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Graphs have increasingly become a crucial way of representing large, complex and disparate

datasets from a range of domains, including many scientific disciplines. Graphs are particularly

useful at capturing complex relationships or interdependencies within or even between datasets,

and enable unique insights which are not possible with other data formats. Over recent years,

significant improvements in the ability of machine learning approaches to automatically learn

from and identify patterns in datasets have been made.

However due to the unique nature of graphs, and the data they are used to represent,

employing machine learning with graphs has thus far proved challenging. A review of relevant

literature has revealed that key challenges include issues arising with macro-scale graph learning,

interpretability of machine learned representations and a failure to incorporate the temporal

dimension present in many datasets. Thus, the work and contributions presented in this thesis

primarily investigate how modern machine learning techniques can be adapted to tackle key graph

mining tasks, with a particular focus on optimal macro-level representation, interpretability and

incorporating temporal dynamics into the learning process. The majority of methods employed

are novel approaches centred around attempting to use artificial neural networks in order to learn

from graph datasets.

Firstly, by devising a novel graph fingerprint technique, it is demonstrated that this can

successfully be applied to two different tasks whilst out-performing established baselines, namely

graph comparison and classification. Secondly, it is shown that a mapping can be found between

certain topological features and graph embeddings. This, for perhaps the the first time, suggests

that it is possible that machines are learning something analogous to human knowledge acquis-

ition, thus bringing interpretability to the graph embedding process. Thirdly, in exploring two

new models for incorporating temporal information into the graph learning process, it is found
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that including such information is crucial to predictive performance in certain key tasks, such as

link prediction, where state-of-the-art baselines are out-performed.

The overall contribution of this work is to provide greater insight into and explanation of the

ways in which machine learning with respect to graphs is emerging as a crucial set of techniques

for understanding complex datasets. This is important as these techniques can potentially be

applied to a broad range of scientific disciplines. The thesis concludes with an assessment of

limitations and recommendations for future research.
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graph sizes. The dotted line indicates a linear increase in runtime. . . . . . . . . . . . . . . 55

3.7 Normalized Error Matrix For SVM (Scaled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Normalized Error Matrix For DTC (Scaled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.9 Multi Class Model Accuracy and Loss Score Over Epochs . . . . . . . . . . . . . . . . . . . . . 60



xv

3.10 Binary Model Accuracy and Loss Score Over Epochs . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Distribution of topological feature values from the cit-HepTh dataset in log scale:

(a) total vertex degree distribution, (b) distribution complete triangles for each

vertex, (c) Eigenvector centrality distribution and (d) Betweenness centrality score

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Degree (DG) value on the fly-drosophila-medulla dataset. 91

4.3 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Degree (DG) value on the cit-HepTh dataset. . . . . . . . . 91

4.4 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Degree (DG) value on the email-Eu-core dataset. . . . . . 92

4.5 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Degree (DG) value on the ego-Facebook dataset. . . . . . 92

4.6 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Degree (DG) value on the inf-openflights dataset. . . . . . 93

4.7 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Degree (DG) value on the soc-sign-bitcoinotc dataset. . 93

4.8 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Degree Centrality (DC) value on the fly-drosophila-

medulla dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.9 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Degree Centrality (DC) value on the cit-HepTh dataset. 94

4.10 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Degree Centrality (DC) value on the email-Eu-core

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.11 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Degree Centrality (DC) value on the ego-Facebook

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.12 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Degree Centrality (DC) value on the inf-openflights

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.13 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Degree Centrality (DC) value on the soc-sign-bitcoinotc

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



xvi

4.14 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Triangle Count (TR) value on the fly-drosophila-medulla

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.15 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Triangle Count (TR) value on the cit-HepTh dataset. . 97

4.16 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Triangle Count (TR) value on the email-Eu-core dataset. 98

4.17 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Triangle Count (TR) value on the ego-Facebook dataset. 98

4.18 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Triangle Count (TR) value on the inf-openflights dataset. 99

4.19 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Triangle Count (TR) value on the soc-sign-bitcoinotc

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.20 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Local Clustering Coefficient (CLU) value on the fly-

drosophila-medulla dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.21 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Local Clustering Coefficient (CLU) value on the cit-

HepTh dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.22 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Local Clustering Coefficient (CLU) value on the email-

Eu-core dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.23 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Local Clustering Coefficient (CLU) value on the ego-

Facebook dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.24 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Local Clustering Coefficient (CLU) value on the inf-

openflights dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.25 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Local Clustering Coefficient (CLU) value on the soc-

sign-bitcoinotc dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.26 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Eigenvetor Centrality (EC) value on the fly-drosophila-

medulla dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



xvii

4.27 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Eigenvetor Centrality (EC) value on the cit-HepTh

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.28 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Eigenvetor Centrality (EC) value on the email-Eu-core

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.29 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Eigenvetor Centrality (EC) value on the ego-Facebook

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.30 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Eigenvetor Centrality (EC) value on the inf-openflights

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.31 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Eigenvetor Centrality (EC) value on the soc-sign-

bitcoinotc dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.32 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s PageRank (PR) value on the fly-drosophila-medulla

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.33 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s PageRank (PR) value on the cit-HepTh dataset. . . . . . . 108

4.34 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s PageRank (PR) value on the email-Eu-core dataset. . . . 109

4.35 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s PageRank (PR) value on the ego-Facebook dataset. . . . 109

4.36 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s PageRank (PR) value on the inf-openflights dataset. . . 110

4.37 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s PageRank (PR) value on the soc-sign-bitcoinotc dataset.110

4.38 Micro and Macro F1 Scores, across a range of labelling fractions, for all ap-

proaches when predicting a vertex’s Betweenness Centrality (BC) value on the

fly-drosophila-medulla dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.39 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Betweenness Centrality (BC) value on the cit-HepTh

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



xviii

4.40 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Betweenness Centrality (BC) value on the email-Eu-

core dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.41 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Betweenness Centrality (BC) value on the ego-Facebook

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.42 Micro and Macro F1 Scores, across a range of labelling fractions, for all ap-

proaches when predicting a vertex’s Betweenness Centrality (BC) value on the

inf-openflights dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.43 Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches

when predicting a vertex’s Betweenness Centrality (BC) value on the soc-sign-

bitcoinotc dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.44 Error matrices for neural network classification of Eigenvector Centrality (EC) for

the ego-Facebook dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.45 t-SNE plots of the embeddings taken from the ego-Facebook dataset, where the

points are coloured according to their Eigenvector Centrality (EC) value. . . . . . . . . 117

4.46 t-SNE plots of SDNE and DNGR embeddings taken from the soc-sign-bitcoinitc

dataset, where points are coloured according to the normalized degree value. . . . . . 119

4.47 t-SNE plots of SDNE and DNGR embeddings taken from the soc-sign-bitcoinitc

dataset, where points are coloured according to the normalized pagerank value. . . 119

4.48 t-SNE plots of SDNE and DNGR embeddings taken from the soc-sign-bitcoinitc

dataset, where points are coloured according to the normalized Eigenvector cent-

rality value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.49 t-SNE plots of SDNE and DNGR embeddings taken from the soc-sign-bitcoinitc

dataset, where points are coloured according to the normalized Betweeness cent-

rality value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1 The temporal link prediction task is to predict the new edges (red) in the final

graph snapshot GT (green plane) given the previous graphs G1 and G2. . . . . . . . . 127

5.2 An overview of the Temporal Neighbourhood Aggregation (TNA) block, which

comprises a Graph Convolutional Network (GCN) layer with a Gated Recurrent

Unit (GRU). The combination of the topological and temporal learning is con-

trolled via the final linear layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



xix

5.3 The overall Temporal Neighbourhood Aggregation Model: two stacked TNA blocks

learning both topological and temporal information from the first and second hop

neighbourhoods of a vertex. An embedding zt is sampled for each vertex vt ∈ Vt
using variational inference. The inner product is then used to directly predict the

next graph in the sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4 AUC and AP scores on the Cora dataset evolved via the configuration method

with a 25% chance of edges being rewired per time step. Values are presented for

the whole graph and only on new edges which have been altered since the graph

used for training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.5 AUC and AP scores on the Citeseer dataset evolved via the configuration method

with a 25% chance of edges being rewired per time step. Values are presented for

the whole graph and only on new edges which have been altered since the graph

used for training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.6 AUC and AP scores on the Cora dataset evolved via the configuration method

with a 50% chance of edges being rewired per time step. Values are presented for

the whole graph and only on new edges which have been altered since the graph

used for training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.7 AUC and AP scores on the Citeseer dataset evolved via the configuration method

with a 50% chance of edges being rewired per time step. Values are presented for

the whole graph and only on new edges which have been altered since the graph

used for training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.8 AUC and AP sscoes for the future link prediction task on both the Cora and

Citeseer datasets evolved using the Erdős rewire method with |E|/2 edges having
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Chapter 1

Introduction

The volume and increasingly heterogeneous nature of data being generated by all aspects of

modern society has been growing exponentially in recent years [139]. This data explosion

encompasses not only the obvious everyday areas of social media and online commerce [225], but

also various scientific domains, from disciplines as disparate as healthcare [188] and astronomy

[250]. Indeed, the identification of patterns and trends from these massive datasets has been

crucial in many recent important scientific discoveries [191]. As such, there has been tremendous

research interest in how best to store, process and, most relevant for this thesis, identify patterns

in these large complex datasets.

There are two primary goals that must be considered when attempting to infer new insights

from a certain dataset, those being: how best to represent the data to make any important

relationships it may contain more evident, and how best to learn patterns from this data. It

can be argued that these two goals perhaps do not always align, with one often having to take

precedence over another. Although, one data representation that has the potential to be able

to achieve both aims is that of the graph, which will be the focus of the work presented in this

thesis.

The idea of representing complex relationships or interdependencies in data via the form

of a graph or network1 has long existed [72]. In its simplest form, a graph comprises just

1 To avoid confusion with neural networks, through this thesis the term graph will be used without loss of
generality.
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p1 p2

p3

p4

p5

Figure 1.1: A graph of citation between five research papers, where directed edges represent a
citation.

two primary components: vertices2 and edges. When representing data as a graph, vertices

frequently represent entities (a person or scientific paper), whilst edges capture the relationships

between them (friendship or citation). As an example, it is common to represent the citations

between different research papers as a graph, where the vertices represent the papers and an

edge being present between two papers indicating the presence of citation. An illustrative graph

of five papers (p1, ..., p5) and their inter-citation can be seen in Figure 1.1. Edges are directed

to indicate which paper cited the other. Even with this simple example, it can be seen that

when compared to other data forms, graphs allow for inherent relationships in the data to be

represented in a natural, semantically meaningful and interpretable manner [9].

Over the past decade, there has been a significant increase in the requirement for patterns

in datasets to be automatically identified via computer programs [80]. The techniques, com-

monly emanating from the field of Machine Learning (ML), have grown in both complexity

and capability, whilst finding applications in a broad range of domains. Commonly, these ML

algorithms can be trained to perform a mapping from some input data to a target output In

the case of classification this would be a mapping to a class label (for example, an image with

an associated label indicating the presence of a cat). Applying machine learning algorithms

to tasks as diverse as autonomous driving [86], automated language translation [226] and even

medical diagnoses [62] has shown them to perform better than traditional approaches. However,

the capability of a machine learning model to perform a certain task is ultimately bound by

the quality of the dataset with which it has been trained [26], with recent models requiring

2 Sometimes called nodes in the literture, but will be referred to as vertices throughout this thesis.
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increasingly vast quantities of labelled data [137]. An additional facet of the algorithms used

for machine learning is that the choice of algorithm will determine the representation that the

input data must take, with conversely, the opposite statement also being true. As an example of

this phenomenon, if tackling an image classification task using a Support Vector Machine (SVM)

algorithm (explored more in Chapter 2), then the image must be represented as a numerical

vector for input to the model, with this vector often comprising descriptive features extracted

from the image. Conversely, if one wanted to tackle the problem using only the raw image as

input, then the choice of algorithm would be limited to models which attempt image-based input,

such as Convolutional Neural Network (CNN).

Despite the recent advances in developing new Machine Learning algorithms and techniques

for image, video and text data, there has been comparatively little focus on developing graph

specific approaches [42, 186]. This thesis will use this as motivation and as such, the majority of

the work presented here will be directed towards addressing various issues and challenges that

arise when learning from graphs via the use of machine learning.

1.1 Rationale and Motivations

In many domains3, graphs have proven to be a good representation for capturing complex

relationships in data [170]. As such, a large number of graph specific algorithms have been

developed which are designed to capture and extract structural information from a given graph’s

topology. The results from such algorithms can then be used for a large number of tasks, often

encapsulated by the term ‘Graph Mining’ [46]. As an example of such a task, one frequently

desired metric to be extracted from a graph is that of vertex centrality [193], which defines

how important a certain vertex is to the overall graph structure. Real-world applications are

numerous, the classic exemplar being Google’s use of a particular vertex centrality metric, entitled

PageRank [178], to help decide the ranking of web pages in a user’s search result. As another

example, in many domains it is useful to partition the vertices into groups or communities using

some measure of similarity [74]. Vertices which represent users on an e-commerce site and who

belong to the same community can then be shown similar recommendations for example [240]

Recently, problems have emerged with this paradigm however, with arguably two primary

issues being the continued increases in graph sizes and the complexity of questions which graph

3 Newman (2010) provides interesting case-studies of graph use in the real world [170].
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mining is being asked to answer. In common with all data sources, the size and number of graphs

being stored and processed is increasing rapidly [123]. This increase has been so dramatic that the

traditional approaches used in the graph mining field are struggling to perform well at these larger

scales, either not running at all or having unacceptably large runtimes [10]. To help combat this,

recent years have seen several software frameworks being launched which are specifically designed

to help process graphs in parallel over a distributed set of compute nodes [61, 116, 159, 235, 248].

Additionally, even dedicated graph-specific processors have been developed [109]. Also, as graphs

are being used ever more frequently for ever more complicated tasks, careful attention must be

paid to what particular topological structure would be best suited to solve the given task. This

process, which can be thought of as feature engineering, usually requires a domain expert to

select the correct metric for a specific task, or even create a new one if the correct one cannot be

found. This can be a costly process to undertake, both in terms of time and financial expenditure

[140].

Machine learning offers many benefits over traditional approaches for data analysis in fields

such as Computer Vision (CV) and Natural Language Processing (NLP), with one branch of

machine learning, known as Deep Learning (DL) [80], demonstrating excellent performance on a

diverse set of tasks. Deep Learning represents a family of models, most of which use many layered

neural networks to learn from large datasets and make predictions [142]. It offers one particularly

interesting aspect in that typically, data is fed into a model in its raw form, bypassing the feature

extraction stage required by other models. Deep Learning models typically are understood to

learn for themselves the best features to extract from the data, in order to minimise a certain

training objective, for example learning to detect edges in images to perform classification [137].

Compared to other fields, there has been relatively little work undertaken in combing graph-

based data with machine learning models. However, there is large scope for similar benefits to

be brought to graph mining tasks via the use of machine learning. An important task which

could be performed via the use of machine learning is that of graph classification, which can be

considered both at the global and vertex/edge level. For example, being able to correctly classify

chemical molecules being represented as graphs can aid in the discovery of new medicines [120],

or the identification of malware infection in software programs captured as graphs [228]. An

equally important graph mining task which could be achieved via the use of machine learning

and graph data is that of missing edge prediction4 [161]. Predicting that a new edge will form

in a graph of a social network can be used for example to recommend that two users become

4 More frequently know as link prediction.
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friends [2]. Alternatively, in a graph of protein-protein interactions, predicting a new link would

indicate that two proteins are likely to have some form of interaction [135].

p13

p23

p33

p43

GT

p12

p22

p32

p42

G2

p11

p21

p31

p41

G1

Figure 1.2: A snapshot of the evolution of a citation graph between four researchers, where
directed edges represent a citation between two authors.

Despite the possibilities offered by combining graphs and machine learning, there are certain

obstacles that arise, owing mostly to particular characteristics of graphs when compared to

other data forms. Most existing machine learning algorithms are designed to accept input in

the form of vectors or small matrices of numerical values and as such, cannot directly process

graph data. Graph data is known to be extremely sparse, with the amount of existing edges

in a graph typically being dwarfed by the total number of possible edges [56], which can cause

issues for certain learning algorithms [252]. Additionally, many of the underlying datasets being

represented as graphs are inherently temporal, meaning that many graphs naturally evolve over

time. As an example of this, a temporal graph, representing citations between four researchers,

is illustrated in Figure 1.2, showing how edges and vertices can change over time. Ideally then,

any machine learning model being used on a graph would consider these temporal aspects in

the learning process. A common concern with the use of a deep model is that interpretability

of how a certain decision is arrived at is lost [77], as the rules determining the decision-making

process are not explained by the model. For certain graph mining applications, in the medical or

legal industries for example, this lack of interpretability could harm the uptake of graph-based

machine learning as explainable decisions may be required.
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1.2 Questions to be Addressed in this Research

The previous section discussed a broad range of issues that arise when performing graph

mining using machine learning and highlighted that within this field there are some key issues

still to be addressed. Therefore, the following specific questions will be addressed in this thesis:

• How to find a single representation encompassing the whole graph? An answer to this

should enable processes, such as graph comparison and classification, to be performed at

the macro level.

• How best to bring interpretability to automated graph representation learning? This would

be crucial because it might allow graph-based techniques to be used in a broader range

of fields and scenarios, whilst providing a vehicle for understanding how these approaches

actually work.

• How to incorporate temporal information into graph-specific machine learning models?

This is important because so much of the data/processes being represented as a graph is

inherently temporal in nature, yet thus far, this has not been incorporated into models. To

date, this has been a very challenging task.

1.3 Research Aim and Objectives

The work and contributions presented in this thesis will focus in particular on the three

research questions identified in Section 1.2. The overall research aim of the thesis is to investigate

how modern machine learning techniques can be adapted to tackle and improve key graph mining

tasks. The following research objectives have been designed in order to achieve this aim:

1. To create an optimum global representation of a graph such that it is amenable for input

into machine learning models.

2. To devise and evaluate new methods to begin to bring interpretability to graph-based

machine learning models.

3. To produce and evaluate new models which are able to incorporate temporal dynamics into

the learning process.
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1.4 Thesis Scope

This thesis will explore various aspects of using machine learning to process data represented

as a graph. However, it is important to note that the work presented here is limited by various

factors including the availability of public datasets.The majority of the work explores the training

of deep neural networks to solve various tasks within the field of graph mining. It is a well known

phenomenon that such neural networks require large quantities of high quality training data [65].

Whilst other fields, such as Computer Vision with ImageNet for example, have established large

and well understood benchmark datasets available for use by researchers, the field of graph mining

is yet to establish such a resource. This is largely due to the heterogeneous, and often proprietary,

nature of the data typically represented as graphs, making the collection of a representative

resource by a singe person or institution extremely challenging and thus beyond the scope of this

thesis.

The lack of a commonly agreed upon benchmark raises an additional issue of not easily

being able to compare directly between competing approaches without reimplementation of the

approach and reproducing the original experimental result. Some graph dataset repositories do

exist, such as the Stanford Network Analysis Project (SNAP) [146], the Network Repository

[196] and the Koblenz Network Collection (KONECT) [138], but they do not contain nearly

enough data for many crucial tasks such as graph-level classification, let alone enough data with

auxiliary information such as features, labels or temporal information.

As a direct consequence of this, all the chapters in this thesis will, to varying levels, employ

graph data generated synthetically as a substitute for large graph datasets. Numerous graph

generation approaches have been proposed in the literature, many of which attempt to emulate

various aspects of topological features observed in empirical graphs. Any number of required

graphs, matching any set of topological constraints, can be generated easily and reliably. How-

ever, there is the possibility that the generation methods might not reflect the scope, variation

and noise seen in data from the real world and as such might be simpler for the machine learning

models to make accurate predictions about. One interesting aspect to this is that such approaches

could actually be used to improve the original generation methods, in order to more accurately

reflect the real-world data, although this is beyond the scope of this thesis.

Additionally, other factors such as a lack of proper graph-specific model performance metrics

can hinder truly rigorous evaluations, especially when attempting to measure the presence of

topological structure in an embedding space.
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1.5 Thesis Structure

In Chapter 2, a review of the relevant background material required for this thesis is presented.

This includes an introduction to the fields of graph mining and machine learning.

In Chapter 3, work is undertaken to find the optimal global representation of a graph through

the use of topological features and a neural network, with case studies presented for the tasks of

graph classification and graph comparison. Evaluation shows the presented approaches to scale

well to large graphs and beat current state-of-the-art approaches including Graph Kernels.

Chapter 4 shifts focus to investigate the newly emerging graph embedding techniques, with

the aim of bringing interpretability to the models used. This is achieved by attempting to

reconstruct known topological features from the embedding space.

In Chapter 5 two novel models are explored which are designed for incorporating temporal

graph dynamics into the learning process. The approaches use deep graph-specific model archi-

tectures to produce temporally-aware vertex level representations optimised for predicting future

links.

Finally, in Chapter 6 the thesis is drawn to a close by presenting a summary of the contri-

butions made to the field and comparisons drawn with the original research aim and objectives.

Additionally, potential future research which could be used to expand upon this work is identi-

fied.
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Chapter 2

Background

2.1 Introduction to Graph Mining

Graph mining is an interdisciplinary field which allows for the studying of detailed real-

world phenomena by viewing them as a series of connected components in an overall complex

system. There are numerous examples of systems across the spectra of scientific, as well as other

disciplines which are composed of individual elements linked together in some manner [170].

Some obvious examples of networks include the Internet, the emergent phenomena created by

the global interconnection of computer systems, and human societies, the linking of humans

via social interaction. The field of graph mining can be defined as the study of the collection,

management, analysis, interpretation, and presentation of relational data [19].

A graph fundamentally comprises of a set of vertices, with pairs of vertices connected together

via an edge. These edges can be undirected or directed, with implied directionality between two

vertices creating a directed graph. Vertices and edges can have associated weights or attributes,

often in the form of a numeric value. These graphs are known as weighted graphs and are used

to embed a greater quantity of information within the structure of a graph.
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2.2 Definitions

In this section, aspects and concepts explored in this thesis are formally introduced, as well

as definitions of the notation used throughout the rest of the text.

The terms graph and network are often used interchangeably within the literature, however

to avoid confusion with neural networks the term graph will be used throughout the remainder

of this thesis without loss of generality. Mathematically a graph can be defined as G = (V,E)

where V is a finite set of vertices and E is a set of edges. The elements in E are unordered pairs

{u, v} of unique vertices u, v ∈ V . The number of vertices s|V | and edges |E| are often called

the order and size of the graph G. A directed graph G can be represented where each edge in

E displays an ordering to its vertices, so that {u, v} is distinct from {v, u}. It is possible for

a graph to have a set of labels associated with vertices, edges or both. In such cases we can

define a graph G = (V,E, L), where L is a set of weights or labels. A label contains additional

information about an edge, vertex or the graph itself, for example a person’s name or age within

a social network.

Graph theory is the theoretical study of these graphs, their mathematical properties and their

topological structure. Being well studied, graph theory provides a wide spectrum of mathematical

tools for exploring and quantifying graphs. A graph can be represented in several forms, common

ways being the adjacency, degree and laplacian matrices. It should be noted that, unless otherwise

stated, the majority of the graphs used in this thesis are simple graphs. In graph theory, a

simple graph can be defined as one which contains no self loops (edges which connect vertices

with themselves) or parallel edges (multiple edges between two vertices).

An adjacency matrix A for a graph G is a |V | x |V | matrix, where the values are determined

such that:

Aij =

1 if node i and j are connected via an edge;

0 if no edge is present.
(2.1)

This notation can also be adjusted for the case of weighted graphs such that:

Aij =

1 if node i and j are connected via an edge with weight w;

0 if no edge is present.
(2.2)
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The degree matrix D for a graph is a diagonal matrix of size |V | x |V | where the diagonal

elements are set such that:

Dij =

ki if i = j;

0 otherwise.
(2.3)

Here, ki would commonly be the total degree of node i ∈ V .

Finally the graph laplacian LG is again a matrix of size |V | x |V |. We can define the graph

laplacian matrix as simply the degree matrix, subtracted by the adjacency matrix:

LG = D−A. (2.4)

Whilst seemingly simple, the graph laplacian has many interesting properties which can be

exploited to gain insights into graph structure [64].

2.2.1 Note on Mathematical Notation

The style of the mathematical notation used throughout this thesis, as well as some common

definitions are presented in Table 2.1.

2.3 Extracting Graph Structure

One of the most compelling reasons to represent data as a graph is that there exists a wide

range of measures to extract statistically important information about it’s structure [171]. Such

measures capture various aspects of patterns of connectivity within a graph and can allow unique

insights into the data. Some of the most important measures of graph structure, used through

the remainder of this thesis are outlined in this section. It should be noted that this is not a

comprehensive list of all measures, instead it is limited to the ones directly relevant to the thesis.
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Symbol Definition

q Style used to denote a scaler value (integer or real value).
q Style used to denote a vector.
qi Element i of vector q.
Q Style used to denote a matrix.

Qi,j Element i, j of matrix Q.
Q Style used to denote a set.
|Q| The number of elements in set Q.
F () Style used to denote a named function.
f() Style used to denote a generic function.

R The set of all real numbers.
P (a) A probability distribution over a variable.
a ∼ P Random variable a has a distribution P .

Ex∼P

[
f(x)

]
The expected value of f(x) with respect to P (x).

G A graph with an associated set of vertices V and corresponding set of edges E.

Table 2.1: Definitions and Notations

2.3.1 Degree and Degree Distribution

One of the most frequently used measures is the degree of a vertex, which can be defined as

the number of edges connected to it [170]. For a directed network, a vertex will have both an

in and an out degree which can be calculated separately or summed together to give the total

degree. Often the degree of vertex v is denoted by kv (this can be considered the sum of the

incoming edges k−v and outgoing edges k+
v ) and for a simple graph of size |V |, the degree in terms

of an adjacency matrix, Av,u, can be calculated as:

kv =

|V |∑
u=1

Av,u. (2.5)

To analyse the structure of complex graphs, the distribution of degree values is often used

[189]. The degree distribution is used to calculate the probability that a randomly selected node

will have a certain degree value. It provides a natural overview of connectivity within a graph

and is often plotted as a histogram with a bin size of one [170], as will be done throughout this

thesis.
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2.3.2 Paths and Walks

Another common set of graph metrics to consider revolve around the concept of a path in a

graph. A path is a route from one node to another through the graph, in such a way that every

pair of vertices along the path are adjacent to one another. A path which contains no repeated

vertices is known as a simple path. Additionally, a graph for which there exists a path between

every pair of vertices is considered a connected graph [170]. An example path through a graph

from two vertices v5 and v7 is displayed in Figure 2.1. Often there are many possible paths

between two vertices, in which case the shortest possible path, which is the minimum number of

edges needing to be traversed to connect two vertices, is often an important metric to consider as

it forms the basis for more complex measures [103]. The path illustrated in Figure 2.1 happens

to be the shortest path between the two aforementioned vertices. A graph can often be split into

distinct groups if there are subsets of unique connected vertices for which there is no path linking

them together. These individual pieces within a graph are called components [170]. However it

is common to find that there exists a path between a large fraction of the vertices. This is called

the giant connected component which has been observed in numerous graph datasets [106].

v1 v2

v3

v4

v5

v6

v7

Figure 2.1: A path between vertex v5 and v7 (highlighted in red).

Linked to the concept of the path is that of a walk through a graph. A walk is defined as a

finite list of vertices in which each vertex in the list is connected to the previous one via an edge
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[170]. A walk from a given vertex can potentially visit the same vertices an unlimited number

of times [16]. A special type of walk, known as the random walk, is commonly used in the

graph mining literature, often as a way to sub-sample from a graph [93]. To perform a random

walk from a given vertex, a neighbouring vertex connected to the first via an edge is chosen at

random. From this new vertex, a neighbour connected to it is then chosen at random, with this

process being recursive until the desired walk length is achieved. The probability with which a

new vertex is chosen is often uniform [186], however it can be biased to alter the characteristic

of the walk in some desired way [87].

2.3.3 Vertex Neighbourhoods, Clustering and Triangles

It is often useful to consider the neigbourhood of a vertex when measuring graph structure.

The neigbourhood of a vertex can be defined as the set of vertices to which it is connected, with

often the one-hop neighbourhood (the set of vertices with which it directly shared an edge) being

used. The one-hop neigbourhood for a vertex is denoted as N(v) and an example is displayed in

Figure 2.2. However, the neigbourhood of a vertex can be defined to contain vertices which are

multiple hops away from it [128]. As an example of this, the two-hop neigbourhood of vertex v1

from Figure 2.2 would also include the vertices connected via a black edge, as they are neighbours

of members of its one-hop neighbourhood.

Triangles

Within a vertex neighbourhood a commonly studied motif, a small and reoccurring local

pattern of connectivity between vertices in a graph, is that of the triangle [170]. A triangle is

a series of three vertices where an edge is present between three vertices. The graph in Figure

2.2 contains a triangle between the vertices v1, v3 and v6. The number of triangles for a vertex

v is the number of vertices in N(v) which are also connected via an edge. Triangles are often

considered a fundamental building block of graph structure, as in many graphs the process of

triangles being formed over time has been observed – a process entitled triadic closure [68].
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v1 v2

v3

v4

v5

v6

v7

Figure 2.2: The one-hop neighbourhood of vertex v1 (highlighted in red).

