or commit) of task 1 and t2 denotes the ter-

mination event for task 2. Symbols e1 and e2 are used to denote other, non-termination

events. Because of the special semantics of termination events, no significant events

from a task i can arrive once the event ti has arrived and ti must be scheduled last.

The symbol | indicates choice — either event can cause the corresponding transition.

This should be contrasted with the event combinator ‖. For instance, an arc labeled

with a(e1) ‖ a(e2) means that both events, e1 and e2, must occur and the corresponding

state transition can happen in one of the two ways: either by scheduling a(e1) first and

a(e2) next or by scheduling these events in the reverse order.
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The initial state in every automaton is denoted by i and the final state by f .

Every path from the initial state to the final state corresponds to a way in which the

dependency can be satisfied.

Figure 2.1(a) presents the automaton for the dependency e1 → e2. Some valid paths

for this dependency is as follows:

• r(e1) a(e2) — rejection of e1 followed by acceptance of e2.

• a(t1) a(e2) — termination of task 1 followed by acceptance of e2.

• a(e1) a(e2) and a(e2) a(e1) — because a(e1) ‖ a(e2) is a label on one of the arcs,

which means that executing e1 and e2 in any order can cause the corresponding

transition.

Similarly, Figure 2.1(b) is an automaton for the order dependency e1 < e2. The se-

quence of events a(t1) a(e2) is accepted by both automata, since each automaton has

a path consistent with this sequence of events. However, the sequence a(e1) a(t2) is

accepted by the automaton for e1 < e2 only. This is because a(e1) a(t2) does not cor-

respond to a legal execution sequence in the automaton for the dependency e1 → e2.

To provide a complete automata, a self-loop is added to every state in each au-

tomaton. In addition, the initial state of the automaton is also made into an accepting

(final) state. The automaton of Figure 2.1(a) transformed in such a way is depicted in

Figure 2.2. In this figure, a label such as “not e2, t2” means that the transition along

that arc can be caused by any event expression that does not mention e2 or t2. For

instance, neither r(e2) nor a(e2) can cause the transition, but a(t1) or r(e1) can.

Scheduling
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Figure 2.2: Automaton of Figure 2.1(a) augmented with self-looping transitions

On the automata as developed above, given a sequence of events, seq, the work of

the scheduler is to find a legal execution path, π, such that the events mentioned in the

expressions in π are all and only the events that occur in seq. If every automaton is of

size N and there are m automata, then one can build a product automaton of size Nm.

Unfortunately, this might be unacceptable for workflows that have many constraints.

To avoid this state explosion problem, the individual automata are checked at run-

time, as explained below. The worst time complexity of run-time scheduling is still

exponential. However, it is believed that the worst case does not occur in practice [7].

The global state of the scheduler is a tuple whose components are the local states of

the dependency automata — one state per automaton. The initial global state is a tuple

of the initial states of these automata. When an event, e, arrives, the algorithm tries

to construct an event sequence, π, which is accepted by every augmented automaton,

such that π includes e and possibly some of the events that have arrived previously

but have not yet been scheduled (these are called delayed events). In addition, each

event on the path must occur at most once. If such a path cannot be found, then the

scheduler delays the execution of the event e.
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Consider the dependencies e1 → e2 and e1 < e2 with the automata A→ and A<,

respectively, shown in Figure 2.1. Let A′→ and A′< be the augmentations of these

automata. Augmentation for A→ is shown in Figure 2.2 and augmentation of A< is

constructed similarly. Let e1 be an event submitted to the scheduler. Since there is no

path in both automata that begins by either accepting or rejecting e1, the scheduling

of e1 has to be delayed. Now suppose the event e2 is submitted to the scheduler.

Two execution paths can be found in A→ that accept both e1 and e2: a(e2)a(e1) and

a(e1)a(e2). The only path in A< that accepts both e1 and e2 is a(e1)a(e2). However,

in a(e1)a(e2) the order of events is different from the path a(e2)a(e1) in A→. Thus, the

only legal execution path is a(e1)a(e2) — the scheduler can execute e1 followed by e2

and satisfy both constraints.

2.1.2 Workflow Modeling Using Event Algebra

[72] defines an algebra, which is suitable for reasoning about constraints over an in-

coming stream of events. This algebra is expressive to represent very general temporal

intertask dependencies, including control flow graphs. But conditions on transitions

between tasks in such a graph cannot be expressed. A scheduling algorithm starts with

an expression that represents the entire set of constraints and then chips away at these

expressions (or residuates in the terminology of [72]) as it schedules the arriving events.

Formalization

Execution of a workflow relies on the notion of significant events produced by the

tasks that comprise the workflow. Examples of such events are start, precommit, com-

mit, and abort. A workflow is specified as a set of dependencies between these significant
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events. The dependencies are represented as event expressions in the algebra.

The set of symbols that represent significant events is denoted by Σ. An atomic

event expression is either an event symbol from Σ or its negation. If e ∈ Σ, then its

negation is represented as ē; it represents the assertion that e does not occur in the

execution of the workflow.

The language of event expressions, denoted by E , is defined as follows:

• Γ = {e, ē|e ∈ Σ} ⊆ E . This just states that atomic events are event expressions.

• We distinguish two special event expressions : 0 and > in E . The event 0 rep-

resents the event expression that is always false and the event > represents the

expression that is always true.

• If E1, E2 ∈ E , then E1 · E2 ∈ E . The operator “·” denotes sequencing.

• If E1, E2 ∈ E , then E1 +E2 ∈ E . The operator “+” denotes choice or disjunction.

• If E1, E2 ∈ E , then E1|E2 ∈ E . The operator “|” means conjunction.

The event algebra uses denotational style semantics where an event expression rep-

resents a set of traces. A trace is a sequence of atomic events where

• each event symbol occurs at most once in the same trace;

• an event and its negation cannot occur in the same trace; and

• for each e ∈ Σ, either e or ē occurs in the trace.

An event expression represents a constraint on the execution and the set of traces it

represents are those that satisfy this constraint.
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The set of traces (or denotation) for an event expression E is denoted by [E]. Given

a set of atomic events, Γ, UΓ ⊂ Γ∗ ∪ Γω is the set of all finite (Γ∗) and infinite (Γω)

traces over the language Γ, i.e., sequences of events that satisfy the three conditions

given above. The denotations of the various event expressions are defined as follows:

• [e] = {τ ∈ UΓ | e ∈ τ , i.e., e occurs in τ}

• [0] = ∅, that is no trace satisfies the expression 0.

• [>] = UΓ, that is every trace satisfies the expression >.

• Sequencing : [E1 · E2] = {ντ ∈ UΓ | ν ∈ [E1] and τ ∈ [E2]}, that is the resulting

trace is obtained by concatenation of the traces of E1 and E2.

• Disjunction: [E1 + E2] = [E1] ∪ [E2].

• Conjunction: [E1|E2] = [E1] ∩ [E2].

For an event expression E ∈ E and a trace τ ∈ UΓ, τ |= E denotes satisfiability of the

event expression E by the trace τ , i.e., the fact that τ ∈ [E].

Scheduling

Given a set of dependencies specified as a set of event expressions, the job of the

scheduler is to find traces that satisfy the dependencies. The scheduler starts with

an event expression that represents all dependencies. An incoming event is scheduled

when this act is guaranteed to not break the dependencies regardless of which events

will arrive in the future. The major insight here is that there is no need to record

the past history of scheduled events. Instead, the information that is contained in the

history and is relevant to the scheduler can be stored in the residual event expression

that remains to be satisfied by the future incoming event stream.
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Figure 2.3: Scheduler transitions for the dependency D1 in the traveler workflow

This storing of history is done through the residuation operator. The state of the

scheduler is represented by an event expression, D, which remains to be satisfied by

the incoming stream of events. When a new event arrives, the residuation of D by e,

denoted by D/e, is the new state of the scheduler.

Before giving a formal definition, we illustrate this notion by an example. Figure 2.3

shows the effect of residuation on the dependency D1 = startbuy+startbook in the travel

workflow discussed above. The dependency appears at the top of the figure and each

node is labeled with an event expression (which might be a compound expression).

Arcs are labeled by atomic event expressions. If the scheduler schedules an event that

labels an arc, the result of the residuation would be the expression pointed to by the

arc.

Suppose that the scheduler schedules the event startbuy. Since this implies that

from now on all traces will contain this event, the traces represented by the startbuy

will not be possible, so we can remove this part of D1 and do not need to worry about

it. Thus, D1 is residuated to startbook. If however, the scheduler decides that book
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is not allowed to start (i.e., it schedules startbook because of the need to satisfy some

other constraint), then none of the traces that satisfy startbook can occur, so we can

remove that part of D1. That is, startbook is scheduled then D1 residuates to startbuy,

which becomes the dependency left to be satisfied. Informally, this means that if book

is not allowed to start then the scheduler must ensure that buy is not allowed to start

either. If the scheduler can schedule either startbuy or startbook then the dependency

D1 is satisfied and it is residuated to >. If a dependency cannot be satisfied then it

residuates to 0. For example, suppose the current state of the scheduler is represented

by the dependency startbuy and the event startbuy arrives. Since there is no way to

schedule this event (now or in the future) and still have the dependency satisfied, it is

residuated to 0.

Formally, the residuation operator is defined as follows:

v ∈ [E1/E2], where E2 is an atomic event expression, if and only if for
every trace u ∈ [E2] it holds that uv ∈ [E1].

If E has the form where neither “|” nor “+” occur under the scope of the sequenc-

ing operator “·”, then the following rewrite rules provide an algorithm that computes

residuation:

1. 0/e = 0

2. >/e = >

3. (E1|E2)/e = (E1/e)|(E2/e), where E1 and E2 are event expressions.

4. (E1 + E2)/e = (E1/e) + (E2/e)

5. (e · E)/e = E, if e, ē do not appear in the event expression E.
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6. (e′ · E)/e = 0, if e 6= e′ and e occurs in E.

7. (e′ · E)/e = 0, if ē occurs in E.

8. E/e = E, if e or ē does not appear in the event expression E. This means that

only the dependencies that mention the event e are relevant to residuation when

e comes up for scheduling.

A scheduler can now be constructed as follows. Let E be the initial event expression,

which is a conjunction of all constraints. When an event, e, arrives, we compute

E′ = E/e. If E′ 6= 0, the event is scheduled and E′ becomes the new constraint that

needs to be satisfied.

If E′ = 0 due to the rule (7) then e cannot be scheduled and we have two choices.

If e can be rejected, the scheduler does so and keeps E as its current state. If e is not

rejectable, then the event stream cannot be scheduled and an error results.

If E′ = 0 due to the rule (6) than e cannot be scheduled at this time, but it might

be in the future. So, if e is delayable, it is delayed until such time when the dependency

can be residuated by e to a non-0. Otherwise, if e is not delayable, the stream of events

cannot be scheduled and an error results.

2.1.3 Workflow Modeling Using Event-Condition-Action Rules

Event-condition-action rules contain three components: as the name implies event,

condition and action. An event is a significant event, condition is a query over the

state and action is a state changing operation. Informally, a rule says that, when

an event is detected, if the condition holds, then perform the action. Dependencies

between the workflow activities can be defined as a set of event-condition-action rules.
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In this section, we discuss about [30], which models workflows using such rules.

In [31], workflows are modeled by using triggers, which are simple event-condition-

action rules. The workflow activities are represented as transactions and the dependen-

cies between the transactions are represented by triggers. The scheduler executes the

transactions in a nested model and defines mechanisms to serialize concurrent rules.

Formalization

The events in a trigger can be either primitive or complex events. A complex event

is built from primitive events as follows:

• Disjunction: The event E1|E2 is generated when either one of the events E1 or

E2 is generated.

• Sequencing: The event E1 · E2 is generated when the events E1 and E2 are

generated in sequence.

• Closure: The event E∗ is generated when there are non-zero occurrences of the

event E.

The proposed model provides different relation types (called coupling modes) be-

tween the event, condition and action components of a trigger. The coupling modes

are defined with respect to the triggering and triggered transactions. The transaction

which triggers the event is called the triggering transaction and the transaction in which

action is performed is called the triggered transaction. Given a triggering transaction

T which fires a trigger having E as the event, C as the condition and A as the action

components, the different coupling modes are:

• Immediate: If the E −C mode is immediate, then C is checked within the trans-
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action T immediately when E is detected.

• Deferred: If the E − C mode is deferred, then C is checked within T but after

the last operation in T and before T commits.

• Decoupled: If the E − C mode is decoupled, then C is evaluated in a separate

transaction. This mode is used for decomposing a long running sequence of

triggers into short transactions.

The same coupling semantics apply to the C −A component.

Scheduling

In [31], the triggers are executed by using a nested transaction model. A nested

transaction is one which is started inside another transaction. The scheduler use the

concept of subtransaction to realize the coupling modes. A subtransaction is a nested

transaction whose parent is suspended until the child transaction completes.

When an event E occurs, the scheduler creates a nested transaction T ′ within the

triggering transaction T , to evaluate the condition and action components of the trigger

associated with E. T ′ creates another nested transaction, TC , for evaluating condition

C. If TC commits, then T ′ creates nested transaction TA for evaluating A. According

to the coupling mode between the components of the trigger, T and T ′ are scheduled

as follows:

• Immediate: If the E − C coupling mode is immediate, then T ′ is created as a

subtransaction of T . If the C−A coupling is immediate then T ′ is a subtransaction

of T and TA is a subtransaction of T ′.

• Deferred: Execution cycles are created in order to schedule transactions generated
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by triggers in deferred coupling mode. The scheduler delays the execution of the

triggered transaction. In cycle0, only the triggering transaction T is executed. In

cyclei, all the delayed transactions created in cyclei−1 are concurrently executed

a s separate subtransactions of T . The cycles of execution continue until the last

cycle finishes in which no delayed transactions are created. The commit of these

delayed subtransactions are conditional upon the commit of T .

• Decoupled: If the E − C or the C − A coupling modes are decoupled then the

triggered transaction is started as a nested top transaction. A nested top trans-

action has its own transaction tree, can commit independently of its parent and

has no special privileges relative to its parent.

The schedule provides a mechanism to serialize multiple concurrently executing triggers.

The different approaches incorporated by the scheduler are given as follows:

• Rules are grouped into priority classes and triggered transactions are scheduled in

the priority order starting from the highest. All transactions in the same priority

are scheduled concurrently.

• For decoupled subtransactions, pipelining method is used. If a transaction T is

serialized after a transaction T ′, then all decoupled subtransactions created by

T are serialized only after all decoupled subtransactions created by T ′ have been

serialized.

2.1.4 Workflow Modeling Using Extended Transaction Models: ACTA

In order to schedule long-running transactions, extended transaction models relax the

atomicity, consistency, isolation and durability (ACID) properties of traditional trans-
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action models. In these models, transactions commit with a varying degree of atomicity

and isolation. In workflows, coordination among the tasks is the primary issue rather

than strict atomicity and isolation. For this reason, extended transaction models are

suitable to model and schedule workflows. One major drawback of these models is that

they cannot be easily used for verification properties of the workflows.

In [17], an extended transaction model, called ACTA, is defined in order to model

workflows. ACTA is a first order theory of transactions with a set of axioms governing

the transactions and a set of first order rules for specifying dependencies between the

transactions. In this model, workflow activities are represented as transactions and

dependencies between the transactions are specified as rules in terms of significant

events associated with the transactions in the workflow.

In ACTA, there is a temporal ordering among the events of a transaction. Events

associated with a transaction can be:

• Significant Events: The three significant events associated with a transaction are

begin(initiation event), commit and abort(termination events).

• Object Events: An object event is an operation that acts on a database object

and always produces an output.

The executions of transaction is recorded as a history, H, in terms of significant

events of the transactions. The occurrence of an event in the history can be constrained

as follows:

• ε→ ε′: Event ε can occur only after event ε′.

• ε⇒ Condition : Event ε can take place only if Condition is satisfied.
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• Condition⇒ ε : If Condition holds then event ε should be in the history.

Different dependencies between the transaction can be expressed by using the above

constraint structures. The type of such dependencies are as follows:

• Commit Dependency: Committj ⇒ (Committi ∧ Committj )

if both ti and tj commit then the commit of ti precedes that of tj

• Strong-Commit Dependency: Committi ⇒ Committj

if ti commits then tj commits.

• Abort Dependency: Abortti ⇒ Aborttj

if ti aborts then tj aborts.

• Weak-Abort Dependency: Abortti ⇒ (¬(Committj → Abortti) → Aborttj)

if ti aborts and tj still has not committed then tj aborts.

• Termination Dependency: ε′ ⇒ (ε → ε′) where ε ∈ (Committi , Abortti) and

ε′ ∈ (Committj , Aborttj )

tj can not commit or abort until tj has also committed or aborted.

• Exclusion Dependency: Committi ⇒ (Begintj ⇒ Aborttj )

if ti commits and tj has already started then tj is aborted.

• Force-Commit-on-Abort Dependency: Abortti ⇒ Committj

if ti aborts then tj commits.

• Begin Dependency: Begintj ⇒ (Beginti → Begintj )

tj cannot begin executing until ti has begun.
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• Serial Dependency: Begintj ⇒ (ε→ Begintj ), where ε ∈ (Committi , Abortti)

tj cannot begin executing until ti either commits or aborts.

• Begin-on-Commit Dependency: Begintj ⇒ (Committi → Begintj )

tj cannot begin executing until ti commits.

• Begin-on-Abort Dependency: Begintj ⇒ (Abortti → Begintj )

tj cannot begin executing until ti aborts.

• Weak Begin-on-Commit Dependency: Begintj ⇒ (Committi ⇒ (Committi →

Begintj ))

if ti commits then tj can begin execution after ti commits.

The above dependencies are used in modeling the workflow dependencies.

ACTA defines a set of axioms to be satisfied by every atomic transaction. These

axioms relax the ACID constraints of the traditional transaction, and define new condi-

tions for safe scheduling of transactions. If t is an atomic transaction, p is a transactional

operation, and ob is a database object, then:

• every begin event can be invoked at most once by a transaction.

• only and instantiated transaction can commit or abort.

• an atomic transaction cannot be committed after it has been aborted.

• only in-progress transactions can invoke operations on objects.

• V iewt = Hcurrent : The view of a transaction is the set of objects visible to the

transaction at a time point. An atomic transaction can view the current history

or the most recent state of objects in the database.

23



• ConflictSett = {pt′ [ob]|t′ = t, Inprogress(pt′ [ob])} : The conflict set of a trans-

action is the set of operations from other transactions which can conflict with it.

For an atomic transaction, the conflict set of a transaction is the set of operations

from other in-progress transactions.

• Commit⇒ ¬(tC ∗ t) : An atomic transaction can commit only if it is not part of

a cycle C of relations developed through the invocation of conflicting operations.

C∗ is the transitive closure.

• ∃ob∃p, Committ[pt[ob]] ⇒ Committ : If an operation p of t, on object ob, commits

then t must also commit.

• ∃ob∃p,Abort[pt[ob]] ⇒ Abort : If an operation p of t, on object ob, aborts then t

must also abort.

• Committ ⇒ ∀ob∀p(pt[ob] ⇒ Committ[pt[ob]] : If t commits then all the operations

invoked by t also commits.

• Abortt ⇒ ∀ob∀p(pt[ob] ⇒ Abortt[pt[ob]] : If t aborts then all the operations in-

voked by t also aborts.

2.1.5 Workflow Modeling Using Petri Nets

Petri Nets are developed for modeling and verifying process behavior. It is basically a

bipartite graph that models transitions between the entities of a process. Workflows are

also complex processes, therefore there are several works [1, 77, 76] that use Petri Nets

to model and verify the correctness of workflows. [1] models workflow dependencies by

using Petri Nets. On the other hand, [77, 76] provide a more abstract workflow model
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to study the verification issues on certain properties of workflows.

A Petri Net is a graph with two types of nodes, called places and transitions. Edges

go either from places to transitions or from transitions to places. At any time a place

contains zero or more tokens. The state of the Petri Net, referred to as marking,

denotes the distribution of tokens over places. For example, if a Petri Net has four

places p1, p2, p3 and p4, then the marking 1p1 +2p2 +1p3 +0p4 is a state with one token

in place p1, two tokens in p2, one tokens in p3 and zero tokens in p4.

A Petri Net is formally defined as a quadro-tuple PN = (P,N, T, F,M0) such that:

• P is a finite set of places {p1, .., pn}.