Local Clustering

A further measure of connectivity within a graph is that of the clustering coefficient. At

the level of individual vertices, the clustering coefficient gives a measure of how connected that

vertex’s neighbourhood is within itself. More concretely, for a given vertex v, the clustering

coefficient determines the fraction of one-hop neighbours of v which are themselves connected

via an edge,

LC(v) =
number of complete triangles

number of all triplets
, (2.6)

where triplets refers to all possible combinations of three vertices from N(v), both open (meaning

not complete triangles) and closed [170].

2.3.4 Vertex Centrality

There are many applications for which it would be beneficial to measure the relative import-

ance of a given vertex within the overall graph structure, for example to find the most important

web page or user of a social network. One such way of measuring this is vertex centrality, within

which there are numerous methods proposed in the literature which measure different aspects
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of the underlying graph structure. Many of these methods originate in the study of web and

social networks, with the PageRank algorithm being a famous example as it formed a key part

of the early Google search algorithm [178]. In addition to this, some of the other frequently used

centrality measures include Degree, Eigenvector and Betweenness [129].

Degree Centrality

Perhaps the simplest measure of centrality is that of Degree centrality, which provides a

normalised measure of vertex connectivity [115]. A graph where the vertices have been coloured

in accordance with their respective Degree centrality value is presented in Figure 2.3. The Degree

centrality value for a vertex v can be computed as:

DC(v) =
1

|V |
kv. (2.7)

v1 v2

v3

v4

v5

v6

v7

Figure 2.3: A graph where the vertices have been coloured approximately by their degree
centrality value, where a darker shading indicates a higher value.
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Betweenness Centrality

Betweenness centrality exploits the concept of shortest paths to argue that vertices through

which a greater volume of shortest paths pass through, are of greater importance in the graph

[75]. Therefore, vertices with a high value of Betweenness centrality can be seen as controlling the

information flow between other vertices in the graph. The Betweenness centrality for a certain

vertex v can be defined as:

BC(v) =
∑

s 6=v 6=t∈V
s 6=t

σst(v)

σst
, (2.8)

where σst is the total number of shortest paths from s to t and σst(v) is the number of paths

which contain v.

Eigenvector Centrality

A more complex measure is that of Eigenvector centrality, which assigns a value to a vertex

based on high-scoring neighbouring vertices contributing more than lower scoring ones. Thus

a high Eigenvector centrality value for a given vertex means that it is connected to other high

scoring ones [27]. Formally the Eigenvector centrality can be written as an eigenvector equation

using the adjacency matrix of a given graph:

Ax = λx, (2.9)

where λ is the largest eigenvalue, A is the graph G in adjacency matrix form and x is the

corresponding eigenvector. Using the Perron–Frobenius theorem, there is a unique solution for

x with all positive values when the largest eigenvalue is used [170]. The Eigenvector centrality

for a certain vertex v is the v-th element indexed from the vector x:

EC(v) = xv (2.10)

PageRank Centrality

The PageRank centrality method was originally developed by Google to rank the importance

of webpages, however it is now commonly used to measure the local influence of a vertex within
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a graph [94, 178]. PageRank Centrality is closely related to the previously discussed Eigenvector

Centrality, however crucially it can incorporate the additional information available in directed

graphs. The PageRank centrality for a given vertex v can be defined as:

PR(v) =
1− d
|V |

+ d
∑

u∈N−(v)

PR(u)

k+
u

, (2.11)

where N−(v) is the set of incoming neighbours of v and d is a constant damping factor.

2.4 Graph Datasets

It has been strongly argued that many of the recent successes in the field of machine learning,

especially the approaches exploiting deeper models, has been driven by the availability of large,

high quality and importantly, labelled datasets [80]. For example, the Imagenet dataset has

been key to dramatic advances in the ability of Computer Vision (CV) models by providing

them with over 14 million human annotated images from which to learn [65]. In the field of

Natural Language Processing (NLP), recent advances have also been driven by the availability of

massive quantities of text data, with Wikipedia alone providing over 3.7 billion English language

words [241].

However, the field of graph analysis does, to date, not have the same quantity of quality public

datasets available for use by researchers. This has arguably made the same levels of progress

in graph processing models more challenging when compared with other domains. The three

main sources of public graph datasets in the field, and thus of ones used throughout this thesis,

are the Stanford Network Analysis Project (SNAP) [146], the Network Repository [196] and the

Koblenz Network Collection (KONECT) [138].

Whilst these data sources are useful, they do not contain the quantity and variety of data

seen in datasets from other fields. For example, SNAP contains less than 200 unique graphs

across 18 domains. Because of this lack of empirical data, the work presented in this thesis uses

both synthetically generated graphs and graphs whose topological structure has been altered in

some way.
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2.4.1 Graph Generation Methods

There has long been an interest in developing methods which are able to generate synthetic

and random graphs which conform to some structural constraints, thus replicating empirical data

[113, 148]. Using such approaches means that an unlimited number of graphs can be generated, of

varying sizes and structural complexities, thus helping to reduce the aforementioned data access

issues. It has also been proposed that graphs generated from a known mathematical process

could be used as a benchmark for a machine learning algorithm, as it could be tasked with

uncovering the underlying generative process [8]. Some of the major synthetic graph generation

methods utilised throughout this thesis are detailed in this section.

Random Graphs

In the generation of random graphs, as proposed by Erdős and Rényi [20], the probability

of the existence of each edge is equal. Thus graphs generated using the Erdős-Rényi method

have a degree distribution which looks to have been chosen uniformly at random. Such graphs

would prove challenging for any machine learning model trained upon them, as there is no real

structure to be learned.

Scale-Free Graphs

One of the mostly widely used models to study the formation of networks in the Barabási-

Albert (BA) model [20]. It has been noted that actual real-world vertex degree distributions

exhibit a fat-tailed, or power-law shape, meaning that a majority of vertices have a low degree

value, whilst only a few vertices have a high value [20]. These graphs were entitled ‘scale-free’

graphs, due to their lack of natural scale [67]. Since this discovery, scale-free graphs have been

reported in many other graph studies [98]. Although the prevalence of graphs which exhibit

strict power-law distributions has been put under some doubt [130], generating graphs with this

property can be a useful first approximation.

The BA model was designed to produce graphs which have a degree distribution which is

approximately power-law, thus more closely replicating real-world data. The BA model functions
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as follows: upon each new vertex being added to the graph, it has a probability p of forming an

edge to an existing vertex v:

p(v) =
kv∑

i∈V
ki
. (2.12)

As the chance of new edges being formed is directly proportional to a vertex’s degree value,

hubs or densely connected vertices will appear.

Forest Fire Graphs

Whilst the BA model produces graphs which display the characteristic power-law degree

distribution, it fails to capture other structural characteristics observed in graph data [145].

To address this issue, the Forest Fire model for synthetic graph generation has been proposed

[145]. The proposed model is designed so that it captures the shrinking diameter and increasing

densification characteristics highlighted in the study as being missing from other methods. The

model functions in such a way that a new vertex v entering the graph attaches to a existing vertex

w uniformly at random. Vertex v then begins to burn through a selection of in and out edges

from w, creating links to the vertices it touches with a certain probability. The graphs created

by the Forest Fire model conform to both shrinking diameter and increasing densification, as

well as featuring a power-low degree distribution.

2.4.2 Graph Topology Random Rewire Process

Throughout the work presented in this thesis we will make use of the random rewire process

to alter a given graph’s topological structure. The random rewire process perturbs a given source

graph’s degree distribution by randomly altering the source and target of a set number of edges

according to the Erdős-Rényi random model. This results in edges which are uniformly distrib-

uted among the vertices, instead of the more frequently observed power-law like distribution

[20, 56]. The number of edges which are altered can be controlled to cause either major or minor

changes to the graph’s topology. During this rewire process, it is not guaranteed that the source

or target of the edge will be altered, indeed it is not always possible due to the graph’s topology.

Also, it should be noted that the rewiring process does not change the total number of edges or

vertices within the graph.
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2.5 Introduction to Machine Learning

The field of Machine Learning refers to a range of techniques which are used to create

computer programs which automatically learn and identify patterns in data. Unlike traditional

programs, ML-based ones are trained rather than being explicitly programmed to perform a

certain task. Machine Learning can be thought of as a series of three elements which together

form an approach. These three being the learning task, the experience learned from the task

(this encompasses both the ML model and dataset choice), and the performance measure used

to assess the success of the task [166].

The remainder of this section will review these solely as they relate to this thesis. Hence, this

should not be considered a complete review of the field of machine learning.

2.5.1 Machine Learning Tasks: Supervised and Unsupervised Learning

The task which can be performed by Machine Learning models is usually dictated by whether

the chosen dataset has an associated set of labels or annotations available. If a dataset contains

labels, then techniques for the family of supervised learning can be performed. If labels are not

present, then techniques from the family of unsupervised learned must be employed. As models

using both learning tasks will be utilised throughout this thesis, they are explored further below.

Supervised Learning

Supervised learning uses labelled or annotated data to help guide the learning process by

providing models with pairs of data elements and associated labels [55]. Using the example of

classifying a graph to belong to a certain class, the supervised learning process is detailed in more

depth. It should be noted that the use of graphs could be replaced with any other data format

(images or text) and the process would be identical. Also this example focuses on classification,

but the task of regression – predicting numerical values from data – works in largely the same

manner. In a supervised learning classification problem, we have a dataset D comprising n

graphs Gi ∈ D, where i = 1, ..., n and Gi = (Vi, Ei) where a label might be present on the

vertices or edges. Each graph in D has a corresponding class yi ∈ C, where C is the set of l
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categorical class labels, given as C = 1, ..., l. In the case of graphs, the categorical class label

could correspond with a graph’s domain, for example a social, biological or citation network,

or the synthetic generation method used. The goal of this supervised learning task is to derive

a mathematical formula to perform f : D → C which can accurately predict the class label of

each graph in the dataset. When deriving f using a machine learning approach, the common

pattern is to learn the function from a subset of D known as the training set for which labels

are present. The function is then tested on the remaining examples from D, often called the test

set. The accuracy of the function is assessed by comparing the predicted label ŷi = f(Gi) with

the ground truth label (yi) for all graphs in D.

Unsupervised Learning

Unsupervised learning encompasses a range of techniques which attempt to learn from data

without requiring the use of examples labelled via the use of human experts. Due to the varied

nature of the tasks performed via unsupervised learning, it is hard to devise an exact definition of

what is trying to be achieved. However, tasks such as grouping together data points which share

some form of commonality (known as clustering [236]), or compressing the size of the input data

by projecting it into a lower dimensional space (via Principal Component Analysis for example

[110]) can be considered as unsupervised. A selection of unsupervised learning approaches are

detailed in greater depth in Section 2.5.2.

2.5.2 Machine Learning Models

A machine learning model is used to learn from, and make predictions about, a particular

input dataset. An important aspect to this learning process which can affect how the model is

used is whether it can be considered interpretable or not. An interpretable model is one where the

underlying decision process can be explained and understood by human observers, with models

failing to meet this criteria being labelled as black box1 [77].

Some of the major families of approaches relevant to this thesis are reviewed below.

1 So called as only the inputs and outputs can be observed, with the internal components mapping between
the two remaining opaque.
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Traditional Supervised Models

Before the recent increase in the popularity of neural-based models, other forms of supervised

machine learning models were prevalent. Whilst these approaches differ in the algorithms used,

they almost all share one common trait, they require an n-Dimensional vector as input. This

means that data which is not naturally represented in this format, including graphs, images

and text, must be converted into a vector. Typically this vector represents descriptive features

extracted from the data by domain experts, in a process know as feature extraction or feature

engineering [122]. Once the input data has been converted into vector form it can, along with

its associated set of labels, be used as input to a variety of models. Three of the most frequently

used are detailed below:

• Logistic Regression: A supervised model for classification which is often used as a strong

baseline approach is logistic regression [163]. Considering the binary case2, logistic regres-

sion is a linear function that has a parameter per element in the input feature vector. The

result of the multiplication between the input vector and the parameters is then passed

through the logistic sigmoid function to ensure that the output is in the range 0 to 1 so

that it can be interpreted as a prediction [80]. The parameters of the model are then tuned

such that the model is more likely to produce the desired result using gradient descent

[200] (a process introduced in greater depth in the following section).

• Support Vector Machines: A more complicated family of algorithms for supervised classi-

fication is that of Support Vector Machines (SVM) [58], which unlike logistic regression,

directly map data points to predicted labels. Again considering the binary case, SVMs

attempt to fit a decision boundary, in the form of a hyperplane, between the data points in

a high dimensional space. This decision boundary is optimised such that it separates the

data points belonging to the two classes [80]. Class predictions about any new data can then

be made by measuring which side of the decision boundary they are. The mapping from the

initial input vector to the new high dimensional space, through which an accurate decision

boundary can be made, can be costly and computationally intractable [55]. To overcome

this issue, SVMs exploit what is know as the kernel trick [206], which enable distances in a

high dimensional space to be measured, without the need to actually perform the mapping

process [55].

2 Binary classification is where there are only two target classes to predict.
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• Random Forests: More recently Random Forests have become one of the most widely used

models for supervised learning. Random Forests are essentially ensembles, or collections, of

individual decision tree models, combined together to perform a classification task [100]. As

well as demonstrating excellent predictive performance, they are often favoured because

their output can easily be considered as a series of decision rules, making for a more

interpretable model [55]. Each decision tree model can be conceptualised as a tree-like

structure, where the split at each node can be thought of as a test on a certain attribute

or feature of the input data, for example, if a feature is below or above a certain value.

Decision trees are trained using a two-step process: the induction process, where new rules

are created and applied to the data, and the pruning process, where unnecessary structure

is removed from the tree to help the model generalise better to unseen data [40].

Neural-based Models and Deep Learning

Artificial Neural Networks (ANNs) are a field within Machine Learning inspired by, but

importantly not completely replicating, the functionality of a brain [142]. Whilst the origins of

ANNs dates back to at least the 1960’s, and perhaps earlier [195], they have recently experienced

a dramatic increase in capability and thus popularity [142]. ANNs model problems via the use

of connected layers of artificial neurons. Each ANN has an input layer of such neurons to which

the data is passed, at least one hidden layer to transform the data in some way and an output

layer where predictions are produced. In the traditional ANN concept, each neuron takes as

input a weighted sum of the outputs of the neurons which are connected to it, with each layer

containing a parameter matrix to enable this. Once the weighted sum has been performed, it

is transformed using a pre-specified non-linear activation function. Commonly used examples of

such functions including Sigmoid, Softmax and the Rectified Linear Unit (ReLU) [80]. Without

the use of non-linear activation functions, a model would be limited to just learning linear (affine)

transformations of the input data [80]. This would severely limit the learning capability of the

model and make the use of multiple stacked layers redundant, as combing multiple linear layers

would still result in a linear operation overall [55].

ANNs are modified to become better at a certain task using an iterative process, commonly

referred to as training. This training process is performed as follows: Input data is passed into

the network, transformed via the hidden layers and a prediction is produced at the output layer.

Typically for ANNs, the correctness of this prediction is assessed via the use of a loss function.
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A variety of functions can be utilised for this task and are specific to the type of learning which

is being performed. For example, supervised problems use loss functions which exploit the

availability of labels such as the cross-entropy function, a way to use the Kullback–Leibler (KL)

divergence to measure the distance between the true and predicted output [108]. Once a loss

value for the model has been computed, the parameters or weights are updated such that the

probability of producing the desired outcome would increase if the same data was passed in a

second time – a process know as back-propagation [201]. The back-propagation algorithm exploits

the fact that all components of a neural network are differentiable and computes the gradient

for the loss with respect to the model parameters, exploiting the chain rule for computational

efficiency [55]. A separate family of algorithms, called optimisers, then takes this gradient and

uses it to update the parameters directly. One of the most frequently used optimisers is Stochastic

Gradient Decent (SGD), which uses randomly chosen sub-samples of the larger dataset to enable

more efficient training [200].

Deep Learning is a term generally used to refer to ANN’s which have multiple stacked hidden

layers, so called Deep Feed Forward or Dense networks. In practice though the term encompasses

an emerging field, including new model architectures, training procedures to allow for the use of

massive datasets and even a philosophical shift in how data is represented as input to the models

[80]. Traditionally Machine Learning has been performed upon features extracted from the data,

which can be a cumbersome task performed by domain experts [186]. This manual process,

known as feature selection [90] in the literature, has clear disadvantages as certain features may

only be useful for a certain task. It could even negatively affect model performance if utilised in

a task for which they are not well suited. Arguably, many of the recent exciting advances seen

in the field of Deep Learning have been driven by the removal of this feature selection process

[87], instead allowing models to learn the best data representations themselves [80]. This is often

known as end-to-end learning as the model is learning the optimum feature representation, which

is tuned to perform a certain task. An example of a deep model which exploits this setup is the

family of Convolutional Neural Networks (CNNs) models, which have demonstrated state-of-the-

art performance in image classification, among others [142]. CNNs take as input raw images,

and exploit spatial locality patterns by sliding learnable filters over the images to both improve

predictions and reduce the total number of parameters needed to perform a certain task [143].

However, such models have faced criticism for being black boxes and thus not possessing an

interpretable decision process [77].
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Unsupervised Models

As discussed in Section 2.5.1, unsupervised models are ones which do not require the use of

labels to guide the learning process. One important unsupervised task, explored in detail in this

thesis (See Chapter 4), is that of representation learning, more commonly know as embedding

[186]. In the context of the machine learning literature, embedding models are used to map

between a discrete entity, with no natural numerical representation, and a meaningful value

for it in some vector space [165]. This can be formalised as performing the following function:

f : O → Rd, where f learns to map a set of entities O to a vector of size d, importantly without

requiring the use of labelled examples. Examples of entities which can be mapped this way

include words [164], retail products [225] and graphs (see Chapter 4).

To perform this mapping function, a variety of unsupervised models can be used, with some

traditional approaches using matrix factorization to learn the representation [149]. Increasingly

however, neural networks are being utilised in place of such approaches, with one popular

approach being the skip-gram model from Word2Vec [165]. Skip-gram is designed to transform

words, taken from a sentence, into vector representations – crucially where some of the semantic

and linguistic meaning of the word is preserved in the new embedding space. The skip-gram

model is able to learn an embedding for a word by using surrounding words within a sentence

as targets for a single hidden layer neural network model to predict. Due to the nature of this

technique, words which frequently co-occur together in sentences will have positions which are

close within the embedding space. However, it has been argued that such techniques should

really be labelled as self-supervised learning, as they employ models and objective functions

more commonly found in supervised learning, but generate the labels automatically from within

the dataset [80]. The skip-gram model has subsequently been adapted to work on graph data

[186].

2.5.3 Graphs and Machine Learning

As the primary focus of this thesis, it is important to consider how graphs can be used as input

for machine learning models. It has been argued that graphs can be a particularly challenging

format of data to process via the use of machine learning, owing to their unique properties [152].

Some of these properties include the heterogeneous nature of graphs themselves (they can be

directional, can contain additional information on the vertices or edges and can be temporal),
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be of differing sizes (with some graphs being of a massive size, causing scalability issues) and

can be extremely sparse in regard to edges (many vertices in real-world graphs only contain a

small number of edges, making a model trained to predict edges biased towards never predicting

a edge). The task is further complicated by the lack of publicly available training data, or a

standard set of benchmarks being available via which approaches can be compared.

Nevertheless, over recent years a growing number of methods and approaches have been

presented in the literature combining graphs and machine learning [43, 92], which span the

range of tasks and technique highlighted in this section. For example, there are methods for

extracting representative features from graphs, which can then be passed to traditional supervised

algorithms for classification (the relevant literature around this, as well as a novel approach is

presented in Chapter 3). Additionally, using unsupervised techniques to automatically learn

meaningful representations of graphs has begun to be explored (a survey of such approaches,

as well as new techniques to bring interpretability to them is detailed in Chapter 4). Finally,

graph specific models, which have been inspired by Deep Learning to allow for raw data input,

have begun to be created (such approaches are explored in more depth in Chapter 5, with novel

research presented on how to incorporate temporal evolution into the learning process).
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Chapter 3

Graph Comparison and

Classification Via Graph

Fingerprints

Prologue

The fields of graph mining and machine learning were broadly introduced in the previous

chapter. This chapter will explore how these fields can be combined to perform certain key tasks

in graph mining, namely graph comparison and global graph classification, both of which are

introduced in further detail in Section 3.1. Fundamentally this chapter explores questions that

arise from considering how graphs can best be represented to make them amenable to being used

as input for machine learning models. This work has been performed in response to research

objective 1 (defined in Section 1.3).

This chapter explores the concept of the graph fingerprint1, a feature vector representation

of a graph which captures characteristics of the local neighbourhood structure of the graph’s

1 This term, introduced specifically for this research, is explored more in Section 3.3.
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vertices, whilst also incorporating key global graph features. The graph fingerprint is shown to

be a versatile representation as it can be used to input into graph comparison and classification

tasks, requiring no changes, whilst out-performing competing approaches such as Graph Kernels.

The work presented in this chapter has been published as the following works:

Stephen Bonner, John Brennan, Ibad Kureshi, Andrew Stephen McGough, and Georgios Theodoro-

poulos. Efficient comparison of massive graphs through the use of ‘graph fingerprints’. In

KDD Workshop on Mining and Learning with Graphs (MLG), 2016

Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, and Andrew Stephen

McGough. Gfp-x: A parallel approach to massive graph comparison using spark. IEEE

International Conference on Big Data, pages 3298–3307, 2016

Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, and Andrew Stephen

McGough. Deep topology classification: A new approach for massive graph classification.

In IEEE International Conference on Big Data, pages 3290–3297. IEEE, 2016

3.1 Introduction

This chapter will explore the hypothesis that graphs can be accurately and efficiently repres-

ented by combining the aggregated characteristics of a vertex’s local neighbourhood structure

with simple global graph features. We thus extract a series of local and global graph features

and assess their performance in the tasks of graph comparison and graph classification. Our

hypothesis that neighbourhood features could be used as a unique fingerprint for a graph is,

in part, driven by work which has shown that Graph Motifs and Graphlets (small sub-graph

like patterns of vertex inter-connectivity within a larger graph [5]) can be used for a variety of

tasks within graph analysis [88]. However, Graphlets are known to be challenging to compute

efficiently and require some hand engineering, as the correct structure must be identified [198].

Here we explore whether a general set of vertex neighbourhood features can be used as a graph

fingerprint, which could then be used successfully in multiple graph analysis tasks. This is in

contrast to the work on Graph Kernels, detailed in greater in Section 3.8.5, which are often used

to capture global graph properties – making scalable Graph Kernels approaches more challenging

[209].
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The two application domains utilised in this chapter, graph comparison and classification, in

order to explore the ability of graph fingerprints to capture detailed topological information, are

introduced in greater depth below.

3.1.1 Graph Comparison

In many scientific domains, being able to compute some measure of similarity between

two graphs is an extremely valuable task. Such domains include: anomaly detection [6] [36],

protein comparisons [244] [187] and the study of temporal graph evolution / link prediction [3].

Thus, graph comparison and specifically similarity measurement is an area of increasing research

interest.

There are many definitions of similarity between graphs [25] [133] [181], however, they can be

split into two categories – those which can only be applied to labelled graphs and those which

can be applied to graphs irrespective of labelling. When labels are available, similarity can be

based on such metrics as the number or similarity of labels appearing in both graphs. However

when labels are not present similarity is based on topology comparison. In this chapter we focus

on topology comparison of unlabelled graphs.

A number of considerations need to be addressed when computing the topological similarity

between graphs to ensure accurate comparison. For example, two graphs might appear very

similar when considering the individual edges between vertices, yet be of completely different

graph sizes. Conversely two graphs which are of comparable size, might have vastly different

degree distributions (the distribution of edges between the vertices within a graph).

Most importantly, any comparison approach should be able to scale to the so-called ‘high

volume’ (massive) graphs (vertices and edges) seen in such areas as social networks. Graph

processing techniques are being applied in a broader range of data driven fields, where data

volumes are large and constantly increasing, resulting in more graphs of larger sizes [159]. This

dramatic increase in the quantity of data means that ever larger graphs need comparing against

one another. This has a significant impact upon graph similarity measures, as any such algorithm

needs to produce accurate results, be computationally efficient in terms of resource usage and

can be computed in realistic time-scales – suggesting that the use of parallel techniques could be

required.



31

In this Chapter we present a new approach for extracting Graph Fingerprints, a compact

but representative abstraction of a graph, with numerous potential applications within field such

as machine learning. The new approach, entitled Graph Fingerprint Extract (GFP-X), utilises

Apache Spark and GraphX to massively decrease feature extraction times through the use of par-

allel computing, whilst increasing the maximum size of processable datasets. We demonstrate an

application of the fingerprint approach for the comparison of graphs, named Graph FingerPrint

Comparison (GFP-C), that is label-independent as it exploits only the topology of a given graph

in order to compare similarity.

3.1.2 Graph Classification

Representing data as graphs or networks has enabled researchers from across the scientific

disciplines to not only understand the data itself but also any underlying relationships [170].

Being able to accurately match a graph, which may not have complete descriptive information,

to its domain or application can help to identify unknown data. As such, there has been increasing

interest in the literature on how best to develop models to classify these graph datasets [151] [186].

Two different branches of graph classification exist; classifying individual elements (vertices or

edges) within a graph and classifying the entire graph itself. In this chapter, we are considering

the second of these two problems; global graph classification. Global graph classification is

required for a myriad of tasks within the field of network analysis (for example the identification

of unique chemical compounds within Cheminformatics [152] or the identification of a unique

social network user via a graph of their complete social circle [151]).

The volume of graph data, both in terms of size and complexity of individual graphs and

the total number of available graphs, is increasing rapidly [159]. The current Facebook social

network graph, for example, contains over one billion unique vertices (users) [66]. Traditionally,

graph classification has been performed via graph kernels [227], but such methods can take

a prohibitively long time to compute, even on comparatively small graphs of a few thousand

vertices [152]. This lack of performance makes the applicability of graph kernels questionable on

modern massive graphs. Thus, a new approach to massive graph classification is needed which

does not require the use of graph kernel methods.

In this chapter, we thus also present a novel approach for both multi-class and binary

classification of massive complex graphs entitled Deep Topology Classification (DTC). DTC,
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unlike previous approaches, extracts both global and local topological features from each graph

to transform it into n-Dimensional feature space. To perform the classification, a deep neural

network is designed and trained. The approach is shown to be more accurate than the current

state-of-the-art topological feature graph classification method.

3.1.3 Chapter Contributions

The key contributions of this chapter are as follows:

• Development of the graph fingerprint technique, a descriptive topological feature represent-

ation of a given graph, to validate the hypothesis that combining aggregated characteristics

of vertex-level local neighbourhood structure, with simple global graph features can accur-

ately represent graph structure.

• Introduction of a parallel approach using Apache Spark and GraphX to measure graph

similarity – the first approach to explore the use of these systems. The approach is shown

to scale sub-linearly to increases in dataset size and to be effective when processing graphs

of over 100 million vertices, an order of magnitude greater than seen in the literature. The

approach also scales from running on a single machine to a dedicated cluster.

• Demonstration that graph fingerprints are able to compare the topological structure of two

graphs. The approach is shown to be more sensitive at detecting variations in graph size

and topology than existing approaches. This is achieved by exploiting the combination of

both global and local features when performing graph comparisons.

• Construction of a deep neural network for global graph classification using graph finger-

prints to accurately predict the class in both a multi-class and binary setting. The Deep

Topology Classification approach is shown to be more accurate than competing state-of-

the-art methods and is, to the best of our knowledge, the first approach in the literature

to make use of a deep neural network for feature-based global graph classification.

To aid in reproducibility of the results presented in this chapter, all of the associated code

has been open-sourced and made available online. In addition, results are presented upon

public benchmark datasets. The code for graph fingerprint extraction and comparison is avail-

able here - https://github.com/sbonner0/GFPX-GraphSimilarity and the code for performing

classification of graphs via their fingerprints is available here - https://github.com/sbonner0/

DeepTopologyClassification.

https://github.com/sbonner0/GFPX-GraphSimilarity
https://github.com/sbonner0/DeepTopologyClassification
https://github.com/sbonner0/DeepTopologyClassification
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3.2 Previous Work

3.2.1 Graph Comparison

It has been argued [25] [133], that the various label dependant and independent methods

for graph comparisons can be further categorised into three major cross cutting classes: graph-

isomorphism based methods, iterative methods and feature extraction based methods. Prior

work [25] [29] has shown feature extraction based methods to be more scalable and flexible, thus

are the focus of this chapter.

Feature Extraction

A range of features can be extracted from a graph for comparison with other graphs — the

more similar two graphs the more similar their features. Feature extraction based methods have

advantages over other approaches as they can be highly scalable – thus have faster runtimes

[133]. However, determining which features to extract to give the best, yet most compact,

representation of a graph, is an area of active research [181].

One such feature extraction method presented by Roy et al. extracts a variety of centrality

measures (used to rank the importance of a vertex within a graph [158]) and uses them for

graph comparison [199]. This approach requires that the graphs are labelled and has only been

validated on anything on small graphs, with the largest dataset having only 20,000 vertices.

An alternative feature extraction method presented by Papadimitriou et al. has been used to

measure the similarity between snapshots of a graph of links between webpages [181]. In this

approach several similarity measures are tested on a time-series of graph data with the goal of

detecting anomalies between time-steps. However, many of the methods tested rely on labelled

data to compute similarity.

The NetSimile algorithm [25] relies upon extracting details about the EgoNet2 for each vertex

within a graph which is then compared, via a distance metric, with results from other graphs.

In the presented results, NetSimile is shown to be independent of graph size when making the

comparison and only considers the similarity of the underlying linking model, meaning that two

2 A vertex’s EgoNet is every other vertex which is connected to it in its local neighbourhood
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graphs of vastly different scales could be identified as ‘similar’. NetSimile does not run on a

parallel graph analytic platform, thus limiting the size of graph it can compare.