• T is a finite set of transitions {t1, .., tm}. It is required that P ∩ T = (bipartite

condition) and P ∪ T 6= (non-empty condition).

• F is a set of edges, F ⊆ (P × T ) ∪ (T × P ). The edge from place pi to transition

tj is denoted by f(pi, tj) and similarly, an edge from transition ti to place pj is

denoted by f(ti, pj).

• M0 is the initial marking, i.e., the initial distribution of i tokens over places.

Given a marking M , the number of tokens in place pi is denoted by M(pi).

Given a Petri Net, the input set of places of a transition ti, denoted by •ti, is the set

of places which have an edge leading to ti, i.e., •ti = {pj | f(pj , ti) ∈ F}. The output

set of places of a transition ti, denoted by ti•, is the set of places which have an edge

coming form ti, i.e., •ti = {pj | f(ti, pj) ∈ F}. Similar definitions are given for a place

pi, denoted by •pi and pi•. The execution of a Petri Net changes the token distribution

according to the following definitions:
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• Given a marking M, a transition ti is said to be enabled if and only if for every

pj ∈ •ti, M(pj) > 0. At any moment, a transition can be either enabled or

disabled.

• Firing a transition ti results in a new marking M ′ from the current marking M

such that ∀pj ∈ •ti and ∀pk ∈ ti•, M ′(pj) = M(pj)− 1 and M ′(pk) = M(pk) + 1.

Firing a transition removes a token from every input place of the transition and

adds one token to every output place of the transition.

• A state M ′ is reachable from a state M , denoted by M
∗→ M ′, if and only if

there exists a sequence of firing transitions σ = t1t2...tn such that M σ→M ′, i.e.,

M
t1→M1

t2→M2...
tn→M ′.

Modeling Dependencies of a Workflow

In [1], a workflow is represented as a set of tasks and dependencies between these

tasks. Tasks of a workflow are represented as a set of states and transitions between

these states. When a task is modeled as a Petri Net, places are used to represent the

task states and transitions are used to represent the various significant events which

are operations like begin, commit, etc.
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Figure 2.4: A Petri Net representation of a task

Formally, a task is defined as:
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• a set of states: initial, execution, done, commit and abort. Figure 2.4 is a Petri

Net representation of a sample task In the initial marking, there is one token in

place initiali and zero tokens in all the other places.

• a set of operations: begin, abort, precommit, commit and force-abort. Execution

of these task operations results in change of state for the task. In Figure 2.4, the

enabled transition begini can fire and the firing changes the state of the task from

initiali to executioni.

• both the task states and task operations are ordered in a precedence relation-

ship. The following precedence relationships are always satisfied: initiali ≺

executioni ≺ donei ≺ commiti, dni ≺ abi and exi ≺ abi. For task operations,

any operation must be preceded by a begini and must be followed by either a

aborti or a precommiti.

A dependency x between two tasks ti and tj is denoted by ti
x−→ tj . 1. There are

three types of dependencies:

• Control-flow dependencies: these specify the conditions under which a task tj , is

allowed to enter a state stj based on whether another task ti has entered state

sti. Control-flow dependencies are further divided into:

– causal dependencies: imply a logical constraint between ti and tj . The

different types of causal dependencies are:

∗ strong-causal dependencies: Task tj enters state stj only if task ti enters

sti. Figure 2.5(a) shows a Petri Net modeling of a strong-causal depen-
1 Note that these dependencies are equivalent to temporal/causality constraints explained in Chap-

ter 1
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Figure 2.5: Petri Net representation of dependencies

dency. Initially, task twi is in state sti−1 and task tj is in state stj−1.

Task tj can transition to the state stj only if the transition prj fires.

Transition prj is enabled only if the transition pri fires which changes

the state of the task ti to sti. An example of a strong-causal depen-

dency is the begin-on-commit dependency where task tj can begin only

if ti commits.

∗ weak-causal dependencies: If task ti enters sti then task tj must enter

stj . Figure 2.5(b) is a Petri Net modeling of a weak-causal dependency.

Note that the only difference is the direction of the arrows adjacent to
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the place bfx
ij . An example of a weak-causal dependency is the strong-

commit dependency between tasks ti and tj . In the dependency, if task

ti commits then task tj must also commit.

Note that causality constraints do not imply any temporal ordering between

the events. They are implied by the following precedence constraints.

– precedence dependencies: If both states sti and stj are entered then ti must

enter sti before tj enters stj . There is no logical relationship between ti

and tj . Figure 2.5(c) shows a Petri Net model of a precedence dependency.

Note that, if transition pr′i fires then task tj can transition to state stj even

though task ti might not be able to transition to state sti. If however, task ti

transitions to state sti then it would happen before task tj can change state

to stj . An example of a precedence dependency is the commit dependency

between tasks ti and tj , where if both tasks commit then ti commits before

tj .

• Value dependencies: Task tj can enter state stj only if the value generated by

task ti satisfies a given condition. Figure 2.5(d) is a Petri Net model of a task

with different value states. vi1, ..., vin represent the different value states of task

ti and the firing of the transitions ei1, ..., ein depends on the value generated in

the task. A value dependency between tasks ti and tj can be modeled by using

a buffer place between the appropriate value transition eik in task ti and the

transition in tj .

• External dependencies: these dependencies depend on some external parame-

ter. If time is chosen as the only external factor then these are called temporal
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Figure 2.6: Petri Net representation of logical relations between dependencies

dependencies.

Logical relationships among the tasks are represented as follows:

• OR-Join: if any one of the transitions pri to prk fires, then transition prj is

enabled.

• AND-Join: transition prj is enabled only if all of pri to prk fires.

• OR-Split : only one of the transitions prj to prm fires after the firing of pri.

• AND-Split : all the transitions prj to prm gets enabled after the firing of pri.

An OR-join and an OR-split are used to model conditional relationship between depen-

dencies. Note that the definition of OR-join is essentially an exclusive OR between the

tasks prj to prm. The AND-join and AND-split are used to model parallel relationship

between dependencies.

It is possible to model time considerations of a workflow by using Petri Nets. How-

ever, an extends version, Temporal Constraint Petri Net, is used for this purpose. Every

place and transition in this modified Petri Net is associated with a time interval (which

is relative for places and absolute for transitions) and every token is associated with an

absolute timestamp. A transition is enabled if each of it’s input places have at least

one available token. However, this is not enough to fire the transition. A transition ti
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can fire only if the time intervals of all tokens in the input places for ti intersect the

enabling time interval for that transition.

[1] discusses the following issues related to verification:

• consistency : A workflow specification is inconsistent if there are:

– inconsistent precedence relationships between tasks (e.g. loops).

– inconsistent logical relationships between tasks.

A siphon is a subset S of places in a PN such that •S ⊆ S•. The presence of a

siphon in a Petri Net indicates a deadlock because it means if there are no tokens

in that subset then no place in that subset will ever get a token. Inconsistent

specifications among dependencies can be verified by performing siphon detection

on the Petri Net.

• safe: A workflow is said to be safe if it terminates in any acceptable state. This

reduces to reachability problem of Petri Nets. The reachability problem is check-

ing whether a sequence of transitions exist such that a marking M1 is reachable

from marking M0. This problem is known to be DSPACE(exp)-hard for ordinary

Petri Nets. However for acyclic Petri Nets, reachability can be solved in poly-

nomial time. It can be proved that if a Petri Net is consistent then it is also

acyclic. Determining safety reduces to solving a linear equation for every unsafe

state using a matrix representation of the Petri Net.

• schedulable: A workflow is schedulable if there are no inconsistent temporal con-

straints. Starting from the initial marking, the firing times of transitions are

calculated. When a transition fires, the timestamps of the tokens are updated. If
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for a transition, earliest firing time is less than the latest firing time, then that

transition cannot be scheduled. If every path from the initial place to the final

place contains at least one transition that cannot be scheduled, then the workflow

cannot be scheduled.

In [77], workflows have been modeled as tasks and transitions between these tasks.

Join and split constructs are used to model constraints between these tasks. However,

it is possible to specify only local constraints using these constructs. Triggers have

been used to model constraints arising out of external conditions. In order to model

constraints based on attribute values and time, a higher level Petri Net extended with

the semantics of token color and time is used. The Petri Net model of a task is simpler

than in [1]. However, the use of higher level Petri Nets provides more abstraction of

the workflow specification. It is possible to check for deadlock , live-lock and proper

termination on the Petri Net model of the workflow. Special structural characterizations

of Petri Nets have been provided where these properties can be verified in polynomial

time.

In this model, a workflow process definition specifies the order in which the appro-

priate tasks are to be executed. However, even if a task is enabled it may not be able

to execute (for example it may require human intervention). In order to distinguish

enabling from execution, the concept of triggering is introduced. A trigger is an exter-

nal condition which leads to the execution of an enabled task. The different types of

triggers used in this model are:

• automatic triggering: the task is triggered the moment it is enabled and it is

appropriate for automated applications.
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• user triggering: the task is triggered by a human user of the system.

• message triggering: the task is triggered by an external event like a message.

• time triggering: the task is triggered by some time duration or some particular

absolute time.

Ordinary Petri Nets are extended with the semantics of color, time, and hierarchy

to make these Nets better suited for the task of workflow modeling. Such Petri Nets are

known as high-level Petri Nets. The color of the token models attributes of the object

represented by the token. Thus, a colored Petri Net can be used to specify preconditions

on transitions which take the value of the attribute into account. Transitions can also

change the values of these attributes by changing the color of the token. In order to

model real world complex workflow systems it is essential that a large Petri Net can be

composed of simpler Nets. A hierarchical Petri Net can be constructed of subnets of

Petri Nets each of which is an aggregate of a number of places, transitions and other

subnets. A Petri Net extended with time can be used to model the temporal behavior

of systems.

A task is built up from three states, start, rollback and commit, which are repre-

sented as transitions, and places between them. A Petri Net which models the process

dimension of a single case is called a workflow net or WF-net. Workflow tasks are

represented by transitions and states are represented by places. Tokens in a WF-net

correspond to one single case. In general, workflows with many cases can be handled

by colored tokens where the color of the token represent the case identifier. In this

case, transitions cannot fire unless the color of the tokens in the input places match. A

Petri net PN is a WF-net if and only if:
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• The Petri Net has two special places i and o such that:

– •i is empty, i.e. it is the input place.

– o• is empty, i.e. it is the output place.

• Every place and transition is on a path from i to o.

The initial marking Mi has a token in place i only. The final marking Mo has a token

in place o only. A WF-net for a process definition may still contain potential deadlocks

and/or live-locks. It is the purpose of verification to detect these conditions.

time_out

archive

processing_OKi
o

send_question

evaluate

register

processing_REQD

process_question

check_processing

processing_NOK
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no_processing

Figure 2.7: A Petri Net model of a complaint processing workflow

Figure 2.7 is an example of a Petri Net model of a workflow for processing com-

plaints. The task register enables a complaint to be registered. In parallel, a question-

naire is sent to the complainant in the task send question and the complaint is evaluated

in the task evaluate. Note that the task send question leads into an OR-Split. If the

results of task send question are obtained within a time period then process question

fires; else time out fires and the results of the questionnaire are discarded. Based on the

results of the task evaluate, it is either decided to process the complaint in tasks process-
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ing REQD, process complaint, and check processing ; or the complaint is not processed

at all. Finally, there is an AND-Join in the task archive when the results from pro-

cessing and questionnaire are archived. The transition register contains an AND-Split

while the transitions evaluate and check processing lead into OR-Splits.

In [77], in order to define the correctness property of a workflow, a notion of sound-

ness of the workflow net is introduced. A WF-net (P, T, F,Mi), where P is the set

of places, T is the set of transitions, F is the transition function and Mi is the initial

marking, is sound if and only if:

• ∀M, (Mi
∗→M) ⇒ (M ∗→Mo): there are no dead ends in the workflow.

• ∀M, (Mi
∗→ M ∧M(o) ≥ 1) ⇒ (M = Mo): Mo is the only state with a token in

o.

• ∀t ∈ T∃M,M ′Mi
∗→M

t→M ′: there are no dead transitions. This is the liveness

property of Petri Nets.

A concept related to the number of tokens in a place is boundedness. A Petri Net is

bounded if and only if for every place p and for every reachable state the number of

tokens in p is bounded (i.e. always less than some natural number n). For simplicity,

a classical Petri Net is used for verifying soundness.

The problem of deciding liveness and boundedness is EXPSPACE-hard for arbitrary

WF-nets [20, 38]. For complex WF-nets, the decidability of soundness may even be

intractable. For this reason, in [77], the soundness property is checked on three groups

of WF-nets.

• A Petri net is free-choice Petri net iff for every two transitions t1 and t2, •t1∩•t2 6=
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0 implies •t1 = bullett2.

• A Petri net PN is well-handled iff for any pair of nodes x and y such that one

of the nodes is a place and the other a transition and for any pair of elementary

paths C1 and C2 leading from x to y, α(C1) ∩ α(C2) = {x, y} =⇒ C1 = C2. A

WF-net PN is well-structured iff the extended net PN is well-handled.

• A WF-net PN is S-coverable iff the extended net PN = (P, T, F ) satisfies the

following property. For each place p, there is a subnet PNs = (Ps, Ts, Fs) such

that p ∈ Ps, Ps ⊆ P, Ts ⊆ T, Fs ⊆ F, PNs is strongly connected, PNs is a state

machine (i.e., each transition in PNs has one input and one output arc) and for

every q ∈ Ps and t ∈ T : (q, t) ∈ F =⇒ (q, t) ∈ Fs and (t, q) ∈ F =⇒ (t, q) ∈ Fs.

Free-choice WF-nets and well-handled WF-nets can be checked for soundness in

polynomial time. However, the complexity of deciding soundness for an S-coverable

WF-net is PSPACE-complete [77, 76].

2.2 Constraint Logic Programming

Constraint programming is a major area of interaction between operations research

and computer science. It combines programming language paradigms from computer

science, like logic programming and concurrent programming, with efficient constraint

solving techniques from mathematics, artificial intelligence, and operations research.

Constraint programming allows the user both to build and to solve a model in the

same framework. Programming language constructs make it possible to formulate the

problem in a natural an declarative way. Constraint handling techniques supporting

these language constructs provide for efficiency in problem solving.
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Constraint technology has been applied successfully to a large variety of practical

problems such as production planning, scheduling, and resource allocation.

Logic programming states the problems declaratively by using logic and solves them

by using deduction. This approach provides a neat and easy framework for specification

and solution of many problems. However, there are two main limitations of logic pro-

grams. Firstly, the set of possible terms are constituted out of functions and variables.

Therefore, the objects manipulated by a logic program are uninterpreted structures.

The second problem is due to the nature of SLD-resolution, which does depth-first

search throughout the problem domain. This leads to inefficient solutions for large

search applications.

Constraint Logic Programming (CLP) is the result of attempts to develop a frame-

work that exploits the deductive structure of the logic programming, but overcomes the

stated limitations, as well. In CLP, to overcome the first limitations, semantic objects,

i.e., arithmetic expressions, are introduced into the system. As a result of this, the

unification of the logic programming is augmented with constraint handler for given

domain. Against the second limitation, in order to have more efficient solvers, the

consistency techniques from Operations Research have been incorporated into CLP.

Therefore, the depth-first search replaced or supplemented with more sophisticated

and efficient techniques that uses constraints to prune the search space. With CLP

systems, many problems such as scheduling, resource allocation, hardware design have

been modeled and solved. CLP solves such problems with similar efficiency as other

constraint programming and OR frameworks. As an advantage over other mentioned

frameworks, due to the declarative structure, it is easier to model, maintain and modify
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the problem.

2.2.1 Basic Features of CLP

We can state the key features of CLP as follows:

• Constraints are used to specify the query as well as answers.

• During execution, new variables and constraints are created.

• The collection of constraints in every state is tested as a whole for satisfiability

before execution proceeds further and thus allows for control of execution.

As explained above, CLP include semantic objects that have meaning in particular

domains. Different problems may demand different domains. Therefore, as explained

in [49], a Constraint Logic programming Scheme denoted as CLP(X) is developed. X

denotes the application domain such as set, integer, real, boolean, finite domain or even

finite trees. Therefore, the user has been provided the flexibility and effectiveness to

model the objects. Each computation domain is associated with algebraic operations

such as addition, multiplication for numeric domains, boolean expressions for boolean

domain or set operations for set domains. In addition to this, domain dependent

relations on the objects such as equality and inequality are defined as a part of given

domain.

Once semantic objects and expressions, relations on these objects, which are called

constraints, are part of the language, a mechanism to handle the expressions and re-

lations must be provided as well. Therefore, CLP languages contain constraint solvers

specific for the given domain. At the very basic level, unification is a constraint solver
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that can handle only equalities on uninterpreted objects. Another property of the uni-

fication is that it provides the most general solution for equalities, if there exists a

solution. Under other domains, where such a most general answer does not exits, the

system should be able to continue with manipulating the original set of constraints and

tell the user if the constraints are satisfiable or not.

A constraint solver is complete if it can tell whether the given set of constraints is

satisfiable or not. For efficient execution, constraint solver must be incremental, i.e.,

when adding a new constraint to an already solved set, the solver should not start from

the beginning but use the result of the already solved set.

The declarative and operational semantics of CLP(X)-language is based on the

semantics of pure logic programs, but parameterized by a choice of X, the domain of

computation and constraints. Let X be a 4-tuple (Σ, D, L,E), where

• Σ is a signature,

• D is a Σ-structure,

• E is a first-order Σ-theory

The domain of computation is D, over which constraints of a class L of Σ-formulas

can be expressed, and E axiomatizes properties of D.

A CLP(X) program consists of a finite set of constraint rules of the form h :

−b1, ..., bn, where h is an atom and and the bi are either atom or constraint. A CLP(X)

goal is of the form ?− b1, ..., bn.

An operational model that describes the operational semantics of many CLP-

systems is given by a transition system on states, i.e., tuples < A,C >, where A is
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a multiset of atoms and C is a multiset of constraints also called constraint store. The

special state ⊥ denotes failure. Intuitively, A is the set of not yet considered goals and

C is the set of constraints collected so far. We assume to have a computation rule that

selects an element of A and an appropriate transition rule for each state. The transition

system is parameterized by a predicate consistent and a function infer corresponding

to the specific constraint solver. An initial CLP-goal ?− b1, ..., bn is represented by the

state (b1, ..., bn, 0). Suppose that the computation rule selects a constraint c in A, then

rewriting the state 〈A,C〉 is defined by

〈A,C〉 =


〈A− {c}, C ′〉 : consistent(C ∪ {c}), C ′ = infer(C ∪ {c})

⊥ : ¬consistent(C ∪ {c})

Suppose that the computation rule selects an atom a in A and a constraint rule

h : −b1, ..., bn of the constraint logic program such that a and h have the same predicate

symbol, then

〈A,C〉 =



〈(A− {a}) ∪ {b1, ..., bn}, C ′〉 : consistent(C ∪ {h = a}), and

: C ′ = infer(C ∪ {h = a})

⊥ : ¬consistent(C ∪ {h = a})

If there is an atom a in A, but no constraint rule in CLP-program having the same

predicate, we have a failure.

〈A,C〉 =⊥

The predicate consistent checks for consistency of a set of constraints C and is

defined by consistent(C) ⇔ D |= ∃x : C

The function infer is responsible for simplifying a set of constraints C. We require

that D |= infer(C) ⇔ C
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2.2.2 Domains in CLP

The set of possible constraint domains for CLP Scheme is quite large. Below, we explain

some basic ones.

Real Domain. This domain is generally used in order to model and solve arithmetical

expressions. CLP(R) [49] was the first CLP language developed to solve arithmetic

constraints. One limitation of CLP(R) is that it can only solve linear expressions. In

a linear expression, multiplication operation can have at most one variable operand

and for division operation, denominator is always a constant. In order to solve linear

expressions, algorithms such as Gaussian elimination and Simplex are employed. CLP

languages that can solve non-linear expressions over real domain have been developed

after CLP(R). These languages employ algorithms for non-linear expression such as

Gröbner bases or quantifier elimination [62]. Some examples for CLP languages in this

category are CAL [2], RISC-CLP [46].

Boolean Domain. Boolean constraints are basically used for hardware verification

and theorem proving applications. Boolean terms are built from truth values (i.e. true

and false), boolean operations and variables. The only constraint between boolean

expressions is the equality. Therefore, solvers of the boolean domain handle only equal-

ity check. However, since boolean constraint solving process is NP-complete, solvers

have exponential worst case complexity. There are several CLP languages that support

boolean domain such as CAL and CHIP [32]. In order to provide comparatively more

efficient solvers, each of such languages employ different methods for description of the

boolean constraints and solve them over the given description.

Finite Domain. Finite domain constraints are particularly useful for modeling
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discrete optimization and verification problems such as scheduling, planning packing,

timetabling etc. A finite domain is a subset of the integers and a finite domain con-

straint denotes a relation over one or more finite domains. All domain variables, i.e.,

variables that occur as arguments to finite domain constraints get associated with fi-

nite domain, either explicitly declared by the program, or implicitly imposed by the

constraint solved. The domain of all variables gets narrower and narrower as more

constraints are added. If a domain becomes empty, the accumulated constraints are

unsatisfiable, and the current computation branch fails. At the end of a successful

computation, all domains have usually become singletons, i.e., the domain variables

have become assigned. Since the domain size is limited, finite domain solvers can de-

cide on the satisfiability of the constraint set. Finite domain solvers generally employ

consistency techniques that are described below.

2.2.3 Consistency Techniques

As opposed to using only depth-first search as employed by logic programming lan-

guages, consistency techniques employed pruning of the search space by using the con-

straints and then do the searching. Pruning is done by propagating information about

the variables via the constraints between them. For example, given that T1 ∈ {1, 2, 3}

and T2 = {1, 2, 3} and T1 < T2, consistency technique deduces that T1 ∈ {1, 2} and

T2 ∈ {2, 3}. This consistency technique, which removes inconsistent values from the

domains, is called arc consistency [59].

Propagation continues until no further reduction is possible. However, for most

applications it is not possible to find the solution solely by propagation. Generally,
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there remains combinations of values in the resulting domains which are inconsistent.

Therefore, to find a solution, the system performs some search, by labeling a variable

with some value in its domain and do further propagation. For example, for the above

constraints, T1 may be labeled with the value T1 = 2, then propagation yields T2 ∈ {3}.

Constraint propagation has been basically used in finite domain solvers. However,

the process is extended, firstly, to interval domains and then to any domain. This

version of the propagation is called generalized propagation [67].

In order to provide further efficiency, instead of plain depth-first search, heuristics

have been employed. The correct strategy on the labeling of the constraint variable

effects the execution time considerably.

2.2.4 CLP Systems

There is a vast number of research and products on CLP languages. Below, we list

only some of them.

CHIP: CHIP developed at European Computer-Industry Research Center (ECRC).

It includes finite domain, boolean domain and linear real domain by Simplex algorithm.

This system is extensible with user-defined constraints and control facilities over the

search [32].

CLP(R): This language is developed as a demonstrator of CLP schema at Monash

University and Carnegie Mellon University. Its domain is real linear arithmetic and its

solver is based on Simplex algorithm [51].

Prolog-III: Prolog III is a product of University of Marseille. It includes linear real

arithmetic domain by Simplex algorithm, boolean domain and finite strings domain
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[25].

Triology: Triology is a CLP language developed are Complete Logic Systems in

Vancouver. Its domain is integer arithmetic. Unlike other languages, this system is not

developed on Prolog. It is based on a ”theory of pairs” [78].

CAL and GDCC: CAL (Constrainte Avec Logique) is a product of ICOT, Tokyo.

It is the first CLP language with nonlinear constraint domain. The parallel version,

named GDCC, has also developed at ICOT [3, 2].

BNR-Prolog: BNR-Prolog is a product of Bell-Northern Research, Ottawa. It is

based on relational arithmetic domain. This domain is based on a new interval variable

representing a real number lying between lower and upper bound of this interval [8].

RISC-CLP: This is a prototype system by RISC, Linz. It can handle any real

constraints [45].

clp(FD): It is a product of INRIA, France [23]. Its key feature is the use of a single

primitive to define finite domain constraints. It is extended to GNU Prolog with the

ability to express and solve more complex constraints.

Oz: Oz has logic programming and concurrent programming features as well as its

constraint specification and solving capabilities [69, 80]. Oz exhibits logic programming

and constraint programming features through its logic variables, disjunctive constructs

and programmable search strategies [68, 69].

2.3 Previous Work on Resource Modeling in Workflows

Resource management has been recognized as an important issue in a WfMS [24, 4]. In

[24], Workflow Management Coalition (WfMC) defines an activity as a piece of work
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that forms one logical step within a process that requires human and/or machine re-

sources to support process execution. WfMC uses the term workflow participant to

denote human resources and supports modeling of organizational structures for work-

flow participants. One important definition given by WfMC is on workflow constraints.

WfMC groups constraints in three: time based, resource based and cost based. However,

current systems support only the first group of constraints.

There are several works on workflow resource management. However, most of the

work in this area have focused on modeling of resources with little attention devoted

to scheduling.

In [77], resource classification and resource management issues for the proposed

workflow management system model is briefly explained. In this model, the term

resource refers to the actor that is able to execute a given task. On the basis of the

organizational units, resources are grouped in classes. The resources are categorized

also on the basis of role groups. Typically, each task is associated with a class and role

so that a resource from the given class and role is assigned to the task. 2

In order to assign a resource to a task, two basic methods exist:

• push control: The workflow system selects the resource and directs the task to

the selected resource.

• pull control: A copy of the task is directed to each capable resource. The task is

assigned to the first resource that accepts it and other copies are deleted.

In [77], it is noted that pull control is preferable due to its flexible structure. How-
2 Note that, linking the task directly with a resource blocks the execution of the whole system when

the resource is not available. For this reason, the workflow management systems, as much as possible,
define a set of candidate resources for each task.
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ever, in this work, since resource allocation constraints are the basic element that

determines the agent selection, we adopt push control mechanism. It is important to

note that the task is not directly linked to a certain resource and system can select

another capable resource, where available.

[82] summarizes general approaches and requirements in workflow resource modeling

and describes a framework of representation of resources and organizational model for

workflow systems. In this work, the basic properties that a workflow resource model

should have are listed as follows:

• Robustness: Changes to the resource models should not affect the workflow model

and similarly, changes to the workflow model should leave resource model unaf-

fected.

• Flexibility: The resource model should be flexible enough to allow the transfer of

existing organizational models.

• Scalability: The integration of new hierarchy structures and new permissions

should be possible.

• Domain-independence: The resource model for a collaborative system should be

as domain-independent as possible. It should be able to represent the organi-

zational and resource structures that belong to different environments and have

different natures.

In [82], three different ways have been distinguished for resource assignment:

• Direct Designation. An activity is assigned to one or more entities of the resource

model directly.

46



• Assignment by Role. The resources are grouped under roles and activities are

associated with roles. Therefore, any resource in the same role can handle the

activity associated with the given role.

• Assignment by Formal Expression. In this way of activity assignment, the re-

source is selected through an expression. An example is activity performer =

superior(resource(activity(1))). This expression assigns the supervisor of the re-

source of the first activity to the activity in consideration. Resource assignment

expressions may need further information than the resource and organizational

model. It may check the workflow execution history or may determine the re-

source only in run-time according to the resource assignment for other activities.

[9] discusses these expressions in more detail.

In the same work, two strategies for resources modeling have been identified. The

first model, which [82] called technology-driven approach, presumes no predefined set of

resources in the organization. The resources are grouped into roles implicitly according

to their authorizations. The second model, organization-driven approach, defines a

formal organization hierarchy separate from the workflow model. However, this model

does not include technical resources.

The main contribution of [82] is the proposal of a generic resource model that amal-

gamates technology-driven and organization-driven approaches. It provides a frame-

work to model organizational hierarchy and technical resources under the same roof.

[34] is another work on workflow resource management. [34] develops an architec-

ture in order to integrate resource systems that are built by different organizations

for different purposes for the overall workflow. The architecture is composed of Local
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Resource Managers (LRM) that preexist and have their own resource models and com-

munication protocols and Global Resource Managers (GRM) that represent integrated

views of part or all of the underlying LRMs. GRMs have the same resource model and

communication protocol.

In order to support different views of enterprise workflow resources, GRMs are

further subdivided into Enterprise GRMS (ERMSs) and Site GRMs (SRM). ERMs

represent enterprise-wide view of the workflow resources and interface with underlying

SRMs, which represent partial views of the workflow resources within an organization

and physical boundary. All the SRMs and ERMS have the same following structure:

• Interface Layer: This layer allows other components to send requests to the re-

source manager and defines administrative APIs and uses the underlying security

mechanism.

• Policy Manager and Resource Model: This layer implements the policy rules and

the unified resource model.

• Request Processing Engine: This layer takes the requests and routes them to

appropriate information source. In addition to this, it assembles all the results

coming from different information sources.

• Integration Layer: This layer manages all the different protocols spoken by local

information sources (i.e., LRMs).

[48] is another work by HP Labs on workflow resource management. In this work,

a resource policy handling method for workflow systems is described. Resource policies

are general guidelines every individual resource allocation must observe. A policy
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manager is a module within a resource manager, responsible for efficiently managing a

set of policies and enforcing them in resource allocation.

[48] groups the policies in three categories:

• Qualification Policies: They state a type of resources is qualified to do a type of

activities.

• Requirement Policies: They state the conditions that a resource must satisfy in

order to be chosen to carry out an activity with specified characteristics. For

example, a programming job with number of lines more than 10000 requires a

programmer with at least 5 year of experience.

• Substitution Policies: They state that a resource can replace another resource

under the condition that it is not available, to carry out an activity.

An SQL-like policy specification language is developed in order to model the above

types of policies. [48] explains several query rewriting and policy retrieval techniques

for efficient policy handling.

Time is an important dimension of resource allocation cost. There are several work

in the literature on time management in workflows. However, in these work, time and

duration are defined as properties of activities and they are examined independent of

resource allocation.

In [35], the following time management issues are addressed:

• modeling of time at process time

• pro-active time calculation to provide alerts in case of potential time violations

• time monitoring and deadline checking at runtime
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• handling of time errors

In order to capture time information in modeling, basic workflow model is aug-

mented with time points, durations and deadlines. A workflow designer can assign

execution durations and deadlines to individual activities and to the whole workflow

process. When an instance of the workflow model is created, deadline and duration

information are recomputed on the basis of the current calendar and time points are

created. Time points denote the possible start and end events of the activities. Actu-

ally, for a significant event (i.e. start and end events), several time points are assigned.

These time points are calculated according to a set of forward and backward compu-

tation procedures and show the earliest and latest possible time that the event must

happen. The result is presented in the form of a timed graph.

At run-time, the time workflow graph is used for monitoring the process. As ac-

tivities are completed, the time points are refreshed. The status of the workflow is

monitored and the state information is presented to the user in terms of colors. Green

is the normal state and no deadline violation expected for the completion of the work-

flow. Yellow shows the possible necessity to take some precautions, such as dropping

some optional activities. Red status shows threat of missing a deadline and exception

handling is required.

In [36], this structure is extended to handle the following constraints:

• Lower-bound constraint: The duration between events A and B must be greater

than or equal to θ.

• Upper-bound constraint: The duration between events A and B must be smaller

than or equal to θ.

50



• Fixed-Date constraint: Event B can occur on certain dates.

Fixed-date type is defined in order to model fixed-date constraint. For a F is a fixed-

date type, the following methods are defined: F.valid(D) returns true if the date D is

valid; F.next(D) and F.prev(D) return, respectively, the next and previous valid dates

after D; F.period returns the maximum distance between valid dates; and F.dist(F ′)

returns the maximum distance between valid dates of F and F ′.

Before creating the timed workflow graph for the workflow instance, first, fixed-

date constraints are converted to lower-bound constraints using worst-case estimates.

Maximum distance between the valid dates are used for the computations.

In order to create timed graph under new constraints, forward and backward com-

putation procedures are augmented with new algorithms for lower-bound and upper-

bound constraints. At run-time, the process is monitored against both deadline and

constraint violations.

2.4 Other Related Work

Job-shop scheduling: Operations research (OR) has developed a number of success-

ful algorithms for solving many scheduling problems [16, 10]. Among them, job-shop

scheduling is most relevant to workflow scheduling. Constraint logic programming

(CLP), which integrates logic-based and OR techniques, has also been successfully

used to deal with job-shop scheduling problems. The following works is just a tip of an

iceberg of the vast research on the subject [42, 18, 81]. Both of the job-shop scheduling

and workflow scheduling problems incorporate resource allocation constraints. How-

ever, a workflow can be much more complex than a job-shop. Furthermore, the focus of
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our work is orthogonal to the works on constraint solving — we use constraint solvers

in Stage 3 of our scheduling process.

Planning in AI: As in the scheduling problem in OR, constraint programming is

used for planning in AI [14, 66], and there also are works on planning under resource

constraints [43, 15]. However, only a small number of works in this area propose

planning as a workflow scheduling technique [63, 65]. However, those that do deal with

scheduling do not address this problem under resource allocation constraints. Instead,

planning techniques are used to schedule dynamically changing workflows.

Agent-based workflow systems: Using agent technology for workflow systems is

another related research area [79, 74, 52, 53, 54, 44]. In agent-based workflow sys-

tems, execution decisions are based on the communication events that occur when one

agent requests services of another. Research on this area has largely concentrated on

intelligent agent modeling and communication issues. Only a few [53] briefly mention

the issue of scheduling under resource allocation constraints, which they propose to do

through negotiations among the agents. However, to the best of our knowledge, details

of such techniques have not been worked out.
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CHAPTER 3

Modeling of Workflows and Resource Allocation

Constraints

In this chapter, we present some preliminary information on workflow structures and

workflow modeling. Then we have a closer look at the resource allocation constraints

in workflow context.

3.1 Workflow Structure

Following the process definition standards defined by Workflow Management Coalition

(WfMC) in [24], workflow specifications consists of basic block structures. These block

structures, shown in Figure 3.1, are as follows:

• The simplest block being a single task, blocks may have recursive structures.

• In an AND-block, all sub-blocks are executed and the block successfully finishes

execution when all its sub-blocks are completed successfully. Depending on the

resources and the constraints, some or all sub-blocks can execute concurrently.
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Figure 3.1: Workflow structure

• OR-block is completed successfully when at least one of the sub-blocks successfully

completes execution.

• In an XOR-block (eXclusive Or) only one of the sub-blocks can be completed.

The block successfully finishes execution when at most and at least one of the

sub-blocks is completed successfully.

• In a Sequential Block sub-blocks are executed sequentially in the order of defini-

tion.

• Iteration block may run more than once repetitively until a given condition holds.

Thus, several instances of the iteration block may execute sequentially.

The basic component for workflow is a task. In addition to tasks, conditions are

also necessary for workflow specification. Condition is a logical expression. It is a part

of iteration block, or it can be used as a precondition for other blocks. If the condition
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is met, the block following the condition can be executed as shown in Figure 3.1 (f).

The above structures capture most of the order and existence dependencies among

tasks. However, there may be other order and existence dependencies that can not be

defined using these structures, such as the dependencies between two tasks in different

blocks. The typical examples of such temporal/causality constraints may be listed as

follows:

• Task ti must execute.

• Task ti must not execute.

• If ti executes, tj must execute as well. (Klein’s existence constraint in [56])

• If ti and tj both execute, ti must execute before tj (Klein’s order constraint in

[56])

3.2 Workflow Modeling

As explained above, business logic of a workflow is generally specified by using block

structures. At the beginning of this chapter, temporal and causality constraints are

introduced as the basic and traditional formalisms to model the relations between these

block structures. There are several frameworks to represent these constraints. They

are sometimes referred to as order dependencies and basically they are grouped in two,

as immediate (or local) and global dependencies.

A control flow graph represents the immediate ordering dependencies between the

tasks of a workflow as a graph. Since it presents the visual representation of overall flow

of control, this modeling framework has been incorporated by most of the commercial
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Figure 3.2: Workflow modeling frameworks

workflow management tools. A control flow graph example is given in the first part

of Figure 3.2. A typical control flow graph specifies the successor tasks of a given

task, initial and final tasks of a workflow, the concurrent and alternative branches of

execution. The concurrent branches are denoted by AND and alternatives are denoted

by OR.

It is also possible to label the arrows in order to specify the transition conditions

between the tasks. The condition is checked against the current state. After the task

at the tail of the arrow is successfully completed, if the condition is satisfied, the task

at the head of the arrow can start executing.

The control flow graph can be extended to model features such as loops, subwork-

flows, retries etc. However, the major drawback is that only local immediate depen-

dencies can be modeled, however, global dependencies, whose examples are given in

the second part of Figure 3.2, can not be modeled in this framework. In many systems,

immediate dependencies are modeled by using graphs and other that can not be speci-
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fied in control flow graphs are specified as as global dependencies using some temporal

constraint language.

In [72], an algebra of temporal constraints is described, which can represent the

many of the necessary global constraints in the workflow context. The most important

of them are the Klein’s constraints [56] which are as follows:

• Order constraint (a < b) If tasks a and b both execute successfully, then a comes

earlier than b.

• Existence constraint (a→ b): If task a ever executes, then b must execute as well

b (in any order).

Using ECA rules (or triggers) is another way to model workflows [31]. The ordering

relations among the workflow tasks can be modeled as ECA rules. These dependencies

capture the normal or expected executions of a workflow process. However, exceptions

or errors may arise during the execution as well. One important advantage of using

ECA rule is that, actions to be employed in case of abnormal, unanticipated situations

can be modeled as well. An example ECA rule may be “if event e occurs and then if

condition c holds then do action a”. The major drawback of this modeling framework

is the lack of validation techniques.

In this work, we use control flow graphs and temporal/causality constraints to-

gether for workflow modeling. When it is more practical, we convert the immediate

dependencies in control flow graph into temporal/causality constraints.
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3.3 Modeling Resource Allocation Constraints

On the contrary to previous workflow scheduling works that deal with temporal/causality

constraints, we specify resource allocation constraints as well as temporal/causality con-

straints and find schedules satisfying all of the given constraints. In this section, we

have a closer look at resource allocation constraints.

Resource allocation constraints define restrictions on which resources to allocate

and when to allocate them. Some of the constraints directly involve the total execution

cost, whereas others define restrictions on agents and relations between agents. From

this point of view, we may categorize the resource allocation constraints as cost and

control constraints.

• Cost Constraints are defined on resource allocation cost. For instance, total cost

< 40 is a cost constraint.

• Control Constraints are defined directly on the resource. if task t2 is done by

agent x, then task t5 must be done by the same agent as well is an example for

control constraints.

Another categorization orthogonal to the above is as follows: Satisfaction of some

constraints is necessary in order to obtain a solution, whereas satisfaction of some

others is not obligatory for the solution, but they rather facilitate the satisfaction of

the constraint set. According to this property, we group resource allocation constraints

as hard and facilitating resource allocation constraints.

1. Hard Resource Allocation Constraints: The satisfaction of these constraints is

necessary for the solution. For instance, sum of costs of tasks t1 and t2 must be
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less than 10 is in this category. Similarly, if task t2 is done by agent x, then task

t5 must be done by the same agent as well is also an hard constraint. Majority of

the resource allocation constraints defined for workflows are in this category.

2. Facilitating Resource Allocation Constraints: Sometimes, satisfaction of a certain

resource allocation constraint facilitates the satisfaction of total cost constraint.

For instance, if tasks t1 and t3 are done by the same agent, then there is a discount

of $300 is such a constraint. Discount in this example, is discount by the given

amount in the total expenditure. Another constraint may be if t1 and t2 are

performed on the same computer, execution time of t2 is shortened by 2 minutes,

due to gain in communication and data transfer. Note that discount and reduction

in execution time are not actually constraints themselves. For this reason, these

constraints are different from conditional constraints.

Sometimes, temporal/causality constraints work together with resource allocation

constraints. For instance, a temporal/causality constraint may take part in a resource

allocation constraint such as if task t5 costs more than $1000, then do not execute

task t6. Similarly, a facilitating resource allocation constraint may contain a tempo-

ral/causality constraint as in if task t4 is completed before task t6 begins, then there

is a discount of $400. Thus, it is possible to make the following generalization: for

hard resource allocation constraints in the form of if p then q, p or q may be a tempo-

ral/causality constraint 1. For facilitating resource allocation constraints if p then q, p

may be a temporal/causality constraint.