Feature extraction has been explored outside of similarity measurement as a way of classifying

graphs based on comparisons between global features and labels [152]. Additionally feature

extraction has been explored by the anomaly detection community as a way of detecting unusual

elements or events within static and temporal graphs [6].

Parallel Graph Similarity Measures

To date, there has been little work on comparing graphs in parallel or on how to efficiently

compare graphs of millions of vertices or edges. A recent approach is entitled ‘DeltaCon’ [134]

which compares the similarity of two graphs based upon common labelled vertices. Whilst the

approach is stated to be scalable, only a dataset of 16M vertices is tested and a parallel version

is only hypothesised, not implemented. A parallel approach for graph similarity using a Message

Passing Interface (MPI) compute cluster has been created [131]. The approach is shown to

scale to over 1000 compute cores and to a graph size of over one million vertices. However

the approach does not produce a final similarity score for two graphs, instead the algorithm

matches the similarity of each vertex in one graph to every vertex in the second, thus is very

computationally expensive and cannot scale to truly massive graphs.

3.2.2 Graph Classification

The field of graph classification can be divided into two major categories; within graph

classification and global graph classification. Within graph classification encompasses techniques

designed to classify individual vertices or edges within a single graph and has been extensively

explored by prior work [87]. Global graph classification techniques attempt to classify the type

or domain of an entire graph. However, there is comparatively less research focusing on the

classification of the entire graph, perhaps owing to the lack of sufficient quantity of publicly

available datasets and the complexity of discovering an appropriate vector representation.
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Within Graph Classification

Recent work on vertex classification has explored the use of a single hidden-layer neural

network to learn features required for classification in an unsupervised manner. These approaches

are inspired by the word2vec [165] or SkipGram [89] methods for automated feature learning from

text documents, adapting the technique to fit graph data. The DeepWalk approach [186] uses

a random walk to sample the structure of a vertices neighbourhood which is then fed into the

SkipGram model, with the sequence of vertices replacing the sequence of words within a sentence.

DeepWalk has been shown to be more accurate at classifying vertices in a variety of datasets than

traditional methods like SpectralClustering [220] and EdgeClustering [219]. The node2vec [87]

approach expands upon this method by having a flexible definition of a vertices neighbourhood.

This is achieved by biasing the random walk to explore the vertices close or far from a given

vertex, leading to a greater understanding of its local or global role within a graph.

Global Graph Classification

Graph Kernel Methods - A large body of work has been performed to classify graph datasets

based upon graph kernels, a series of kernel functions which compute an inner product on graphs.

In general, a kernel function k(x, x′) is a function which measures the similarity of two entities x

and x′ given two constraints: it must be symmetric and positive semi-definite [227]. Such kernels

for graphs include random walks [76], shortest path [39] and discriminative subgraphs [221]. Sub-

graph kernels (sub-graphs which are found frequently in a given graph) are perhaps the most

explored for performing graph classification [88, 121]. Subgraphs are conceptually very similar

to Network Motifs [102] and Graphlets [187] commonly used in the biological sciences, which all

represent ways of identifying small and significant repeating patterns of connectivity between

vertices. In such approaches frequent discriminative sub-graphs are mined using a variety of

kernel techniques and used as features for classification. Work has shown that larger subgraphs

result in a more accurate classification but at the cost of a greatly increased runtime for feature

extraction [88]. The use of sub-graph kernels for classification has been further explored when

considering noisy and unbalanced datasets [179]. Graph kernels have been explored for multi-

label classification of graph datasets in an approach entitled gMLC [132]. The gMLC approach

uses an SVM to train a model to assign one or more labels from a set of possible labels to a

range of medical and biological graphs. Graph kernels have also been utilised as a way to classify

streams of massive time-series graph datasets in a memory efficient manner [239]. The approach
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uses the Weisfeiler-Lehman graph kernel [209] and an SVM in an incremental manner. To reduce

the large memory footprint inherent in graph streams, the support vectors from the previous time

steps are used as training data for the model.

However, graph kernels are known to be prohibitively slow to extract from large graphs [87],

thus are not suitable for our approach as we attempt to classify massive graphs.

Topological Feature Methods - There are a few approaches to graph classification which employ

the extraction of topological features rather than the use of graph kernels. These approaches

are designed to overcome the inherent problems of scalability and runtime efficiency required

when extracting graph kernels [152]. There are numerous features which can be extracted from

graphs and the technique has been used successfully for many graph mining tasks including graph

similarity measurement [29], time series anomaly detection [6] and link prediction [3].

Work has been performed to explore the application of topological graph features to differen-

tiate between graphs from different domains[117]. Although the work stops short of creating an

actual classifier, it does conclude that both local and global features can be useful in identifying

a graph’s domain [117] which concurs with our ideas here.

Li et al. propose a novel method of classifying graphs into domains based on the extraction

of global and label based features [151, 152]. The approach uses an SVM to classify the resulting

feature vectors. The features are scaled using both range normalisation and z-normalisation to

overcome the different scales of chosen features. The work presents results on the classification

of three different graph datasets including chemical compound graphs, protein graphs and cell

graphs. The approach is shown to be more accurate than state-of-the-art graph kernel based

methods [151]. However, the approach is not extended to datasets in which multiple classes may

be present and is missing the potentially rich descriptive features at the vertex level.

3.3 Generating Graph Fingerprints

This chapter explores the extraction of representative features from a graph, which can then

be used for a variety of tasks including graph comparison and classification. In this section, we

detail the features extracted at both the vertex and also the global graph level. For the local

vertex features, we hypothesise that the distribution of vertex neighbourhood-based features is

a powerful and distinctive feature of graphs, that could be used as an alternative to the more

complex path and walk based features found in graph kernel approaches [136].
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3.3.1 Vertex Features

For the Graph Fingerprint approach, we extract a variety of features from each vertex in

the graph. Although a wide selection of vertex feature metrics exist, each exhibits different

characteristics in terms of topological structure being measured and extraction runtime. This

chapter is exploring the hypothesis that local neighbourhood features are able to accurately

identify graphs. As such, many of the features extracted represent different properties of a

vertices neighbourhood. Additionally, two vertex level centrality measures are also included in

the feature vector. These were included as they also exploit local neighbourhood information

to calculate vertex importance. However, it is important to note that other features could also

be incorporated into this process if other characteristics of the graph are important. Below we

detail the features extracted, where a value is computed for each vertex v ∈ V .

• Total Degree - The sum of both the in and out degree for a vertex v, denoted as kv.

• Two-Hop Away Neighbours - The number of two-hop away neighbours from the

current vertex v gives an indication of how connected, and thus how important, a vertex’s

neighbourhood is within the graph [25]. It can be defined as:

TH(v) = |N ′(v)| (3.1)

where N ′(v) is the set of vertices two-hops away from the current vertex v.

• Local Clustering Score - The local clustering score for vertex v represents the probability

of two neighbours of v also being neighbours of each other [231]. It is detailed more in

Section 2.3.

• Average Clustering of Neighbourhood - The average clustering score of the neigh-

bourhood is computed for each vertex by taking the mean of all the local clustering scores

for the vertex’s neighbourhood [25]. It can be defined as:

ncv =
1

|N(v)|
∑

∀j∈N(v)

LC(v), (3.2)

where LC(j) is the local clustering score computing for vertex j.
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• Eigenvector Centrality Value - The Eigenvector centrality is used to calculate the

importance of each vertex within a graph by measuring neighbour importance [27]. More

details on this as well as the equation for computing it can be found in Section 2.3.4.

• PageRank Centrality Value - The PageRank centrality method was originally developed

by Google, however it is now commonly used to measure the local influence of a vertex

within a graph [94, 178]. The equation for computing this value can be found in Section

2.3.4.

3.3.2 Graph Fingerprint Feature Vector Creation

After the extraction process detailed above is complete, a feature matrix F ∈ R|V |,n is created,

where n is the number of vertex level features extracted – six in this case. In order to create

the graph fingerprint, it is required to reduce the dimensionality of the feature matrix down to a

single vector. To perform this transformation, a series of metrics are taken for each of the feature

columns in the matrix. The metrics chosen are the mean, standard deviation, variance, skewness,

kurtosis, minimum value and maximum value. These are frequently used and well understood

methods to capture the numerical variation within a range of values [25]. After this has been

completed, the resulting vertex feature vector fG for graph G can be created. The vertex feature

vector contains the eight aggregation scores for each column in the feature matrix F which are

concatenated together:

fG = (x̄1, σ1, σ
2
1 , Skew[x]1,Kurt[x]1, x(1)1, x(n)1, ...

, x̄n, σn, σ
2
n, Skew[x]n,Kurt[x]n, x(1)n, x(n)n). (3.3)

3.3.3 Global Features

In order to make the graph fingerprint approach sensitive to the global features of a given

graph, a selection of global features are extracted in addition to the vertex ones discussed above.

The global features which were chosen to represent each graph, were selected due to their ability

to capture key elements of global graph topology, whilst also being efficient to compute in a
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distributed environment. We focus on extracting a small quantity of these such features as we

are primarily interested in neighbourhood level connectivity. A vector is used to represent these

six global graph features which are then concatenated onto the aggregated vertex level feature

created above, resulting in the final graph fingerprint.

• Graph Order - Defined as: |V |.

• Number of Edges - Defined as: |E|.

• Number of Triangles - The total number of triangles for a given graph is the number

of vertices which form a triangle, with a triangle being a set of three vertices with an edge

between every member.

• Maximum Total Degree Value - This represents the total number of edges the most

connected vertex in the graph has to other vertices.

• Number of Components - This is the total number of components within the graph,

with a component being a sub-graph in which there is a possible path between every vertex,

whilst vertices in different components have no possible path between them.

• Global Clustering Coefficient - This feature is a representation of how connected the

graph is overall, using the total number of possible vs complete triangles within a graph.

3.4 Graph Comparisons via Topological Structure

This section explores how the graph fingerprints can be used to allow for efficient and accurate

comparisons between graphs based on topological structure. In this context, two graphs can be

said to be similar if they share similar global and micro (vertex and edge) level topological

features. The approach, entitled Graph FingerPrint Comparison (GFP-C), was required when

it was found existing serial methods for graph comparison were unable to scale to massive scale

graphs and slow when comparing even modest sized ones. Additionally, based on the literature

presented in Section 3.2.1, it is clear there are gaps in the currents methods. Particularly, an

approach which meets the following criteria is missing:

1. Scalability - Highly scalable to massive graphs of millions of vertices/edges, and capable of

computing the similarity in a finite time.



40

2. Sensitivity to Graph Size - Taking the size and order of the graphs into consideration.

3. Sensitivity to Similar Topologies - Detecting the difference between graphs which are highly

structurally and topologically similar.

4. Label Free - Able to perform comparisons without requiring labelled datasets, although the

approach should still function when they are available.

5. Low Number of User Defined Parameters - A minimum number of user defined parameters

should be required to measure graph similarity.

3.4.1 Graph Comparison Approach Overview

The approach comprises two distinct stages: the generation of a graph’s fingerprint (GFP-

X), as described in Section 3.3, and the comparison of these fingerprints (GFP-C). The GFP-X

approach takes the high dimensionality inherent in complex graphs and reduces this down into

two fixed length feature vectors. The GFP-X approach achieves this by extracting micro and

macro features from the given graph, allowing it to capture both the micro and macro-level

topological features. The decision to extract both vertex level and global level features was

driven by the desire to make the comparison between graphs more sensitive to small variations

in the underlying graph topology and the overall size of the graph than the current state-of-the-

art methods [25].

During the process of GFP-X (detailed in Section 3.3), both the Vertex and Global generation

produce a feature vector for each graph. Graphs can then be compared by computing the distance

between their feature vectors - in this work we use the Canberra distance metric [141]. This

results in two separate similarity scores, one comparing the vertex level topology and one the

global level similarity. The last stage is to combine these two scores to produce the final similarity

score between two graphs.

To help fulfil the scalability criteria established in Section 3.4, GFP-X and GFP-C have been

written to make use of a distributed parallel processing framework called Apache Spark [245],

which enables the processing of graphs to be performed across multiple machines. At the time

of this work being performed, alternative parallelization approaches such as the use of GPUs,

could not work with the size of graphs required, or scale past being run on a single machine [211].

The work performed to achieve the Apache Spark implementation, as well as other details, is

documented in Appendix A.
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3.4.2 Comparison of Graph Fingerprints

The GFP-C approach compares the fingerprints of two graphs in order to compute the

similarity between them. In this work, the Canberra distance was selected to compare the

numerical distance between the fingerprints, similar to [25]. Other distance metrics tested

included the Bray, Correlation, Chebyshev, Cosine and Manhattan but these were found to

be insensitive when the feature vectors were highly similar, or produced unintuitive results such

as a high similarity score for highly dissimilar graphs.

The Canberra distance between two vectors p and q of n dimensions is defined as [141]:

CD(p,q) =

n∑
i=1

|pi − qi|
|pi|+ |qi|

. (3.4)

It should be noted that when pi and qi are both equal to zero, there is no defined value

for the distance and a score of zero is returned. Additionally, the maximum value returnable

by the measure is equal to the number of dimensions in the two vectors being compared. For

example, comparing two vectors of ten dimensions would result in a maximum possible Canberra

distance of ten. Additionally, the Canberra distance is able to accurately detect changes close to

zero, which makes it ideal for detecting small variations between graphs which might be highly

topologically similar – one of the key goals for the GFP-C approach. The Canberra distance

is used to compare both the distance between the vertex feature vectors and the global feature

vectors. Two graphs are more ‘similar’ the closer the result of the Canberra distance is to zero,

with a score of zero indicating that the graphs are ‘fingerprint’ identical.

3.4.3 Final Similarity Score Generation

The GFP-C approach returns two similarity scores, one for the distance between the vertex

feature vectors fv and one for the distance between global vectors fg for the two graphs being

compared. These two scores can be used independently to compare the global and local topolo-

gical structure as separate entities. However, the GFP-C approach can produce a final similarity

score between the two graphs, using the following aggregation - FinalSimScore = fv + γfg.

Where γ is a user controllable parameter to control the weighting of the difference between the

global feature vectors in the final similarity score.
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3.5 Graph Classification using Topological Structure

This section discusses the use of topological features as a means to perform global classification

of complex graphs. Global graph classification can be considered a supervised problem in the

context of Machine Learning (this was explored in Section 2.5.1), where individual graphs within a

dataset D have associated class labels yi ∈ C, where C is the set of l categorical class labels, given

as C = 1, ..., l. The goal of the global graph classification task is to derive a reliable way to perform

f : D → C which can accurately predicate the class label of each graph in the dataset. This work

will explore the use of topological features combined with neural networks to learn the function f .

Established models for performing classification, such as Support Vector Machines, Decision Trees

or traditional Artificial Neural Networks (Often refereed to as Multilayer Perceptions (MLP)

in the literature [80]) do not function directly with graphs since these models require an n-

Dimensional vector as input. Therefore before any graph can be passed to the function, its

inherent discrete nature must first be converted into a vector. Due to the size and complexity

of modern graphs, this can be considered one of the most challenging aspects of global graph

classification [152].

The approach presented in this section, designed to tackle this problem, is entitled Deep

Topology Classification (DTC). DTC extracts both global and deep topological features from a

given graph, rather than using a graph kernel method for feature representation. This approach

takes inspiration from research showing how the use of global topological features can be used

to outperform the classification accuracy of graph kernel based methods – the current state-of-

the-art for tackling graph classification [152]. The DTC approach further improves upon this

research by exploring the use of deep topological features extracted from the vertex level of the

graph, rather than just global metrics. An additional benefit over the previous graph kernels

based approaches is that the feature extraction procedure can be completed efficiently and in

parallel. To classify the resulting vector representations, a deep feed-forward neural network is

created and trained. The use of a deep neural network, rather than the traditional SVM utilised

in the global graph classification literature, was inspired by recent advances in within-graph

classification using neural networks [87].

3.5.1 Classification Model Design

The ANN created for the DTC approach follows the Deep Feed Forward (DFF) model. The

size of the input layer is equal to the dimensionality of the extracted fingerprint vector and
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the size of the output layer is equal to the number of unique categorical class labels. When

designing a neural network, several key choices must be made in regards to the number of hidden

layers, the random initialisation of the neuron’s weights and the activation function they use.

In addition a suitable loss function, a function which the ANN is trying to minimise must be

chosen to ensure the most accurate model. To select the correct functions and parameters for

the DTC network, a grid search was performed over a selection of well regarded options. For the

initial random weights assigned to the neurons, the following functions were tested to generate

the initial weights: Normal, Glorot Uniform, Lecun Uniform and He Normal [54]. For the neuron

activation function the following were tested: Tanh and Rectified Linear Unit (ReLU) [95]. The

grid search trained a series of networks with every possible combination of these functions and

records the combination which resulted in the highest model accuracy. The network with the

highest classification accuracy featured ReLU activation and initialisation via Glorot Uniform.

Additionally the use of one, two and three hidden layers in the model was used to give some

indication as to the complexity of the global graph classification task.

The ReLU function activates a neuron via f(x) = max(0, x), where x is the incoming signal

to the neuron, which thresholds the activation to stop it going below zero and is designed to

more accurately imitate biological activations [95]. ReLU has been shown to improve accuracy

in many Deep ANN’s, whilst also improving training times. Before the weights in an ANN are

updated via back-propagation, they must be assigned some random value. This initial value has

been shown to have a large impact on the overall network quality [78]. The Glorot Uniform

initialisation method sets the initial value for a neuron to be sampled randomly from a uniform

distribution and has been shown to improve accuracy [78]. For the loss function of the network

categorical cross-entropy was used, commonly employed for multi-class classification tasks [79].

The RMSprop algorithm was used to update the model weights via back propagation [222].

Finally, small amounts of dropout (a dropout probability of 0.2) were used on each hidden layer,

this is a regularisation strategy for ANNs which functions by randomly dropping neurons in an

effort to prevent over-fitting [214]. An overview of the complete network, describing the size of

each layer, the initialisation and activation functions used and the application of any dropout, is

given in Table 3.1.

To ensure that the approach can also classify binary datasets (datasets for which only two

unique labels are present), a second version of the DTC model was created. This version

employs an alternative output layer with a single output neuron activated via a Sigmoid function,

commonly used for binary classification tasks [60]. In addition, this network used binary cross-

entropy for the loss function [79]. The alternative output layer can be seen in Table 3.1.
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Table 3.1: The Deep Topology Classification model architectures.

Layer Size Initialisation Activation Dropout

Input n - - -

First Hidden 256 Glorot-Uniform ReLU 0.2
Second Hidden 128 Glorot-Uniform ReLU 0.2
Third Hidden 32 Glorot-Uniform ReLU 0.2

Multi-Output |C| - Softmax -
Binary-Output 1 - Sigmoid -

3.5.2 Implementation

The code for the DTC approach has been written in Python programming language. The

feature extraction code has been implemented using Graph-Tool [63]. The ANNs have been

created using the TensorFlow and Keras [1] libraries, allowing exploitation of General Purpose

Graphics Processing Unit (GPGPU) cards to decrease training times. The SVM models have

been implemented using SciKit-Learn [185].

3.6 Experimental Evaluation

This section will detail the experimental evaluation and datasets used to assess the ability of

Graph Fingerprints to be used for graph comparison and classification.

3.6.1 Comparision Datasets

The synthetic graphs used throughout the comparison results section (including Forest Fire

[145] and Erdős-Rényi [70] random graphs) were generated using the SNAP graph analysis

package [147]. The Forest Fire generation method was introduced by Leskovec, and produces

more realistic synthetic graphs than the frequently used Barabási-Albert as it replicates more

features seen in empirical graphs [145]. For all Forest Fire graphs used in the results section,

the forward burning probability was set to 0.35 and the backwards burning probability set to

0.32. These values produce graphs which approximately follow |E| = |V | ∗ 4. The empirical
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Table 3.2: Empirical graph datasets used to assess graph comparisons using Graph Fingerprints

Dataset |V | |E| %V inLCC NumTriangles

soc-Slashdot0902 82168 948464 100 602592
ca-HepPh 12008 118521 93.3 3358499

com-DBLP 317080 1049866 100 2224385
loc-Gowalla 196591 950327 100 2273138
wiki-Talk 2394385 5021410 99.8 9203519

data used was taken from the widely used SNAP datasets repository [146]. A summary of the

datasets used can be seen in Table 3.2. The datasets are taken from a range of domains including

collaboration, communication and social networks.

Random Rewire Graph Generation

To demonstrate that the GFP-C approach is highly sensitive to changes in the underlying

topology of a given graph, the edges in a Forest Fire graph with 100,000 vertices were rewired

in a random manner, as detailed in Section 2.4.2. Figure 3.1 shows how the degree distribution

of the original graph was altered by the random rewiring process, where the number after the

graph name indicates the quantity of edges rewired. The figure plots the number of vertices

NP (total) with a specified total degree value ktotal and illustrate how the internal connectivity

of the original Forest Fire graph is altered as more edges are rewired.

3.6.2 Comparision Testing Methodology and Environment

All the experiments for graph comparison presented in this chapter were performed upon a

small development Hadoop cluster consisting of a head node with a 6 core Intel Xeon E5-2609v3,

64GB RAM and 1TB of SSD storage. In addition, the cluster contains 4 worker nodes each with

2 * 8 core Intel Xeon E5-2630v3, 64GB RAM and 1TB of SSD storage. All nodes in the cluster

are connected via a dedicated SFP+ 10Gb network and run the same software stack of CentOS

7.2, Java 1.8, Scala 2.10.5, Apache YARN 2.7.1 and Apache Spark 1.6.1. All experiments using

Spark were run using YARN to allocate cluster resources in the form of containers.

For all experiments, γ was set to 2 to increase the weightings of the global features in the

final similarity score.
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(a) Original Graph (b) Graph 1 (102) (c) Graph 2 (103)

(d) Graph 3 (104) (e) Graph 4 (105) (f) Graph 5 (106)

Figure 3.1: Change In Degree Distribution After Rewiring Process.

3.6.3 Classification Dataset Generation

As outlined in Section 2.4, large quantities of graph data are not readily available within the

public domain. This makes the assessment of a global graph classification approach challenging

as numerous (at least in the order of hundreds) examples of graphs from each of the classes being

identified would need to be present, something that is not present in the standard benchmark

datasets. Additionally, having data generated by a known algorithmic processes can serve as

a very reliable source of ground truth. Due to these issues, two balanced synthetic datasets

were created using a combination of five mathematically understood random graph generation

methods from the SNAP graph library [147]. More details on the generation of random graphs

can be found in Section 2.4.1. The two datasets created for the experimentation are detailed

below:

Dataset One (Multi-Class) - Containing 10,000 graphs from each of the five generation

methods, creating a final dataset of 50,000 graphs, with five balanced classes. This dataset was

created to test the ability of the DTC approach at multi-class classification.
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Dataset Two (Binary Classification) - Containing 10,000 forest fire graphs and 10,000

randomly rewired forest fire graphs. The goal of this dataset was to test the sensitivity of the

DTC approach at classifying graphs which are highly topologically similar but of two different

classes.

The forest fire graphs represent a normal distribution of graphs, whereas the rewired graphs

represent anomalies where small changes have been made to their topologies. The random rewire

process modifies a given source graph’s topology by randomly altering the source and target of

a set number of edges according to the Erdős-Rényi random model. The number of edges each

graph was rewired by was chosen uniformly from a possible range of 100 to 10,000.

Many of the graph generation methods used require parameters to control aspects of the

generation process. To avoid our models over fitting to a particular set of generation parameters,

these we uniformly randomised by the amounts detailed below. Each graph was generated with

100,000 vertices and a varying number of edges controlled via the generation method.

The chosen generation methods cover a broad range of possible graph topological structures,

with a particular focus on those found in the social, web and citation domains. However the

type of structures found in many biological graphs (particularly graphs of brain connectivity) are

not typically covered by these generation approaches. Such graphs tend to exhibit hierarchical

[190] or modular [112] structure, however we leave analysis over these types of graphs as possible

future work. The final generation methods chosen were:

• Forest Fire (FF) [145] - The forward and backward burn probabilities were chosen uniformly

between 0 and 0.5.

• Barabási-Albert (BA) [7] - The number of connections made by each new vertex joining

the graph was chosen uniformly between two and six.

• Erdős-Rényi [70] - No parameters were randomised for this method as edges are made at

random, with each vertex having a mean degree of two.

• Small World (SW) [231] - The Watts-Strogatz Small world model was designed to generate

random graphs whilst accounting for, and replicating, features seen in real-world graphs

– specifically, to maintain the low average shortest path lengths of the ER model whilst

increasing local clustering coefficient. The rewire probability for the small world model was

chosen uniformly between 0 and 0.5.
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• R-MAT (RM) [47] - The R-MAT graph generator uses a recursive matrix technique to

generate realistic graphs. It requires the probability that a certain edge will fit into one of

three partitions within a 2× 2 matrix. These probabilities are uniformly chosen to sum to

less than one, with the mean degree being two.

3.6.4 Classification Testing Methodology and Environment

All the accuracy scores presented in the results section are the mean accuracy after k-fold

cross validation, considered the gold standard for model testing [11]. For k-fold cross validation,

the original dataset is partitioned into k equally sized partitions. k − 1 partitions are used to

train the model, with the remaining partition used for testing. The process is repeated k times

using a unique partition for testing and a mean taken to produce the final result.

Experimentation was performed on a compute system with 2 Nvidia Tesla K40c’s, 20C 2.3GHz

Intel Xeon E5-2650 v3, 64GB RAM and the following software stack: CentOS 7.2, GCC 4.8.5,

CUDA 7.5, CuDNN v4, TensorFlow 0.10.0, Keras 1.0.8, scikit-learn 0.17.1, Boost 1.56, Python

2.7.5 and Graph-Tool 2.8.

3.7 Results - Graph Comparison

In this section, the GFP-C approach is assessed against the criteria as discussed in section 3.4.

In each experiment, GFP-C is compared to the current state-of-the-art feature extraction graph

comparison method – NetSimile [25]. As both the GFP-C and NetSimile approaches generate

their final similarity scores using the Canberra distance, their results are directly comparable. It

is worth highlighting that other distance metrics, used in place of the Canberra distance, would

produce similar disparities between the results of the two approaches. When using the Canberra

distance metric to compare graph feature vectors the closer to zero the result, the more similar

the graphs. Thus a larger Canberra distance score indicates that two given graphs have a more

dissimilar topological structure.
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3.7.1 Sensitivity to Variations in Topology

For the results presented here, an original Forest Fire graph (with 105 vertices) was compared

to each of the rewired graphs (discussed in section 3.6.1) to measure the similarity between them.

Figure 3.2 shows that GFP-C is sensitive to the changes in the topology of the graph, with an

increase in the percentage of the graph rewiring always being detected as more dissimilar to the

source graph. The result shows that, not only is GFP-C comparable to NetSimile (NS), but it

is more sensitive to topological change indicated by the higher value of the Canberra distance.

Figure 3.2: Measuring sensitivity to changes in topological structure after random rewiring using
Graph Fingerprint Comparison (GFP-C) and NetSimile (NS).

3.7.2 Sensitivity to Variations in Size

The GFP-C approach was tested for its sensitivity at detecting variations in global graph

size. For this experiment, a random Forest Fire graph Go was generated with |V | = 104 and

|E| = 104.6. To compare with the source graph, six new graphs were generated again using the

Forest Fire method each with varying numbers of vertices and edges. As the Forest Fire method
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was used to generate all graphs, they will be highly structurally similar in their topologies. The

results comparing the GFP-C and NetSimile method for sensitivity to variations in graph size

are displayed in Figure 3.3. In the figure, graphs of varying sizes were compared to the original

graph Go to generate the similarity score.

Figure 3.3: Measuring sensitivity to changes in the size of the graph using Graph Fingerprint
Comparison (GFP-C) and NetSimile (NS). Note that scores are presented when comparing
against an ordinal graph Go with |V | = 104.

Figure 3.3 highlights that the GFP-C approach is more sensitive to variations in graph size

than the NetSimile method, with a change in size of the graph always detected as more dissimilar

to the source graph. It is interesting to note that GFP-C detects the graph of the same size as

the source graph as being highly similar, showing that it is strongly affected by global graph size

when making comparisons.

3.7.3 Runtime Analysis

The final criteria evaluated was the the runtime of the GFP-X feature extraction algorithm

across a range of empirical data sources, as well as comparing it to NetSimile. This is an
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interesting experiment as the reason for implementing GFP-X using Spark and GraphX was

to improve both runtime performance and the size of graphs that can be compared. For this

comparison, an implementation of the NetSimile approach in Graph-Tool, a highly efficient C++

graph analysis library which uses OpenMP to scale across multiple cores in a shared memory

system [63], was used. All the measures of runtime presented incorporate reading the graph

data into memory from HDFS or Disk as well as the YARN scheduling and allocation decision

times. As such, the presented runtimes are the total time taken to produce a final result from

the initial job submission. As NetSimile is not a distributed approach, its timings were obtained

by running it upon a single node from within the cluster. For fair comparison, GFP-X was also

run upon a single node in addition to the full cluster.