1 Note that, if both p and q are temporal/causality constraints, if p then q is a temporal/causality
constraint as well.
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CHAPTER 4

Using CLP to Schedule Workflows Under Resource

Allocation Constraints

In this chapter, we present a workflow management system architecture that provides

modules to model resources and resource allocation constraints and to find schedules ful-

filling these constraints. In order to find schedules, constraint programming approach is

used. That is, scheduler incorporates an off-the-shelf constraint solver to obtain a feasi-

ble schedule for the workflow satisfying both resource allocation and temporal/causality

constraints.

4.1 System Architecture and Specification Language

4.1.1 System Architecture

Resource specification and management are crucial for workflows. For this reason, we

propose an architecture to model and solve resource allocation constraints, which is

shown in Figure 4.1. In order to specify workflow, temporal/causality constraints, re-
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Figure 4.1: System architecture

sources and resource allocation constraints, we have developed a specification language,

Workflow Specification Language (WSL). In our system, the user directly specifies the

workflow in WSL. It is also possible to develop a graphical interface tool, that may

be incorporated into the system. By using this tool, a graphical representation of the

workflow can be defined by the user and then it is translated into WSL specification.

Since we employed constraint programming in order to find schedules under resource

allocation constraints, as the next step, workflow specification in WSL is translated into

a program in constraint language. Then, the resulting constraint specification is sent

to the scheduler. The core of the scheduler is a constraint solver that can understand

and solve the specification in a constraint language. The scheduler produces a schedule

and a corresponding resource assignment.

Once the schedule and the resource assignments are produced, enactment engine and

resource manager may receive the schedule and the resource assignment, respectively,
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from the scheduler, and executes the workflow. Since, in this work, the emphasis is on

specification and scheduling part, we have not implemented the resource manager and

the enactment engine.

4.1.2 Workflow Specification Language: WSL

In order to specify a workflow, we created a script language, WSL, that can model

basic workflow blocks, resource information and constraints.

4.1.2.1 Workflow Blocks

The syntax of the basic workflow blocks defined in Section 1 in WSL are as follows:

• a task is represented as 〈task name〉(〈parameterlist〉). The information flow

between the task is through parameters. However, in this work, we do not explain

the details of parameter passing and information flow mechanism. Since, in this

work, the emphasis is on scheduling, the tasks given in the examples are defined

without parameters.

• And Block: AND{〈 List of Block Definitions 〉}

• Or Block: OR{〈 List of Block Definitions 〉}

• XOr Block: XOR{〈 List of Block Definitions 〉}

• Sequential Block: SEQ{〈 List of Block Definitions 〉}

• Iteration Block: WHILE(〈condition〉){〈 Block Definition 〉}

• Condition Block: IF〈condition〉{〈 Block Definition 〉} ELSE{〈 Block Defini-

tion 〉}

62



An example workflow specification in WSL is given in Figure 4.2.

4.1.2.2 Temporal and Causality Constraints

In most of the script languages (such as given in [57, 19]), temporal/causality constraints

can not be specified. On contrary, WSL provides the constructs to define temporal and

causality constraints. These structures have a simple and straightforward semantics.

They can be listed as follows:

i. Execute(〈task〉)

ii. NotExecute(〈task〉)

iii. 〈taski〉 BEFORE 〈taskj〉.

iv. IF X THEN Y , where X and Y are either temporal/causality constraints as

defined above or a set of such constraints.

By using the above syntax, Klein’s existence constraint is represented as

IF Execute(ti) THEN Execute(tj).

Similarly, Klein’s order constraint is

IF Execute(ti),Execute(tj) THEN (ti BEFORE tj).

Note that, if part contains two constraints separated by a comma denoting conjunc-

tion. For instance, the constraint “if facade painting is done, wooden framed window

installation must be done as well” is represented as

IF Execute(paint facade) THEN Execute(install wooden frame).
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Another constraint that is common for workflows is

IF Execute(ti)THEN NotExecute(tj),

meaning either ti or tj must execute exclusively.

4.1.2.3 Resources

In addition to the basic blocks, WSL provides structures to define resources in the

workflow system as follows:

〈Resource Name〉 CAPABLE OF 〈task〉 WITH

[(〈cost term1〉, 〈cost1〉)...(〈cost termn〉, 〈costn〉)]

For instance, resource r1 that can execute task t2 having cost dimensions of money,

time and energy with certain values is defined as

r1 CAPABLE OF t2 WITH [(money, 10), (time, 5), (energy, 2)]

4.1.2.4 Resource Allocation Constraints

One of the basic issues of this work is to specify resource allocation constraint for wok-

flows. For this purpose, our specification language, WSL, provides constructs to model

resource allocation constraints, which is not provided by previous workflow specification

languages. As explained in Section 3.3, we group the resource allocation constraints

as hard resource allocation constraints and facilitating resource allocation constraints.

Both types of constraints are modeled in this language as follows:

1. Hard Resource Allocation Constraints:

i. 〈task〉.AssignedResource=〈task〉.AssignedResource
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e.g. construct wall.AssignedResource=

construct ceiling.AssignedResource.

ii. 〈task〉.AssignedResource 6= 〈task〉.AssignedResource

e.g. install frame.AssignedResource6=facade.AssignedResource.

iii. 〈task〉.AssignedResource=〈resource〉

e.g. construct wall.AssignedResource=r1.

iv. 〈task〉.AssignedResource 6= 〈resource〉

e.g. install frame.AssignedResource6=r1.

v. f(〈task〉.〈costterm〉, ..., 〈task〉.〈costterm〉)〈op〉

f ′(〈task〉.〈costterm〉, ..., 〈task〉.〈costterm〉)

e.g. max((carpentry.Duration+ roof.Duration),

(elec inst.Duration+ plumbing.Duration) ≤ 7 days

vi. IF X THEN Y , where X and Y are hard resource constraints. It is also

possible that X or Y (but not both) is a temporal constraint.

e.g. IF gardening.Cost > 50 THEN moving.Cost < 80

2. Facilitating Resource Allocation Constraints:

IF 〈 hard constraint 〉 THEN Discount(〈 cost term 〉, 〈 amount 〉)

e.g. IF carpentry.AssignedResource = roof.AssignedResource

THEN Discount(totalCost, 100).

As explained in Section 3.3, hard constraint of the constraint may be replaced by

a temporal constraint.
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SEQ {
wall installation;
AND {

SEQ {
AND {

SEQ {
carpentry;
roof; }

SEQ {
electricity installation;
plumbing; }}

WHILE (there is leakage){
check plumbing; }

AND {
XOR {

facade painting;
vinyl siding; }

XOR {
wooden frame installation;
metal frame installation; }

gardening; }
painting; }

SEQ {
ceiling;
OR {

fireplace installation;
small sauna installation; }}}

moving into the house; }

r1 CAPABLE OF wall installation WITH [(time, 10), (money, 10)]
r2 CAPABLE OF wall installation WITH [(time, 12), (money, 20)]

wall installation.money + carpentry.money + ... + moving.money < 200
IF carpentry.AssignedResource = r1 THEN roof.AssignedResource = r1

IF plumbing.AssignedResource = check plumbing.AssignedResource
THEN Discount(money, 7)

electricity installation BEFORE ceiling

IF Execute(facade painting) THEN Execute(wooden frame installation)

Figure 4.2: House construction workflow in WSL
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4.1.2.5 Example - House Construction

The WSL representation of the house construction workflow is given in Figure 4.2.

The first part of the WSL representation defines the blocks constituting the workflow.

This is followed by resource definitions. Due to space limitation, we give only a part

of the resource definitions for the first task. The resource allocation constraints and

temporal/causality constraints of Example 1.1 are also specified in WSL, in the last

part of the figure.

4.2 Defining Workflow Using Constraint Programming

4.2.1 Translation from WSL to Constraint Language (WftoCon)

One of the most important contributions of this work is the translator (WftoCon)

module of the architecture, which is defined in Section 4.1.1. WftoCon translates

workflow and constraint specifications into a constraint program in Oz. In general, any

constraint language can be used as target language. We defined a mapping from each

block and constraint type specification in WSL to a constraint structure. By using this

mapping, WfToCon produces a constraint set equivalent to WSL specification.

In order to capture the inter and intra-block dependencies, we defined start, end

and duration attributes for blocks, denoting beginning,end and duration of block’s

execution 1. 〈block〉.start + 〈block〉.duration = 〈block〉.end is a default constraint

for each block. As discussed in the previous section, these attributes are defined as

finite-domain objects.

In the rest of this section, the mapping from WSL to constraint language is pre-

1 Since a task is the simplest block, these attributes are defined also for tasks.
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sented. We used a classical mathematical notation for the representation of constraints.

Since we used constraint programming Oz for realization, this notation is converted to

Oz’s constraint notation in the implementation.

4.2.1.1 Sequential Block

Sequential block P with the sub-blocks b1, ..., bi, ..., bn is defined as:

P.start = b1.start

P.end = bn.end

∀ i, 1 ≤ i ≤ n−1, bi.end ≤ bi+1.start

4.2.1.2 AND Block

AND block P with the sub-blocks b1, ..., bi, ..., bn is defined as:

∀ i, 1 ≤ i ≤ n, P.start ≤ bi.start

∀ i, 1 ≤ i ≤ n, bi.end ≤ P.end

4.2.1.3 OR Block

OR block P with the sub-blocks b1, ..., bi, ..., bn is defined as follows:

(∀i, 1 ≤ i ≤ n,
∨

(P.start ≤ bi.start ∧ P.end ≥ bi.end)

In an OR block, at least one sub-block is executed. This is modeled through dis-

junction. Typically, if a block is executed, its start time is an integer value within the

execution time scale. In our representation, a task is executed if its start time is within

the execution time range of the block in which it is defined.
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4.2.1.4 XOR Block

XOR block P with the sub-blocks b1, ..., bi, ..., bn is defined as:

∀ i, 1 ≤ i ≤ n,
∨

((P.start = bi.start ∧ P.end = bi.end)∧

∀ j 1 ≤ j ≤ n, j 6= i (bj .start = outOfRange))

In an XOR block, only one of the sub-blocks is executed. The first part of the

constraint shows that a sub-block is chosen for execution and the second part guarantees

that once a sub-block is executed, the others are not executed. We represent that a

sub-block (or task) is not to be executed by setting a start value for it that is out of the

normal execution range (given as outOfRange above). This may be a negative value or a

value that is higher than the end of scale. The sub-block is chosen non-deterministically

and this is represented by disjunction.

If the start time of a block is set to outOfRange, this should be reflected to all

sub-blocks of this block. Hence, the following constraints are defined for subtasks of

OR and XOR blocks.

∀ P ,P is OR/XOR block, ∀ Q, Q ∈ P , P.start = outOfRange → Q.start =

outOfRange.

4.2.1.5 Iteration Block

To represent an iteration block as a set of constraints, the tasks in the block must be

renamed for each instance of iteration. These instances are modeled as sub-blocks of a

sequential block. In order to determine the number of iterations, a close guess may be

possible from the previous executions or we may overestimate this number.

If the iteration will take place n times, then we rename n instances of the iteration
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block P as P1, ..., Pn and model the iteration as follows:

∀ i, 1 ≤ i ≤ n− 1, (Pi.end ≤ Pi+1.start)

In this model, the sub-blocks in Pi’s must also be renamed to differentiate the

instances. Multiple copies of the constraints involving the iteration block must be

defined as the number of the iteration and the iteration block or its sub-blocks must

be renamed for different copies, as well.

4.2.1.6 Condition

A precondition for a block P is defined as

Pre Cond P → 〈P 〉,

where 〈P 〉 is the set of constraints defining block P. Post conditions also can be

defined similarly. If execution of a block Q can make a condition true, then this is

represented as

〈Q〉 → Cond Q

4.2.1.7 Temporal and Causality Constraints

In order to represent temporal/causality constraints, as in OR/XOR block definitions,

outOfRange is used as the starting time value in order to denote that the block is not

executed. The temporal/causality constraint definitions of WSL are translated into

constraint language as follows:

• Execute(ti) is represented as (ti.start 6= outOfRange) .

• NotExecute(ti) is represented as (ti.start = outOfRange) .

• ti BEFORE tj is represented as (ti.end ≤ tj .start).
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• IF X THEN Y is represented as X → Y .

4.2.1.8 Defining Resources

The resource information given in WSL as

〈Resource Name〉 CAPABLE OF 〈task〉

WITH [(〈cost term1〉, 〈cost1〉)...(〈cost termn〉, 〈costn〉)]

is represented as follows:

〈task〉.resource = 〈resource〉 →

〈task〉.〈cost term 1〉〈cost1〉, ..., 〈task〉.〈cost term n〉〈costn〉

It is possible that some tasks in OR and XOR blocks are never executed. We have

to show that no resource selection is done for these tasks and resource allocation cost

is 0. For this purpose, we make additional definitions with empty resource, as follows:

〈task〉.resource = Empty → 〈task〉.〈cost term 1〉 0, ..., 〈task〉.〈cost term n〉 0

In addition to this, we have the following constraints to show that no resource

allocation is performed for tasks with start value outOfRange:

〈task〉.start = outOfRange→ 〈task〉.resource = Empty

4.2.1.9 Resource Allocation Constraints

The specification of resource allocation constraints in WSL and constraint language are

similar with minor changes in the notation. For instance,

〈taski〉.AssignedResource = 〈taskj〉.AssignedResource

of WSL is represented as

〈taski〉.resource = 〈taskj〉.resource
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check
plumbing

there_is_leakeage

XOR

facade painting

facade vinyl plate covering

sauna inst.

fireplace inst.

OR

wall installation plumbing

elec. inst.

ceiling

AND

Figure 4.3: Subworkflow for house construction exam-
ple

tasks x y

wall 10 20
elec 20 10
plumb 20 15
checkPlumb 15 10
facadePaint 20 40
facadeVinyl 10 20
ceiling 10 15
fireplace 30 20
sauna 50 60

Figure 4.4: Resource alloca-
tion cost table

in constraint language. As another example, in constraint language, facilitating re-

source allocation constraints are modeled as follows:

〈 hard constraint 〉 → Discount.〈cost term〉 = 〈value〉.

4.2.1.10 Example

In this example, we present the constraint language representation of a subworkflow

of house construction workflow. We assume that there are two subcontructors (i.e.,

resources), x and y that are capable of performing the tasks of the workflow given in

Figure 4.3 with the financial costs given in Figure 4.4. In order to simplify the example,

we assume that the execution time is 1 unit for all tasks with any resource. The resource

allocation constraint is total cost < 150. The constraint language representation of

the workflow blocks are given in Figure 4.5, constraints in Figure 4.6 and resource

information in Figure 4.7. The number of iterations for check plumbing is estimated

as 3 and 3 instances of this task is created. As seen from the example, most of the

constraints are defined on attributes of the tasks, not the blocks. The constraints

on block attributes can be rewritten in terms of task attributes. This reduces the
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Duration information

wall.duration = 1, electricity.duration = 1, ..., sauna.duration = 1

Block Definitions

wall.start + wall.duration ≤ electricity.start

electricity.start + electricity.duration ≤ plumbing.start

plumbing.start + plumbing.duration ≤ checkP lumbing1.start

checkP lumbing1.start + checkP lumbing1.duration ≤ checkP lumbing2.start
checkP lumbing2.start + checkP lumbing2.duration ≤ checkP lumbing3.start
checkP lumabing3.start + checkP lumbing3.duration ≤ facade.start

((facade.start = facadePaint.start∧
facade.end = facadePaint.start + facadePaint.duration∧
facadeV inyl.start = outOfRange)∨

(facade.start = facadeV inyl.start∧
facade.end = facadeV inyl.start + facadeV inyl.duration∧
facadePaint.start = outOfRange))

wall.start + wall.duration ≤ ceiling.start

ceiling.start + ceiling.duration ≤ fireplaceOrSauna.start

((fireplaceOrSauna.start = fireplace.start∧
fireplaceOrSauna.end = fireplace.start + fireplace.duration)∨

(fireplaceOrSauna.start = sauna.start∧
fireplaceOrSauna.end = sauna.start + sauna.duration))

Figure 4.5: Blocks of house constraint example

Constraints

wall.cost + elecricity.cost + plumbing.cost+
checkP lumbing1.cost + checkP lumbing2.cost + checkP lumbing3.cost+
ceiling.cost + facadePaint.cost + facadeV inyl.cost + fireP lace.cost+
sauna.cost− discount = total cost

total cost < 150

electricity.end ≤ ceiling.start

plumbing.resource = check plumbing1.resource∧
check plumbing1.resource = check plumbing2.resource∧
check plumbing2.resource = check plumbing3.resource → discount = 7

Figure 4.6: Constraints for house constraint example

redundancy in constraint set. Although not given in the example, domain declarations

are also a part of the specification.
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Resource definitions:

wall.resource = x → wall.cost = 10
wall.resource = y → wall.cost = 20

electricity.resource = x → electricity.cost = 20
electricity.resource = y → electricity.cost = 10

plumbing.resource = x → plumbing.cost = 20
plumbingc.resource = y → plumbing.cost = 15

checkP lumbing1.resource = x → checkP lumbing1.cost = 15
checkP lumbing1.resource = y → checkP lumbing1.cost = 10

checkP lumbing2.resource = x → checkP lumbing2.cost = 15
checkP lumbing2.resource = y → checkP lumbing2.cost = 10

checkP lumbing3.resource = x → checkP lumbing3.cost = 15
checkP lumbing3.resource = y → checkP lumbing3.cost = 10

facadePaint.resource = x → facadePaint.cost = 20
facadePaint.resource = y → facadePaint.cost = 40
facadePaint.resource = Empty → facadePaint.cost = 0

facadeV inyl.resource = x → facadeV inyl.cost = 10
facadeV inyl.resource = y → facadeV inyl.cost = 20
facadeV inyl.resource = Empty → facadeV inyl.cost = 0

ceiling.resource = x → ceiling.cost = 10
ceiling.resource = y → ceiling.cost = 15

fireplace.resource = x → fireplace.cost = 30
fireplace.resource = y → fireplace.cost = 20
fireplace.resource = Empty → fireplace.cost = 0

sauna.resource = x → sauna.cost = 50
sauna.resource = y → sauna.cost = 60
sauna.resource = Empty → sauna.cost = 0

facadePaint.start = outOfRange → facadePaint.resource = Empty
facadeV inyl.start = outOfRange → facadeV inyl.resource = Empty
fireplace.start = outOfRange → fireplace.resource = Empty
sauna.start = outOfRange → sauna.resource = Empty

Figure 4.7: Resource definitions for house construction example
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Figure 4.8: Solution produced by Oz

A feasible solution provided by Oz to the house construction workflow of Figure

4.3 is presented in Figure 4.8, which is a snapshot from Oz programming environment.

The solution contains resource allocations, costs of resource allocations and start times

for each task. The total budget (represented as totalcost) is also a part of solution.

The content of the solution may be extended or reduced depending on the number of

cost dimension attributes of resource allocation. The results are listed in alphabetical

order. Start value 100 denotes outOfRange value. Resources are represented as integers:

0 denotes resource x, 1 denotes resource y and 2 denotes Empty resource allocation.

Figure 4.8 represents the schedule given in Figure 4.9. The total cost of this schedule

is 133 with a discount of 7 (see Figure 4.8). This solution produced by Oz is one of the

feasible solutions that satisfy all the constraints.

In order to activate the workflow according to the provided results, the start times

can be sent to the enactment engine and resource assignment information is sent to the
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tasks resource cost start

wall x 10 0

elec y 10 1

plumb y 15 2

checkPlumb1 y 10 3

checkPlumb2 y 10 4

checkPlumb3 y 10 5

facadePaint empty 0 do not execute

facadeVinyl x 10 6

ceiling y 15 2

fireplace empty 0 do not execute

sauna x 50 3

Figure 4.9: Schedule for house construction example

resource manager. The enactment engine activates the tasks according to the schedule.

Just as a task is activated, the enactment engine notifies the resource manager and

therefore resource manager allocates the scheduled resource for the task. Although our

architecture is designed to provide feasible solution, it can be tuned to find all solutions

or the optimal solution. However, as expected, in this case execution time will increase

since the whole search space needs to be explored.

4.2.2 Experiments and Efficiency Issues

For most of the constraint problems, the aim is to find the optimal solution which

requires the search throughout the whole search space. However, in this work, the aim

is to obtain a feasible solution. For this reason, complexity of the problem is reduced

when compared to conventional scheduling problems that requires optimal solution.