Figure 3.4 shows the runtime of the feature extraction stages for both GFP-X (Running on 1

(1E) and 12 (12E) Spark executors on the cluster) and NetSimile, across the datasets in Table

3.2, with the results being the average of five experiments and the error bars being one unit of

standard deviation. Whilst a direct comparison is difficult, due to GFP-X and NetSimile being

implemented in different languages, the figure does highlight some interesting results. Firstly, it

is clear that when running upon a single compute node GFP-X is significantly, often by over an

order of magnitude, faster than the C++ based NetSimile. Secondly, due to the comparatively

small size of datasets used, running across all nodes in the Spark cluster does not always result in

a decrease in runtime. It’s only when running on the largest dataset, wiki-Talk, that the inherent

costs associated with distributing data across the network become worthwhile.
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Figure 3.4: Runtime performance for the Graph Fingerprint Extract (GFP-X) and NetSimile
(NS) approaches across empirical datasets.
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Synthetic Data

In addition to testing on empirical datasets, the runtime of generating a single fingerprint

using the GFP-X approach was evaluated across a range of synthetic Forest Fire and Erdős-

Rényi graphs when running across the full five node Spark cluster. As the number of vertices

was increased in the generated data, the number of edges was kept such that |E| = |V | ∗2. These

experiments were performed to assess the relationship between number of vertices within a range

of topologically varying random graphs and the runtime of GFP-X. Again, all experiments were

repeated five times and the error bars presented as one unit of standard deviation. The runtime

of Apache Spark and GraphX jobs are significantly affected by several key user configurable

parameters which control how resources are allocated to the job and how many partitions the

data is stored across. For a fair comparison the number of containers, cores, partitions and

memory was kept constant across each dataset size. Due to this, the presented runtimes are not

the lowest achievable and could have been improved with optimal parameter selection for each

dataset size. However, it should be noted that the implicit algorithm for counting connected

components in GraphX currently contains an error in the code when scaling to massive graphs,

so for all the runtimes measured below this global feature has not been extracted.

Figure 3.5 shows how the runtime of the GFP-X approach responds to increases in the number

of vertices within a Forest-Fire graph. The additional line shows a linear relationship between

dataset size and runtime. This figure shows that GFP-X responds in close to a sub-linear fashion

to increases in the number of vertices within a graph. It can be seen that an increase of an order

of magnitude in the number of vertices, never corresponds with same increase in runtime. It is

interesting to note that at smaller graph sizes there is little variation in runtime, as it is likely

that Spark has a fixed initialisation time (JVM initialisation time, YARN scheduling delay and

data distribution) for a job of any dataset size.
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Figure 3.5: Runtime of the Graph Fingerprint Extract (GFP-X) across a range of Forest-Fire
graph sizes. The dotted line indicates a linear increase in runtime.
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Figure 3.6 shows how GFP-X responds to increases in the number of vertices within an Erdős-

Rényi graph. Again it can be seen that the GFP-X approach scales approximately sub-linearly to

increases in dataset size. Certainly below 107 vertices, the increase in runtime can be considered

sub-linear. However the increase from 107 to 108 requires moderately more than linear time

perhaps owning to the random nature of the topologies of Erdős-Rényi graphs not parallelising

well. However below 108 vertices, the profile of the runtime performance of the Erdős-Rényi

run is very similar to the profile of the runtime for the Forest Fire graphs. This suggests that

the runtime of the GFP-X is largely independent of the topological structure of the graph being

fingerprinted, a desirable quality for a graph mining algorithm.

Figure 3.6: Runtime of the Graph Fingerprint Extract (GFP-X) across a range of Erdős-Rényi
graph sizes. The dotted line indicates a linear increase in runtime.
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3.7.4 Discussion

The GFP-C approach outperforms the current state-of-the-art feature based extraction meth-

ods, displaying excellent runtime and can scale to previously unmanageable graph sizes. The

GFP-C approach is sensitive to detecting small variations in graph topology and overall graph

size. Due to the nature of the features extracted, the GFP-X approach requires no labels with the

graph datasets. However, perhaps the most promising result to arise is the sub-linear runtime of

the approach when increasing dataset size up-to 108 vertices on a modest 4 node Spark cluster.

3.8 Results - Graph Classification

The ability of DTC to perform accurate classification of graphs was assessed via the use of

the two datasets described in Section 3.6.3. Previous work has shown global graph features

classified via an SVM to be more accurate than state-of-the-art graph kernel methods [151]

[152]. As such, DTC is compared with an SVM to act as a baseline approach. To match with

the approaches found in the literature, it is trained upon the global features detailed in Section

3.3. Additionally, comparison is made with an SVM trained on the full feature vector to directly

assess the suitability of ANNs for graph classification. The SVM model parameters were chosen

via a grid search which found a third order polynomial kernel to be the most accurate on average.

Finally, all approaches are compared with and without the feature vectors being scaled to have

a zero mean and unit variance across each feature. Many machine learning models benefit from

the use of features that are standardised to the same range to aid the learning process [105].

For both the multi-class and binary classification results, six different methods are compared:

• DTC-Scaled : The DTC model trained on scaled full topological feature vectors.

• DTC-Unscaled : The DTC model trained on unscaled full topological feature vectors.

• SVM-Scaled : The SVM model trained on scaled full topological feature vectors.

• SVM-Unscaled : The SVM model trained on unscaled full topological feature vectors.

• SVM-Global-Scaled : The SVM model trained on scaled global only topological feature

vectors.
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• SVM-Global-Unscaled : The SVM model trained on unscaled global only topological feature

vectors.

It should be noted that for this dataset, attempts were made to compare performance with

several graph kernel approaches, but were unsuccessful as they could not fit in system memory.

Due to this issue, a second smaller dataset was generated to allow for the graph kernel methods

to run on them and for comparisons to be made with the DTC approach. The comparisons with

graph kernel approaches is detailed in Section 3.8.5.

3.8.1 Multi-Class Classification

To assess the accuracy of the DTC approach at performing multi-class classification, Dataset

One (detailed in Section 3.6.3) was used. The reported results, displayed in Table 3.3, are the

mean accuracy as a percentage of the k-fold cross validation along with the 95% confidence

interval. The table shows that the DTC approach has a very high accuracy across the k-fold

cross validation run and is over 10% more accurate than the best SVM approach. It can also be

seen that using the full feature vector with the SVM is much more accurate than using global

features alone. The table also highlights how beneficial feature scaling is to the overall accuracy

of both models. Figures 3.7 and 3.8 show the error matrices for the SVM-Scaled and the DTC-

Scaled methods respectively. These figures show the predicted against the true labels. The

SVM-Scaled approach has difficulty correctly classifying the ER, FF and SW classes, with the

ER class more frequently being classified as BA than its true class. However, Figure 3.8 shows

that DTC-Scaled is consistently accurate across all classes.

Table 3.3: Multi-Class Classification Results

Method Accuracy (%) Recall Precision F1 Score

DTC (Scaled) 99.958± 0.074 0.99998± 0.00004 0.99998± 0.00004 0.99998± 0.00004
DTC (Unscaled) 70.443± 7.819 0.70497± 0.07782 0.71247± 0.07862 0.70870± 0.012931

SVM (Full-Scaled) 88.432± 1.100 0.88396± 0.00867 0.88426± 0.00867 0.884261± 0.01097
SVM (Full-Unscaled) 26.113± 0.501 0.26079± 0.00948 0.25925± 0.00501 0.25897± 0.00721
SVM (Global-Scaled) 54.483± 1.252 0.54451± 0.01378 0.54483± 0.01252 0.54487± 0.01401

SVM (Global-Unscaled) 50.673± 1.092 0.50631± 0.01301 0.50673± 0.01092 0.50681± 0.01418
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Figure 3.7: Normalized Error Matrix For SVM (Scaled)

Figure 3.8: Normalized Error Matrix For DTC (Scaled)

3.8.2 Binary Classification

To assess the accuracy of the DTC approach at performing binary classification, Dataset

Two (detailed in Section 3.6.3) was used. Here we assess the sensitivity of DTC when classifying
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graphs which are highly topologically similar, so good performance in this task would indicate

that graph fingerprints are very sensitive to topological structure. Table 3.4 shows the results

for the binary classification. DTC achieves a very high accuracy when detecting binary classes,

with the DTC-Scaled approach beating the best SVM approach by over 30%. The accuracy of

the DTC in this dataset is very encouraging, as the topological distribution of the two classes

represented in this dataset are very close.

Table 3.4: Binary Classification Results

Method Accuracy (%) Recall Precision F1 Score

DTC (Scaled) 99.980± 0.049 0.99995± 0.00015 0.99995± 0.00015 0.99995± 0.00015
DTC (Unscaled) 51.435± 8.793 0.48850± 0.00983 0.52710± 0.00983 0.507066± 0.33614

SVM (Full-Scaled) 68.034± 8.821 0.70012± 0.31304 0.68034± 0.28739 0.71509± 0.33614
SVM (Full-Unscaled) 49.045± 1.141 0.48910± 0.01566 0.49045± 0.01141 0.49145± 0.00929
SVM (Global-Scaled) 56.482± 13.435 0.56780± 0.13913 0.57834± 0.14034 0.57302± 0.13024

SVM (Global-Unscaled) 42.546± 2.914 0.42916± 0.02959 0.43813± 0.03152 0.43359± 0.03102

3.8.3 Model Training Dynamics

When training Neural Network based models, the complete set of training data is passed

through the network multiple times, with one epoch being a complete pass through the training

data. Investigating the changes in model performance over this training process can give insights

into how well the model is learning. For example, how quickly the loss curve for a model begins

to plateau can give some indication of how complicated the given task is for the model to learn.

Additionally, how the performance of the model on both the training and validation sets changes

over time can be a useful indication of whether the model is over-fitting to the training data,

and thus hurting performance on the validation set.

Figure 3.9 highlights how the accuracy and loss value change as the multi-class model is

trained across thirty epochs. The figure shows that for the multi-class dataset, the DTC

model learns very quickly to distinguish between the different graph generation methods, as

within one epoch the loss curve has already plateaued close to zero. This suggests that the

topological information contained within the graph fingerprints is highly representative of the

graph’s domain. Additionally, Figure 3.9 shows that the model does not exhibit any signs of

over-fitting to the training set, as both the training and validations sets exhibit highly similar

curves in both the accuracy and loss scores.
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Figure 3.9: Multi Class Model Accuracy and Loss Score Over Epochs

Figure 3.10 shows how the performance of the model trained to perform binary classification

varies over time. Compared with the multi-class model, it is interesting to note that this model

takes over ten epochs longer until the improvements in accuracy begin to plateau. This demon-

strates that the classification task required by the binary dataset is indeed more complicated for

the model to learn correctly as the two classes have a similar topological structure. The Figure

also suggests that the model is again not over-fitting to the training set due to the similar curves

in the training and validation. This is promising as it shows that the model is able to generalise

well to unseen data, even in this more challenging task.
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Figure 3.10: Binary Model Accuracy and Loss Score Over Epochs
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3.8.4 Measuring Feature Importance

In this section, experiments are performed to attempt to judge the importance of the various

features that make up the graph fingerprint in the overall classification result. This can be

interesting as it allows for deeper insight into which topological structures are most useful for

the model during the classification process.

To achieve this, a concept similar to occlusion mapping from computer vision is used to test

how the model performance changes when input features are removed [207]. To achieve this, a

DTC model is trained to convergence as normal on the full training set. However, during the

testing phase, features are removed from the input before being passed into the model. The

predictive performance of the model with the features missing is then assessed to give some

indication of how the performance changes and thus how important the features were. The

results of this experiment are presented in Table 3.5. The first thing to note from the table is

there is always a reduction in accuracy on the test set when features are removed, although this

is quite small in many cases. It is also clear that the model is quite robust to the loss of features,

with many of the vertex level features being able to be removed with less than a 1% drop in

overall accuracy. This perhaps suggests that there is some redundancy in the features and that

some could be removed without sacrificing much performance. It is also interesting to note that

seemingly the feature whose removal affects the model the most is that of Eigenvector centrality,

perhaps indicating that is a measure which is easily able to distinguish between graph classes.

To perform further analysis of feature importance, the fingerprint vectors were used to train

a Random Forest model [40, 100]. Random Forest models allow for the importance of the

input features for the final classification result to be measured using techniques such as the gini

importance technique [41], which will be used here.

Table 3.6 shows the results of the gini feature importance test performed on the Random

Forest model. Here the score presented for each feature group is summed to give the final value

presented in the table. The results from this experiment seem to correlate with some of the

observations which were made from the previous experiments, specifically that the vertex level

features are more important than the global ones in the classification result. However, the results

here differ from the earlier ones as the Random Forest seems to place less importance on certain

features, specifically Eigenvector centrality. This is interesting as it suggests that the Random

Forest is finding different features to be useful when compared with DTC’s neural network.
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Features Used Accuracy (%)

All 99.99 ± 0.01

Vertex level only 99.92 ± 0.11
Global level only 69.34 ± 9.61

All but total degree 99.90 ± 0.20
All but two-hop away neighbours 99.90 ± 0.06
All but local clustering score 99.67 ± 0.30
All but average clustering of neighbourhood 99.47 ± 0.18
All but Eigenvector centrality 82.97 ± 5.48
All but Pagerank centrality 99.91 ± 0.09

All but centrality measures 75.57 ± 2.61
All but local neighbourhood measures 79.18 ± 5.19

Table 3.5: Measuring feature importance by removing various elements from the input to a
trained model and measuring the changes in accuracy.

Feature Gini Importance

Total Vertex 0.901
Total Global 0.098

Degree 0.247
Local clustering score 0.046
Two-hop away neighbours 0.125
Average clustering of neighbourhood 0.225
Pagerank centrality 0.108
Eigenvector centrality 0.098

Table 3.6: Measuring feature importance in a trained Random Forest model via gini importance.

3.8.5 Comparisons with Graph Kernels

Graph kernels are one of the most widely applied techniques for performing global graph level

classification - however as we have previously discussed they often have issues with runtime,

scaling to large graphs and requiring that graphs contain labels on the vertices or edges [136].

However it is still important to demonstrate that topological features are able to be at least

as discriminative as graph kernels. For this comparison, we needed a graph kernel approach

which does not require vertex or edge level features to be present, which unfortunately rules
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out the majority of the popular approaches including the Weisfeiler-lehman family [209]. The

two graph kernels which match these requirements are the Shortest Path [39] and Random Walk

[216] Kernels. We attempted to run both approaches on our dataset (discussed in Section 3.6.3),

but neither could run on the number and size of the graphs it contained.

We thus created a smaller dataset using the same five random generation methods which

contained only 1000 examples of each class, with each graph containing 1000 vertices. This is

interesting, as it allows us to explore how well the DTC approach performs when there is less

training data and smaller graphs available. However, even with this smaller dataset, the Random

Walk approach was unable to complete in over two weeks of runtime and it is excluded from

these results. The Shortest Path Graph Kernel (SP-GK) we used was taken from the GraKel

library [213], which was used to provide an optimised implementation in Python. The extracted

Graph Kernels are then passed into an SVM to perform the final classification as is common in

the literature [152].

Method Accuracy (%) Recall Precision F1 Score

DTC (Scaled) 100.± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
SP-GK 99.96± 0.01 0.9996± 0.0001 0.9996± 0.0001 0.9996± 0.0001

Table 3.7: Comparing Deep Topology Classification versus the Shortest Path Graph Kernel with
10-fold cross-validation

The results from comparing DTC to SPGK on the smaller dataset are presented in Table 3.7.

Again the results here are presented as the mean of 10-fold cross-validation. The table shows how

on this reduced dataset, both approaches are able to predict the class of graphs exceptionally

well, with DTC displaying complete ability to generalise to unseen examples across all test splits

of the dataset. Additionally, this result demonstrates that the DTC approach does not need vast

quantities of training data to perform well, with just 1000 examples of each class being used to

generate these results. This is interesting as ANN based models are traditionally assumed to

need many thousands of examples per class to perform well on unseen examples. This result

seems to call this assumption into question when performing graph classification, perhaps even

suggesting that less than 1000 examples per class could be used to train an accurate model.
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3.9 Conclusion

This chapter has explored the Graph Fingerprint and detailed how it can be used for the

tasks of graph comparison and global graph classification.

The Graph FingerPrint Comparison approach for assessing the similarity of two unlabelled

graphs, based upon their macro and micro features, has been presented. The GFP-X fingerprint

generation exploits Apache Spark and GraphX to extract powerful, neighbourhood based, fea-

tures from a graph in parallel. When comparing two graphs, the GFP-C approach is shown to be

sensitive to small variations in graph topology, graph size and function without the requirement

of labelled datasets whilst also scaling nearly sub linearly with dataset size across a Spark cluster.

Thus the GFP-C approach achieves all of the goals established for it in Section 3.4. The approach

demonstrates promising results and the concept of a compact but accurate representation of a

graph has numerous potential additional applications within machine learning.

Further, this chapter has presented a novel approach for global graph classification entitled

Deep Topology Classification. The presented results show that the combination of extracting

deep topological and global features from a graph and classifying these via a deep neural network

is an effective approach to the problem of global graph classification. The approach is shown to

have over 99% classification accuracy after k-fold cross validation across a multi-class and binary

dataset. This compares very favourably with the current state-of-the-art approach which has an

accuracy of just 88.4% for the multi-class and 68% for the binary datasets.

3.9.1 Current Limitations

Whilst the work presented in this chapter has been successful when compared with competing

approaches, there are some limitations with the work which are worth considering:

Global graph only: Currently the work in this chapter has only considered applications that

can be considered global graph tasks. There are however many important tasks in the field of

graph mining which operate at the level of vertices and edges. The work presented thus far would

not be applicable to such tasks.
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Datasets used: Due to the highlighted issues around the lack of large, labelled and publicly

available graph datasets, this chapter has made use of synthetically generated graphs as a proxy

in many of the experiments. However, it remains to be seen if the high accuracy demonstrated

by the approaches would be maintained if real-world data was to be used instead.

Hand-crafted features: The graph fingerprints comprise various topological features extracted

from the graphs. Whilst they have proven to be effective across the two tasks and the datasets

(both empirical and synthetic) used for evaluation, it is unknown if the same set of features

would continue to work well across all domains and tasks. One clear trend in the machine

learning literature is the move away from the use of hand-crafted features as input, and for

models to automatically learn the best data representation for themselves [80].

Lack of interpretability: The DTC approach explored in this chapter uses a deep neural

network to perform classification. However, concerns have been raised in the literature about

how interpretable such models are [249]. Interpretability is covered in greater detail in later

chapters, but briefly a model is said to be interpretable if the decisions made by it can be

understood clearly [77]. The use of a deep network in this work could reduce the interpretability

of the approach in the real-world. For example, limiting the ability of the model to ‘explain’ why

a graph was classified as belonging to a certain domain.

3.9.2 Future Work

There is large scope for future research based upon the work presented in this chapter.

Further work could be performed on incorporating other topological features into the graph

fingerprint beyond those studied thus far, perhaps focusing on those which can exploit any

auxiliary information available with the graphs. Additionally, steps could be taken to allow the

DTC approach to be used on empirical datasets, which could be achieved via the use of data

augmentation techniques to allow for model training upon limited amounts of input data.

Epilogue

This chapter has explored how best to represent a graph using only a set of topological features

extracted from it. The features were shown to be useful for the tasks of graph comparison and
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global classification, thereby achieving research objective 1. Additionally, the research presented

in this chapter has, since its initial publication, been expanded by a number of works from other

researchers which cite this work. For example, recent work has attempted to apply the concepts

explored here to real-world datasets to show that empirical graphs can indeed be classified via

their structural properties [197]. Other work has explored the use of a variation of the graph

fingerprint vector as a way to increase the realism of synthetic graph generation methods by

minimising the distance between generated and real graphs [169].

In the following chapter, focus will be shifting from exploring problems at the level of entire

graphs to those at the constituent parts: vertices and edges. Additionally, study will turn

to the emerging range of graph embedding techniques [84, 92, 124, 167], which learn graph

representations automatically. Knowledge gained in this chapter about the ability of certain

topological features to be able to represent a graph will be used to attempt to bring some level

of interpretability to these new approaches.
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Chapter 4

Exploring the Semantic Content

of Unsupervised Graph

Embeddings

Prologue

The work in Chapter 3 explored how a graph can be accurately represented by topological

features extracted from them. The work in this chapter changes scale to focus upon learning rep-

resentations at the level of vertices. In addition, focus will shift to explore recent methods, which

unlike the hand-crafted and mathematically understood topological features explored thus far,

attempt to automatically learn the best representations for a given problem. Such approaches are

unsupervised machine learning models, commonly referred to as graph embeddings, which have

recently emerged and demonstrated a more superior performance than traditional topological

feature based approaches for a range of vertex centric tasks. These approaches attempt to learn

a mapping from the vertices to a vector space, where certain key relationships present between

vertices is maintained in the resulting vector space.

In order to investigate research objective 2 (see Section 1.3), this chapter will explore the

possibility of bringing some level of interpretability to the new family of unsupervised graph
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embedding models by investigating whether any known topological features are represented in

the vector space. The experimental evidence presented in this chapter demonstrates that several

of the known topological features, many of which were explored in Chapter 3, can be detected in

the embedding space. This suggests that the type of topological structures being captured by the

graph embedding techniques do approximate many of the same type of structural connectivity

patterns used by human experts when representing graphs.

The work presented in this chapter has been published as the following works:

Stephen Bonner, John Brennan, Ibad Kureshi, Georgios Theodoropoulos, Andrew Stephen

McGough, and Boguslaw Obara. Evaluating the quality of graph embeddings via to-

pological feature reconstruction. In IEEE International Conference on Big Data, pages

2691–2700. IEEE, 2017

Stephen Bonner, Ibad Kureshi, John Brennan, Georgios Theodoropoulos, Andrew Stephen

McGough, and Boguslaw Obara. Exploring the semantic content of unsupervised graph

embeddings: An empirical study. Data Science and Engineering, 4(3):269–289, 2019

4.1 Introduction

Representing the complex and inherent links and relationships between and within datasets

in the form of a graph is a widely adopted practice across many scientific disciplines [170]. One

reason for its popularity is that the structure or topology of the resulting graph can reveal

important and unique insights into the data it represents. Recently, analysing and making

predictions about graphs using machine learning has shown significant advances in a range of

commonly performed tasks over traditional approaches [84]. Such tasks include predicting the

formation of new edges within the graph and the classification of vertices [167]. However, graphs

are inherently complex structures and do not naturally lend themselves as input into existing

machine learning methods, most of which operate on vectors of real numbers.

Graph embeddings1 are a family of machine learning models which learn latent representations

for the vertices within a graph. The goal of all graph embedding techniques is broadly the same:

1 In this work, focus is on vertex representation learning approaches.



69

to transform a complex graph, with no inherent representation in vector space, into a low-

dimensional vector (often in the range of 50 to 300 dimensions) representation of the graph or

its elements. More concretely, the objective of a graph embedding technique is to learn some

function f : V → Rd which is a mapping from the set of vertices V to a set of embeddings for

the vertices, where d is the required dimensionality of the resulting embedding. This results in

the mapping function f producing a matrix of dimensions |V | by d, i.e. an embedding of size d

for each vertex in the graph. It should be noted that this mapping is intended to capture the

latent structure from a graph by mapping structurally similar vertices together in the embedding

space. Many of the recent approaches are able to produce low-dimensional graph representations

without the need for labelled datasets. These representations can then be used as input to

secondary supervised models for downstream prediction tasks, including classification [186] or

link prediction [87]. Thus, unsupervised graph embeddings are becoming a key area of research

as they can be viewed as acting as a translation layer between the raw graph and some desired

machine learning model.

However, to date, there has been little research undertaken into why graph embedding

approaches have been so successful. They all aim to capture as much topological information as

possible during the embedding process, but how this is achieved, or even exactly what structure

is being captured, is currently unknown. In this work, focus is placed solely upon unsupervised

graph embedding techniques as this work aims to explore what features the techniques learn from

the topology alone, without the requirement for labels. This work attempts to provide insight into

the graph embedding process itself, by exploring if the known and mathematically understood

range of topological features [170] are being approximated in the embedding space. To achieve

this, an investigation is performed to discover whether a mapping from the embedding space to

a range of topological features is possible. The hypothesis of this work is that if such a mapping

can be found, then the topological structure represented by that feature is thus approximately

captured in the embedding space. Such a discovery could start to provide a way to interpret

the graph embedding process, by experimentally demonstrating which topological structures are

approximated to create the representations.

In summary, the work presented in this chapter is designed to tackle research objective 2

and the methodology employed uses a combination of supervised and unsupervised downstream

models to predict topological features directly from the embeddings.
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4.1.1 Chapter Contributions

The key contributions of this chapter are as follows:

• An investigation into whether unsupervised graph embeddings are learning something

analogous to traditional vertex level graph features. If this is the case, is there a particular

type of feature which is being approximated most commonly.

• Empirical evidence to show that several known topological features are demonstrated to be

present in graph embeddings. This observation can be used to help bring interpretability

to the graph embedding process by detailing which graph features are key in creating high

quality representations.

• Detailed experimental evidence is presented, using five state-of-the-art unsupervised graph

embedding approaches, across seven topological features and six empirical graph datasets

to support these claims.

To aid in reproducibility of the results presented in this chapter, all of the associated code

has been open-sourced and made available online. In addition, results are presented upon public

benchmark datasets and key model parameters are reported. The code for extracting graph

embeddings and performing experiments to measure topological features is available here - https:

//github.com/sbonner0/unsupervised-graph-embedding/

4.2 Previous Work

This section explores the prior research regarding graph embedding techniques and previous

approaches measuring known features in embeddings. We first introduce the notion of graph

embeddings, detail supervised and factorization based approaches, explore in detail state-of-the-

art unsupervised approaches which will be used throughout the rest of this chapter and finally

review past attempts to provide interpretability to embedding approaches.

https://github.com/sbonner0/unsupervised-graph-embedding/
https://github.com/sbonner0/unsupervised-graph-embedding/
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4.2.1 Introduction to Graph Embeddings

The ability to automatically learn some descriptive numerical based representation for a

given graph is an attractive goal, and could provide a timely solution to some common problems

within the field of graph mining. Traditional approaches have relied upon extracting features

– such as various measures of a vertex’s centrality [178] – capturing the required information

about a graph’s topology, which could then be used in some down-stream prediction task [25,

152]. However, such a feature-extraction based approach relies solely upon the hand-crafted

features being a good representation of the target graph. Often a user must use extensive

domain knowledge to select the correct features for a given task, with a change in task often

requiring the selection of new features [152].

Graph embedding models are a collection of machine learning techniques which attempt to

learn key features from a graph’s topology automatically, in either a supervised or un-supervised

manner, removing the often cumbersome task of end users manually selecting representative

graph features [186]. This manual process, known as feature selection [90] in the machine learning

literature, has clear disadvantages as certain features may only be useful for a certain task. It

could even negatively affect model performance if utilised in a task for which they are not well

suited. Arguably, many of the recent exciting advances seen in the field of Deep Learning have

been driven by the removal of this feature selection process [87], instead allowing models to learn

the best data representations themselves [80]. For a selection of recent review papers covering

the complete family of graph embedding techniques, readers are referred to [43, 59, 92, 247]. The

work presented in this chapter focuses on neural network based approaches for graph embedding,

as these have demonstrated superior performance compared with traditional approaches [84].

Supervised Approaches

Within the field of machine learning, approaches which are supervised are perhaps the most

studied and understood [80]. In supervised learning, the datasets contain labels which help guide

the model in the learning process. In the field of graph analysis, these labels are often present

at the vertex level and contain, for example, the meta-data of a user in a social network.

Perhaps the largest area of supervised graph embeddings is that of Graph Convolutional

Neural Networks (GCNs) [42], both spectral [64, 128] and spatial [174] approaches. Such
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approaches pass a sliding window filter over a graph, in a manner analogous with Convolutional

Neural Networks from the computer vision field [80], but with the neighbourhood of a vertex

replacing the sliding window. Current GCN approaches are supervised and thus require labels

upon the vertices. This requirement has two significant disadvantages: Firstly, it limits the

available graph data which can be used due to the requirement for labelled vertices. Secondly,

it means that the resulting embeddings are specialised for one specific task and cannot be

generalised for a different problem without costly retraining of the model for the new task.

Factorization Approaches

Before the recent interest in learning graph embeddings via the use of neural networks, a

variety of other approaches were explored. Often these approaches took the form of adjacency

matrix factorization, in a similar vein to classical dimensionality reduction techniques such as

Principal Component Analysis (PCA) [92] [232]. Such approaches first calculate the pairwise

similarity between the vertices of a graph, then find a mapping to a lower dimensional space, such

that the relationships observed in the higher dimensions are preserved. An early example of such

an approach is that of the Laplican eigenmaps, which attempt to directly factorize the Laplacian

matrix of a given graph [23]. Other approaches, often using the adjacency matrix, define the

relationship in low dimension space between two vertices in the graph as being determined by the

dot product of their corresponding embeddings. Such approaches include Graph Factorization

[4], GraGrep [44] and HOPE [177]. These dimensionality reduction based approaches are often

quadratic in complexity [247] and the predictive performance of the embeddings has largely been

superseded by the recent neural network based methods [84].

4.2.2 Unsupervised Stochastic Embeddings

DeepWalk [186] and Node2Vec [87] are the two main approaches for random walk based

embedding. Both of these approaches borrow key ideas from a technique entitled Word2Vec

[165] designed to embed words, taken from a sentence, into vector space. The Word2Vec model

is able to learn an embedding for a word by using surrounding words within a sentence as targets

for a single hidden layer neural network model to predict. Due to the nature of this technique,

words which frequently co-occur together in sentences will have positions which are close within

the embedding space. The approach of using a target word to predict neighbouring words is

entitled Skip-Gram and has been shown to be very effective for language modelling tasks [164].
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DeepWalk

The key insight of DeepWalk is to use random walks upon the graph, starting from each

vertex, as the direct replacement for the sentences required by Word2Vec. A random walk can

be defined as a traversal of the graph rooted at a vertex vt ∈ V , where the next step in the walk

is chosen uniformly at random from the vertices incident upon vt [16], these walks are recorded

as wt0, ..., w
t
n (where t is the walk starting from vt of length n, and wti ∈ V ), i.e. a sequence of

the vertices visited along the random walk starting from vt = wt0. DeepWalk is able to learn

unsupervised representations of vertices by maximising the average log probability P over the

set of vertices V :
1

|V |
∑|V |

t=1

∑n

i=0

∑
−c≤j≤c,j 6=0

logP (wti+j |wti), (4.1)

where c is the size of the training context of vertex wtn.2

The basic form of Skip-Gram used by DeepWalk defines the conditional probability P (wti+j |wti)
of observing a nearby vertex wti+j , given the vertex wti from the random walk t, can be defined

via the softmax function over the dot-product between their features [186]:

P (wti+j |wti) =
exp (Wᵀ

wt
i
W′wt

i+j
)∑|V |

t=1 exp (Wᵀ
wt

i
W′vt)

, (4.2)

where W and W′ are the hidden layer and output layer weights of the Skip-Gram neural network

respectively.