In order to check the feasibility of constraint programming approach for workflow

scheduling under resource allocation constraints and to see the effect of different work-

flow structures on the execution times, we have conducted some experiments. In the

first set of experiments, we tested the effect of increase in constraint set on four types
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AND OR XOR

c) XOR−block testa) AND−block test b) OR−block test

d) SEQ−block test

Figure 4.10: Structures used in the first
set of experiments

d) SEQ−block test

AND OR XOR

(n=2,4,8,16,32,64)
n tasks 
(n=2,4,8,16,32,64)

a) AND−block test b) OR−block test c) XOR−block test

n tasks (n=2,4,8,16,32,64)

n tasks 

(n=2,4,8,16,32,64)
n tasks 

Figure 4.11: Structures used in the second
set of experiments

of workflows that include the same fixed number of tasks. The first workflow consists

of a single sequential block, second one has a single AND block, third one has a single

OR block and fourth one consists of a single XOR block. We have not used iteration

blocks, since it is modeled using sequential blocks. The experiment is conducted with

constraints sets including 2, 4, 8, 16 and 32 constraints. The workflow structures used

in the experiments are shown in Figure 4.10. The result of this first set of experiments

is presented in Figure 4.12. The basic results of this experiment are as follows:

• The increase in the number of tasks leads to more increase in execution time com-

pared to the increase in the size of the constraint set. This result is expected due

to the fact that each task is represented with a constraint variable and therefore

its associated domain and each new task means a new domain to be reduced.

• The increase in the execution time for workflows consisting of OR block and XOR

block is higher compared to workflows consisting of SEQ and AND blocks. This

is due to the disjunction in the semantics of OR and XOR blocks.

• When we compare OR and XOR blocks, the execution time for XOR block is
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slightly longer than that of OR block. The reason for this result is that OR

blocks are easier to satisfy. The same set of constraints may fail to find a solution

for XOR block.

• The increase in execution time is all polynomial.

On the average, the workflows consist of mostly sequential and AND blocks. The

number and the size of XOR and OR blocks appear only occasionally and thus the

execution time is expected to be below the OR/XOR curve. For instance, the execution

time for House Construction example is 0.90 seconds. More efficient results can be

obtained by using specialized solvers.

• The increase in the number of constraints causes a little increase in the execution

time.

• The amount of increase is the same for all four types of workflows.

• The ratio between the execution time of XOR/OR blocks vs. SEQ/AND blocks

is almost constant and it is related to the number of tasks.

The second set of experiments is conducted to check the effect of increase in the

number of tasks. Again we have used four types of workflows including only a sequential

block, AND block, OR block and XOR block, respectively. The experiment is repeated

with exponentially increasing number of tasks in blocks - using 2, 4, 8, 16 and 32 tasks

- under the same constraint set with 5 constraints. The workflow structures used in the

experiments are shown in Figure 4.11. The result is given in Figure 4.13. The basic

results of this experiment are listed as follows:
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• The increase in the number of tasks leads to more increase in execution time com-

pared to the increase in the size of the constraint set. This result is expected due

to the fact that each task is represented with a constraint variable and therefore

its associated domain and each new task means a new domain to be reduced.

• The increase in the execution time for workflows consisting of OR block and XOR

block is higher compared to workflows consisting of SEQ and AND blocks. This

is due to the disjunction in the semantics of OR and XOR blocks.

• When we compare OR and XOR blocks, the execution time for XOR block is

slightly longer than that of OR block. The reason for this result is that OR

blocks are easier to satisfy. The same set of constraints may fail to find a solution

for XOR block.

• The increase in execution time is all polynomial.

On the average, the workflows consist of mostly sequential and AND blocks. The

number and the size of XOR and OR blocks appear only occasionally and thus the
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execution time is expected to be below the OR/XOR curve. For instance, the execution

time for House Construction example is 0.90 seconds. More efficient results can be

obtained by using specialized solvers.
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CHAPTER 5

Developing a Logic-based Framework to Schedule

Workflows Under Resource Allocation Constraints

In this chapter, we present a new logical framework, based on Concurrent Constraint

Transaction Logic (abbr., CCTR). CCTR extends Concurrent Transaction Logic (abbr.,

CTR) [13] by incorporating ideas from Constraint Logic Programming (CLP) [49, 50].

This new framework can be used for the specification, verification and the scheduling

of workflows containing resource allocation constraints in addition to ordinary tempo-

ral/causality constraints. Shorter version of this work is explained in [70].

The role of CCTR in our framework is to model workflows and specify all kinds of

constraints in a rigorous and precise way. The semantics of the CCTR modeling of a

workflow represents to a schedule that contains both an execution ordering that the

specified workflow can execute, and a set of resource assignments to the tasks of the

workflow satisfying all the given constraints. The realization of this framework can be

summarized in three components:
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• A formula transformer, that transforms the conjunctive CCTR formula which

specifies the workflow in conjunction with the cost and control constraints, into

a conjunction-free CTR formula that contains exactly the same constraints.

• A CTR interpreter, that solves the non-constraint part of the formula in order to

determine the partial schedule of the workflow and extract the constraints.

• A constraint solver, that determines the resource allocations to the tasks of the

workflow by solving the constraints.

5.1 Concurrent Constraint Transaction Logic (CCTR)

In this work, we extended the Concurrent Transaction Logic (CTR) with the capability

of workflow modeling and scheduling under resource allocation constraints. We called

this new formalism Concurrent Constraint Transaction Logic (CCTR). CTR is an ex-

tension to first-order logic for programming, executing and reasoning state changing

concurrent processes. It was introduced in [13] and it is one of the few formalisms that

have been successfully applied to modeling, reasoning about and scheduling workflows

[29, 11]. For instance, [29] shows that a large class of temporal and causality constraints

can be represented in CTR and that the proof theory of the logic can be used to perform

a number of tasks ranging from consistency checking of a workflow to its scheduling

subject to the specified constraints. In CCTR, we exploited the workflow modeling,

reasoning and scheduling capabilities of CTR and extended these capabilities for the

new set of constraints. In this section, we present CCTR language with its syntax,

semantics and model theory.
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5.1.1 Syntax

In CCTR, the alphabet consists of four countable sets of symbols: a set F of function

symbols, a set V of variables, a set P of predicate symbols and a set C of constraint

predicates. As we shall see, constraint predicates are treated differently from other

predicates in CCTR.

Each function, predicate and constraint predicate symbol has an arity, indicating

the number of arguments the symbol takes. Constants are viewed as 0-arity function

symbols and propositions are viewed as 0-arity predicate symbols.

CCTR also extends classical logic with four new connectives and modalities (bor-

rowed from CTR) of which the most important are ⊗, the serial conjunction, and |,

the parallel conjunction. The simplest transaction formulas are atomic formulas, which

are defined via predicates and terms. In addition, if φ and ψ are transaction formulas,

then so are the following expressions:

• φ ∨ ψ, φ ∧ ψ, φ⊗ ψ, φ | ψ,¬ψ

• (∀X)φ and (∃X)φ, where X is a variable.

Intuitively, the formula φ ⊗ ψ means that the subtransactions φ and ψ execute

serially. The formula φ | ψ means that subtransactions φ and ψ execute concurrently.

To see how CCTR can be used to model a workflow, we show a formula that

corresponds to a part of the house building process in Figure 1.1:

wall⊗

(( ((carpentry⊗ roof) | installations)⊗ the-middle-piece) | ceiling)

⊗ paint⊗ move

(5.1)
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Each proposition here represents a task and CCTR operators tell whether to com-

bine the tasks concurrently or serially. The proposition the-middle-piece represents the

part of the workflow that did not fit and we show it separately:

(facade-paint ∨ facade-vinyl) | (wooden-windows ∨ metal-windows) | gardening

As can be seen from the last formula, ∨ represents alternative executions in work-

flow. For instance, in the above workflow we only need to either paint the facade or

cover it with vinyl.

Let wf denote the formula in (5.1) and let c be a constraint expressed using the

predicates from the set C. Then wf ∧ c is a complete specification of Example 1.1

in CCTR. The symbol c here denotes a resource allocation constraint, which in our

framework has two parts: a control constraint and a cost constraint. These constraints

will be discussed later.

It should be noted that many kinds of constraints are already expressible in CTR

and don’t require CCTR. However, handling control constraints require a different,

more expressive semantics and cost constraints require an extension that is analogous

to the way constraint logic programming extends regular logic programming.

5.1.2 Semantics

5.1.2.1 States and Oracles

In CCTR, like in Transaction Logic, the specification of the elementary database op-

erations is incorporated into the language as a parameter through a pair of oracles,

the data oracle and the transition oracle. The data oracle specifies a set of primitive

database queries (i.e., the static semantics of the states) and transition oracle specifies
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a set of primitive updates (i.e., the dynamic semantics of the states). These oracles

are defined with a set of database states. Intuitively, a database state is a set of data

items, which can be any kind of persistent object, such as a tuple, a disk page, an email

queue, or a logical formula. Formally, however, a database state has no structure, and

we access it only through the oracles.

Data Oracle. Formally, data oracle, denoted by Od, is a mapping from states to sets of

first-order formulas. Intuitively, if D is a state, then Od(D) is the set of formulas that

are true of the state.

Transition Oracle. Formally, transition oracle, denoted by Ot is a mapping from pairs

of states to sets of ground atomic formulas. Intuitively, if D1, D2 are states and b is

a ground atomic formula, b ∈ Ot(D1, D2) means that b is an elementary update that

changes the current state from D1 to D2. Further details and examples on data and

transition oracle can be found in [12] and [13]

In CCTR, we have one more parameter of the language, constraint universe, whose

details will be discussed later.

5.1.2.2 Partial Schedules

Paths and Multi-paths. In Transaction Logic [12], formulas are viewed as transactions

that execute along a sequence of database states and during the execution they query

and change the underlying database state. When a user executes a transaction, the

database changes from its initial state to some final state, going through any number

of intermediate states. This sequence of states is called a path, and the truth value

of a transaction is determined with respect to paths. For example, a.ins ⊗ b.ins is a
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transaction that first inserts a and then b. It happens to be true on the path 〈D0D1D2〉,

where D0 = {}, D1 = {a} and D3 = {a, b}.

Concurrent Transaction Logic was designed to model concurrent processes; it gen-

eralizes the notion of a path to multi-paths (abbr., m-path). Intuitively, an m-path

represents periods of continuous execution, separated by periods of suspended execu-

tion. Formally, an m-path is a finite sequence of paths, where each constituent part

represents a period of continuous execution. For example, 〈D1D2D3, D4D5, D6D7D8〉

is an m-path. Note that a path can be viewed a special case of m-paths.

Partial Schedule. While m-paths are adequate to model serial and concurrent ex-

ecution in CTR, they are not sufficient to model resource requirements that may be

necessary for those executions to succeed. In CCTR we need to be able to distinguish

that two m-paths are part of different concurrent branches of the same execution. To

this end, we introduce the notion of a partial schedule, which adds certain amount of

structure to m-paths.

Partial schedules are composed using two operators: •p and ‖p. The first represents

concatenation and is associative; the second does parallel combination of schedules and

is both associative and commutative.

Definition 5.1 A partial schedule is defined as follows:

• A simple partial schedule is just an m-path.

• Serial composition of two partial schedules, ω1 •p ω2, is a partial schedule

• Parallel composition of two partial schedules, ω1 ‖p ω2, is a partial schedule

In CTR, concatenation and interleaving operations are defined on m-paths as fol-
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lows: If π = 〈κ1, ..., κn〉 and π′ = 〈κ′1, ..., κ′m〉 are two m-paths, then their concatenation

is the m-path π • π′ = 〈κ1, ..., κn, κ
′
1, ..., κ

′
m〉. If π and π1, ..., πn are m-paths, then π is

an interleaving of π1, ..., πn if π can be partitioned into order-preserving subsequences

C1, ..., Cn such that each Ci is πi. The set of all interleavings of π1 and π2 is denoted

π1 ‖ π2. We will use these operations to define the association between partial schedule

and m-paths.

Definition 5.2 Every partial schedule ω can be associated with a set of m-paths,

where each m-path represents a possible full schedule that is consistent with ω.

• if ω1 and ω2 are partial schedules and π1 and π2 are m-paths, then

mpaths(ω1 •p ω2) ≡ {π1 • π2|π1 ∈ mpaths(ω1), π2 ∈ mpaths(ω2)} (5.2)

• ω1 and ω2 are partial schedules and π1 and π2 are m-paths, then

mpaths(ω1 ‖p ω2) ≡
⋃

π1∈mpaths(ω1),π2∈mpaths(ω2)

(π1 ‖ π2) (5.3)

• If ω is a simple partial schedule, then

mpath(ω) = {ω}, recall that a simple partial schedule is an m-path.(5.4)

5.1.2.3 Resource and Resource Assignment

In proposing CCTR, the basic motivation is to provide a mechanism to define and

solve resource allocation constraints. For this reason, we define resource and resource

assignment as a part of CCTR as given below.

Definition 5.3 A resource is an object with the attributes token and cost.
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In workflow modeling, a resource typically represents an agent or a device needed for

executing various tasks. The attribute token then represents the name of the resource

and the attribute cost represents the cost of using that resource. The cost does not

need to be a number - it can be a structured object such as a list of numbers.

Definition 5.4 A resource assignment is a partial mapping from partial schedules to

sets of resources. Any resource assignment, ξ, must satisfy the following conditions:

• ξ(ω1 ‖p ω2) = ξ(ω1) ∪ ξ(ω2), if both ξ(ω1) and ξ(ω2) are defined

• ξ(ω1 •p ω2) = ξ(ω1) ∪ ξ(ω2), if both ξ(ω1) and ξ(ω2) are defined

5.1.2.4 Constraint Universe

Constraint universe is the third parameter of CCTR language. It contains the domains

that will be used later to define the semantics of constraint predicates.

Definition 5.5 A constraint universe D is a set of domains together with predicates

associated with each domain. The domains in the constraint universe are

1. Elementary Domains include scalar domains (e.g. integer), goal domain (i.e.,

the set of all CCTR goals, which are formulas that represent workflows), the

domain of partial schedules, the domain of resource assignments and the domain

of resources.

2. Complex Domains are domains that are composed out of elementary domains

using various set constructors (e.g., goal × partial schedule, 2resource).

Each domain in D has a set of constraint predicates associated with it.
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Example 5.6 Here are some examples of constraint predicates in D:

1. disjoint(R1, R2) ≡ (R1 ∩R2 = ∅) is a predicate on the domain (2resource×2resource)

where R1, R2 ⊂ 2resource.

2. less than c(I) ≡ (I < c) is a predicate on the integer domain, where I ∈

integer domain and c is an integer constant.

3. cost constraint(ω, ξ) ≡ less than c(f(ω, ξ)) is a predicate on the domain (partial

schedule × resource assignment), where ω is a partial schedule, ξ is a resource

assignment, less than c is defined above, and f is a function of type (partial

schedule × resource assignment 7→ integer.) A function like this is typically used

to define the cost of executing the schedule under the given resource assignment.

Constraint universe contains relations that represent the meaning to the constraint

predicate symbols in C. For each constraint predicate symbol c ∈ C, there is a rela-

tion cD in the constraint universe, which has two extra arguments. One of the new

arguments is a partial schedule and the other is a resource assignment.

5.1.3 Model Theory of CCTR

The semantics of CCTR is based on partial schedule structures. A partial schedule

structure is a mapping that assigns a regular first-order semantic structure to every

partial schedule.

Definition 5.7 (Partial Schedule Structures) Let L be a language of CCTR with the

set of function symbols F and let D be a constraint universe. A partial schedule

structure M over L is a 3-tuple 〈U, IF , Ips〉, where
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• U is a set, called the domain of M,

• IF is an interpretation of function symbols in L. It assigns a function of type

Un 7→ U to every n-ary function symbol in F .

Let Struct(U, IF ) denote the set of all classical first-order semantic structures over

L of the form 〈U, IF , IP , IC〉, where IP is a mapping that interprets predicate

symbols in P by relations on U . IC performs a similar function for constraint

predicates: it interprets the predicates in C by relations in the constraint domain

in D.

• Ips is a total mapping from the partial schedules in L to the semantic structures

in Struct(U, IF ). Ips is subject to the following restrictions:

– Compliance with the data oracle: Ips(〈D〉) |=c σ for every formula σ ∈

Od(D).

– Compliance with the transition oracle: Ips(〈D1D2〉) |=c b for every formula

b ∈ Ot(D1D2).

As in classical logic, a variable assignment, v is a mapping V 7→ U that takes

variables as input and returns domain elements as output. We extend the mapping

from variables to terms in the usual way.

In CCTR, a formula that holds along a partial schedule can be informally under-

stood as being able to execute according to that schedule in a way that satisfies all the

resource allocation constraints.

Satisfaction of CCTR formulas. Let ω be a partial schedule, M be a partial schedule

structure, ξ be a resource assignment and α be a CCTR goal. M,ω, ξ |= α (read: α is
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true in M along the schedule ω under the resource assignment ξ) is defined as follows:

• If α is a variable-free atomic formula of the form p(t1, ..., tn), where p ∈ P, then

M,ω, ξ |=v α, if and only if ω is a partial schedule and Ips(ω) |=c
V α. Here |=c

v

stands for entailment in classic first-order logic (recall that M(ω) is a first-order

semantic structure).

• if α is a variable-free constraint predicate of the form c(t1, ..., tn), where c ∈ C,

then M,ω, ξ |= α, if and only if D |=v cD(ω, ξ,t∞, ...,t\), where cD = IC(c), is a

relation in D that corresponds to c.

• if α is any atomic formula, then

M,ω, ξ |= ¬α, iff it is not the case that M,ω, ξ |=v α.

• M,ω, ξ |=v α⊗ β, if and only if ω = ω1 •p ω2, M,ω1, ξ |=v α and M,ω2, ξ |=v β.

• M,ω, ξ |=v α | β, if and only if ω = ω1 ‖p ω2, M,ω1, ξ |=v α and M,ω2, ξ |=v β.

• M,ω, ξ |=v α ∧ β, if and only if M,ω, ξ |=v α and M,ω, ξ |=v β.

• Universal and existential quantification is defined as usual in first-order logic.

Note that satisfaction of a CCTR goal that does not contain any constraint predicates

does not depend on resource assignment. Therefore, if α is a goal with no constraint

predicates, we can use the notation M,ω |= α, which omits variable assignment.

The first item in the above definition states that an atomic transaction named α

(which does not involve constraints) is true along the simple partial schedule ω, if

the partial schedule structure M says that α is true along ω in the classical sense.

The intuitive meaning of this statement is that α is the name of a transaction that
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can “execute” along ω under any resource assignment ξ. The second item states that

satisfaction of constraint predicates determined by the constraint universe as explained

in Section 5.1.2.4. The third item defines the meaning of negation and says that if α

is not true along ω under ξ, then ¬α is true along ω under ξ. The fourth item says

that the transaction α ⊗ β can execute along a schedule ω if and only if this schedule

is a concatenation of two schedules and α can execute along the prefix of the schedule,

while β can execute along the suffix of the schedule. The fifth item states that a parallel

combination of transactions, α | β, can execute along a schedule ω if and only if it is

a parallel combination of schedules, ω1 ‖p ω2, and α can execute along ω1 while β can

execute along ω2. The sixth item says that in order to execute α ∧ β along a schedule,

both α and β must be true along the schedule.

A CCTR rule has the form head : −body, where head is an atomic formula which

is not a constraint and body is a CCTR goal. The semantics of such a rule is analogous

to first-order logic: It is satisfied in a partial schedule structure M if, for every partial

schedule ω, M,ω, ξ |= body implies M,ω, ξ |= head.

Definition 5.8 A CCTR goal is any formula of the form:

• an atomic formula of the form p(t1, ..., tn), where p ∈ P ; or

• φ1 ⊗ ...⊗ φn, where each φi is a CCTR goal; or

• φ1 | ... | φn, where each φi is a CCTR goal; or

• φ1 ∨ ... ∨ φn, where each φi is a CCTR goal; or

• φ ∧ c1(t1, ..., tn) ∧ .... ∧ cn(t1, ..., tm), where φ is a CCTR goal and ∀ci, ci ∈ C.
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A CCTR program consists of two parts: the transaction base P, and the initial

database state D. Recall that database state is a set of data items and transaction base

is a finite set of transaction formulas. The transaction base specifies procedures for

updating the database and answering the queries. Database is the updatable part of

the program. On the other hand, transaction base is immune to the changes. On the

basis of this program structure, we define executional entailment as given below.