Node2Vec

Whilst DeepWalk uses a uniform random transition probability to move from a vertex to one

of its neighbours, Node2Vec biases the random walks by controlling which vertex will be visited

next. This biasing introduces two user-controllable parameters which dictate how far from, or

close to, the source vertex the walk progresses. This is done to capture either the vertex’s role

in its local neighbourhood (homophily), or alternatively its role in the global graph structure

(structural equivalence) [87]. Changing the random walk means that Node2Vec has a higher

accuracy over DeepWalk for a selection of vertex classification problems [87].

2 Note if i + j < 0 then we skip these from the sum as we are past the start of the current walk.
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4.2.3 Unsupervised Hyperbolic Embeddings

Recently, a new family of graph embedding approaches has been introduced which embed

vertices into hyperbolic, rather than Euclidean space [48, 173]. Hyperbolic space has long been

used to analyse graphs which exhibit high levels of hierarchical or community structure [168], but

it also has properties which could make it an interesting space for embeddings [48]. Hyperbolic

space can be considered “larger” than Euclidean with the same number of dimensions, as the

space is curved, its total area grows exponentially with the radius [48]. For graph embeddings,

this key property means that one effectively has a much larger range of possible points into which

the vertices can be embedded. This property allows for closely correlated vertices to be embedded

close together, whilst also maintaining more distance between disparate vertices, resulting in an

embedding which has the potential to capture more of the latent community structure of a graph.

The hyperbolic approach we focus on was introduced by Chamberlain [48], and uses the

Poincaré Disk model of 2D hyperbolic space [69]. This was chosen as it uses the same underlying

skip-gram neural network so was directly comparable with the other models. In their model, the

authors use polar coordinates x = (r, θ), where r ∈ [0, 1] and θ ∈ [0, 2π] to describe a point in

space for each vertex v in the Poincaré Disk, which allows for the technique to be significantly

simplified as only two values are required for a representation [48]. Similar to DeepWalk, an

inner-product is used to define the similarity between two points within the space. The inner-

product of two vectors in a Poincaré Disk can be defined as follows [48]:

< x,y >= ||x||||y|| cos(θx − θy), (4.3)

= 4 arctanh rx arctanh ry cos(θx − θy), (4.4)

where x = (rx, θx) and y = (ry, θy) are the two input vectors representing two vertices and

arctanh is the inverse hyperbolic tangent function [48].

To create their hyperbolic graph embedding, the authors use the softmax function of Equation

4.2, common with DeepWalk and Node2Vec, but importantly replacing the Euclidean inner-

products with the hyperbolic inner-products of Equation 4.3. Aside from this, hyperbolic

approaches share many similarities with the stochastic approaches with regards to their input

data and training procedure. For example, the hyperbolic approaches are still trained upon pairs

of vertex IDs, taken from sequences of vertices generated via random walks on graphs.
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4.2.4 Unsupervised Auto-Encoder Based Approaches

There is an alternative set of approaches for graph embeddings which do not rely upon

random walks. Instead of adapting a technique based upon capturing the meaning of language,

such models are designed specifically for creating graph embeddings using Deep Learning [80]

– deep auto-encoders [99]. Auto-encoders are an un-supervised neural network, where the goal

is to accurately reconstruct the input data through explicit encoder and decoder stages [203].

Two such approaches are Structural Deep Network Embedding (SDNE) [229] and Deep Neural

Networks for Learning Graph Representations (DNGR) [45].

The authors of these approaches argue that a deep neural network, versus the shallow Skip-

Gram model used by both DeepWalk and Node2Vec, is much more capable of capturing the

complex structure of graphs. In addition the authors argue that for a successful embedding, it

must capture both the first and second order proximity of vertices. Here the first order proximity

measures the similarity of the vertices which are directly incident upon one another, whereas the

second order proximity measures the similarly of vertices neighbourhoods. To capture both of

these elements SDNE has a dual objective loss function for the model to optimise. The input

data to SDNE is the adjacency matrix A, where each row a represents the neighbourhood of a

vertex.

The objective function for SDNE comprises two distinct terms, the first term captures the

second order proximity of the vertices neighbourhood, whilst the second captures the first order

proximity of the vertices by iterating over the set of edges E:

LSDNE =

|V |∑
i=1

||(q′i − qi)� bi||22 + α

|E|∑
u,v=1

Au,v||(W(k)
u −W(k)

v )||22, (4.5)

where qi and q′i are the input and reconstructed representation of the input, � is the element

wise Hadamard product and bi is a scaling factor to penalise the technique if it predicts zero

too frequently, W(k) is the weights of the kth layer in the auto-encoder technique and α is a

user-controllable parameter defining the importance of the second term in the final loss score

[229].

To initialise the weights of the deep auto-encoder used for this approach, an additional neural

network must be trained to find a good starting region for the parameters. This pre-training
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neural network is called a Deep Belief Network, and is widely used within the literature to form

the initialisation step of deeper models [71]. However, this pre-training step is not required by

either the stochastic or hyperbolic approaches as random initialisation is used for the weights,

and adds significant complexity.

In comparison with SDNE, instead of relying solely upon the raw adjacency matrix as input,

DNGR creates a new denser representation to be passed to an auto-encoder [45]. The authors

have the model reconstruct the pointwise mutual information matrix (PPMI) of the input graph,

which captures vertex co-occurrence information in a sequence created via a random surfer

model. Additionally, instead of passing this to a traditional auto-encoder, a stacked de-noising

auto-encoder is used with the goal of creating a more robust vertex representation. This stacked

de-noising auto-encoder adds a small quantity of noise to the input data, which the model must

learn to disregard during the training process.

4.2.5 Observing Features Preserved in Embeddings

Graph Embeddings Features

To date, there has been little research performed exploring a theoretical basis as to why

graph embeddings are able to demonstrate such good performance in graph analytic tasks, or

to bring interpretability to the graph embeddings process. Goyal and Ferrar [84] presented an

experimental review paper on a selection of graph embedding techniques. The authors use a

range of tasks including vertex classification, link prediction and visualization to measure the

quality of the embeddings. However the authors do not explore the use of topological structure

as a way to provide interpretability of how the graph embedding process functions. In addition,

the authors do not consider embeddings taken from promising unsupervised techniques – such as

the family of hyperbolic approaches, nor do they explore performance across imbalanced classes

during the classification.

Recent work has speculated on the use of a graph’s topological features as a way to improve

the quality of vertex embeddings by incorporating them into a supervised GCN based model

[93]. They show how aggregating a vertex feature – even one as simple as its degree – can

improve the performance of their model. Further, they present theoretical analysis to validate

that their approach is able to learn the number of triangles a vertex is part of, arguing that
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this demonstrates the model is able to learn topological structure. We take inspiration from

this work, but consider unsupervised approaches as well as exploring whether richer and more

complicated topological features are being captured in the embedding process. In a similar vein,

an approach for generating supervised graph embeddings using heat-kernel based methods is

validated by visualizing if a selection of topological features are present in a two-dimensional

projection of the embedding space [150].

Research has investigated the use of a graph’s topological features as a way of validating the

accuracy of a neural network based graph generative model [156]. With the presented model, the

authors aim to generate entirely new graph datasets which mimic the topological structure of a

set of target graphs – a common task within the graph mining community [7]. To validate the

quality of their model, they investigate if a new graph created from their generative procedure

has a similar set of topological features to the original graph.

Perhaps most closely related to our present research is work exploring the use of random walk

based graph embeddings as an approximation for more complex vertex level centrality measures

on social network graphs [204]. The authors argue that graph embeddings could be used as a

replacement for centrality measures as they potentially have a lower computational complexity.

The work explores the use of linear regression to try to directly predict four centrality measures

from the vertices of three graph datasets, with limited success [204].

Our own work differs significantly as we attempt to provide insight into what exactly graph

embeddings are learning with a view to allow for greater interpretability, explore a wider range

of embeddings approaches, use datasets from a wider range of domains, explore more topological

features, use classification rather than regression as the basis for the analysis and address the

inherent unbalanced nature of most graph datasets.

Feature Learning in Other Domains

A large number of the successful unsupervised graph embedding approaches have adapted

models originally designed for language modelling [87, 186]. Some recent research has investigated

how best to evaluate a variety of unsupervised approaches for embedding words into vectors

[205]. They choose a variety of Natural Language Processing (NLP) tasks, which capture some

known and understood aspects of the structure of language, and investigate how well the chosen
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embedding models perform for these tasks. They conclude that no single word embedding model

performs the best across all the tasks they investigated, suggesting there is not a single optimal

vector representation for a word. What features are used to help word embeddings achieve

compositionality – constructing the meaning of an entire sentence from the component words,

has also been explored [153]. Further research has investigated the use of word embeddings to

create representations for the entire sentence using word features [57]. The work suggests that

word features learned by the embeddings for natural language inference can be transferred to

other tasks in NLP, although fails to provide any real interpretability to them.

Outside of NLP, there has been work in the field of Computer Vision (CV) investigating what

known features, already commonly used for image representation, are captured by deep convo-

lutional neural network. These features can then be potentially used to provide interpretability

to the models. For example, it has been shown that convolutional networks, when trained for

image classification, often detect the presence of edges in the images [246]. The same work also

shows how the complexity of the detected edges increases as the depth of the network increases.

In this present work, we take inspiration from these approaches and attempt to provide insight

and a potential theoretical basis for the use of graph embeddings by exploring which known graph

features can be reconstructed from the embedding space.

4.3 Semantic Content of Graph Embeddings

Despite extensive prior work in unsupervised graph embedding highlighting how they perform

well for the tasks for which they were proposed (such as vertex classification and link prediction

[84]), there has been little work exploring why these approaches are successful. This could

allow for an increased level of interpretability to graph embeddings. The approach presented

draws inspiration from recent work in Computer Vision and Natural Language Processing which

examine if traditional features (the edges detected in images for example) are captured by deep

models.

Topological features are one known and mathematically understood way to accurately identify

graphs and vertices [152] (Also see the work detailed in Chapter 3). We hypothesise that if graph

embeddings are shown to be learning approximations of existing features, this could begin to

provide a theoretical basis for the interpretability of graph embeddings. This would suggest that
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graph embeddings are automatically learning detailed and known graph structures in order to

create the representations. This could explain how they have been so successful in a variety of

graph mining tasks. Effectively the graph embedding techniques would be acting as an automated

way of learning the most representative topological feature(s) for a given objective function.

If graph embeddings are shown to be learning topological features, then other interesting

research questions arise. For example, do competing embedding approaches learn different

topological structures, do different graph datasets each require different features to be approx-

imated in order to create a good representation, what is the structural complexity of the features

approximated by the embeddings or even are the embeddings capable of approximating multiple

features simultaneously? These questions are explored more in the evaluation section of this

chapter presented in Section 4.5.

In order to explore these questions, we attempt to predict a selection of topological features

directly from graph embeddings computed from a range of state-of-the-art approaches across a

series of empirical datasets. We suggest that if a second mapping function f : Rd → Λ can be

found which accurately maps the embedding space to a given topological feature Λ, then this

is strong evidence that something approximating the structural information represented by Λ is

indeed present in the embedding space. Here the mapping function could take the form of a linear

regression, but for this work we investigate a range of classification algorithms – this is explored

more in Section 4.3.3. We assess a range of known topological features, from simple to complex,

to gain a better understanding of the expressive capabilities of the embedding techniques.

4.3.1 Predicting Topological Features

Numerous topological features have been identified in the literature, measuring various aspects

of a graph’s topology, at the vertex, edge and graph level [152]. As we are focusing our work

here upon methods for creating vertex embedding, we will focus on features which are measured

at the vertex level of a given graph. We have selected a range of vertex level features from

the graph mining literature, which capture information about a vertex’s local and global role

within a graph [87]. These are similar features to those used to classify graph structure in the

Chapter 3. This selection of features range from ones which are simple to compute from vertices

directly adjacent to each other, to more complex features which can require information from
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many hops3 further along within the graph. This will allow us to explore whether embedding

models learn complex topological features, or are they able to learn good representations of only

simple features. The topological vertex level features we are predicting are detailed below, listed

approximately by the complexity of structure being captured:

• Total Degree - The sum of both the in and out degree for a vertex v, denoted as kv.

• Degree Centrality - A simple centrality score which provides a normalised measure of

vertex connectivity [115]. The equation for computing this value can be found in Section

2.3.4.

• Number Of Triangles - The number of triangles containing the vertex v, detailed more

in Section 2.3.3.

• Local Clustering Score - The local clustering score for vertex v represents the probability

of two neighbours of v also being neighbours of each other [231]. It is detailed more in

Section 2.3.

• Eigenvector Centrality Value - The Eigenvector centrality is used to calculate the

importance of each vertex within a graph by measuring neighbour importance [27]. More

details on this as well as the equation for computing it can be found in Section 2.3.4.

• PageRank Centrality Value - The PageRank centrality method was originally developed

by Google, however it is now commonly used to measure the local influence of a vertex

within a graph [94, 178]. The equation for computing this value can be found in Section

2.3.4.

• Betweenness Centrality - The Betweenness centrality of a vertex depends upon the

frequency with which it acts as a bridge between two additional vertices [94]. The equation

for computing this value can be found in Section 2.3.4.

4.3.2 Graph Feature Distribution

Many empirical graphs, especially those representing social, hyper-link and citation networks,

have been shown to have an approximately power-law distribution of degree values, where most

3 Hops represent the length of the sequences of vertices that must traversed to get from vertices i to j.
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vertices only have a small number of edges and there are a few super-connected hubs [73]4. This

heavy-tailed distribution profile poses a challenge for machine learning models, as it means the

features we are trying to predict are extremely unbalanced, with a heavy skew towards the lower

range of features. Imbalanced class distribution creates difficulties for machine learning models,

as there are fewer examples of the minority classes for the model to learn, which can often lead

to poor predictive performance on these classes [80]. It has been shown that the distribution

of other topological features can also follow a heavy-tailed distribution in many graphs [7]. To

demonstrate this phenomenon, Figure 4.1 shows the distribution of a range of topological feature

values for the cit-HepTh dataset [146]. The Figure shows that all the topological feature values

tested largely follow an approximately heavy-tailed distribution. This fact has the potential to

make predicting the value of a certain topological feature challenging, as the datasets will not be

balanced and any model attempting to find the mapping f : Rd → Λ, will be prone to over-fitting

to the majority classes. Our approach for tackling this issue is outlined in the following section.

4.3.3 Methodology

Unlike previous studies [204] we employ classification and visualization, instead of regression,

as a way to explore the embedding space. We chose these approaches as predicting topological

features directly via the use of regression has proven challenging in prior work [204], owing

largely to the imbalance problem explored in Section 4.3.2. With such an imbalanced dataset,

using a classification based approach is often advantageous [176] as techniques exist to over-

sample minority examples. However, the features we are attempting to predict are continuous,

so must go through some transformation stage before classification can be performed. For our

transformation stage, we follow a procedure similar to that introduced by Oord et al.[176]. We

bin the real-valued features into a series of classes via the use of a histogram, where the bin in

which a particular feature is placed becomes its class label. One can consider each of these newly

created classes as representing a range of possible values for a given feature. As an example, we

could transform a vertex’s continuous PageRank score [178] into a series of discrete classes via the

use of a histogram with a bin size of three, where each of the newly created classes represented

a low, medium or high PageRank score.

Although this binning process helps with the feature imbalance, it still produces a skew in the

number of features assigned to each class. To further address this issue, we take the logarithm of

4 That degree distributions in many domains are always truly power-law has become an area of disagreement
within the community, as it is beyond the scope of this thesis, interested readers are refereed to [56, 215].
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Figure 4.1: Distribution of topological feature values from the cit-HepTh dataset in log scale:
(a) total vertex degree distribution, (b) distribution complete triangles for each vertex, (c)
Eigenvector centrality distribution and (d) Betweenness centrality score distribution.
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each feature value before it is passed to the binning function. This will mean that features within

the same order of magnitude will be assigned the same class, for example vertices with degrees

in the range of 0 to 101 would be assigned into one class, whilst degree values between 102 to

103 would be assigned to another class. This was performed as it dramatically improved the

balance of the datasets, and as we are only attempting to discover if something approximating

the topological features is present in the embedding space, we found that predicting the order of

magnitude to be sufficient.

In order to allow for a good distribution of feature values in the datasets we are using, in

our experiments we utilise a bin size of six for the histogram function, meaning that six discrete

classes were created for each of the features. This value was chosen empirically from our datasets

as it fully covered the numerical range of the topological features we measured. For example, we

found that the centrality values in our datasets fell within a range of six orders of magnitude,

which is what we used to set the number of bins. It should be noted that this value would need

to be tuned depending upon the datasets and features being used.

In addition to the use of classification, we explore an additional method to bring interpretab-

ility to graph embeddings, that being a visualisation technique entitled t-Distributed Stochastic

Neighbour Embedding (t-SNE) [157]. This technique allows relatively high dimensional data,

such as graph embeddings, to be projected into a low dimensional space in such a way as to

preserve the inter-spatial relationship between points that were present in the original space.

Thus, we utilise t-SNE to project the embeddings down to two dimensions so they can be easily

visualised. This process is performed without the need for any classification to be trained upon

the embeddings, removing the issues associated with classifying unbalanced datasets. Once the

projection has been performed, we can colour each point in accordance with its feature value, be

that one that has been transformed via the binning process, or even the raw value itself.

4.3.4 Embedding Approaches Compared

In this chapter, five state-of-the-art unsupervised graph embedding approaches are evaluated

as a way of exploring what semantic content is extracted from a graph to create the embeddings.

The approaches are as follows: DeepWalk, Poincaré Disk, Structural Deep Network Embedding

and Node2Vec 5, which are detailed in Table 4.1 and present the approach names, the year

5 Please note, we explore two variations of Node2Vec, bringing the total number of approaches to five
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and venue of publication, the primary technique used and the computational complexity of

the embedding process. These approaches were chosen from the literature as they represent

a good cross-section of the current competing methodologies and all either exploit a different

method of sampling the graph, use different geometries for the embedding space or use competing

methods of comparing vertices. This selection of approaches will allow exploration of interesting

research questions. Such questions include whether any differences between the approaches

can be explained by what graph structures they learn and do methods which promote local

exploration around the target vertex only learn local structural information? To explore this

second question in more detail, we created two versions of Node2Vec: Node2Vec-Structural,

which biases the random walks used to create training pairs for the model to explore vertices

further away from the target vertex and Node2Vec-Homophily, which biases the random walks

to stay closer to the target vertex.

Approach Year Type Published Complexity

DeepWalk 2014 stochastic KDD [186] O(|V |)
Node2Vec 2016 stochastic KDD [87] O(|V |)

SDNE 2016 auto-encoder KDD [229] O(|V ||E|)
Poincaré Disk 2017 hyperbolic MLG [48] O(|V |)

Table 4.1: The Graph Embedding approaches used for experimentation.

4.4 Experimental Setup and Classification Algorithm Se-

lection

4.4.1 Metrics

Presented Results

All the reported results are the mean of five replicated experiment runs along with confidence

intervals. For the classification results, all the accuracy scores presented are the mean accuracy

after k-fold cross validation – considered the gold standard for model testing [11]. For k-fold

cross validation, the original dataset is partitioned into k equally sized partitions. k−1 partitions

are used to train the model, with the remaining partition being used for testing. The process is

repeated k times using a unique partition for each repetition and a mean taken to produce the

final result.
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Precision Metrics

For reporting the results of the vertex feature classification tasks, we report the macro-f1 and

micro-f1 scores with varying percentages of labelled data available at training time. This is a

similar setup to previous works [84] [87].

The micro-f1 score calculates the f1-score for the dataset globally by counting the total number

of true positives (TP), false positives (FP) and false negatives (FN) across a labelled dataset L.

Using the notation from [84], micro-f1 is defined as:

microf1 = 2 · Pmicro ·Rmicro
Pmicro +Rmicro

, (4.6)

where:

Micro Precision(Pmicro) =

∑|L|
l=1 TP (l)∑|L|

l=1 TP (l) + FP (l)
,

Micro Recall(Rmicro) =

∑|L|
l=1 TP (l)∑|L|

l=1 TP (l) + FN(l)
,

and TP (l) denotes the number of true positives the model predicts for a given label l, FP (l)

denotes the number of false positives and FN(l) the number of false negatives.

The macro-f1 score, when performing multi-label classification, is defined as the average

micro-f1 score over the whole set of labels L:

macrof1 =
1

|L|
∑
l∈L

f1(l), (4.7)

where f1(l) is the f1-score for the given label l.

4.4.2 Experimental Setup

Implementation Details

The graph embedding approaches used for experimentation were reimplemented in Tensorflow

[1], as the author-provided versions were not all available using the same framework. We also
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ensure the same Tensorflow-based optimisations were used across all the approaches wherever

possible [210]. Neural Networks contain many hyper-parameters which a user can control to

improve the performance, both of the predictive accuracy and the runtime, of a given dataset.

This process can be extremely time consuming and often requires users to perform a grid search

over a range of possible hyper-parameter values to find a combination which performs best [80].

For choosing appropriate values for the required hyper-parameters for the approaches, we used

the default hyper-parameters as proposed by the authors in their original papers, keeping them

constant across all datasets. The key hyper-parameters used for each approach are detailed in

Table 4.2 which displays the otimiser choice, the learning rate used and other parameter choices

specific to an approach. We have open sourced our implementations of these approaches and

made them available online6.

Experimental Environment

Experimentation was performed on a compute system with 2 NVIDIA Tesla K40c’s, 2.3GHz

Intel Xeon E5-2650 v3, 64GB RAM and the following software stack: Ubuntu Server 16.04 LTS,

CUDA 9.0, CuDNN v7, TensorFlow 1.5, scikit-learn 0.19.0, Python 3.5 and NetworkX 2.0.

Experimental Datasets

The empirical datasets used for evaluation were taken from the Stanford Network Analysis

Project (SNAP) data repository [146] and the Network Repository [196] and are detailed in Table

4.3, showing the dataset name, number of vertices and edges and the domain from which the

data originates. This domain label is taken from the listings of the graphs domain provided by

SNAP [146] and Network Repository [196].

6 https://github.com/sbonner0/unsupervised-graph-embedding/

Approach Optimiser Learning Rate Specific Parameters

SNDE RMSProp 0.01 α=500, b=10, epochs=500
Node2Vec-S SGD 0.1 p=0.5, q=2, epochs=15
Node2Vec-H SGD 0.1 p=1.0, q=0.5, epochs=15
DeepWalk SGD 0.1 epochs=15
Poincaré Disk (PD) SGD 0.1 p=0.5, q=2, epochs=15

Table 4.2: Key hyper-parameters used when training the various graph embeddings models.
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Dataset |V | |E| Domain Source

fly-drosophila-medulla 1,800 33,500 Biological [196]
cit-HepTh 27,770 352,807 Citation [146]

email-Eu-core 1,005 25,571 Communication [146]
inf-openflights 2,900 30,500 Infrastructure [196]

soc-sign-bitcoinotc 5,881 35,592 Blockchain [146]
ego-Facebook 4,039 88,234 Social [146]

Table 4.3: Empirical graph datasets used to assess the topological features approximated by
unsupervised graph embedding techniques.

4.5 Results

This section presents both the supervised and unsupervised results for predicting topological

features from graph embeddings.

4.5.1 Classification Algorithm Selection

As highlighted throughout this chapter, we are focusing our research on unsupervised graph

embedding approaches. In order to be able to use the embeddings for a secondary task, they must

be classified using a supervised classification model. Traditionally in the embedding literature, a

simple Logistic Regression is used in any classification task [165, 186], with seemingly little work

exploring the use of more sophisticated models to perform the classification.

In this section we explore the effectiveness of five different models at performing the classific-

ation of the different embedding approaches - Logistic Regression (LR), Support Vector Machine

(SVM) (Linear Kernel), SVM (RBF Kernel), a single hidden layer Neural Network and finally a

second more complex Neural Network with two hidden layers and a larger number of hidden units.

All the classifiers utilised in this section were taken from the Scikit-Learn Python package [185].

Additionally, given that our datasets do not have an equal distribution among the classes, we also

explore the effectiveness of weighting the loss function used by the model inversely proportional

to the frequency of the class [118]. This use of a weighted loss function, although common in

other areas of machine learning, has not hitherto been explored in regards to graph embeddings.

For the results in this section, we present the mean Macro and Micro F1 scores, introduced

in Section 4.4.1, after 5-fold cross validation. To assess the performance of the classifiers against
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Feature Classifier F1-Micro F1-Macro Uniform Strat Freq

DG

LR 0.336(±0.015) 0.190(±0.012) +65.09% +33.85% +12.07%
SVM(Lin) 0.339(±0.017) 0.164(±0.013) +66.57% +35.03% +13.07%
SVM(RBF) 0.336(±0.021) 0.158(±0.013) +65.09% +33.84% +12.07%
NN 0.329(±0.013) 0.200(±0.018) +61.65% +31.05% +9.73%
NN-2 0.326(±0.016) 0.192(±0.019) +60.18% +29.85% +8.73%

TC

LR 0.340(±0.011) 0.154(±0.014) +109.34% +37.19% +12.38%
SVM(Lin) 0.344(±0.015) 0.139(±0.006) +111.8% +38.8% +13.7%
SVM(RBF) 0.335(±0.018) 0.130(±0.010) +106.26% +35.17% +10.73%
NN 0.331(±0.019) 0.157(±0.013) +103.8% +33.56% +9.4%
NN-2 0.326(±0.017) 0.163(±0.015) +100.72% +31.54% +7.75%

EC

LR 0.590(±0.013) 0.474(±0.010) +195.66% +144.16% +92.18%
SVM(Lin) 0.591(±0.012) 0.480(±0.011) +196.16% +144.58% +92.51%
SVM(RBF) 0.552(±0.012) 0.446(±0.011) +176.62% +128.44% +79.8%
NN 0.629(±0.012) 0.512(±0.017) +215.2% +160.3% +104.89%
NN-2 0.630(±0.019) 0.513(±0.021) +215.7% +160.72% +105.21%

Table 4.4: Degree (DG), Triangle Count (TC) and Eigenvector Centrality (EC) classification
results for DeepWalk embeddings on the ego-Facebook dataset. Results for Micro and Macro-F1
scores are the mean after 5-fold cross validation, with standard deviations. Lift over Uniform,
Stratified and Frequency predictors are presented as percentages.

the imbalance present in the datasets, we also display the performance lift in mean test set

accuracy over three rule-based prediction methods to act as baselines. These methods are

Uniform Prediction (where the classification of each item in the test is chosen uniformly at

random from the possible classes), Stratified Prediction (where the classification follows the

distribution of classes in the training set) and Frequent Class Prediction (where the classification

is determined by the most frequent class in the training set). A positive lift across all metrics

strongly suggests that a mapping from the embedding space to the topological features is being

learned, as the classification algorithm is overcoming the biased distributions of classes in the

dataset.

We performed this experiment for all combinations of datasets, embedding approaches and

features, but due to the large quantity of results, we present only a subset here. Specifically

we present the results for ego-Facebook dataset, using embeddings generated by DeepWalk and

SDNE and classifying Degree, Triangle Count and Eigenvector Centrality. It should be noted

that the patterns displayed here are representative of ones seen across all datasets.

Table 4.4 highlights the performance of the potential classifiers, when using the DeepWalk
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embeddings taken from the ego-Facebook dataset. Results show that the choice of supervised

classifier can have a large impact on the overall classification score. It can also be seen that the

traditional choice of logistic regression does not produce the best results, with the neural network

and SVM classifier often giving the best scores but no single classifier is best overall, suggesting

that one needs to be chosen carefully for a given task.

Feature Classifier F1-Micro F1-Macro Uniform Strat Freq

DG

LR 0.284(±0.013) 0.177(±0.008) +53.15% +21.0% −5.28%
SVM(Lin) 0.295(±0.020) 0.167(±0.012) +59.08% +25.69% -1.61%
SVM(RBF) 0.289(±0.017) 0.142(±0.006) +55.85% +23.13% −3.61%
NN 0.253(±0.012) 0.187(±0.012) +36.43% +7.79% −15.62%
NN-2 0.247(±0.018) 0.193(±0.019) +33.2% +5.24% −17.62%

TC

LR 0.284(±0.015) 0.138(±0.011) +99.15% +18.87% −6.13%
SVM(Lin) 0.296(±0.016) 0.125(±0.008) +107.56% +23.89% −2.16%
SVM(RBF) 0.300(±0.018) 0.124(±0.006) +110.37% +25.57% -0.84%
NN 0.264(±0.020) 0.161(±0.018) +85.12% +10.5% −12.74%
NN-2 0.247(±0.018) 0.162(±0.016) +73.2% +3.38% −18.36%

EC

LR 0.297(±0.008) 0.166(±0.004) +70.4% +12.85% −3.26%
SVM(Lin) 0.316(±0.010) 0.156(±0.006) +81.3% +20.07% +2.93%
SVM(RBF) 0.309(±0.017) 0.149(±0.008) +77.28% +17.41% +0.65%
NN 0.286(±0.013) 0.198(±0.018) +64.08% +8.67% −6.84%
NN-2 0.272(±0.018) 0.201(±0.014) +56.05% +3.35% −11.4%

Table 4.5: Degree (DG), Triangle Count (TC) and Eigenvector Centrality (EC) classification
results for SDNE embeddings on the ego-Facebook dataset. Results for Micro and Macro-F1
scores are the mean after 5-fold cross validation, with standard deviations. Lift over Uniform,
Stratified and Frequency predictors are presented as percentages.

Table 4.5 highlights the results for the potential classifiers, when using the SDNE embeddings

taken from the ego-Facebook dataset. Again, the variation in classification score across the set

of tested classification metrics is quite substantial, with the linear SVM and neural network

approaches having perhaps a small margin of improvement over the others. It is interesting to

note that the logistic regression frequently used in the literature, never produces the highest

score in any metric. It can also be seen that, when compared with the DeepWalk results in Table

4.4, SDNE does less well at predicting all topological features which, although not the explicit

purpose of this section, is interesting to note.

Using the results from this section, particularly the generally higher f1-macro scores which

indicate a better prediction across all classes, all the classification results in the remainder of the
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chapter are presented using a single hidden layer neural network.

4.5.2 Topological Feature Prediction

In this section, we present the experimental evaluation of the classification of topological

features using the embeddings generated from the five approaches (DeepWalk, Node2Vec-H,

Node2Vec-S, SDNE and PD) on the datasets detailed in Table 4.3. We present both the macro-

f1 and micro-f1 scores plotted against a varying amount of labelled data available during the

training process. Here, a higher score equates to a better classification result – with a score

of one meaning a perfect classification of every example in the data. Each point of the line

representing the mean result from 5-fold cross validation, and the coloured area around the line

representing the standard deviation.

Figures 4.2 to 4.7 display the classification f1 scores for predicting the simplest feature we

are measuring: the degree of the vertices. Interestingly we see a large spread of results across

the datasets and between approaches, with no clear pattern emerging in this set of results. On

certain datasets, it is possible to see a high micro-f1 score, for example in the bitcoinotc dataset,

suggesting that an approximation of the degree value is present in the embedding. The set of

figures also show that SDNE and PD often have a lower score when compared with the stochastic

approaches. One interesting phenomenon is the characteristic saw-tooth pattern in the predicted

value for the Eu-Core dataset, as seen in Figure 4.4. This can be attributed to the dataset being

the smallest of the ones used for this set of experiments, as a small change in the prediction of

the model (for example, making one prediction over another) can have a disproportionally large

impact on performance. This pattern can be seen again with this dataset for many of the other

topological features predicted in this section.



91

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Labeled TrainingData

0.14

0.16

0.18

0.20

0.22

0.24

0.26

S
co
re

SDNE
DeepWalk
N2V-S
N2V-H
PD

(a) Macro Drosophila

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Labeled TrainingData

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

S
co
re

SDNE
DeepWalk
N2V-S
N2V-H
PD

(b) Micro Drosophila

Figure 4.2: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Degree (DG) value on the fly-drosophila-medulla dataset.
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Figure 4.3: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Degree (DG) value on the cit-HepTh dataset.
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Figure 4.4: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Degree (DG) value on the email-Eu-core dataset.
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Figure 4.5: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Degree (DG) value on the ego-Facebook dataset.
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Figure 4.6: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Degree (DG) value on the inf-openflights dataset.
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Figure 4.7: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Degree (DG) value on the soc-sign-bitcoinotc dataset.
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Figures 4.8 to 4.13 highlight the macro-f1 and micro-f1 scores for the classification of the

Degree Centrality value. As the Degree Centrality of a given vertex is strongly influenced by

its degree, it is perhaps unsurprising to observe largely similar patterns to those in the degree

figures, which again shows the dataset bitcoinotc to be the dataset with the highest accuracies.

As was seen in the set of degree figures, generally the three stochastic approaches have a similar

score for both macro-f1 and micro-f1.
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Figure 4.8: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Degree Centrality (DC) value on the fly-drosophila-medulla dataset.
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Figure 4.9: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Degree Centrality (DC) value on the cit-HepTh dataset.
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(b) Micro Email-EU

Figure 4.10: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Degree Centrality (DC) value on the email-Eu-core dataset.
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(b) Micro Facebook

Figure 4.11: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Degree Centrality (DC) value on the ego-Facebook dataset.
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(b) Micro Openflights

Figure 4.12: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Degree Centrality (DC) value on the inf-openflights dataset.
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(b) Micro Bitcoinotc

Figure 4.13: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Degree Centrality (DC) value on the soc-sign-bitcoinotc dataset.
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The results for the classification of Triangle Counts for the vertices are presented in Figures

4.14 to 4.19. This is a more complex feature than the previous two, as it requires more information

than is available from just the immediate neighbours of a given vertex. The figures show again

that, to some degree of accuracy, the feature is able to be reconstructed from the embedding

space, with bitcoinotc having the highest micro-f1 accuracy of all the datasets. SDNE and PD

continue to have, on average, the lowest accuracies.
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(b) Micro Drosophila

Figure 4.14: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Triangle Count (TR) value on the fly-drosophila-medulla dataset.
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(b) Micro HepTh

Figure 4.15: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Triangle Count (TR) value on the cit-HepTh dataset.



98

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Labeled TrainingData

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22

S
co
re

SDNE
DeepWalk
N2V-S
N2V-H
PD

(a) Macro Email-EU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Labeled TrainingData

0.15

0.20

0.25

0.30

0.35

0.40

0.45

S
co
re

SDNE
DeepWalk
N2V-S
N2V-H
PD

(b) Micro Email-EU

Figure 4.16: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Triangle Count (TR) value on the email-Eu-core dataset.
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(b) Micro Facebook

Figure 4.17: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Triangle Count (TR) value on the ego-Facebook dataset.
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(a) Macro Openflights
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(b) Micro Openflights

Figure 4.18: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Triangle Count (TR) value on the inf-openflights dataset.
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(a) Macro Bitcoinotc
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(b) Micro Bitcoinotc

Figure 4.19: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Triangle Count (TR) value on the soc-sign-bitcoinotc dataset.
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Classifying a vertex’s local clustering score across the datasets is explored in Figures 4.20 to

4.25. The figures show that this feature, although more complicated to compute than a vertices

triangle count, appears to be easier for a classifier to reconstruct from the embedding space.

With this more complicated feature, some interesting results regarding SDNE can be seen in the

Email-EU and HepTh datasets, where the approach has the highest macro-f1 score – perhaps

indicating that the more complex model is better able to learn a good representation for this

more complicated feature.
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(b) Micro Drosophila

Figure 4.20: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Local Clustering Coefficient (CLU) value on the fly-drosophila-medulla
dataset.
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(b) Micro HepTh

Figure 4.21: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Local Clustering Coefficient (CLU) value on the cit-HepTh dataset.
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(a) Macro Email-EU
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(b) Micro Email-EU

Figure 4.22: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Local Clustering Coefficient (CLU) value on the email-Eu-core dataset.
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(b) Micro Facebook

Figure 4.23: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Local Clustering Coefficient (CLU) value on the ego-Facebook dataset.
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(b) Micro Openflights

Figure 4.24: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Local Clustering Coefficient (CLU) value on the inf-openflights
dataset.
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(a) Macro Bitcoinotc
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(b) Micro Bitcoinotc

Figure 4.25: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Local Clustering Coefficient (CLU) value on the soc-sign-bitcoinotc
dataset.
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Figures 4.26 to 4.31 display the result for the classification of a vertex’s Eigenvector centrality.

This set of figures is perhaps the most interesting one so far as it shows high classification

accuracies across many of the empirical datasets, even though this feature is of greater complexity

than previous ones. They further support the results presented in Table 4.4, which showed

Eigenvector centrality having not only the highest accuracies, but also the highest lifts in accuracy

over the rule-based predictors. Interestingly SDNE does not demonstrate higher macro-f1 scores

in this experiment.
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(b) Micro Drosophila

Figure 4.26: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Eigenvetor Centrality (EC) value on the fly-drosophila-medulla
dataset.
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(b) Micro HepTh

Figure 4.27: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Eigenvetor Centrality (EC) value on the cit-HepTh dataset.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Labeled TrainingData

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
co
re

SDNE
DeepWalk
N2V-S
N2V-H
PD

(a) Macro Email-EU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Labeled TrainingData

0.06

0.05

0.04

0.03

0.02

0.01

0.00

0.01

S
co
re

+1
SDNE
DeepWalk
N2V-S
N2V-H
PD

(b) Micro Email-EU

Figure 4.28: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Eigenvetor Centrality (EC) value on the email-Eu-core dataset.
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Figure 4.29: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Eigenvetor Centrality (EC) value on the ego-Facebook dataset.
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(b) Micro Openflights

Figure 4.30: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Eigenvetor Centrality (EC) value on the inf-openflights dataset.
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(a) Macro Bitcoinotc
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Figure 4.31: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Eigenvetor Centrality (EC) value on the soc-sign-bitcoinotc dataset.
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In Figures 4.32 to 4.37, the approaches’ ability to correctly classify the PageRank score of the

vertices is considered. Here we see generally lower classification accuracies than the last set of

figures, perhaps owing to the more complicated nature of the PageRank algorithm, although high

classification accuracies can still be seen, particularly on the on the Bitcoinotc and Drosophila

datasets.
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Figure 4.32: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s PageRank (PR) value on the fly-drosophila-medulla dataset.
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Figure 4.33: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s PageRank (PR) value on the cit-HepTh dataset.
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Figure 4.34: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s PageRank (PR) value on the email-Eu-core dataset.
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Figure 4.35: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s PageRank (PR) value on the ego-Facebook dataset.
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Figure 4.36: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s PageRank (PR) value on the inf-openflights dataset.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Labeled TrainingData

0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24

S
co
re

SDNE
DeepWalk
N2V-S
N2V-H
PD

(a) Macro Bitcoinotc
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(b) Micro Bitcoinotc

Figure 4.37: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s PageRank (PR) value on the soc-sign-bitcoinotc dataset.
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Finally, Figures 4.38 to 4.43 highlight the ability of the graph embeddings to predict between-

ness centrality. Here, the figures show that this feature is on average, harder to predict from

the embeddings than the previous two centrality measures as evidenced by the lower accuracies

scores. Again SDNE shows the highest macro-f1 scores on the Drosophila and HepTh datasets,

indicating its embedding capture something closer to this structural information more effectively

than the other approaches.
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(b) Micro Drosophila

Figure 4.38: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Betweenness Centrality (BC) value on the fly-drosophila-medulla
dataset.
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(a) Macro HepTh
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(b) Micro HepTh

Figure 4.39: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Betweenness Centrality (BC) value on the cit-HepTh dataset.



112

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Labeled TrainingData

0.10

0.15

0.20

S
co
re

SDNE
DeepWalk
N2V-S
N2V-H
PD

(a) Macro Email-EU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Labeled TrainingData

0.20

0.25

0.30

0.35

0.40

0.45

0.50

S
co
re

SDNE
DeepWalk
N2V-S
N2V-H
PD

(b) Micro Email-EU

Figure 4.40: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Betweenness Centrality (BC) value on the email-Eu-core dataset.
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(a) Macro Facebook
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(b) Micro Facebook

Figure 4.41: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Betweenness Centrality (BC) value on the ego-Facebook dataset.
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(b) Micro Openflights

Figure 4.42: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Betweenness Centrality (BC) value on the inf-openflights dataset.
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(a) Macro Bitcoinotc
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(b) Micro Bitcoinotc

Figure 4.43: Micro and Macro F1 Scores, across a range of labelling fractions, for all approaches
when predicting a vertex’s Betweenness Centrality (BC) value on the soc-sign-bitcoinotc dataset.
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4.5.3 Confusion Matrices

One consideration that must be made is that the binning process, used to transform the

features into targets for classification, removes the inherent ordering present in continuous values.

As an example, a vertex with a degree of 8 would still be classified incorrectly if the prediction

was 10 or 100, but clearly one is more incorrect than the other. To address this, we present

a selection of error matrices, to explore how ‘wrong’ an incorrect prediction is. This is made

possible as the labels used for classification have consecutive ordering, as a result of a histogram

binning function, meaning that a prediction of 2 for a true label of 1, is more correct than a

prediction of 5.

Figure 4.44 displays the error matrices for a selection of the tested embedding approaches when

classifying Eigenvector Centrality in the ego-Facebook dataset, although similar patterns were

found across all datasets. With error matrices, the diagonal values represent a correctly classified

label, thus a good prediction will produce an error matrix with a higher concentration of diagonal

values. Figure 4.44 shows that, for the stochastic walk approaches DeepWalk and Node2Vec, the

error matrices have a higher clustering of values around the diagonals. Interestingly, when the

classification is incorrect for these approaches, the incorrect prediction tends to be close to the

true label. This phenomenon can clearly be seen in these approaches for labels 1 and 2, meaning

that embeddings for vertices with this particular Eigenvector Centrality are similar. Figure 4.44

also shows that, for this particular vertex feature, the embeddings produced via SDNE seemingly

do not contain the same topological information. This is highlighted by the lack of structure on

the diagonals of its error matrix.
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Figure 4.44: Error matrices for neural network classification of Eigenvector Centrality (EC) for
the ego-Facebook dataset.
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4.5.4 Unsupervised Low-Dimensional Projections

Figure 4.45 displays a selection of t-SNE plots taken from the ego-Facebook data, where the

points are coloured according to the Eigenvector centrality value after being passed through the

binning process. The figure shows that the SDNE embeddings seemingly have no clear structure

in the low dimensional space which correlates strongly with the Eigenvector centrality, as points

in the same class are not clustered together. However, with the other embedding approaches, it

is possible to see a clear clustering of points belonging to the same class. For example, in both

the Node2Vec approaches, there is very clear clustering of classes one, four and five. This result

provides further evidence for our observation that, even when exploring the embeddings using

an unsupervised method, it is possible to find correlations between known topological features

and the embedding space.
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Figure 4.45: t-SNE plots of the embeddings taken from the ego-Facebook dataset, where the
points are coloured according to their Eigenvector Centrality (EC) value.
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4.5.5 Auto-Encoder Comparsion

The results presented thus far have shown that it can be comparatively challenging to recover

evidence of topological features from the auto-encoder based SDNE approach. To investigate this

further, we compare SDNE with another auto-encoder based approach entitled DNGR. Unlike

the other approaches tested thus far, DNGR mandates the use of weighted graphs. However,

from the empirical datasets we are using for this study, only the soc-sign-bitcoinotc dataset

contains weighted edges, which represent the level of trust which users place in each other.

To investigate whether DNGR captures more recognisable topological structure in its embed-

ding space, we will again use t-SNE. However, the soc-sign-bitcoinotc dataset has the lowest edge

density of any of the graphs we are testing, resulting in a very unbalanced dataset (for example,

the majority of the vertices have a very low degree value). To allow for greater insight, here we

choose not to use the binning process to label each vertex embedding. Instead, we normalise

the raw topological feature values to be between zero and one, we then use this value to directly

colour the points on the t-SNE plots. Here we would expect to see points of a similar colour,

and thus feature value, to be clustered together if vertices with similar topological features are

close in the underlying embedding space. Due to soc-sign-bitcoinotc having a larger number of

vertices than the dataset used for the previous t-SNE visualization, we plot only a randomly

selected half of the vertices to allow for clearer figures.

Figures 4.46 to 4.49 display the t-SNE plots of the vertex embeddings for both SDNE and

DNGR across four different topological features. The figures show that despite it being more

challenging to recover topological features from SDNE in other experiments, there is still structure

present in the embedding space correlating to several topological features. One can see SNDE

embeddings with similar feature values being clustered together in these plots, for example there

are clear clusters of vertices with a high and low degree, PageRank and Betweeness Centrality

value visible. However, it is much harder to interpret any structure in the embedding space

produced via DNGR. This could well be due to the fact that DNGR does not take as input

the raw adjacency matrix, instead it is reconstructing the PPMI matrix, capturing vertex co-

occurrence. Due to this transformed input, it is perhaps not surprising that normal topological

features are present in the resulting representations.
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Figure 4.46: t-SNE plots of SDNE and DNGR embeddings taken from the soc-sign-bitcoinitc
dataset, where points are coloured according to the normalized degree value.
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Figure 4.47: t-SNE plots of SDNE and DNGR embeddings taken from the soc-sign-bitcoinitc
dataset, where points are coloured according to the normalized pagerank value.
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Figure 4.48: t-SNE plots of SDNE and DNGR embeddings taken from the soc-sign-bitcoinitc
dataset, where points are coloured according to the normalized Eigenvector centrality value.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) SDNE BC

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b) DNGR BC

Figure 4.49: t-SNE plots of SDNE and DNGR embeddings taken from the soc-sign-bitcoinitc
dataset, where points are coloured according to the normalized Betweeness centrality value.
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4.5.6 Discussion

This section has provided extensive experimentation evaluation to explore topological feature

presence in graph embeddings. Specifically, we investigated whether a broad range of topological

features can be predicted from the embedding created from a range of unsupervised graph

embedding techniques. Across all the features and datasets tested, it can be seen that many

topological features can be approximated by the different embedding approaches, with varying

degrees of accuracy. The results which show the increase in accuracy over the rule based

predictions (Section 4.5.1) give strong indication that the approaches are able to overcome the

inherent unbalanced nature of graph datasets and a mapping from the embedding space to

features is present. It is also interesting to observe that numerous features can be approximated

from the graph embeddings, suggesting that several structural properties are being automatically

captured to create the best representation for a vertex. Of all the topological features measured

in the experimentation section, the one which consistently gave the best results was Eigenvector

centrality. Particularly for the stochastic approaches, Eigenvector centrality was predicted with

a high degree of accuracy, suggesting that the topological structure represented by this feature

is captured extremely well in the embedding space and indicates that this is a useful feature

for minimising the objective functions of the approaches. This is further reinforced by the

unsupervised projections (Figure 4.45), which shows clear and distinct clustering between classes,

even without the use of a classification algorithm.

Another interesting observation from this study is that no one approach strongly outperforms

the others when classifying a particular feature – seemingly all the approaches are approximating

similar topological structures. The results overall show that the stochastic approaches (DeepWalk

and Node2Vec) are the most consistent across all features and datasets, often having the highest

macro-f1 and micro-f1 scores. SDNE demonstrates a more inconsistent performance profile for

feature classification. This is in contrast to other studies which have found it to have the best

performance in vertex labelling problems [84]. The performance of SDNE demonstrated in this

work could be explained by it being the only deep model tested, meaning that it contains many

more parameters. This increase in complexity means that SDNE could be very sensitive to the

correct selection of hyper-parameters or possibly that more complex topological features are being

approximated by the embeddings – or even that entirely novel features are being learned. Finally,

it is interesting to note the performance of Hyperbolic (PD) approach, which has far fewer latent

dimensions in which to capture topological information due to its limitation in modelling the

space as a 2D disk. Empirically, PD shows largely similar performance to the other approaches
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on most datasets, providing strong evidence that the hyperbolic space is an appropriate space in

which to represent graphs.

4.6 Conclusion

Graph embeddings are increasingly becoming a key tool to solve numerous tasks within

the field of graph mining. They have demonstrated state-of-the-art results by attempting to

automatically learn a low dimensional, but highly expressive, representation of vertices, which

captures the topological structure of the graph. However to date, there has been little work

providing a theoretical grounding which would allow for greater interpretability. This chapter

has begun to take a step in this direction by investigating which traditional topological graph

features can be reconstructed from the embedding space. The hypothesis of this work being

that if a mapping from the embedding space to a particular topological feature can be found,

then the topological structure encapsulated by this feature is also captured by the embedding.

The conclusions drawn in this chapter are supported by an extensive set of experiments ex-

ploring this issue across five unsupervised graph embedding techniques, classifying seven graph

features, across a range of empirical datasets. The experiments find that a mapping from many

topological features to the embedding space of the tested approaches is indeed possible, using

both supervised and unsupervised techniques. This discovery suggests that graph embeddings

are indeed learning approximations of known topological features, with the experiments showing

Eigenvector centrality to be the best reconstructed by many of the approaches. This could allow

key insights into how graph embedding techniques learn to create high quality representations,

allowing for the embedding process to become more interpretable.

4.6.1 Current Limitations

Whilst the work presented in this chapter has allowed for some insights into what type of

topological structures are being approximated in the embedding space, there are some limitations

with the work:

Binning Process: In order to perform the supervised classification of vertex features from the

embedding space, a binning process was used to transform the continuous values into discrete



123

labels. This process introduces an additional hyper parameter, that being the number of bins

used in the transformation process. Whilst this process worked well for this research, careful

attention needs to be paid to the number of bins used to ensure a balanced distribution of values

between them. Additionally the features are further transformed by taking the logarithm of the

original values, causing some precision to be lost.

Limited Features: The work presented in this chapter used a total of seven vertex level

features to assess the semantic content of the graph embeddings. Whilst some interesting results

were observed, a different set of features would perhaps result in a different picture emerging.

In particular, the current set of features largely does not measure the presence of any small

world-like, modular or hierarchical community structure within the graph.

Lack of Supervised Approaches: This work has focused solely on the family of unsupervised

graph embedding techniques. However there is a large and increasing number of supervised

approaches, including the majority of the Graph Neural Network (GNN) approaches [234, 253],

which learn vertex level representations which have been fine-tuned to perform a specific task –

vertex classification for example [128]. Currently the work presented here offers no insights into

whether topological features are being approximated by these techniques.

4.6.2 Future Work

For future research, work could be performed to see if other Eigenvector based topological

features, known to be representative of a graph’s topology [152], are also captured as well by the

embedding approaches. To help combat the heavy-tailed distribution of vertex feature values,

more experimentation could be performed with synthetically created graphs with artificially

balanced degree distributions. This will remove the unbalanced nature of empirical datasets,

and allow us to explore the structure of the embeddings in more detail. Furthermore, it could

be possible to use the research performed in this chapter to produce better embeddings which

generalise more efficiently across other tasks.. This could be achieved by directly predicting

topological features during the embedding training process, perhaps taking the form of an

additional regularisation term in the loss function.
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Epilogue

This chapter has explored the possibility of using topological features as a way to bring in-

terpretability to unsupervised graph embedding techniques, thereby achieving research objective

2. The experimentation, using five state-of-the-art embedding approaches, has shown that a

relationship can be found between a selection of known topological features and the embedding

space.

In the following chapter, work will shift to studying how the temporal evolution present in

many empirical graph datasets can be modelled and predicted via the use of machine learning.

The research will continue the theme of unsupervised learning from the present chapter, but

move attention to developing new models based around Graph Neural Networks [127, 128] in

order to incorporate temporal dynamics in the learning process.
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Chapter 5

Temporally Robust Graph

Embeddings

Prologue

The work in Chapter 4 explored what topological features are being captured by a range

of unsupervised techniques for learning representations on static graphs. However the majority

of data whose relationships are being represented as a graph are dynamic in nature, a trait

disregarded by all the techniques explored thus far in this thesis and many currently present in

the literature.

The work in this chapter will explore new techniques for how best to incorporate the temporal

evolution present in many graph datasets into the learning process - and ultimately explore how

best to predict the changes in graphs over time. In order to address research objective 3 (defined

in Section 1.3), this chapter introduces two new models for learning on temporal graphs and

details how they can be used to tackle several key tasks within the field of graph mining including

the challenging problem of temporal link prediction.

The work presented in this chapter has been published as the following works:
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Stephen Bonner, John Brennan, Ibad Kureshi, Georgios Theodoropoulos, Andrew Stephen

McGough, and Boguslaw Obara. Temporal graph offset reconstruction: Towards temporally

robust graph representation learning. In IEEE International Conference on Big Data, pages

3737–3746. IEEE, 2018

Stephen Bonner, Amir Atapour-Abarghouei, Philip T Jackson, John Brennan, Ibad Kureshi,

Georgios Theodoropoulos, Andrew Stephen McGough, and Boguslaw Obara. Temporal

neighbourhood aggregation: Predicting future links in temporal graphs via recurrent vari-

ational graph convolutions. In IEEE International Conference on Big Data, 2019

5.1 Introduction

Using graphs to represent relationships in large, complex and high-dimensional datasets has

become a universal phenomenon across many scientific fields, encompassing not only computer

scientists, interested in social and citation networks [128], but biologists, studying protein inter-

action graphs for associations with diseases [237] or modelling hierarchy in brain networks [114],

chemists, who model molecule properties by treating them as graphs [233], and physicists, who

use graphs to model a physical environment [22]. As such they provide a useful abstraction for

how data is related. Graphs allow for complex analysis to be performed such as identifying the

missing link within a graph (a person whom you might know or that paper you must read),

however, to date almost all of the prediction work which has been performed on graphs has

been focused on analysis in the topological domain as opposed to the temporal domain. This

is interesting as almost all graphs change with time (making new friends or publishing new

papers). An example of a temporal graph, where new edges are being formed between vertices

is illustrated in Figure 5.1 which contains a four vertex graph evolving over three time-points.

The field of graph embedding has received significant attention as a means of analysing large,

complex graphs via the use of machine learning (discussed in greater depth in Chapter 4). Graph

representation learning, comprises a set of techniques that learn latent representations of a graph,

which can then be used as the input to machine learning models for downstream prediction tasks

[87]. The majority of graph representation learning techniques have focused upon learning vertex

embeddings [84] and reconstructing missing edges [87]. The goal of graph representation learning

is to learn some function f : V → Rd which maps from the set of vertices V to a set of embeddings

of the vertices, where d is the required dimensionality. This results in f being a mapping from
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Figure 5.1: The temporal link prediction task is to predict the new edges (red) in the final graph
snapshot GT (green plane) given the previous graphs G1 and G2.

G to a representation matrix of dimensions |V | × d, i.e. an embedding of size d for each vertex

in the graph. However, the majority of graph representation learning approaches to date ignore

the temporal aspect of dynamic graphs, resulting in models which perform poorly at predicting

future change in a graph.

Additionally, there are many cases in the real-world where a machine learning model will be

trained using historical data and then used for inference at a later point in time. A primary

example of this is the recommender systems literature, where graphs can be used to model the

relationship between users and items [24]. Here a model is trained to recommend items to users

based on historically collected data, and then used to make predictions about newly arriving data.

However, the underlying graph structure is dynamic and could undergo large changes between

time points, leading to the existing model suffering from degraded predictive performance, forcing

the model to be retrained.

The work presented in this chapter attempts to address some of these issues by creating graph

processing models which explicitly incorporate temporal information. Two alternative model

families are detailed in this chapter which incorporate temporal information using different and

competing techniques, with trade-offs being made between model expressiveness and complexity.

Specifically these two methods are:
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• Temporal Offset Reconstruction - A new training procedure and associated model is first

introduced, entitled Temporal Offset Reconstruction (TOR), which can be used to create

vertex level representations which encode information about how the graph will evolve into

the future, leading to a model which is more robust to temporal change. To achieve this,

we introduce the temporal offset reconstruction method to create graph representations

which are explicitly designed to predict the next time point for a dynamic graph. We show

that this offset method results in vertex representations which perform better when used

to make predictions on later time points. Further, we make use of graph convolutional

neural networks [128], combined with our temporal offset reconstruction method to show

that graph convolutions can be used to capture the dynamics of an evolving graph dataset.

To the best of our knowledge, this is the first time this has been shown.

• Temporal Neighbourhood Aggregation - A more complex model is introduced, entitled

Temporal Neighbourhood Aggregation (TNA), designed to learn vertex representations

which capture both topological and temporal change by exploiting the rich information

found in large dynamic graphs. To achieve this, we propose a novel model architecture

combining graph convolutions with recurrent connections on the resulting vertex level

representations to allow for powerful, hierarchical learning at multiple hops of a vertex’s

neighbourhoods. This approach means the model can explore at which neighbourhood

depth the most useful temporal information can be learned. Further, we aggregate the

temporal neighbourhood using tools from variational inference, resulting in a more robust

and stable final representation for each vertex. Our TNA model is trained end to end

on temporal graphs represented as time snapshots, where the objective is to directly and

accurately predict the next graph in the sequence using the embeddings alone. This results

in a model, which unlike many competing approaches, requires no explicitly parameterized

decoder model.

5.1.1 Chapter Contributions

The primary contributions of this chapter are thus as follows:

• Exploration of two novel approaches for creating vertex level representations which contain

temporal, in addition to structural, information about the vertex. Both approaches are

unsupervised, requiring no additional labelling or features to be present at the vertex, edge

or graph level.
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• Presentation of evidence that Graph Convolution Networks can be used to capture temporal

dynamics in graphs. This is achieved by using a novel training procedure where a model

is taught to directly predict the future, rather than the current, state of the graph.

• Techniques are explored to incorporate elements of variational sampling, allowing for more

robust temporal representations to be created. This consequently results in more accurate

predictions of future graph states. It also allows for many synthetic temporal graphs to be

generated given an input sequence.

• Producing models which are efficient and scalable, as they require significantly fewer

parameters than competing approaches. This is partially achieved by the approaches

requiring an explicitly parameterized decoder portion, leading to the models being scalable

to larger graphs as a result of the memory efficiency.

To aid in reproducibility of the results presented in this chapter, all of the associated PyTorch

[183] based source-code has been open-sourced and made available online. In addition, results

are presented upon public benchmark datasets. The code for the Temporal Offset Reconstruc-

tion approach is available here - https://github.com/sbonner0/temporal-offset-reconstruction.