Definition 5.9 Let P be a transaction base, let φ be a CCTR formula, ξ be a resource

assignment, ω is a partial schedule and D0, D1, ..., Dn be a sequence of database states.

Then

P, D0, D1, ..., Dn, ξ |= φ (5.5)

is true iff M,ω, ξ |= φ for every model M of P and 〈D0, D1, ..., Dn〉 ∈ mpaths(ω).

Related to this is the statement

P, D0,−−−, ξ |= φ (5.6)

which is true iff Statement 5.5 is true for some sequence of database states.

5.2 Wf-Constraint Universe

Since resource assignment and constraints are part of CCTR, workflow specifications

with resource allocation constraints can be modeled and solved directly in CCTR. In

this section, we define a constraint universe, called wf-constraint universe, in order to

model cost and control constraints on a workflow specification. We make the following

natural assumption regarding workflow tasks: Each task is modeled as a transaction
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that inserts an atom into the database indicating that the task has been executed. for

all ωi such that

Recall that each n-ary constraint predicate symbol c is represented by a (n+2)-

ary relation cD over the constraint universe D. Since resource allocation constraints

generally belong to two categories, cost constraints and control constraints, we intro-

duce 0-ary constraint predicate symbols, which we will denote as cost constraint and

ctrl constraint. There can be many such predicate symbols in C, and our use of the

above name is generic, i.e., for example, cost constraint refers to any cost constraint

predicate. Therefore, the constraint system should contain the corresponding 2-ary

relations cost constraintD and ctrl constraintD.

Definition 5.10 A wf-constraint universe ζ contains a set of constraint definitions. It

consists of two subsystems ζcost and ζctrl.

The ζcost subsystem is used to specify cost constraints (e.g., this task must execute in

less than 1 day); the ζctrl subsystem is used to specify control constraints (e.g., the

copier on the second floor cannot be used by two concurrent tasks).

Definition 5.11 The constraint subsystem ζcost consists of relations of the form

cost constraintD(ω, ξ), where ω is a partial schedule and ξ is a resource assignment.

More specifically, cost constraintD(ω, ξ) has the form value constraint(cost(ω, ξ)),

where value constraint is a relation over a scalar domain (e.g., integer) and cost is

a function with the following properties. Let ω1 and ω2 be partial schedules such that

both cost(ω1, ξ) and cost(ω2, ξ) are defined. Then:

cost(ω1 ‖p ω2, ξ) = op|(cost(ω1, ξ), cost(ω2, ξ))
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cost(ω1 •p ω2, ξ) = op⊗(cost(ω1, ξ), cost(ω2, ξ))

cost(ω, ξ) = cost of(r), where r ∈ ξ(ω)1, if ω is an m-path. (Recall that cost of is

a function that determines the cost of using the resource r, as defined right after

Definition 5.3)

Here, op⊗ and op| are functions that takes a pair of scalar values and return another

scalar value.

Definition 5.12 The constraint subsystem ζctrl consists of relations of the form

ctrl constraintD(ω, ξ), which satisfy the following conditions. Let ω, ω1, ω2 be partial

schedules and ξ be an assignment such that both ξ(ω1) and ξ(ω2) are defined. Then

ctrl constraintD has the form

ctrl constraintD(ω1 •p ω2, ξ) ≡
set constraint⊗(ξ(ω1), ξ(ω2)) ∧ ctrl constraintD(ω1, ξ) ∧ ctrl constraintD(ω2, ξ)

ctrl constraintD(ω1 ‖p ω2, ξ) ≡
set constraint|(ξ(ω1), ξ(ω2)) ∧ ctrl constraintD(ω1, ξ) ∧ ctrl constraintD(ω2, ξ)

ctrl constraintD(ω, ξ) ≡ task constraint(ξ(ω)), if ω is an m-path

Here set constraint⊗ and set constraint| are relations over the domain 2resources ×

2resources, which are intended to express conditions on sets of resources, such as dis-

jointness. The relation task constraint is defined over the domain 2resources; it restricts

executions of individual tasks and can be used to say that, for example, task t1 cannot

be executed by agent A.

To ensure that cost constraintD is well-defined 2, we impose the following restric-

tions on op| and op⊗:

1 Note that here we consider assignment of a single resource for a task
2 A relation definition is well-defined if it produces the same result independent of the processing

order of its arguments
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Definition Com Dis

disjoint(R1, R2) = (token of(R1) ∩ token of(R2) ≡ ∅) Yes Yes

subset(R1, R2) = (token of(R1) ⊂ token of(R2)) No Yes

subsumes c(R1, R2) = ((token of(R1) ∩ token of(R2)) ⊂ token of(c)) Yes Yes

Figure 5.1: Examples of set constraints and their properties

• Commutativity: op|(X,Y ) = op|(Y,X).

• Associativity:

op|(op|(X,Y ), Z)) = op|(X, op|(Y, Z)) op⊗(op⊗(X,Y ), Z)) = op⊗(X, op⊗(Y, Z)).

Lemma 5.13 The function “cost” in Definition 5.11 is well-defined.

Similarly, to ensure that ctrl constraintD is well-defined, we impose the following

restrictions on set constraint⊗ and set constraint|.

• Commutativity: set constraint|(R1, R2) = set constraint|(R2, R1).

• Distribution over Union:

set constraint⊗(R1∪R2, R3) = set constraint⊗(R1, R3)∧set constraint⊗(R2, R3)

set constraint|(R1 ∪R2, R3) = set constraint|(R1, R3) ∧ set constraint|(R2, R3).

Lemma 5.14 The predicate ctrl constraint in Definition 5.12 is well-defined.

Although there are no restrictions on the use of the attributes cost and token in spec-

ifying constraints, cost is typically used in cost constraint and token in ctrl constraint.

The functions op⊗ and op| are usually aggregates, such as sum or max, and the rela-

tions set constraint| and set constraint⊗ are various set constraints, such as those in

Figure 5.1.
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Example 5.15 Let R1, R2 denote sets of resources. Figure 5.1 lists some predicates

along with their distributivity and commutativity properties. Those that have both

properties can be used as set constraint| and those that have only distributivity can

be used as set constraint⊗ only.

Example 5.16 Example 1.1 has two cost constraints that would be defined in ζcost

and one control constraint that would be defined in ζctrl. For ζcost, the function cost( )

of Definition 5.11 should return the costs of the assignment — the construction time

and the dollar amount. We can represent this as a list where first element is the time

and second is the amount: cost(ω, ξ) = cost of(ξ(ω)) = [V1, V2]

The following constraint can be used to state that total time should not exceed c1

and budget should not exceed c2: value constraint([V1, V2]) ≡ V1 < c1, V2 < c2

The functions op| and op⊗ define how the cost of assignment is aggregated. For

instance, for parallel executions, maximum of the execution time is used, whereas for

dollar costs, payments are added up: op|([V1, V2], [V ′
1 , V

′
2 ]) ≡ [V1 + V ′

1 ,max(V2, V
′
2)]

The following set constraint, which could be a part of ζctrl, says that the resource

sets allocated to parallel branches of a schedule must be disjoint:

set constraint|(R1, R2) ≡ (R1 ∩R2) = ∅)

In order to simplify the notation, in the rest of the paper, we drop the domain subscript

D and specify the constraint definitions in terms of the relations cost consraint(ω, ξ)

and ctrl consraint(ω, ξ)
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Figure 5.2: The big picture

5.3 CCTR as a Workflow Scheduler

In this section, we present a workflow scheduler that produces schedules conforming to

resource allocation constraints. This scheduler accepts a CCTR formula of workflow

and resource allocation constraints. Through a series of steps, the system produces a

schedule consisting of an execution ordering and a resource assignment that satisfy the

constraints. The scheduling process under resource allocation constraints is depicted

in Figure 5.2. The process has three main components:

• the transformation rules and templates

• the inference system of CTR

• an off-the-shelf constraint solver

In the consecutive subsections, each of these components are described. A prototype

of the system has been implemented by using the CTR interpreter and a constraint

solver. The prototype has a graphical interface for the user to define the workflow

control and resource allocation constraints. The interface provides facilities to see the

intermediate results of the process as well as the final result (i.e., the execution order

and final resource assignment). By default, this system returns the first solution, but
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TRANSFORMATION RULES

(1) Θ(G ∧ C1 ∧ ... ∧ Cn) ≡ Θ(G)⊗ C1D(Θ(G))⊗ ...⊗ CnD(Θ(G))

CiD is the relation in D that represent the meaning of Ci ∈ C.

The realization of D is the constraint template definitions.

(2) Θ(A) ≡ A⊗ (resource asg(A,Agents))

where A is an atomic task, resource asg is a resource assignment

predicate for task A and Agents is a new variable or a list of variables

(3) Θ(G1|G2) ≡ (Θ(G1)|Θ(G2))

(4) Θ(G1 ⊗G2) ≡ (Θ(G1)⊗Θ(G2))

(5) Θ(G1 ∨G2) ≡ Θ(G1)

(6) Θ(G1 ∨G2) ≡ Θ(G2)

Figure 5.3: Transformation rules for a workflow scheduler

all solutions are returned through backtracking.

5.3.1 Transformation Rules and Specifying Constraint System

The transformation process mentioned in Figure 5.3 takes a constrained workflow spec-

ification represented as a CCTR formula G ∧ cost ∧ ctrl and produces a CTR formula

that does not involve the ∧ connective. The motivation for this step is the resulting

CTR formula can be handled using CTR proof theory [13] and evaluated using CTR

interpreter such as [26].

The operator Θ inserts a predicate in order to add the resource allocation informa-

tion into the CTR formula. The predicate can be of the form resource asg(task,Agents),
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step1 Θ(((c⊗ r)|(i|g)) ∧ cost constraint ∧ ctrl constraint)

step2 Θ((c⊗ r)|(i|g))⊗

cost constraint(Θ((c⊗ r)|(i|g)))⊗ ctrl constraint(Θ((c⊗ r)|(i|g)))

step3 (Θ(c⊗ r)|Θ(i|g)) )

⊗ cost constraint(Θ((c⊗ r)|(i|g)))⊗ ctrl constraint(Θ((c⊗ r)|(i|g)))

step4 ((Θ(c)⊗Θ(r)) | (Θ(i)|Θ(g)))

⊗ cost constraint(Θ((c⊗ r)|(i|g))) ⊗ ctrl constraint(Θ((c⊗ r)|(i|g)))

step5 (((c ⊗ resource asg(c,W )) ⊗ (r ⊗ resource asg(r,X)))|

((i ⊗ resource asg(i, Y )) | (g ⊗ resource asg(g, Z))))

⊗ cost constraint(((c ⊗ resource asg(c,W )) ⊗ (r ⊗ resource asg(r,X)))|

((i ⊗ resource asg(i, Y )) | (g ⊗ resource asg(g, Z))))

⊗ ctrl constraint(((c ⊗ resource asg(c,W )) ⊗ (r ⊗ resource asg(r,X)))|

((i ⊗ resource asg(i, Y )) | (g ⊗ resource asg(g, Z))))

Figure 5.4: Transformation for house construction workflow

where task is a constant that represents the task to which resources are assigned and

Agents is a new variable or a list of new variables. In addition to this, constraint

predicates, Ci, are replaced with classical predicates CiD that are the realizations of

the relations in D.

Example 5.17 Consider a subset of Example 1.1: (carpentry⊗roof) | (installations |

gardening)

The scheduling transformation of this subworkflow is shown in Figure 5.4, where the

long task names are abbreviated to c, r, i, and g, respectively. The transformed work-

flow is given in step5.
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(1) ctrl constraint(G⊗ cost constraint(X)) : −ctrl constraint(G)

(2) ctrl constraint(G⊗ ctrl constraint(X)) : −ctrl constraint(G)

(3) ctrl constraint((G1 | G2)) : − set constraint|(G1, G2),

ctrl constraint(G1), ctrl constraint(G2)

(4) ctrl constraint((G1 ⊗G2)) : − set constraint⊗(G1, G2),

ctrl constraint(G1), ctrl constraint(G2)

(5) ctrl constraint(G) : − task(G), task constraint(G)

(6) cost constraint(G) : − cost(G,V ),value constraint(V )

(7) cost((G⊗ cost constraint(X)) : − cost(G)

(8) cost((G⊗ ctrl constraint(X)) : − cost(G)

(9) cost((G1 ⊗G2), V ) : − cost(G1, V1), cost(g2, V2),op⊗(V1, V2, V )

(10) cost((G1 | G2), V ) : − cost(G1, V1), cost(G2, V2),op|(V1, V2, V )

(11) cost(A⊗resource asg(A,Agents), V ) : − cost of(resource asg(A,Agents), V )

Figure 5.5: Template rules for constraint systems

In order to specify the resource allocation constraint definitions in CCTR Wf-

constraint universe, we introduce rule templates, which the user can instantiate in order

to describe the constraint system appropriate for the application at hand. Details of

the Wf-constraint universe of CCTR introduced in Section 5.2 can vary greatly, but

their general properties can be realized as a single set of Prolog rule templates shown

in Figure 5.5. In the figure, the boldface predicates are placeholders for functions and

constraints that the user can specify to adapt the template to a particular application

domain. These placeholders are explained in Figure 5.6. Later we illustrate the use of

these templates on a number of nontrivial examples.
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Resource Assignment:

resource asg(T,Agents) – placeholder for a user-specified term, which associates

resources to a task. T denotes an atomic task that can be represented by a single

variable, and Agents denotes the resource that can be represented by a single

variable or a list of variables (in case of multiple resources).

User Predicates (typically defined via user-supplied rules):

(1) cost of(resource asg(T,Agents), V ) – placeholder for predicate that tells the costs

associated with the resources. V has the data type of the costs attribute of the

resource. It can be a single variable or a list of variables.

(2) set constraint|(G1, G2) – placeholder for a control constraint for

sequential composition of tasks.

(3) set constraint⊗(G1, G2) – placeholder for a control constraint for

parallel composition of tasks.

(4) task constraint(G) – placeholder for a constraint on individual tasks.

(5) value constraint(V ) – placeholder for a predicate used to define cost constraints.

V has a user-defined data type.

(6) op|(V1, V2, V ) – placeholder for aggregate operator that tells how to compute the

the cost (V ) of a parallel composition of subworkflows from the costs (V1, V2)

of those subworkflows. Used in the definition of cost constraints. V, V1, and V2 must

the same user-defined data type.

(7) op⊗(V1, V2, V ) – similar to op|, but used for serial compositions of subworkflows.

Figure 5.6: Placeholders for problem-specific predicates and resource assignments
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Let the placeholder resource asg(T,Agents) be of the form rsrc(T,A), where T represents

task and A the agent

cost of(rsrc(T,A), [V,U ]) : − duration(T,A, V ), price(T,A,U)

value constraint([V,U ]) : − V < c1, U < c2

set constraint|(G1, G2) : − disjoint(G1, G2)

set constraint⊗(G1, G2) : − true

task constraint(G) : − true

op|([V1, U1], [V2, U2], [V,U ]) : − V is max(V1, V2), U is U1 + U2

op⊗([V1, U1], [V2, U2], [V,U ]) : − V is V1 + V2, U is U1 + U2

Figure 5.7: Placeholders for house construction example

Rules 1 to 3 in Figure 5.5 define ctrl constraint — the control constraint for |-

branches, ⊗-branches, and tasks of the workflow formula, respectively. Rules 4 to 7

define cost constraint — the cost constraint. Again, this is done separately for each

branch type of the workflow formula.

In our prototype, the user can select previous constraint definitions or to create a

new constraint definition. For new definitions, the system opens a template with only

rules f Figure 5.5 and some guidelines about user-defined rules, which are going to be

defined by the user.

Example 5.18 The placeholder definitions for the constraints of Example 1.1 are

shown in Figure 5.7.

5.3.2 CTR Interpreter

The transformation module produces a CTR goal that includes constraint predicates.

In our prototype, we used CTR interpreter, which is the realization of CTR proof
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theory in [13].

In Section 5.1, it was stated that the CTR goals are satisfied along m-paths. How-

ever, the inference system produces a solution for a complete system that does not

interleave with other executions, therefore it produces a path satisfying the given CTR

goal. The following example presents an informal overview of the CTR inference mech-

anism.

Example 5.19 Suppose CTR goal is ((a.ins⊗ b.ins) | (c.ins⊗ d.ins))⊗ e.ins, where

each predicate inserts an atom into the database (e.g., a.ins inserts propositional atom

a.) Figure 5.8 presents one of the several possible executions for this transaction.

The inference system manipulates expressions of the form P,D − −− ` ϕ, called se-

quents. Each sequent in the table of Figure 5.8 is derived from the one below by

an inference rule, reaching an axiom at the bottom. When carried out top-down,

the deduction corresponds to execution sequence (i.e., a schedule) for the predicates

of the given transaction. The execution sequence for the deduction in Figure 5.8 is

c.ins, a.ins, b.ins, d.ins, e.ins.

Sequent

P, {} − −− ` ((a.ins⊗ b.ins) | (c.ins⊗ d.ins))⊗ e.ins

P, {c} − −− ` ((a.ins⊗ b.ins) | (d.ins))⊗ e.ins

P, {c, a} − −− ` (b.ins | d.ins)⊗ e.ins

P, {c, a, b} − −− ` d.ins⊗ e.ins

P, {c, a, b, d} − −− ` e.ins

P, {c, a, b, d, e} − −− ` {}

Figure 5.8: CTR deduction for Example 5.19
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cost V3 is V1 + V2, U3 is U1 + U2, V6 is max(V4, V5), U6 is U4 + U5,
constraints V is max(V3, V6), U is U3 + U6, V < c1, U < c2
ctrl const. Y 6= Z, W 6= Y, W 6= Z,X 6= Y, X 6= Z

Figure 5.9: Constraints computed for house construction workflow

CTR interpreter produces an execution sequence for the tasks of the given workflow,

as explained in Example 5.19. In Section 5.1.2.2, it is explained that while m-paths are

adequate to model serial and concurrent execution in CTR, they are not sufficient to

model resource requirements necessary for those executions to succeed. In addition to

the path, CTR interpreter instantiates the resource allocation term. Since it captures

the structure of the partial schedule and it carries the resource assignment information,

this term is the one that is actually used for constraint solving process. On the other

hand, path gives us a valid serialization of the execution.

Constraint predicates cost constraint and ctrl constraint of the transformed goal

include constraints that are going to be solved by a constraint solver. CTR interpreter

does not have the constraint solving capability by itself. Therefore, it finds a schedule

for the constraint-free part of the goal and sends the constraints to a solver. However, in

order to facilitate the constraint solving process, instead of sending the cost constraint

and ctrl constraint predicates to the solver, it collects and stores the atomic constraints

in the definition of constraint system. Then, sends this set of atomic constraints to the

solver. Figure 5.9 shows the set of atomic constraints for house construction workflow.

5.3.3 Constraint Solver

The area that deals with defining and solving constraint problems is constraint pro-

gramming and it provides framework for both defining and solving problems and it is
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effectively used in many areas such as production planning or scheduling [10, 16, 81].

Constraint programming uses algorithms from mathematics, artificial intelligence and

operations research and provides constraint solvers that implement these algorithms.

Constraint Logic Programming (CLP) [50, 40] is a branch of constraint programming

in which logic is used as the declarative modeling language for the constraints. CLP

supports several constraint domains and their corresponding solvers are able to model

different applications and problems.

In our system, in order to solve the constraint set, which is accumulated by CTR

interpreter module, a constraint solver is used. The solution to the constraint set is

a valid resource assignment for the schedule obtained. Since our system provides a

logic-based framework for the representation of workflow and constraints, a CLP solver

is the natural choice as the constraint solver. Our implementation uses the constraint

solver provided by XSB,3 since the CTR interpreter is realized as an XSB application.

However, any off-the-shelf constraint solver that is compatible with the defined con-

straints can be incorporated into the system. The set of candidate environments s very

rich. We can list some of them as SICStus Prolog [71], CHIP [22], clp-fd [23], Oz [69].

5.3.4 Correctness of the Scheduler

In the scheduling mechanism we have explained, the transformer module takes any

CCTR goal φ and returns a new conjunction-free CTR goal φ′. Then the scheduler

module finds an execution D0...Dn, P,D0...Dn |= φ′ and a resource assignment ξ on φ′

such that P,D0...Dn, ξ |= φ. Mechanisms that satisfy this property are called correct

3 XSB is a high-performance deductive database and Prolog system available at
http://xsb.sourceforge.net/
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scheduler.

Before the correctness of the scheduler presented, the following lemma tells about

the isomorphism of constraint system and constraint template.

Lemma 5.20 The constraint template in Figure 5.5 defines a wf-constraint universe

in the sense of Section 5.2, provided that the actual predicates that replace the boldface

placeholders have the appropriate associativity and commutativity properties stated in

that section.

Proof. It is given in Appendix A.1.

Let ζ be a constraint system andD be a constraint domain, which can be represented

using the template rules in Figure 5.5 (plus the additional definitions for the boldface

placeholders). Then, the transformation Θ in Figure 5.3 and the system explained

constitute a correct scheduler. This is formally given in the following theorem.

Theorem 5.21 The presented system is a correct scheduler, i.e., let P be a transaction

base, D0, ..., Dn be a sequence of states, ξ be a resource assignment, φ be a CCTR goal

and φ′ be CTR goal. Then, P,D0...Dn, ξ |= φ iff

Θ(φ) = φ′

P,D0...Dn |= φ′ and

ξ is obtained from φ′

Proof. It is given in Appendix A.2.

In addition to the correctness of the scheduler, we find it worthwhile to state another

property of the scheduler.
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Theorem 5.22 For non-disjunctive workflow goals, this scheduler finds the solution

without backtracking on the execution order, i.e., there is a resource assignment for

all possible execution orders (paths) iff there is a solution for one particular execution

order.

Proof. The different valid executions order for non-disjunctive goals differ only in the

order of parallel tasks. The set of scheduled tasks is always the same. If a resource

r is allocated for some task along one valid execution order, when we allocate the

same resource for the same task for another valid execution, since the structure of the

goal does not change, the constraint definitions will produce the same result as in the

previous execution order and thus is still a valid resource allocation schema. 2
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CHAPTER 6

Discussions and Applications

In this chapter, we present a discussion on the comparison of the approaches presented

and some of the possible applications.

6.1 Comparison of the Approaches

The common point of the two presented approaches is the use of constraint logic pro-

gramming. Constraint logic programming has been successfully used for several re-

source allocation problems. Therefore, we chose to adopt it for the problem of schedul-

ing under resource allocation constraints. However, there are several basic differences

about the way CLP is used in the proposed approaches and about the structure and

the main aim of the approaches.

The first approach demonstrates the applicability of constraint logic programming

for workflow scheduling problems. The proposed architecture can be used together

with any constraint solver. In addition to this, the architecture proposes the use of a

graphical user interface for workflow modeling. Therefore, the system facilitates the
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modeling step for the end-user.

In the first approach, constraint logic programming is the core of almost the whole

architecture. However, the goal of the second approach is the development of a for-

malism that can define the semantics of resource allocation constraints, validation of

schedules under these constraints and finding such schedules. The formalism involves

constraint logic programming only for determining the correct resource allocation. Al-

though this system can be extended with a graphical interface to facilitate workflow

modeling step, the modeling of resource allocation constraints may need little experi-

ence on the system.

The approaches have some differences in the workflow structures as well. The

iteration and execution of at least one of the alternative blocks can be modeled in the

first approach. Although, currently not supported, CCTR can be extended to model

these features.

6.2 Applications

Although our main target domain is workflows, we have successfully applied our frame-

works to some other domains as well.

6.2.1 Workflows

We have already presented the modeling and scheduling of the house workflow of Ex-

ample 1.1 by using both of the approaches. In this section, we present three more

examples that demonstrate workflow scheduling under resource allocation constraints

for different applications. The definitions for the examples are given in Appendix B.
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6.2.1.1 Travel Agency Workflow

The resources of the workflow applications can vary greatly. In this example, we model

another common workflow example; travel arrangement to a given destination. This

workflow is composed of serial composition of a flight booking task, a hotel reservation

task and a car rental task, in the given order. The resource allocation constraints

are total cost constraints cost < $1000, duration < 7days and quality > 2 (ranked

over 5). Therefore, the scheduler must check the duration of the flight plans and

comfort and quality ratings for the hotels and transportation, in order to develop a valid

travel schedule. Although the workflow and resource allocation constraint specifications

are quite similar to that of house construction example, this time the nature of the

resources are different. In this workflow, airways, hotels and car rental companies are

the resources for flight booking, hotel reservation and car rental tasks, respectively. As

a result of this resource modeling, scheduler produces a resource assignment showing

which airway, hotel and car rental company to choose for the travel. The definitions

for this example in both of the frameworks are given in Appendix B.

6.2.1.2 Telecommunication Service Providing Workflow

The resource allocation constraints may be affective on the selection of the tasks in

addition to selection of the resources. This is possible only in workflow goals includ-

ing disjunctive subgoals. In this example, we have a telecommunication company that

provides line installation service. Line installation process is composed of several sub-

process, each subprocess can be handled by one of the several alternative tasks. The

control flow graph for this workflow is given in Figure 6.1.
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Figure 6.1: Telecommunications workflow control flow graph

The resource allocation constraints on this workflow is a given limit on the total

duration and the requirement that the parallel tasks must be handled by different

resources. Due to resource allocation constraints, some tasks may be eliminated by the

scheduler. For example, if task a1 can be done only by resource r1 and similarly, r1

is the only resource that can do task c1, due to the control constraint it is impossible

to schedule both a1 and c1 in the same execution sequence. The details about the

specification and processing of the constraints are given in Appendix B.

6.2.1.3 Conference Planning

In a conference planning task, the conference organization committee decides on place-

ment of the sessions to the proper time slots. Sometimes, this task can be unexpectedly

complex due to the constraints resulting from the situations such as the attendance of

the same presenter to several sessions or the content dependence among the sessions.

In this example, we model a workshop with four time slots having three parallel

sessions at each time slot, as a workflow having four sequential subworkflows, each of

which has three concurrent tasks. In this example, sessions are the resources to be

allocated for the tasks. Therefore, the conference workflow is represented as given in
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Figure 6.2: Conference planning workflow control flow graph

Figure 6.2. Each resource is allocated at least and at most one task and there are

additional constraints such as:

session 4 must take place before session 11.

session 1 must not take place at the same time as session 2.

Since sessions are considered to be the resources for the workflow, the above con-

straints restrict the allocation ordering for the resources. In this workflow, we have

only control constraints. Therefore, cost constraint definitions are omitted. In addition

to the resource disjointness constraint, two new types of constraints, resource r1 must

be allocated before r2 and resource r1 can not work in parallel with resource r2, appear

in the control constraint definitions. The details of the constraint definitions are given

in Appendix B.

6.2.2 Composite Web Services

Internet has grown to be more than a media containing a huge amount of information.

In addition to information, some services such as reservation, translation, buying/selling

etc. are also provided through this media. Such services that can be invoked through

113



get_wish_list

reserve

buy_present

Figure 6.3: Composite web service control flow graph

Internet is generally called as web services [28]. Currently, web services are based on

human interaction. However, the goal is automatic invocation of these services, and

building complex services that are actually the composition of individual services. For

this reason, there is a great effort on defining machine-readable representation of the

services, semantic issues of these representations in order to find and invoke web services

automatically and to build composite web services [6, 61, 21, 58, 27, 60, 64, 33].

Consider the following request from an Internet user: “For our wedding anniversary,

I want to buy a present for my spouse and make a dinner reservation”. In order to get

the “wish list” of the spouse, certain sites are to be visited, then an item is picked and

a reservation is made. However, the user may want to have certain cost constraints

such as “I don’t want to spend more than a certain amount of money but I want to

have dinner at a restaurant with quality above average”. Ordinarily, the user has to

visit each of the sites and make a decision on the present and restaurant so that the

constraints are satisfied. Due to the nature of the constraint, it is hard to eliminate the

possibilities directly, it is necessary to check the overall cost. The mechanism proposed

to build composite web services do not provide a solution for such constraints.

The presented frameworks may be used as a tool to build a system that can select

web services and model a composite web service under given resource allocation con-
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straints. The immediate dependencies for this composite service can be represented as

in Figure 6.3. In a composite service building system, the web services are the resources

that will fulfill the user’s demand and our frameworks can find the proper resource as-

signments for workflow tasks. Among the set of available web services, the individual

web services that will take part in the composite service are chosen so that the com-

posite service satisfies user’s constraints. The details of the definitions are presented in

Appendix B.4.

If such a system is built using the first approach, WSL is used as the composite

service modeling language. In order to search and invoke service, WSL representation

can be translated into XML later on. In the second approach, CCTR may serve as the

modeling language. As stated above, web services are the resources of the system. In

workflow examples, the set of candidate resources were pre-defined and limited. For

composite services, in order to build a set of candidate web services, a search module

either searches Internet for available and capable services (e.g., restaurants in the given

city), or looks for such services from a directory like UDDI. The candidate web service

set can be further pruned by using some of the resource allocation constraints (e.g.,

search for restaurants in the city with quality > 3). Our framework chooses the proper

web services and the selected services constitute the composite service that meets user’s

constraints.

6.2.3 Workflows in Non-cooperative Environments

In most of the workflow modeling and scheduling research, it is assumed that the

workflow is composed of purely cooperative tasks. However, sometimes, external tasks
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Figure 6.4: Control flow graph for workflow with non-cooperative task

that the system has little or no control over, or the tasks that works adversely take

part in the workflow. In order to find assignment satisfying the resource allocation

constraints, the scheduler must take the constraints and assignments of external tasks

into consideration. Workflows operating in open environment could involve in such

cases. One simple scenario is as follows: A company has several departments and all

departments share the printers in the building. Each department has its own workflow,

however departments are in constant interaction. The production department needs the

number of sales on certain products and within its workflow, it calls services from sales

department (possibly from the other departments as well for other tasks). However,

the requested external service has the constraint to use printers with highest printing

quality but that is slightly slower than the others. On the other hand, the production

workflow has total duration constraint.

Assume that the tasks of the production workflow for a given item are “getting

the number of products in the inventory” (t1), “getting the latest sale numbers” (w2),

“downloading production schema for the item” (t3), “producing parts” (t4), “combining

them” (t5) and sending to inventory (t6). The control flow graph for this workflow is
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shown in Figure 6.4. Note that the external service “getting the latest sale numbers”

(w2) may be a complex service including several tasks. Therefore, this subflow must

be considered together with it own resource allocation constraints. We can represent

this situation as a CCTR formula as follows:

w = (t1 | w2 | t3)⊗ t4 ⊗ t5 ⊗ t6.

Including department’s constraint, the workflow goal becomes

w′ = w ∧ c = ((t1 | w2 | t3)⊗ t4 ⊗ t5 ⊗ t6) ∧ c.

However, we have to consider external service’s constraints and assignments. Therefore,

external service w2 must be extended with sub-constraints, to w′2 = w2∧ c2. Therefore,

the overall workflow becomes

w′ = w ∧ c = ((t1 | w′2 | t3)⊗ t4 ⊗ t5 ⊗ t6) ∧ c.

Although we have shown the CCTR specification to present the workflow structure

more clearly, it is also possible to model and solve this workflow by using the first

approach. This picture can be extended with different other resource allocation con-

straints for the external service and with other tasks having partially or fully adverse

to the constraints of the overall workflow.
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CHAPTER 7

Conclusion

In this thesis, resource allocation constraints are defined as a new scheduling criteria

for workflows. This idea has been motivated by the necessity of resource distribution

control for tasks according to the task execution ordering and lack of mechanism for such

controls. Current approaches for scheduling tasks in a workflow provide no mechanism

to reason about the relative costs of schedules. Scheduling under resource allocation

constraints provide decisions on the assignment of resources to tasks, as well as correct

execution sequence of tasks. Hence, more efficient workflow schedules can be obtained

for business environments. To accomplish this, we have studied on two approaches for

workflow scheduling under resource allocation constraints.

The first approach develops an architecture to model and schedule workflows with

resource allocation constraints as well as with the traditional temporal/causality con-

straints. We use constraint programming to schedule workflows with resource allocation

constraints. Workflow specification together with resource information and constraints,

including both resource allocation and temporal/causality constraints, are translated to
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finite-domain constraints. For the implementation, constraint programming language

Oz is used. Oz is a multi-paradigm programming language that has logic programming

and concurrent programming features as well as constraint specification and solving

capabilities.

The main contribution of this approach is the proposed architecture which provides

a specification language that can model resource information and resource allocation

constraints, and a scheduler model that incorporates a constraint solver in order to find

proper resource assignments. Contrary to the classical constraint programming prob-

lems that seeks the optimal solution, our approach finds a feasible solution satisfying

the constraints.

In the second approach, a logical framework based on Concurrent Constraint Trans-

action Logic (CCTR), for scheduling workflows under resource allocation constraints

has been presented. We developed CCTR language, which integrates Concurrent Trans-

action Logic [13] with Constraint Logic Programming [49, 50], in order to provide a

basis that can express the syntax and semantics for both workflow and the resource al-

location constraint. We developed our framework on the basis of this formal modeling.

In the first step of the framework, by using the transformation algorithm, initial work-

flow specification and a set of resource allocation constraints represented in CCTR are

transformed into a new workflow in CTR, such that every execution of that workflow is

guaranteed to satisfy the constraints. In the next step, CTR’s inference engine is used

to determine the schedule of the initial workflow. In the final step, constraints are also

extracted and solved by the off-the-shelf constraint solver to determine the resource

assignments for the tasks. A prototype of the system was developed by using the CTR
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interpreter available at www.cs.toronto.edu/∼bonner/ctr/index.html. We present

correctness of this system. In addition to the correctness, we state one more property

of this scheduler on efficiency issue. For non-disjunctive goals, the scheduler does not

need to backtrack on the partial schedule.

As a future work, both of the frameworks can be extended with special-purpose

constraint solvers that are optimized for our frameworks. In addition, scheduling un-

der resource allocation constraints for dynamic workflows and scheduling concurrent

workflow instances under resource allocation constraints are also interesting topics for

future work. In this work, we have not considered soft resource allocation constraints

and preferences on resource allocation constraints. Workflow scheduling under such

constraints and preferences can be another future work subject.
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APPENDIX A

Proofs

A.1 Proof of Lemma 5.20

The parallelism between the wf-constraint universe definitions and template rules is

straightforward. For this reason, we just present these definitions as a table that shows

wf-constraint universe definition and corresponding template rule on the same row.

This table is given in Figure A.2. The signatures of the user-defined parts are presented

similarly, as well, in Figure A.1. Note that the parameter types match as well as the

semantics of the definitions. Since it is boolean by default, return type is not stated for

template placeholders. Another point to be noted is that goal corresponds to partial

schedule × assignment and 2rsrc. This is due to the fact that functions with the domain

partial schedule × assignment are defined in terms of other functions with the domain

(partial schedule =⇒ assignment) =⇒ 2rsrc.

The goal - partial schedule × assignment correspondence is due to the following.

Transformation Θ adds the predicate resource asg(A,Agents) for each atomic goal, in
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order to model the resource allocation information corresponding to the task. Therefore,

an atomic goal a is represented with the transformed goal a⊗resource asg(a,Agenta).

Agenta is created as a different variable for each atomic goal. In cost subsystem of Wf-

constraint universe, cost of resource assignment for an atomic goal is found with the

function cost of(ω, ξ) = costof(r), r ∈ ξ(ω)). The corresponding rule in constraint tem-

plate is cost(A ⊗ resource asg(A,Agent), V ) = costof(resource asg(A,Agents), V ).

The term resource asg(A,Agents) corresponds to r ∈ ξ(ω)), where ω is a partial

schedule that satisfies a.

Similarly, in ctrl subsystem of Wf-constraint universe, in order to specify the

constraints on resource assignment of a single task, the user defines the function

task constraint(ω, ξ), where ω is an m-path satisfying the task under consideration.

The constraint is to be defined on resource r ∈ ξ(ω)) The corresponding placeholder

in the constraint template is task constraint(A ⊗ resource asg(A,Agent). The user

specifies the constraint on the variable Agent, which denotes the resource to be allo-

Constraint System Predicates Template Rules
1 cost constraint(ω, ξ) ≡ cost constraint(G) : −

value constraint(cost(ω, ξ)) cost(G,V ),value constraint(V )
2 cost(ω1 •p ω2, ξ) ≡ cost(G1 ⊗G2, V ) : −

op⊗(cost(ω1, ξ), cost(ω2, ξ)) cost(G1, V1), cost(G2, V2),op⊗(V1, V2, V )
3 cost(ω1 ‖p ω2, ξ) ≡ cost(G1 | G2, V ) : −

op|(cost(ω1, ξ), cost(ω2, ξ)) cost(G1, V1), cost(G2, V2),op|(V1, V2, V )
4 ctrl constraint(ω1 ‖p ω2, ξ) ≡ ctrl constraint(G1 | G2)) : −

set constraint|(ξ(ω1), ξ(ω2)) ∧ set constraint|(G1, G2),
ctrl constraint(ω1, ξ) ∧ ctrl constraint(G1),
ctrl constraint(ω2, ξ) ctrl constraint(G2)

5 ctrl constraint(ω1 •p ω2, ξ) ≡ ctrl constraint(G1 ⊗G2) : −
set constraint⊗(ξ(ω1), ξ(ω2)) ∧ set constraint⊗(G1, G2),

ctrl constraint(ω1, ξ) ∧ ctrl constraint(G1),
ctrl constraint(ω2, ξ) ctrl constraint(G2)

Figure A.1: Constraint universe predicates vs. template rules
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Constraint Uni. Predicates/Functions Template Placeholders
1 cost constraint : cost constraint(G), G : goal

partial schedule ×asg.→ boolean

2 value constraint : scalar → boolean value constraint(V ), V : scalar
3 op⊗ : scalar × scalar → scalar op⊗(V1, V2, V ), V1, V2, V : scalar
4 op| : scalar × scalar → scalar op|(V1, V2, V ), V1, V2, V : scalar
5 cost of : rsrc→ scalar cost of(G,V ), G : goal, V : scalar
6 ctrl constraint : ctrl constraint(G), G : goal

partial schedule ×asg.→ boolean

7 task constraint : task constraint(G), G : atomic goal
simple p.sch. ×asg.→ boolean

8 set constraint⊗ : set constraint⊗(G1, G2), G1, G2 : goal
2rsrc × 2rsrc → boolean

9 set constraint| : set constraint|(G1, G2), G1, G2 : goal
2rsrc × 2rsrc → boolean

Figure A.2: Signatures for predicates and functions

cated for task A. The same approach holds for set constraint⊗ and set constraint|,

as well. 2

A.2 Proof of Theorem 5.21

The correctness of the expression P,D0...Dn, ξ |= φ iff depends on three items:

• Θ(φ) = φ′

• P,D0...Dn |= φ′ and

• ξ is obtained from φ′

The first module of the system transforms any CCTR goal φ into a CTR goal φ′ by

transformation Θ.

The execution ordering D0...D1 is found by CTR interpreter for φ′.

As explained in Section A.1, transformation Θ introduces the resource assignment

information for tasks into φ′ in the form of predicates resource asg(A,Agents). The
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variable Agents corresponds to resource r ∈ ξ(ω), where ω satisfies A. Therefore, if ω

is a partial schedule satisfying a non-atomic goal φ and ξ(ω) is the resource allocation

for the goal φ, then set of predicates resource asg(A,Agents) constitute the resource

allocation. According to Lemma 5.20, constraint template and placeholder definitions

are equivalent to Wf-Constraint Universe definitions, then the solution provided to the

constraint system that grounds the predicates resource asg(A,Agents) is the solution

to Wf-Constraint Universe definitions, which is ξ for φ.

Having obtained the execution order D0...Dn and resource assignment ξ, we have

to show that P,D0...Dn, ξ |= φ is true. This expression is true if for every model M

of P , M,ω, ξ |= φ and 〈D0, ..., Dn〉 ∈ mpaths(ω). Therefore, we show that there exists

such a ω through induction, as follows:

Base Case.

• if φ = a, where a ∈ P, then φ′ = a ⊗ resource asg(a,X). If the path for φ′

is found as π = 〈D0D1〉, then let ω be 〈D0D1〉. Since φ does not have any

constraint predicate M,ω, ξ |= φ under any ξ and π ∈ mpaths(ω). Therefore,

P,D0D1, ξ |= φ.

• if φ = a ⊗ b, where a, b ∈ P, then φ′ = (a ⊗ resource asg(a,X)) ⊗ (b ⊗

resource asg(b, Y )). If the path for φ′ is found as π = 〈D0D1D2〉, then let ω be

〈D0D1〉 •p 〈D1D2〉. Since φ does not have any constraint predicate M,ω, ξ |= φ

under any ξ and π ∈ mpaths(ω). Therefore, P,D0D1, ξ |= φ.