Whilst the code for the Temporal Neighbourhood Aggregation approach is available here -

https://github.com/sbonner0/temporal-neighbourhood-aggregation.

5.2 Related Works

5.2.1 Graph Representation Learning

As was discussed in greater detail in Chapter 4, traditionally graph representations were

created via techniques based on matrix factorization, where a mapping to a lower dimensional

space is found such that pair-wise relationships in the original graph are preserved. Examples

of such approaches include Laplican eigenmaps [23], Graph Factorization [4], GraGrep [44] and

HOPE [177]. More recently, models originally designed for Natural Language Processing (NLP)

have been adapted to create graph embeddings. Such approaches use random walks to create

‘sentences’ which can be used as input to language inspired models such as Word2Vec [165]. NLP

inspired graph embedding approaches include DeepWalk [186], Node2Vec [87] and Hyperbolic

embeddings [48].

https://github.com/sbonner0/temporal-offset-reconstruction
https://github.com/sbonner0/temporal-neighbourhood-aggregation
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Recently graph specific neural network based models have been created which are inspired

by Convolutional Neural Networks (CNNs) from the field of computer vision. Such approaches

attempt to create a differential model for learning directly from graph structures. Many Graph

CNN approaches operate in the spectral domain of the graph, using eigenvectors derived from

the Laplacian matrix of a graph [128]. Early approaches to define convolution operators on

graphs often had large memory and computation complexities and were thus unsuited to many

real world graphs [42].

Later more efficient spectral methods were proposed which reduced the complexity of the

filtering operations whilst still operating on the entire adjacency matrix [64, 128]. The Graph

Convolutional Network (GCN) approach has proven to be particularly effective [128]. The GCN

approaches uses a layer-wise propagation rule to aggregate information from a vertices 1-hop

neighbourhood to create its representation. This layer-wise rule can be stacked k times to

aggregate information from k-hops away from a given vertex. The requirement to have the

whole adjacency matrix available in memory means that the GCN approach struggles to scale

to massive graphs. To tackle this problem, Graph-Sage [93] learns to aggregate features from a

fixed size sample of a vertices neighbourhood and as such can be applied to new vertices which

have joined the graph. However, the approach mandates that all vertices in the graph have

features available and the performance can vary depending upon the neighbourhood sampling

strategy [49].

Thus far, all the graph specific models discussed have been supervised approaches, requiring

the graphs to have labels. There have been a modest selection of unsupervised graph specific

neural models, many of which are based on auto-encoders - a type of neural network whose task

is to reconstruct the input data after being projected into a lower-dimension [17]. Structural

Deep Network Embedding (SDNE) uses an auto-encoder to reconstruct each row in a graph’s

adjacency matrix [229]. A more recent auto-encoder employs a generative model to adversarially

regularise the embeddings to help improve performance [243]. Work has also explored the use of

GCNs as the basis of a convolutional auto-encoder model [127], producing state-of-the-art results

for link-prediction in citation graphs.

5.2.2 Temporal Embeddings

All of the embedding approaches discussed so far have considered stationary non-evolving

graphs. This section will review the literature regarding attempts to create temporal embeddings.
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As many graph embedding techniques are taken from NLP, we briefly review the approaches here

which consider the evolution of language, before looking at graph specific approaches.

Natural Language Temporal Embeddings

Some approaches from temporal language based models are created to model how word use

evolves over time. For example, work has been performed to use cosine similarity to automatically

measure how a word changes, relative to its neighbours, over time and to identify anomalies

[125]. To overcome this non-convex problem, work has been performed in creating diachronic

word embedding by aligning different embedding snapshots using orthogonal Procrustes, making

the learning not end to end [91]. In later work, a dynamic Word2Vec model for word embedding

is created which attempts to solve the non-convex problem common to embeddings via Bayesian

variational black-box inference [18]. The approach creates embeddings which change smoothly

over time and are better able to predict the change in context for a given word than previous

methods.

Graph Specific Temporal Embeddings

To date, there have been few attempts to consider the temporal change of a graph when

creating its embedding. However the existing approaches can broadly be split into two categories:

Temporal Walk and Adjacency Matrix Factorisation based.

Temporal Walk-Based Approaches -

Many of the temporal graph embedding approaches which exist are based on data created via

temporal walks, which are random walks over dynamic graphs. Perhaps the first such approach

is that of STWalk [180]. In this work, the authors aim to learn node trajectories via the use of

random walks which learn representations that consider all the previous time-steps of a temporal

graph. In the best performing approach presented, the authors learn two representations for

a given vertex simultaneously which are concatenated to create the final embedding. The first

representation is a normal DeepWalk embedding designed to capture the spatial information for

a vertex. The second representation is learned across a specially constructed graph structure,

where each vertex is connected to its 1-hop neighbourhood from each previous time-step. However
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the approach is not end-to-end and requires the user to manually chose how many time steps to

consider.

Yu et al. [242], propose NetWalk, a vertex-level dynamic graph embedding model using

random walks designed to facilitate anomaly detection in streaming graphs. The approach

captures a collection of short random walks from the graph which are then passed into an auto-

encoder based model to create the vertex representations. In addition to the usual reconstruction

based loss term, an additional term is added to minimise the pair-wise distance between the

representations of vertices occurring within the same walk. To apply this approach to the domain

of streaming graphs, where changes to graph are being made online, the approach maintains for

each vertex a list of neighbouring vertices which is updated as the graph changes. If changes

in a vertices neighbour list occur, new random walks will be generated and the representations

updated. The final anomaly detection is performed via a dynamic clustering model on the vertex

representations. However, unlike the work presented in this chapter, the created embeddings are

not capable of capturing temporal dynamics or are able to predict the future state of a graph.

Nguyen et al. [172], propose a model to incorporate temporal information when creating

graph embeddings via random walks by capturing individual changes (edge addition/deletion for

example) within a graph. The authors propose a temporal random walk to create the input data,

however their approach creates more complex and rich temporal walks via a biasing process. The

approach can be used to add temporal information into any embedding model which relies on

random walks as input data, with the paper explicitly detailing a model based on the Skip-Gram

architecture and shows the predictive performance increases over non-temporal baselines. The

approaches presented in this chapter do not rely on the use of random walks and require only

the raw graphs as input.

Adjacency Matrix Factorisation Approaches -

Goyal et al. [85], propose a model for creating dynamic graph embeddings, entitled DynGEM.

In this approach they extend the auto-encoder graph embedding model of SDNE [229] to consider

dynamic graphs. To do this, they use a method similar to Net2net [52], which is designed to

transfer the learned knowledge from one neural network to a second model. This technique

allows them to add more neurons to the auto-encoder, appropriate to the increasing graph size,

via a heuristic approach entitled PropSize. The use of the Net2net technique means that the

model can be expanded while ensuring the learned function is approximately preserved. The
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process for training the model is as follows: at the fist time snapshot of the graph, a complete

graph auto-encoder is trained as described in the SDNE paper [229]. For the next time step of

the model, a new auto encoder is trained reusing the weights from the previous step, with any

new neurons being added according to the PropSize heuristic. However the approach does not

explicitly predict the future state of the graph, rather, it transfers knowledge from the previous

timestamp to help the current auto-encoder better reconstruct the current time-step.

In a family of approaches entitled Dyngraph2vec*, comprising DynAE, DynRNN and Dyn-

AERNN, Goyal et al. [82] further extend an SDNE type approach to incorporate temporal

information in a variety of ways. The best performing approach, DynAERNN, uses a combination

of SDNE-like dense auto-encoders, with stacked recurrent layers to learn temporal information

when creating vertex embeddings. However, they do not make use of graph convolutions and

require a complex decoder model to predict the next graph.

There have been attempts to incorporate temporal aspects into GCNs. However, some [160,

208] focus upon supervised learning, but do not explicitly use the models to predict the future

graph state or only have a single layer of recurrent connections. More recent approaches, such as

GCN-GAN [144] and GC-LSTM [50] require large and complex decoder models, meaning they

cannot scale to graphs of one-thousand vertices or more on current hardware, whilst also lacking

the variational sampling of our approach. In comparison, EvolveGCN [182] uses recurrent layers

to directly evolve the parameters of standard GCN layers which means it does not track vertex

neighbourhood evolution explicitly.

One of the application areas most frequently learning temporal models on graphs is that of

traffic modelling, where approaches like Spatial-Temporal Dynamic Network (STDN) [238] and

Diffusion Convolutional Recurrent Neural Network (DCRNN) [155] combine graph learning with

temporal models to predict traffic movement. However, unlike these approaches we focus on

creating vertex level embeddings directly optimised to predict future edges and learn change at

different hops of a vertices neighbourhood.

5.3 Methodologies

This section outlines the two approaches explored in this chapter, including the relevant

background technologies, proposed model architectures and the training procedure. The two
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Symbol Definition

G A graph with an associated set of vertices V and corresponding set of edges E.
A The adjacency matrix of graph G, a symmetric matrix of size |V | × |V |, where

Ai,j is 1 if an edge is present and 0 otherwise.

Â A normalised by its degree matrix D and its identity matrix I such that Â =
(D−

1
2 (A + I)D−

1
2 ) [128].

X A matrix of features for each v ∈ V , set to the identity I of A for this work.
H The intermediate vertex representations in GCN and TNA layers.
Z The final variationally sampled representation matrix for each v ∈ V .
G′ A temporal graph comprised of snapshots {G1, G2, ..., GT }.
T The number of snapshots in G′.
Gt A graph from G′.
σs The sigmoid activation function.
σr The rectified linear activation function (ReLU).
σlr The leaky ReLU activation function.
l A certain layer in the model.

W
(l)
g A weight matrix at layer l used in the GCN.

W
(l)
s A weight matrix at layer l used in the skip connection.

W
(l)
{r,u,h} Hidden transform matrices in the GRU.

U
(l)
{r,u,h} Input transform matrices in the GRU.

N (µ, σ) A multi-dimensional Gaussian distribution parametrised by vectors µ and σ.
Θ A trainable model containing a set of parameters.

Table 5.1: Definitions and Notations for Temporal Graph Learning

approaches are entitled Temporal Offset Reconstruction and Temporal Neighbourhood Aggreg-

ation. This section makes use of the notation detailed in Table 5.1, which lists the symbols used

and an associated description.

5.3.1 Motivation

Many of the phenomena that are commonly represented via graph structures are known to

evolve over time – Links between entities form and break in a constantly evolving stream of

changes. We thus view graphs as a series of snapshots, with each graph snapshot containing

the connections present at that particular moment in time. More formally, we can redefine a

graph G to be a temporal graph G′ = {G1, G2, ..., GT }, where each graph snapshot Gt ∀t ∈ [1, T ]

contains a corresponding vertex set Vt and edge set Et.
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In many real-world use cases of machine learning, a model is trained on historical data and

then used to make predictions about new events at a future point in time. An example of where

this practice is common is in the recommender systems industry where recent state-of-the-art

systems, for recommending items to users, are based on graph convolutions [24, 240]. However,

to date, the majority of models for creating graph representations do not consider how the graph

evolves over time. This could potentially result in models which have good initial predictive

capability, but whose performance will degrade as the graph continues to change over time.

Additionally, a common and vital task within the field of graph mining is that of future link

prediction, where the goal is to accurately predict which vertices within a graph will form a

connection in the future [83]. Figure 5.1 highlights this future link prediction task, where the

goal is to predict the new edges, coloured in red, formed in GT , given the previous graphs in

the temporal history G1 and G2. Any model designed to accomplish this task must learn the

evolution patterns present in edge formation, even though the number of edges changing at each

time point is often a small fraction of the total number.

We propose to tackle this challenging problem of creating temporal robust graph embeddings

by training a model to explicitly recreate a future time step of the graph. More concretely, a

graph Gi is used as input to model θ(Gi) which learns a representation for each vertex in Gi

such that its output can accurately predict the graph Gi+δ. Ideally, we want to create a model

θ(Gi) which can perform this temporal offset reconstruction using the graphs Gi and Gi+δ alone,

Gi+δ = θ(Gi), requiring no pre-processing steps which could affect the model’s performance (e.g.

random walk procedures), no pre-computed vertex features and no labels required or used.

The remainder of this section will detail the graph convolutions used to create the vertex

representations, the models we explore to perform the temporal offset reconstruction and the

training procedure.

5.3.2 Background Technologies

We first review the background technologies we are employing to make the presented ap-

proaches possible, namely Graph Convolutions [128] and Recurrent Neural Networks [53, 101].
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Graph Convolutions

To perform the graph encoding required to create the initial vertex representations, we

utilise the spectral Graph Convolution Networks (GCN) [128]. One can consider a GCN to

be a differentiable function for aggregating information from the immediate neighbourhood of

vertices [49, 93]. A GCN takes the normalised adjacency matrix Â representing a graph G, and

a matrix of initial vertex level features X, and computes a new matrix of vertex level features

H = GCN(Â,X). X can be initialized with pre-computed vertex features, but it is sufficient to

initialize it with one-hot feature vectors (in which case X is the identity matrix I). A GCN can

contain many layers which aggregate the data, where the operation performed at each layer by

the GCN [128] is:

GCN (l)(H(l), Â) = σr(ÂH(l−1)W(l)
g ) , (5.1)

where l is the number of the current layer, W
(l)
g denotes the weight matrix of that layer, H(l−1)

refers to the features computed at the previous layer or is equal to X at l = 0.

One can consider the GCN function to be aggregating a weighted average of the neigh-

bourhood features for each vertex in the graph. Stacking multiple GCN layers has the effect of

increasing the number of hops from which a vertex-level representation can aggregate information

– a three layer GCN will aggregate information from three-hops within the graph to create each

representation.

The original methods presented in the literature required GCN based models to be trained

via supervised learning, where the final vertex representation is tuned via provided labels for a

specific task – classification as a common example [93, 128]. This is a key difference between

GCNs and other graph embedding approaches, as these commonly require no labels and thus

are applicable on a broader selection of graphs. Recently, extensions to the GCN framework

have been made which allows for convolutional auto-encoders for graph datasets [127]. Auto-

encoders are a type of un-supervised neural network model which attempt to compress input

data to a low-dimensional space, and then reconstruct the original data directly from the learned

representation.

Recurrent Neural Networks (RNN)

RNN are neural networks with circular dependencies between neurons. Activations of a

recurrent layer are dependent on their own previous activations from a previous forward pass,
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and therefore form a type of internal state that can store information across time steps. They are

frequently used in sequence processing tasks where the response at one time step should depend

in some way on previous observations. Long Short-Term Memory (LSTM) [101] and Gated

Recurrent Units (GRU) [53] are RNNs with learned gating mechanisms, which mitigate the

vanishing gradient problem when back-propagating errors over a sequence of inputs, allowing

the model to learn longer-term dependencies. For this work, we employ the GRU cell, as it

empirically offers similar performance to an LSTM, but with fewer overall parameters. The

GRU computes the output ht, for the input vector xt at time t in the following manner [53]:

ut = σs

(
xtU

(l)
u + ht−1W

(l)
u

)
rt = σs

(
xtU

(l)
r + ht−1W

(l)
r

)
h̃t = tanh

(
xtU

(l)
h + (rt ∗ ht−1)W

(l)
h

)
ht = (1− ut)� ht−1 + ut � h̃t,

(5.2)

where � is the Hadamard product, r and u are the rest and update gate values at time t, U(l) and

W(l) are trainable parameter matrices at layer l and σs and tanh are the sigmoid and hyperbolic

tangent activation functions.

5.4 Temporal Offset Reconstruction Model Overview

For creating our temporally offset graph embeddings, we will explore the use of both non-

probabilistic and variational encoder models. These are related to the convolutional graph auto-

encoders of Kipf [127]. However, we are exploring the creation of two models explicitly to

reconstruct a future state of the graph, rather than just to capture the current graph. Below we

detail the specifics of both the non-probabilistic Temporal Offset Graph Auto Encoder (TO-GAE)

and Temporal Offset Graph Variational Auto Encoder (TO-GVAE) models used for temporal

offset reconstruction. Owing to the similarities in sampling and objective function between this

approach and the TNA model detailed in Section 5.5 and to avoid repetition, some equations for

this approach are detailed in that section.

TO-GAE: TO-GAE is the non-probabilistic interpretation of the temporally offset graph

auto-encoder concept, where the goal is to learn a low-dimensional representation of At from

Gt, via an encoding from a GCN Zt = GCN(At,Xt), such that it can be used to predict
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accurately the structure of some future time step δ of the graph via a product between Zt and

its transpose passed through a logistic sigmoid unit σ:

At+δ = σ(ZtZ
T
t ). (5.3)

For all the work presented in the chapter, the GCN model used to learn Zt is a two layer

model.

TO-GVAE: TO-GVAE is a variational interpretation of the temporally offset graph auto-

encoder concept. Again the goal is to learn a vertex level representation for future graph

reconstruction by using ideas from Bayesian inference [126]. This variational method differs

from the non-probabilistic version outlined above as instead of directly learning the mapping Z,

we instead learn a distribution from which Z is sampled. Using a variational approach to create

the latent space has been shown to create more robust and meaningful embeddings, resulting in

better performing models [126, 127].

As TO-GVAE is a Bayesian style model, we must define a model with which to perform

inference. This again makes use of the GCN layers outlined in Section 5.3.2 to learn a mean µ

and a variance γ vector used to parametrise the Gaussian distribution N from which Zi is finally

sampled, detailed in Equation 5.5.

Once the inference model has created the various required parameters, a generative model is

created to predict the next time step in the graph. The generative model we use is again based

on the inner-product between the latent representations, detailed in Equation 5.6.

To train the model, common for variational methods [126, 127], we directly optimise the lower

bound L with regards to the model parameters, as detailed in Equation 5.7.

5.4.1 Model Parameters and Training Procedure

As with the original GAE approach [127], both TO-GAE and T0-GVAE make use of two

layers of convolution, with the first layer comprising 32 filters, and the second having 16 filters.

Results of grid-searches over possible parameter choices is presented in Section 5.7.1. For training
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both the models we use full-batch gradient descent via the RMSProp algorithm with a learning

rate of 0.001 for a total of 50 epochs. We also found the use of an additional term in the

loss functions which penalises the model parameters for getting too large via L2 to help model

performance. All of our models, as well as the comparative baselines, have been implemented in

the PyTorch library [183].

5.5 Temporal Neighbourhood Aggregation Model Over-

view

We first detail the Temporal Neighbourhood Aggregation blocks which form the primary

learning component, before describing the overall model topology and objective function.

5.5.1 TNA Block

One of the primary components of our model is the TNA block for topological and temporal

learning from graphs. The overall structure of the block is illustrated in Figure 5.2. It is

important to note that all the parameters in the block are shared through time. This allows

complex temporal patterns to be learned, as well as allowing for a large reduction in the total

number of parameters required by the model. Assuming that the TNA block is the first layer in

the model, the flow for vertex v ∈ Vt can be described as follows:

• The input is passed through the GCN layer, as detailed in Equation 5.1, which will learn to

aggregate information for v from its one-hop neighbourhood to create its representation at

this point in the block - hGCNt . This is then normalised using Layer Norm [15], which will

ensure that the representation for each vertex is of a similar scale. This has been shown to

improve the training stability and convergence rate of deep models [15].

• This normalised representation is then passed into a GRU cell a row at a time, as detailed

in Equation 5.2, where the output of the cell will be a function of the current input as

well as all the previous inputs. This means that the cell can learn how much of the

previous neighbourhood representation to use when creating the new representation for a

given vertex hGRUt . This is then passed through a second Layer Norm unit to ensure a

normalised output.
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• Finally, the hGCNt and hGRUt representations are concatenated together, before being

passed through a linear layer and a leaky ReLU activation function to create the final

representation for the vertex hTNAt . Inspired by residual connections often used in com-

puter vision networks [97], this enables the model to learn the optimum mix of topological

and temporal information.
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Figure 5.2: An overview of the Temporal Neighbourhood Aggregation (TNA) block, which
comprises a Graph Convolutional Network (GCN) layer with a Gated Recurrent Unit (GRU).
The combination of the topological and temporal learning is controlled via the final linear layer.

The layer-wise propagation rule of the TNA block at depth l can thus be summarised as

follows for the entire graph Gt ∈ G′ with normalised adjacency matrix Â:



141

HGCN
t = GCN(Â,H

(l−1)
t )

HGRU
t = GRU(HGCN

t ,HGRU
t−1 )

HTNA(l)

t = σlr

(
W(l)

s Concat(HGCN
t ,HGRU

t )
)

TNA(Â,H
(l)
t ) = H

(l)
t = HTNA(l)

t

(5.4)

where W
(l)
s represents the weight matrix used to mix the topological and temporal representa-

tions, and σlr is the leaky ReLU activation function with a negative slope of 0.01.

5.5.2 Overall Model Architecture

As with normal GCN layers, TNA blocks can be stacked to aggregate information from

greater depth within a graph, with each additional block adding one extra hop from which

information can be aggregated for a certain vertex. However, as our TNA blocks are recurrent,

information can also be aggregated from how connectivity within these hops has evolved over

time, instead of just their present state. After extensive ablation studies (detailed in Section

5.8.1), we use the final configuration of the model detailed in Figure 5.3. Our model contains

two stacked TNA blocks, to learn information from two hops within the temporal neighbourhood.

This is then passed to two independent GCN layers which perform a final aggregation of this

temporal representation. From these two layers, the final representation matrix Zt is sampled

using techniques from variational inference, specifically the reparametrisation trick [126].

Variational Sampling - To create the final representation matrix Zt ∈ R|Vt|×d, the output from

the two GCN layers GCNµ and GCNσ are used to parametrise a unit Gaussian distribution N ,

from which Zt is then sampled, rather than being explicitly drawn. This is the same concept

used in Variational Auto-Encoders [126], and has previously been demonstrated to work well for

creating more robust and meaningful vertex level representations [31, 127]. Our inference model

used to create the vertex representations of graph Gt, with adjacency matrix At and identity

matrix of At, Xt, can thus be described as :

q(Zt|Xt,At) =

|Vt|∏
v=1

N (zv|GCNµv, diag(GCNσ2
v)), (5.5)
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where q is our approximation of the true and intractable distribution we are interested in

capturing – p(At+1|Zt). Here, both GCNµ and GCNσ take input from two stacked TNA layers

as detailed in Figure 5.3.

Generative Model - To decode the information contained within Zt, a generative model is

created to explicitly predict the new edges appearing in the next graph in the sequence. Here,

the inner-product between the latent representation is used to directly predict At+1:

p(At+1|Zt) =

|V |∏
i=1

|V |∏
j=1

p(At+1i,j |σs(zizTj )), (5.6)

where At+1i,j represents elements from At+1 and z refers to the rows of each vertex taken from

Zt.

This generative model is one of the key advantages of our approach, as it means that we

have zero learnable parameters in the decoder portion of the model. This is in contrast to many

competing approaches, which often require as many parameters as in the encoder to create a

decoder with the desired functionality [82]. This results in our approach being able to scale to

significantly larger graphs, with longer histories than some of the competing approaches, whilst

also being less prone to over-fitting to non-changing edges.

TNA TNA
GCN

GCN
Z Inner 

Product

t={1...T-1}

t=T

Encoder Decoder

Topology + Temporal Learning
Variational
Sampling

𝜎

𝜇

Figure 5.3: The overall Temporal Neighbourhood Aggregation Model: two stacked TNA blocks
learning both topological and temporal information from the first and second hop neighbourhoods
of a vertex. An embedding zt is sampled for each vertex vt ∈ Vt using variational inference. The
inner product is then used to directly predict the next graph in the sequence.



143

5.5.3 Objective Function

To train the TNA model, and as is common for variational methods [126, 127], we directly

optimise the lower bound L with regards to the model parameters:

L = Eq(Zt|Xt,At)

[
log p(At+1|Zt)

]
−

KL(q(Zt|At,Xt)||p(Zt)),

(5.7)

where KL() is the Kullback-Leibler distance between p and q. We use a Gaussian prior as the

distribution for p(Zt).

In addition, we apply L2 regularization to the model parameters Θ to help with over-fitting,

which is defined as:

Lreg = λ

|Θ|∑
i=1

Θ2
i , (5.8)

where λ is a scaling factor, set to 10−5 for this work as used for other GCN-based approaches

[128]. Consequently, the final objective function for our model is:

Lfinal = L+ Lreg. (5.9)

5.5.4 Model Parameters and Training Procedure

After initial grid-searches, we empirically found two layers of Temporal Neighbourhood Ag-

gregation, followed by variational sampling, to yield the optimal performance, and the first layer

comprising 32 filters, whilst the second having 16 filters. For training the model, we empirically

found using full-batch gradient descent with the RMSProp algorithm, a learning rate of 0.001

and 200 epochs to give the best results. Our model has been implemented in PyTorch [184].

5.6 Experimental Setup

This section will detail the setup for the experimental evaluation used to assess the perform-

ance of the two approaches explored in this chapter.
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5.6.1 Temporal Offset Reconstruction: Evaluation Overview

As the primary goal of our approach is to create vertex representations which are better

able to encode information about how the graph will evolve into the future, we will be using

link prediction as our primary method of assessment. Formally the task of link prediction in

the context of machine learning can be defined as follows: given a subset of edges Etrain ⊂ E

from graph G = (V,E), learn a model which can accurately predict the remaining edges Etest =

E − Etrain [161]. Many recent methods attempt to solve this problem via vertex embedding

similarity – i.e. vertices with more similar embeddings, according to some metric, are more likely

to be connected via an edge [87, 127, 186].

During the evaluation, we will be investigating two ways in which a model trained on temporal

graph data could be used for inference:

• Evolution Pattern Prediction – The original input graph G0 is kept constant, whilst the

rest of the time series G1, ..., Gt is used as the targets for prediction to measure the model’s

ability to predict the future graph changes.

• Future Link Prediction – The trained model is kept constant whilst each graph snapshot

Gi is passed in. The model is then evaluated by making predictions on hold out edges not

seen during training (Etest) from the same snapshot to test how well the model can predict

edges in future snapshots of the graph.

Graph edges are predicted as follows: given the learned vertex embeddings, the adjacency

matrix is reconstructed via a dot-product of the embedding matrix A′ = σ(ZZT). This recon-

structed adjacency matrix is compared with the true graph to assess how well the embedding is

able to reconstruct the future graph. For the future link prediction task, edges from the graph

are randomly removed before the graph is fed into the model. The embeddings are then used to

predict the hold-out set of edges.

5.6.2 Temporal Neighbourhood Aggregation: Evaluation Overview

As the primary goal of this approach is to create vertex representations which are better at

encoding temporal change, we will be using the task of future link prediction as our primary
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objective. More formally, we are trying to maximise the probability of P (Gt|G1...Gt−1). In

the context of machine learning, this can be defined as training a model from a temporal G′

using G1...Gt−1 such that it can predict the new edges in Gt, Et \ Et−1. The full training and

evaluation process is detailed a stage at a time in Algorithm 5.1.

Similarly to the approach detailed in Section 5.6.1, graph edges are predicted as follows: given

the learned vertex embeddings, the future adjacency matrix is reconstructed via the dot product

of the embedding matrix A′t+1 = σ(ZtZ
T
t ). This reconstructed adjacency matrix is compared

with the true graph to assess how well the embedding is able to reconstruct the future graph.

Algorithm 5.1: New edge predicition procedure

Input : The temporal graph G′ = {G1, G2, ..., GT }
Output: Mean AUC and AP scores for predicting new edges for each graph in G′

1 for all Gt ∈ G′ where t ≥ 3 do
2 Load and pre-process the graphs G1, G2, ..., GT
3 Create new model Θi (as shown in Figure 5.3)
4 Train Θi on sequence G1, G2, ..., Gt−1, where each graph is the input and used to

predict the following one
5 Predict new edges in Gt using Θi(Gt−1): Et \ Et−1

6 Store AUC and AP values

7 end
8 return Mean AUC and AP values over G′

5.6.3 Temporal Offset Reconstruction: Datasets

We make use of the following empirical graph datasets detailed in Table 5.2 when performing

our experimental evaluation. The table details the dataset name, number of vertices and edges,

and if the graph contains empirical of synthetic temporal information. For the two datasets

which contain no inherent temporal information, we generate a synthetic evolutionary trajectory

for the graph using one of the rewire processes. For the empirical cit-HepPh dataset, we create

six snapshots based on a linear partitioning of the graph’s timeline.

Random Rewire Process

In order to have access to large volumes of temporal graph data which has been evolved via a

controllable process, we make use of the random rewire methodology detailed in Chapter 2. The
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Dataset |V | |E| Temporal Reference

cit-HepPh 34,546 421,578 Snapshots [146]
cora 2,708 5,429 Synthetic [127]

citeseer 3,327 3,327 Synthetic [127]

Table 5.2: Empirical graph datasets used to evaluate the temporal offset reconstruction approach.

rewire process alters a given source graph’s degree distribution by randomly altering the source

and target of a set number of edges. During this rewire process, it is not guaranteed that the

source or target of the edge will be altered, indeed it is not always possible due to the graphs

topology. Also, the rewiring process does not change the total number of edges or vertices within

the graph. We employ two types of random rewire in this work:

• Erdős - The edges are rewired such that the resulting topology of the graph begins to

resemble a Erdős-Rényi graph, where edges are uniformly distributed between vertices.

• Configuration - The edges are rewired in such a way that each vertex approximately

preserves its associated number of edges, creating graphs with a similar degree distribution

to the original.

5.6.4 Temporal Neighbourhood Aggregation: Datasets

When performing our experimental evaluation, we employ the empirical datasets detailed in

Table 5.3. The table presents the dataset name, number of vertices and edges, the arrival date

of the first and last edge, the number of temporal snapshots and the mean number of new edges

added in each snapshot. The graphs used represent a range of application domains, sizes and

temporal complexities.