• if φ = a | b, where a, b ∈ P, then φ′ = (a ⊗ resource asg(a,X)) | (b ⊗

resource asg(b, Y )). If the path for φ′ is found as π = 〈D0D1D2〉, then let

ω be 〈D0D1〉 ‖p 〈D1D2〉 or 〈D1D2〉 ‖p 〈D0D1〉. Since φ does not have any
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constraint predicate M,ω, ξ |= φ under any ξ and π ∈ mpaths(ω). Therefore,

P,D0D1, ξ |= φ.

Induction.

• Let φ is some CCTR goal, φ′ the transformed goal, ξ be the resource assignment

andD0...Dn be the path satisfying φ′. Then we assume that ω is a partial schedule

such that M,ω, ξ |= φ and 〈D0, ..., Dn〉 ∈ mpaths(ω).

Generalization.

• if φ = G1 ⊗ G2, where G1 and G2 are CCTR goals, then φ′ = G′1 ⊗ G′2, where

G′1 and G′2 transformed goals corresponding to G1 and G2, respectively. If the

path for φ′ found as π = 〈D0...Dm−1Dm...Dn〉 and ξ is the resource assignment,

then let ω be ω1 •p ω2, where M,ω1, ξ |= G′1 〈D0...Dm−1〉 ∈ mpaths(ω1) and

M,ω2, ξ |= G′2, langleDm...Dn〉 ∈ mpaths(ω2). Then M,ω, ξ |= φ and π ∈

mpaths(ω). Therefore, P,D0...Dn, ξ |= φ.

• if φ = G1 | G2, where G1 and G2 are CCTR goals, then φ′ = G′1 | G′2, where

G′1 and G′2 transformed goals corresponding to G1 and G2, respectively. If the

path for φ′ found as π = 〈D0...Dn〉 and ξ is the resource assignment, then let

π1 and π2 be two order preserving partitions of 〈D0...Dn〉, ω be ω1 •p ω2, where

M,ω1, ξ |= G′1 π1〉 ∈ mpaths(ω1) and M,ω2, ξ |= G′2, π2〉 ∈ mpaths(ω2). Then

M,ω, ξ |= φ and π ∈ mpaths(ω). Therefore, P,D0...Dn, ξ |= φ.

• if φ = G1 ∨ G2, where G1 and G2 are CCTR goals, then φ′ = G′1 ∨ G′2, where

G′1 and G′2 transformed goals corresponding to G1 and G2, respectively. If the

path for φ′ found as π = 〈D0...Dn〉 and ξ is the resource assignment, then let
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ω be a partial schedule so that M,ω, ξ |= G1, π ∈ mpaths(ω) or M,ω, ξ |= G2,

π ∈ mpaths(ω). Therefore, P,D0...Dn, ξ |= φ.

• if φ = G ∧ c, where G is a CCTR goal and c ∈ C, then φ′ = G′ ⊗ (cD)(G′),

where G′ is the transformed goal corresponding to G. If the path for φ′ found as

π = 〈D0...Dn〉 and ξ is the resource assignment, let ω be a partial schedule so that

M,ω, ξ |= φ and π ∈ mpaths(ω). Since ξ is the solution to constraint definitions

which is equivalent to D, then D |= cD(ω, ξ). Therefore, P,D0...Dn, ξ |= φ.

[13] shows that CTR proof theory is complete for concurrent serial goals. Except

for constraint predicates (which are solved by the constraint solver, not by CTR proof

theory), the goals we are dealing with are concurrent serial goals. Therefore, the first

part of the scheduler is complete. In our system, we use an off-the-shelf constraint

solvers. Therefore, completeness of the system depends on the completeness of con-

straint solver incorporated into the system. However, if finite-domain solvers are used,

since the domain is limited, the solver is complete [39, 50]. Any existing solution can

be found, through the search of the entire domain, in the worst case scenario. 2
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APPENDIX B

Definitions for Applications

B.1 Travel Agency Workflow

WSL definition for travel agency workflow is SEQ{b, h, c}. The same workflow is

translated into the constraint language as follows:

b.end ≤ h.start, h.end ≤ c.start

For this workflow, cost constraints are defined on three dimensions of the total

resource allocation cost. However, no control constraints are specified. The cost con-

straints are represented as:

b.cost+ h.cost+ c.cost < 1000

b.dur + h.dur + c.dur < 7

b.qual + h.qual + c.qual > 2

The constraint definitions in the constraint language has the same structure as given

above.

The same workflow is specified in CCTR as b ⊗ h ⊗ c. Constraint definitions for
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resource asg := rsrc(T,X)
cost of(rsrc(T,X), [V1, V2, V3]) : −duration(T,X, V1), cost(T,X, V2), quality(T,X, V3)
value constraint([V1, V2, V3]) : −V1 < 1000, V2 < 7, V3 > 2
numericfunc|([V1, V

′
1 , V

′′
1 ], [V2, V

′
2 , V

′′
2 ], [V, V ′, V ′′]) : −
V is max(V1, V2), V ′ is V ′

1 + V ′
2 , V ′′ is V ′′

1 + V ′′
2

numericfunc⊗([V1, V
′
1 , V

′′
1 ], [V2, V

′
2 , V

′′
2 ], [V, V ′, V ′′]) : −
V is V1 + V2, V

′ is V ′
1 + V ′

2 , V ′′ is V ′′
1 + V ′′

2

Figure B.1: Constraint definitions for travel planning workflow

travel agency workflow is given in Figure B.1. Recall that there are only cost conditions

on this workflow. Together with the constraint predicate the goal is represented as

(b⊗ h⊗ c) ∧ cost constraint

The initial goal G = (b⊗ h⊗ c) ∧ cost constraint is transformed into the following

goal:

G′ : W ⊗ cost constraint(W ), where
W : ((b⊗ rsrc(b,X)⊗ (h⊗ rsrc(h, Y ))) ⊗ (c⊗ rsrc(c,W )))

The resulting constraint set is as follows:

{duration(b,X,Dur1), cost(b,X,Cost1), qual(b,X,Qual1),

duration(h, Y,Dur2), cost(h, Y, Cost2), qual(h, Y,Qual2),

Dur12 is Dur1 +Dur2, Cost12 is Cost1 + Cost2, Qual12 is Qual1 +Qual2,

duration(c, Z,Dur3), cost(c, Z,Cost3), qual(c, Z,Qual3),

Dur123 is Dur12 +Dur3, Cost123 is Cost12 + Cost3, Qual123 is Qual12 +Qual3}

B.2 Telecommunication Service Providing Workflow

The WSL representation of this workflow is

AND{SEQ{OR{a1, a2}, OR{b1, b2, b3}}, OR{c1, c2}}.

The constraint language equivalence of this representation is given in Figure B.2.
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(a block.start ≤ a1.start ∧ a block.end ≥ a1.end)∨
(a block.start ≤ a.start ∧ a2 block.end ≥ a2.end)

(b block.start ≤ b1.start ∧ b block.end ≥ b1.end) ∨
(b block.start ≤ b.start ∧ b2 block.end ≥ b2.end) ∨
(b block.start ≤ b.start ∧ b3 block.end ≥ b3.end)

(c block.start ≤ c1.start ∧ c block.end ≥ c1.end) ∨
(a block.start ≤ c.start ∧ c2 block.end ≥ c2.end)

a block.end ≤ b block.start
wf.start ≤ a block.start, wf.end ≥ a block.end

wf.start ≤ c block.start, wf.end ≥ c block.end

Figure B.2: Telecommunications workflow in constraint language

a block 6= No resource∧
(a block.resource = a1.resource ∨ a block.resource = a2.resource)

b block 6= No resource∧
(b block.resource = b1.resource ∨ b block.resource = b2.resource∨
b block.resource = b3.resource)

c block 6= No resource∧
(c block.resource = c1.resource ∨ c block.resource = c2.resource)

(a block.end > c block.start ∧ c block.end > a block.start) →
a block.resource 6= c block.resource.

(b block.end > c block.start ∧ c block.end > b block.start) →
a block.resource 6= c block.resource.

Figure B.3: Telecommunications workflow constraints in constraint language

The workflow has a single cost constraint and a single control constraint. The

constraint on total duration is specified as follows:

a1.dur + a2.dur + b1.dur + b2.dur + b3.dur + c1.dur + c2.dur ≤ limit.

The control constraint requires the disjointness of the resource allocation for parallel

tasks. Among the several ways to express this constraint, one possible representation

is given in Figure B.3.

CCTR representation of this workflow is ((a1 ∨ a2)⊗ (b1 ∨ b2 ∨ b3)) | (c1 ∨ c2) The

constraint template definitions are given in Figure B.4. Note that, in this example,

cost has a single dimension. Therefore, it is represented as a single variable instead of

a list. Control constraint contains only resource disjointness restriction. Definition of

disjoint is given in Figure B.5.
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resource asg := rsrc(T,X)
cost of(rsrc(T,X), V ) : −cost(T,X, V )
value constraint(V ) : −V < constant
numericfunc|(V1, V2, V ) : −V is V1 + V2

numericfunc⊗(V1V2, V ) : −V is V1 + V2

set constraint|(G1, G2) : −disjoint(G1, G2)
set constraint⊗(G1, G2) : −true
task constraint(T) : −true

Figure B.4: Constraint definitions for telecommunications workflow

disjoint(T1 ⊗ rsrc(T1, X1, V1), T2 ⊗ rsrc(T2, X2, V2)) : −X1 6= X2.
disjoint((G1 ⊗G2), T ⊗ rsrc(T,X, V )) : −

disjoint(G1, T ⊗ rsrc(T,X, V )), disjoint(G2, T ⊗ rsrc(T,X, V )).
disjoint((G1 | G2), T ⊗ rsrc(T,X, V )) : −

disjoint(G1, T ⊗ rsrc(T,X, V )), disjoint(G2, T ⊗ rsrc(T,X, V )).
disjoint(T ⊗ rsrc(T,X, V ), (G1 ⊗G2)) : −

disjoint(T ⊗ rsrc(T,X, V ), G1), disjoint(T ⊗ rsrc(T,X, V ), G2).
disjoint(T ⊗ rsrc(T,X, V ), (G1 | G2)) : −

disjoint(T ⊗ rsrc(T,X, V ), G1), disjoint(T ⊗ rsrc(T,X, V ), G2).
disjoint((G1 ⊗G2), (G3 ⊗G4)) : −

disjoint(G1, G3), disjoint(G1, G4), disjoint(G2, G3), disjoint(G2, G4).
disjoint((G1 ⊗G2), (G3 | G4)) : −

disjoint(G1, G3), disjoint(G1, G4), disjoint(G2, G3), disjoint(G2, G4).
disjoint((G1 | G2), (G3 ⊗G4)) : −

disjoint(G1, G3), disjoint(G1, G4), disjoint(G2, G3), disjoint(G2, G4).
disjoint((G1 | G2), (G3 | G4)) : −

disjoint(G1, G3), disjoint(G1, G4), disjoint(G2, G3), disjoint(G2, G4).

Figure B.5: Definition of disjoint constraint

The initial goal G = (((a1 ∨ a2) ⊗ (b1 ∨ b2 ∨ b3)) | (c1 ∨ c2)) ∧ cost constraint ∧

ctrl constraint is transformed into the following goal:

G′ : W ⊗ cost constraint(W ) ⊗ ctrl constraint(W ), where
W : ((((a1 ⊗ rsrc(a1, X)) ∨ (a2 ⊗ rsrc(a2, X)))⊗

((b1 ⊗ rsrc(b1, Y )) ∨ (b2 ⊗ rsrc(b2, Y )) ∨ (b3 ⊗ rsrc(b3, Y )))) |
((c1 ⊗ rsrc(c1, Z)) ∨ (c2 ⊗ rsrc(c2, Z))))

In this example, due to disjunctions in the workflow goal, several schedules and their

corresponding constraint sets may be produced. Some of them are listed in Figure B.6.

B.3 Conference Planning

WSL representation of this workflow is
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schedule constraint set
a1, b1, c1 {cost(a1, X,C1), cost(b1, Y, C2), V1 is C1 + C2, cost(c1,W,C3),

V is V1 + C3, V < c,X 6= Z, Y 6= Z}
a2, b2, c1 {cost(a2, X,C1), cost(b2, Y, C2), V1 is C1 + C2, cost(c1,W,C3),

V is V1 + C3, V < c,X 6= Z, Y 6= Z}
a2, b3, c2 {cost(a2, X,C1), cost(b3, Y, C2), V1 is C1 + C2, cost(c2,W,C3),

V is V1 + C3, V < c,X 6= Z, Y 6= Z}

Figure B.6: Example sch. and const. sets for telecom. workflow

block1.start ≤ a.start ∧ block1.end ≥ a.end
block1.start ≤ b.start ∧ block1.end ≥ b.end)
block1.start ≤ c.start ∧ block1.end ≥ c.end)

block2.start ≤ d.start ∧ block2.end ≥ d.end
block2.start ≤ e.start ∧ block2.end ≥ e.end)
block2.start ≤ f.start ∧ block2.end ≥ f.end)

block3.start ≤ g.start ∧ block3.end ≥ g.end
block3.start ≤ h.start ∧ block3.end ≥ h.end)
block3.start ≤ i.start ∧ block3.end ≥ i.end)

block4.start ≤ j.start ∧ block4.end ≥ j.end
block4.start ≤ k.start ∧ block4.end ≥ k.end)
block4.start ≤ l.start ∧ block4.end ≥ l.end)

block1.end ≤ block2.start block2.end ≤ block3.start block3.end ≤ block4.start

Figure B.7: Conference planning workflow in constraint language

SEQ{AND{a, b, c}, AND{d, e, f}, AND{g, h, i}, AND{j, k, l}}.

The corresponding constraint language definitions are shown in Figure B.7.

There are no cost constraints on this workflow. The control constraints are resource

disjointness, restriction on parallel allocation of some resources and enforcing allocation

of certain resources before certain other resources. The specification of disjointness

constraint is as in the previous example. We can rephrase the constraint session 4

must take place before session 11 as session 4 must not take place after or parallel to

session 11. Assuming that the parallel session all have the same constraint, we may

represent the rephrased constraint for a subworkflow that includes first two time slots
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a.resource = r4 ↔ b.resource 6= r11 d.resource = r4 ↔ e.resource 6= r11
a.resource = r4 ↔ c.resource 6= r11 d.resource = r4 ↔ f.resource 6= r11
b.resource = r4 ↔ c.resource 6= r11 e.resource = r4 ↔ f.resource 6= r11
d.resource = r4 → a.resource 6= r11 e.resource = r4 → a.resource 6= r11
d.resource = r4 → b.resource 6= r11 e.resource = r4 → b.resource 6= r11
d.resource = r4 → c.resource 6= r11 e.resource = r4 → c.resource 6= r11
f.resource = r4 → a.resource 6= r11
f.resource = r4 → b.resource 6= r11
f.resource = r4 → c.resource 6= r11

Figure B.8: Before constraint in constraint language

a.resource = r1 → b.resource 6= r2
a.resource = r1 → c.resource 6= r2
b.resource = r1 → c.resource 6= r2
d.resource = r1 → e.resource 6= r2
d.resource = r1 → f.resource 6= r2
e.resource = r1 → f.resource 6= r2

Figure B.9: Not-parallel constraint in constraint language

resource asg := rsrc(T,X)
set constraint⊗(G1, G2) : −disjoint(G1, G2), before(G1, G2).
set constraint|(G1, G2) : −disjoint(G1, G2), not parallel(G1, G2), before(G1, G2)

Figure B.10: Constraint definitions for conference planning workflow

as given in Figure B.8.

For the same subworkflow, the constraint session 1 can not be held in parallel to

session 2 is specified as shown in Figure B.9.

CCTR representation of this workflow is (a | b | c)⊗(d | e | f)⊗(h | i | f)⊗(j | k | l).

The user defined constraints for conference planning example are given in Figure B.10.

Definition for disjoint is same as in the previous examples. Definitions for before

and not parallel are given in Figure B.11 and Figure B.12, respectively.

B.4 Composite Web Services

WSL representation of this composite service is

AND{SEQ{get wish list, buy present}, reservation}.
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before(T1 ⊗ rsrc(T1, A1, V1), T2 ⊗ rsrc(T2, A2, V2)) : − A2 = 4 → A1 6= 11.
before((G1 ⊗G2), T ⊗ rsrc(T,A, V )) : −

before(G1, T ⊗ rsrc(T,A, V )), before(G2, T ⊗ rsrc(T,A, V ))
before((G1 | G2), T ⊗ rsrc(T,A, V )) : −

before(G1, T ⊗ rsrc(T,A, V )), before(G2, T ⊗ rsrc(T,A, V ))
before(T ⊗ rsrc(T,A, V ), (G1 ⊗G2)) : −

before(T ⊗ rsrc(T,A, V ), T1), before(T ⊗ rsrc(T,A, V ), T2)
before(T ⊗ rsrc(T,A, V ), (G1 | G2)) : −

before(T ⊗ rsrc(T,A, V ), T1), before(T ⊗ rsrc(T,A, V ), T2)
before((G1 ⊗G2), (G3 ⊗G4)) : −

before(G1, G3), before(G1, G4), before(G2, G3), before(G2, G4)
before((G1 ⊗G2), (G3 | G4)) : −

before(G1, G3), before(G1, G4), before(G2, G3), before(G2, G4)
before((G1 | G2), (G3 ⊗G4)) : −

before(G1, G3), before(G1, G4), before(G2, G3), before(G2, G4)
before((G1 | G2), (G3 | G4)) : −

before(G1, G3), before(G1, G4), before(G2, G3), before(G2, G4)

Figure B.11: Definition of before constraint

not parallel(T1 ⊗ rsrc(T1, A1, V1), T2 ⊗ rsrc(T2, A2, V2)) : −
A1 = 1 → A2 6= 2, A2 = 1 → A1 6= 2

not parallel(G1 ⊗G2), T ⊗ rsrc(T,A, V )) : −
not parallel(G1, T ⊗ rsrc(T,A, V )), not parallel(G2, T ⊗ rsrc(T,A, V ))

not parallel(G1 | G2), T ⊗ rsrc(T,A, V )) : −
not parallel(G1, T ⊗ rsrc(T,A, V )), not parallel(G2, T ⊗ rsrc(T,A, V ))

not parallel(T ⊗ rsrc(T,A, V ), (G1 ⊗G2)) : −
not parallel(T ⊗ rsrc(T,A, V ), G1), not parallel(T ⊗ rsrc(T,A, V ), G2)

not parallel(T ⊗ rsrc(T,A, V ), (G1 | G2)) : −
not parallel(T ⊗ rsrc(T,A, V ), G1), not parallel(T ⊗ rsrc(T,A, V ), G2)

not parallel((G1 ⊗G2), (G3 ⊗G4)) : −
not parallel(G1, G3), not parallel(G1, G4)not parallel(G2, G3), not parallel(G2, G4)
not parallel((G1 ⊗G2), (G3 | G4)) : −
not parallel(G1, G3), not parallel(G1, G4)not parallel(G2, G3), not parallel(G2, G4)
not parallel((G1 | G2), (G3 ⊗G4)) : −
not parallel(G1, G3), not parallel(G1, G4)not parallel(G2, G3), not parallel(G2, G4)
not parallel((G1 | G2), (G3 | G4)) : −
not parallel(G1, G3), not parallel(G1, G4)not parallel(G2, G3), not parallel(G2, G4)

Figure B.12: Definition of not-parallel constraint
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resource asg := rsrc(T,X)
cost of(rsrc(T,A), V ) : − cost(T,A, V )
value constraint(V ) : − V < c,
set constraint|(G1, G2) : − true
set constraint⊗(G1, G2) : − true
task constraint(rsrc(T,A)) : − (T = reservation→ (quality(T,A,Q), (Q >= q))
op|(V1, V2, V ) : − V is V1 + V2

op⊗(V1, V2, V ) : − V is V1 + V2

Figure B.13: Placeholders for web service composition

The total cost constraint can be represented as

get wish list.cost+ buy present.cost+ reservation.cost < c.

Since get wish list is just a query, it does not affect the total cost. Constraint on

the quality for the dinner is represented as

reservation.quality > q

CCTR representation for example composite service is (get wish list⊗buy present) |

reservation. Constraint definitions for composite web services application is given in

Figure B.13.
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