Bitcoin-Alpha (Bitcoina) - Representing a trust network within a platform entitled Bitcoin

Alpha, where edges are formed as users interact and rate each others’ reputation. The graph

covers a range of edges formed between 8th October 2010 and 22nd January 2016, which we

partition into 62 monthly snapshots. The task of new edge prediction is thus analogous to

predicting whether two users are going to interact within the next month.
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Dataset |V | |E| First Edge Last Edge # Snapshots # New Edges Reference

Bitcoin-Alpha (Bitcoina) 3,783 24,186 08/09/2010 22/01/2016 62 227 [146]
Wiki-Vote (Wiki) 7,115 103,689 28/02/2005 06/01/2008 34 2963 [146]

UC Irvine Messages (UCI) 1,899 20,296 15/04/2004 25/08/2004 27 513 [138]

Table 5.3: Empirical graph datasets used to assess the performance of the Temporal Neighbour-
hood Aggregation approach, where # New Edges is the average number of new edges added
between time points.

Wiki-Vote (Wiki) - Representing a vote of escalating user privileges between users and

administrators on the Wikipedia website. The graph covers a range of edges formed between

28th March 2004 and 6th January 2008, which we partition into 34 monthly snapshots. The task

of new edge prediction within this data is analogous to predicting whether two users are going

to vote for each other within the next week.

UCI-Messages (UCI) - Representing private messages sent between users on the University

of California Irvine social network platform. The graph covers a range of edges formed between

15th April 2004 and 25th October 2004, which we partition into 27 weekly snapshots. The task

of new edge prediction would represent the likelihood that two users will exchange messages with

each other over the next week.

Synthetic Datasets

In addition, we use two synthetic datasets: a Stochastic Block Model (SBM) graph and a

randomly perturbed version of the Cora dataset (R-Cora).

SBM - A random graph of 3,000 vertices, which evolves over 30 time points using the SBM

algorithm [119]. The graph contains 3 communities and at each time point, 20 vertices will evolve

by switching from one community to another.

R-Cora - To create this synthetic dataset, we take the original Cora dataset representing

a citation network, and perturb the graph using the random rewire method (more details can

be found about this in Chapter 2). The rewiring process alters a given source graph’s degree

distribution by randomly altering the source and target of a set number of edges. During this

rewiring process, it is not guaranteed that the source or target of the edge will be altered, which
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indeed is not always possible due to the topology of the graph. Also, the rewiring process does

not change the total number of edges or vertices within the graph. We employ Erdős rewiring, i.e.

the resulting topology of the graph begins to resemble a Erdős-Rényi graph, where the edges are

uniformly distributed between vertices. Due to the random nature of the topological structure

after this process, the predictive performance of the models should be lower.

5.6.5 Baseline Approaches

We compare against a variety of state-of-the-art graph representation learning techniques,

both static and dynamic. We choose the baselines which compare most directly with our proposed

approaches, meaning we opt for comparators which take advantage of deep neural networks to

create vertex embeddings.

• GAE [127]: A non-probabilistic Graph Convolutional Auto-encoder (GAE), where the

model is trained on Gt−1 and then directly predicts new edges in Gt.

• GVAE [127]: A Graph Variational Convolutional Auto-encoder (GVAE), trained in the

same manner as the GAE.

• DynAE [82]: A non-convolutional graph embedding model, similar to SDNE [229], extended

to temporal graphs by concatenating the rows of the past graphs together before being

passed into the model.

• DynRNN [82]: A non-convolutional graph embedding model, where stacked LSTM units are

used to encode the temporal graph directly. The approach also requires a decoder model,

also comprising stacked LSTM units, to reconstruct the next graph from the embedding.

• DynAERNN [82]1: A combination of the previous two models, where a dense auto-encoder

is used to learn a compressed representation which is passed to stacked LSTM units for

temporal learning. It requires a large decoder, with both dense and LSTM layers, to predict

the next graph. The E-LSTM-D approach [51] is also extremely similar to this model.

1 For the Dyn* family of algorithms, we use the implementations as provided by the authors as part of their
DynamicGEM package [83].
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• D-GCN:[160, 208]: A dynamic GCN, similar to approaches proposed in [160] and [208].

Here, three stacked GCN layers are used to capture structural information with an LSTM

unit used to learn temporal information and produce the final embeddings. To directly

predict the next graph, we use an inner-product decoder on the embedding matrix.

Additionally, attempts were made to compare with GCN-GAN [144] and GC-LSTM [50], but

we were unable to get them to scale to the size of graphs used for the experimentation.

5.6.6 Performance Metrics

As one can consider the task of link prediction to be that of a binary classification problem

(an edge can only be present or not), we make use of two standard binary classification metrics

to assess the performance of both approaches:

• Area Under the Receiver Operating Characteristic Curve (AUC) – The ratio between the

True Positive Rate (TPR) and False Positive Rate (FPR) measured at various classification

thresholds.

• Mean Average Precision (AP) – Across the set of test edges: AP = TP
TP+FP , where TP

denotes the number of true positives the model predicts, and FP denotes the number of

false positives.

For both of the chosen metrics, a larger value indicates more correctly predicted edges.

5.6.7 Experimental Environment

Experimentation was performed on a system with 2 * NVIDIA Titan Xp GPUs, 2.3GHz Intel

Xeon E5-2650 v3, 64GB RAM, with Ubuntu Server 18.04 LTS, Python 3.7, CUDA 10.1, CuDNN

v7.4 and PyTorch 1.1.
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5.7 Temporal Offset Reconstruction: Results

This section will present the results of the experimental evaluation for the Temporal Offset

Reconstruction approach. As outlined in Section 5.6, we are testing two ways to evaluate the

models: evolution pattern prediction and future link prediction. We present results on the

datasets introduced in Section 5.6.3, which contain both simulated and empirical evolving graph

datasets. All the results presented are the mean, with the standard deviation, of ten repeats of

the evaluation procedure, using a random train/test split for each repetition. When these results

are presented as a figure, the mean value is represented as a point, with a standard deviation

being represented as a shaded area of the same colour. For all figures and tables in this section,

the TO-GAE and TO-GVAE approaches being proposed in this chapter are labelled beginning

with the prefix TO .

5.7.1 Parameter Selection

Before presenting the main results, we first detail a grid-search performed over possible

parameters for the TO-GVAE model. Table 5.4 highlights results demonstrating how the model

performance on the test set changes as the sizes of the first and second layers are altered when

training on the Bitcoina and UCI datasets. To allow for fair comparison when altering the size

of the first layer, the second was kept constant at 16 units. When altering the size of the second

layer, the first was kept constant at a size of 32. One interesting aspect to note from the table is

how close the model performance is at different layer sizes, indicating that after a certain size,

there are limited performance gains to be made.

Table 5.5 demonstrates how the performance of the TO-GVAE model changes over three dif-

ferent optimisation algorithms. Each optimiser was tested with the same model configuration of

32 units in the first and 16 in the second layer. The table highlights that RMSProp demonstrates

the best performance over the two different datasets, with ADAM being a relatively close second.

SGD performs significantly worse than either, highlighting that GCN layers perform better with

more complex optimisation strategies.
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Bitcoina UCI

Layer Filter Size AUC AP AUC AP

First

4 0.662 0.661 0.608 0.591
8 0.713 0.729 0.747 0.760
16 0.818 0.847 0.754 0.756
32 0.872 0.896 0.816 0.834
64 0.891 0.907 0.794 0.811

Second

4 0.511 0.546 0.696 0.708
8 0.691 0.706 0.766 0.771
16 0.872 0.896 0.816 0.834
32 0.908 0.924 0.842 0.857
64 0.914 0.928 0.848 0.862

Table 5.4: Response in test set performance on the Bitcoina and UCI datasets as the layer sizes
are altered.

Bitcoina UCI

Optimiser AUC AP AUC AP

SGD 0.501 0.495 0.504 0.502
ADAM 0.872 0.896 0.842 0.857
RMSProp 0.926 0.937 0.863 0.877

Table 5.5: Response in test set performance on the Bitcoina and UCI datasets as the optimiser
is altered.

5.7.2 Simulated Graph Evolution

We first present results using time series simulated via the random rewire processes introduced

in Section 5.6.3 on both the cora and citeseer datasets. For this experiment, we train using the

original unaltered graph to reconstruct the next graph in the time series. We then measure the

performance of the resulting embeddings at predicting edges in future graph snapshots using

the two inference approaches outlined in Section 5.6.1. The points in the resulting figures are

presented as the mean of the cross-validation, with the coloured areas highlighting the standard

deviation.
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Evolution Pattern Prediction

Figure 5.4 shows how well the models perform upon the Cora dataset with smaller possible

perturbations introduced by the rewire process. The figure shows how both the temporally offset

methods we introduce generally demonstrate superior performance over the baseline approaches.

When considering the AUC score on new edges, we can see a large increase in performance.

Our methods also show performance above the baselines when reconstructing the full graph,

demonstrating that the temporal offset process does not harm the ability to predict edges which

have not changed.
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Figure 5.4: AUC and AP scores on the Cora dataset evolved via the configuration method with
a 25% chance of edges being rewired per time step. Values are presented for the whole graph
and only on new edges which have been altered since the graph used for training.
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Figure 5.5 contains the results for the Citeseer dataset, again using the smaller rewire probabil-

ity. This figure continues the trends established in the previous figures, with the temporally offset

methods beating the baseline methods. However, this time it is the variational approach which

often demonstrates the greater performance, especially when only new edges are considered.
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Figure 5.5: AUC and AP scores on the Citeseer dataset evolved via the configuration method
with a 25% chance of edges being rewired per time step. Values are presented for the whole
graph and only on new edges which have been altered since the graph used for training.
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The next two sets of figures show results for when a large possible perturbation is made

in-between each graph time step. Figure 5.6 demonstrates that, as was expected, when even

large steps are made between graphs, the gap between our approaches and the baselines also

increases. The temporally offset methods show a clear increase in performance, even when using

the model to make predictions about graphs later in the time series, which will have a quite

different topological structure to the graph used to train the model.
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Figure 5.6: AUC and AP scores on the Cora dataset evolved via the configuration method with
a 50% chance of edges being rewired per time step. Values are presented for the whole graph
and only on new edges which have been altered since the graph used for training.
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Figure 5.7 shows the results for the Citeseer dataset using the higher level of possible perturb-

ation. The figure continues the trend of the previous results by showing the temporally offset

models to be better at predicting future changes in the graph, even when considering both the

unchanged and new edges.
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Figure 5.7: AUC and AP scores on the Citeseer dataset evolved via the configuration method
with a 50% chance of edges being rewired per time step. Values are presented for the whole
graph and only on new edges which have been altered since the graph used for training.
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Future Link Prediction

For assessing the ability of the various models to continue to make accurate link predictions

as the graph undergoes heavy topological change, we make use of the Erdős-based random rewire

method. Figure 5.8 shows the results for only new edges on both the cora and citeseer datasets

when 50% of the edges have the chance of being rewired in-between each graph snapshot. The

figure shows that our temporally offset training method is more robust to the Erdős rewired

edges, as it displays a higher level of predictive performance, particularly when regarding the

AUC metric. However the performance of all approaches deteriorates to random chance as the

graphs topology becomes increasingly random. Interestingly, of the two temporally offset models,

it is the non-probabilistic approach which displays greater performance across both datasets.
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Figure 5.8: AUC and AP sscoes for the future link prediction task on both the Cora and Citeseer
datasets evolved using the Erdős rewire method with |E|/2 edges having the chance of being
rewired. The results presented are scores for predicting only new edges which have appeared
after the original graph used for training the model.
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Figure 5.9 highlights the performance on new edges when all the edges have the chance to

be rewired between graph snapshots. The results show that the temporal offset approaches

are generally more robust to the large change in graph topology between graph snapshots,

with both demonstrating greater performance, especially at earlier points in the time series.

Again it can be seen that all approaches tend towards a level of performance that could be

achieved by random choice as the graphs themselves become increasingly random. Continuing

the trend established in the previous experiment, the non-probabilistic temporally offset model

out performs the variational approach. We hypothesise that as the variational approach is a

more complex model, it is over-fitting more strongly to the non-rewired original graph edges,

making it less able to learn the Erdős pattern of rewiring.
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Figure 5.9: AUC and AP scores for the future link prediction task on both the Cora and Citeseer
datasets evolved using the Erdős rewire method with the complete set of E having the chance
of being rewired. The results presented are scores for predicting only new edges which have
appeared after the original graph used for training the model.
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5.7.3 Empirical Time-Series

In this section, the performance of the approaches when running on empirical temporal graph

data will be assessed.

Evolution Pattern Prediction

Table 5.6 displays the results for the task of evolution pattern prediction for all models for

the cit-HepPh dataset. The table shows that both the temporally offset methods significantly

outperform the baseline approaches on both whole graph and new edges metrics at this particular

task. The gap in performance between the temporally offset and normal approaches for this

empirical dataset is larger than on the previous synthetic results, indicating that our approach

is much better able to learn the temporal dynamics of real datasets. We can also see that

the variational temporally offset approach is often the best performing of the two approaches,

particularly at later time-points.

Model Metric G1 G2 G3 G4 G5

GVAE

AUC 0.699(±0.0133) 0.6327(±0.0036) 0.5913(±0.0022) 0.5821(±0.0049) 0.5771(±0.0122)
AP 0.8023(±0.0089) 0.7459(±0.0056) 0.7036(±0.001) 0.6853(±0.0035) 0.685(±0.0095)
NE-AUC 0.5358(±0.0103) 0.513(±0.0036) 0.5012(±0.0098) 0.5034(±0.0067) 0.4979(±0.0112)
NE-AP 0.5875(±0.0071) 0.5698(±0.0055) 0.5663(±0.0067) 0.5598(±0.0079) 0.552(±0.0111)

GAE

AUC 0.653(±0.0159) 0.5939(±0.0062) 0.5546(±0.0034) 0.5343(±0.0043) 0.5343(±0.0043)
AP 0.7817(±0.0103) 0.7293(±0.0069) 0.6875(±0.0023) 0.6643(±0.006) 0.6643(±0.006)
NE-AUC 0.4665(±0.0172) 0.4512(±0.0033) 0.4526(±0.0041) 0.4436(±0.0031) 0.4436(±0.0031)
NE-AP 0.5541(±0.0131) 0.5416(±0.0055) 0.5434(±0.0031) 0.5286(±0.0077) 0.5286(±0.0077)

TO-GVAE

AUC 0.9943(±0.0004) 0.873(±0.0022) 0.7728(±0.0031) 0.726(±0.0084) 0.7281(±0.0045)
AP 0.9925(±0.0011) 0.9197(±0.0015) 0.8515(±0.0027) 0.8158(±0.0056) 0.8177(±0.0034)
NE-AUC 0.995(±0.001) 0.8203(±0.0042) 0.7076(±0.0016) 0.6641(±0.0089) 0.6591(±0.008)
NE-AP 0.989(±0.003) 0.8615(±0.0043) 0.776(±0.0023) 0.7396(±0.0055) 0.7367(±0.0044)

TO-GAE

AUC 0.9944(±0.0012) 0.8702(±0.0029) 0.7629(±0.0062) 0.711(±0.0095) 0.711(±0.0095)
AP 0.9915(±0.0028) 0.9176(±0.0022) 0.8461(±0.002) 0.8077(±0.0062) 0.8077(±0.0062)
NE-AUC 0.9955(±0.0009) 0.8159(±0.0029) 0.6972(±0.0087) 0.6449(±0.0084) 0.6449(±0.0084)
NE-AP 0.9882(±0.0043) 0.8588(±0.0025) 0.7711(±0.0035) 0.7285(±0.005) 0.7285(±0.005)

Table 5.6: Evolution pattern prediction results presented as mean values with standard deviation
for both the whole graph and new edges on the cit-HepPh dataset across all models trained using
G0. A bold value indicates the highest score for that metric for the given graph snapshot.
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Future Link Prediction

Table 5.7 highlights the results for all models at the task of future link prediction on the cit-

HepPh dataset. We can see that compared with the previous task, all models are more closely

matched. The results show all approaches to have a good predictive performance, even at later

time points, however, the temporally offset approaches still outperform the baselines. Here it is

interesting to note that the non-probabilistic model almost always outperforms the variational

approach.

Model Metric G1 G2 G3 G4 G5

GVAE

AUC 0.9702(±0.0009) 0.9336(±0.0026) 0.8796(±0.0018) 0.8503(±0.0018) 0.8499(±0.0009)
AP 0.9759(±0.0006) 0.9461(±0.0021) 0.9016(±0.0012) 0.8762(±0.0013) 0.8761(±0.0007)
NE-AUC 0.9586(±0.002) 0.9149(±0.0005) 0.8552(±0.0029) 0.8232(±0.002) 0.8231(±0.0039)
NE-AP 0.9521(±0.0016) 0.9103(±0.0012) 0.8581(±0.0028) 0.8289(±0.0023) 0.8289(±0.0034)

GAE

AUC 0.9885(±0.0006) 0.9794(±0.0018) 0.9545(±0.0011) 0.9412(±0.0007) 0.9412(±0.0007)
AP 0.9902(±0.0004) 0.9815(±0.0014) 0.9616(±0.0011) 0.9518(±0.0007) 0.9518(±0.0007)
NE-AUC 0.9837(±0.0008) 0.9732(±0.0022) 0.9447(±0.0015) 0.9303(±0.0007) 0.9303(±0.0007)
NE-AP 0.9803(±0.0008) 0.9685(±0.002) 0.9442(±0.002) 0.9332(±0.0012) 0.9332(±0.0012)

TO-GVAE

AUC 0.9957(±0.0004) 0.9871(±0.0006) 0.9651(±0.0014) 0.9534(±0.0009) 0.9524(±0.001)
AP 0.9944(±0.0007) 0.9869(±0.0005) 0.9693(±0.0009) 0.9596(±0.0008) 0.9591(±0.0011)
NE-AUC 0.9964(±0.0003) 0.9841(±0.0005) 0.9578(±0.0022) 0.9439(±0.0011) 0.9427(±0.0003)
NE-AP 0.9921(±0.0008) 0.979(±0.0006) 0.9549(±0.0021) 0.9427(±0.0017) 0.9419(±0.0015)

TO-GAE

AUC 0.9961(±0.0001) 0.99(±0.0001) 0.9751(±0.0009) 0.9645(±0.0003) 0.9645(±0.0003)
AP 0.9943(±0.0003) 0.9887(±0.0001) 0.9757(±0.0008) 0.967(±0.0008) 0.967(±0.0008)
NE-AUC 0.997(±0.0001) 0.9882(±0.0002) 0.9701(±0.0011) 0.9579(±0.0003) 0.9579(±0.0003)
NE-AP 0.9922(±0.0006) 0.9825(±0.0) 0.9646(±0.0014) 0.9536(±0.0013) 0.9536(±0.0013)

Table 5.7: Future link prediction results presented as mean values with standard deviation for
both the whole graph and new edges on the cit-HepPh dataset across all models trained using
G0. A bold value indicates the highest score for that metric for the given graph snapshot.

5.8 Temporal Neighbourhood Aggregation: Results

This section presents results of the experimental evaluation of the Temporal Neighbourhood

Aggregation approach.

5.8.1 Ablation Study

One of the major contributions of the work is highlighting how each component of our TNA

model is crucial in producing good temporal embeddings. To highlight this, Table 5.8 shows how
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adding components of the model sequentially affects the performance of predicting new edges in

the final graph of the Bitcoina dataset. It is important to note that adding temporal information

from both the first and second hop neighbourhood (Model TTV) lifts both AUC and AP scores

by approximately 10% versus just first hop temporal information (Model TGV). This supports

our hypothesis that a vertex requires temporal information from more than just its first-order

neighbourhood in order to predict future edges. The ablation study also demonstrates that, with

a modest increase in the number of parameters, the temporal models are able to exploit the rich

information available in the graph’s past evolution to much more accurately predict future edges.

Approach AUC AP |Θ|

GGG 0.574 0.747 121K
GGV 0.721 0.705 122K
TGV 0.772 0.809 130K
TTV 0.863 0.916 132K
TTV/LN 0.927 0.932 132K

TTV/LN/SC (TNA) 0.977 0.976 133K

Table 5.8: Ablation study results on the Bitcoina dataset. G is a GCN layer, V is a variational
sampling layer, T is a GCN + GRU layer, LN is Layer Norm and SC is a skip-connection. |Θ|
is the total number of learnable parameters in the model.

5.8.2 Next Graph Link Prediction

As one of the primary goals of the TNA model, we present results for predicting new edges

in the next temporal graph, using the procedure detailed in Algorithm 5.1, in Table 5.92. The

table shows that TNA significantly outperforms the baseline approaches when predicting new

edges in the next graph at all points along the time series. Compared with the Dyn* family of

approaches, it is striking to note the significant number of parameters required by the models

(often well over an order of magnitude more) and their poor performance in predicting new edges.

We believe it is highly likely that this family of models is using the extra parameters to over-fit

to the edges that do not change over time, resulting in bad predictive capability for the ones that

do. It is also interesting to note that, compared with the D-GCN approach, TNA is better able

to capture the dependences needed for good long-term prediction. For two datasets our model

improves the past graph evolution data from which it has to learn. This is demonstrated by

2 DynRNN is missing for the Wiki dataset as it could not fit in GPU memory.
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the increasing AUC and AP scores for the Bitcoina and UCI datasets. However, all approaches

struggle on the synthetic datasets due to their inherent random nature, as seen in Table 5.10.

Dataset Approach AUC AP |Θ|

25% 50% 100% 25% 50% 100%

Bitcoina

GAE 0.466± 0.025 0.497± 0.042 0.531± 0.127 0.613± 0.031 0.643± 0.042 0.681± 0.093 121K
GVAE 0.577± 0.048 0.602± 0.046 0.620± 0.083 0.634± 0.043 0.654± 0.040 0.670± 0.068 122K
TO-GAE 0.551± 0.053 0.566± 0.053 0.576± 0.124 0.694± 0.038 0.701± 0.038 0.715± 0.085 120K
TO-GVAE 0.598± 0.048 0.620± 0.045 0.631± 0.081 0.646± 0.044 0.665± 0.040 0.631± 0.081 122K
DynAE 0.281± 0.080 0.247± 0.065 0.209± 0.071 0.435± 0.012 0.442± 0.012 0.439± 0.023 4.16M
DynRNN 0.181± 0.081 0.170± 0.059 0.155± 0.066 0.388± 0.014 0.388± 0.011 0.393± 0.022 69.9M
DynAERNN 0.093± 0.090 0.071± 0.066 0.048± 0.054 0.326± 0.022 0.320± 0.016 0.318± 0.012 6.98M
D-GCN 0.622± 0.084 0.572± 0.080 0.519± 0.144 0.697± 0.058 0.661± 0.058 0.623± 0.107 125K

TNA 0.665 ± 0.067 0.698 ± 0.075 0.775 ± 0.110 0.762 ± 0.048 0.792 ± 0.054 0.849 ± 0.079 133K

UCI

GAE 0.561± 0.075 0.600± 0.075 0.606± 0.092 0.661± 0.066 0.688± 0.060 0.689± 0.079 61K
GVAE 0.571± 0.079 0.606± 0.074 0.619± 0.065 0.585± 0.059 0.621± 0.063 0.625± 0.060 62K
TO-GAE 0.601± 0.059 0.633± 0.061 0.625± 0.087 0.682± 0.053 0.705± 0.050 0.699± 0.076 61K
TO-GVAE 0.582± 0.072 0.614± 0.069 0.624± 0.062 0.590± 0.057 0.624± 0.062 0.627± 0.060 62K
DynAE 0.234± 0.066 0.168± 0.076 0.128± 0.067 0.436± 0.019 0.435± 0.021 0.433± 0.017 2.28M
DynRNN 0.161± 0.019 0.176± 0.024 0.159± 0.048 0.365± 0.016 0.370± 0.016 0.369± 0.029 21.8M
DynAERNN 0.033± 0.032 0.021± 0.025 0.013± 0.019 0.314± 0.005 0.312± 0.004 0.312± 0.003 4.15M
D-GCN 0.508± 0.041 0.555± 0.071 0.565± 0.068 0.605± 0.045 0.653± 0.066 0.656± 0.072 64K

TNA 0.694 ± 0.077 0.749 ± 0.073 0.764 ± 0.071 0.702 ± 0.073 0.763 ± 0.075 0.783 ± 0.067 72K

Wiki

GAE 0.491± 0.035 0.487± 0.038 0.502± 0.040 0.642± 0.029 0.621± 0.033 0.617± 0.032 228K
GVAE 0.580± 0.024 0.573± 0.018 0.563± 0.024 0.598± 0.032 0.589± 0.025 0.572± 0.029 229K
TO-GAE 0.537± 0.052 0.556± 0.049 0.552± 0.048 0.700± 0.032 0.697± 0.027 0.668± 0.044 228K
TO-GVAE 0.599± 0.028 0.595± 0.021 0.579± 0.029 0.613± 0.036 0.604± 0.029 0.583± 0.034 229K
DynAE 0.354± 0.034 0.325± 0.041 0.244± 0.089 0.448± 0.009 0.463± 0.016 0.467± 0.013 7.5M
DynAERNN 0.183± 0.024 0.179± 0.026 0.127± 0.056 0.342± 0.005 0.341± 0.006 0.329± 0.012 11.9M
D-GCN 0.628± 0.160 0.591± 0.115 0.563± 0.087 0.745± 0.104 0.686± 0.094 0.629± 0.089 231K

TNA 0.674 ± 0.034 0.644 ± 0.044 0.634 ± 0.050 0.759 ± 0.025 0.740 ± 0.032 0.736 ± 0.039 239K

Table 5.9: Next graph prediction results presented as mean values with standard deviation when
predicting at various percentages of the length of the time-sequence. A bold value indicates the
highest score for that metric. The number of parameters required by each model for the specific
datasets are also included.

5.8.3 Full Graph Reconstruction

To measure the ability of the representations learned by the TNA model to be used as

general purpose embeddings, we look at the problem of future graph reconstruction. Here,

the performance of the model at predicting the presence of edges in the full graph Gt (given

G1..Gt−1) is measured – highlighting how we do not sacrifice performance at predicting existing

edges. This will allow us to investigate the ability of the model to predict not only new edges,

but that existing edges have not been removed. As before, a new model is trained to predict the

final graph in the sequence given all previous time points, with the final results presented as the
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Dataset Approach AUC AP

SBM

GAE 0.505 ± 0.018 0.451± 0.009
GVAE 0.500± 0.012 0.503 ± 0.011
TO-GAE 0.504± 0.017 0.451± 0.008
TO-GVAE 0.500± 0.012 0.503± 0.011
DynAE 0.023± 0.003 0.431± 0.008
DynRNN 0.039± 0.005 0.348± 0.009
DynAERNN 0.008± 0.000 0.308± 0.000
D-GCN 0.458± 0.017 0.458± 0.017

TNA 0.502± 0.024 0.502± 0.017

R-Cora

GAE 0.501± 0.015 0.500± 0.0100
GVAE 0.491± 0.011 0.494± 0.002
TO-GAE 0.500± 0.013 0.502 ± 0.009
TO-GVAE 0.490± 0.011 0.494± 0.011
DynAE 0.356± 0.001 0.479± 0.003
DynRNN 0.308± 0.011 0.381± 0.011
DynAERNN 0.201± 0.000 0.346± 0.000
D-GCN 0.502 ± 0.011 0.500± 0.008

TNA 0.493± 0.012 0.493± 0.012

Table 5.10: Next graph prediction results on sythnetic graphs presented as mean values with
standard deviation when predicting at each point in the time series.

mean over all graphs in the sequence. However, instead of predicting edges which have appeared

since the last time point, here the results are for a balanced set of random sampled positive and

negative edges in Et which may or may not include ones formed since the previous time point.

The results for this experiment are presented in Table 5.11 where for the sake of readability,

we compare with only the temporal baselines. It is obvious that many of the baselines, especially

the Dyn* family of approaches perform much better at predicting existing edges than new ones.

This further suggests that they are utilising their larger set of parameters to, in some way, over-fit

to edges which have been in the graph for a longer length of time, which form the vast majority.

However despite this, our TNA approach still performs well at this task, displaying comparable

performance with the baseline approaches and even outperforming them on the Wiki dataset.

This further strengthens the argument that having recurrence at each hop in the neighbourhood

aggregation produces a better representation, whilst requiring fewer parameters.
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Dataset Approach AUC AP

Bitcoina

DynAE 0.830± 0.068 0.844± 0.050
DynRNN 0.922± 0.059 0.937± 0.039
DynAERNN 0.968 ± 0.057 0.981 ± 0.034
D-GCN 0.919± 0.021 0.934± 0.016

TNA 0.932± 0.024 0.945± 0.018

UCI

DynAE 0.905± 0.061 0.908± 0.055
DynRNN 0.957± 0.015 0.954± 0.010
DynAERNN 0.988 ± 0.014 0.993 ± 0.009
D-GCN 0.829± 0.019 0.862± 0.014

TNA 0.821± 0.015 0.847± 0.012

Wiki

DynAE 0.765± 0.088 0.795± 0.062
DynAERNN 0.882± 0.072 0.934± 0.037
D-GCN 0.905± 0.019 0.936± 0.015

TNA 0.919 ± 0.014 0.945 ± 0.007

Table 5.11: Results for predicting both new and old edges in the final graph in the sequence,
presented as a mean and standard deviation over the whole time sequence. A bold value indicates
the highest score for that metric. TNA remains competitive with, and even beats many baseline
approaches with a much greater number of parameters.

5.8.4 Future Graph Evolution

For our final experiment, we investigate how TNA performs when predicting new edges further

into the future than the next graph. We train the models on 70% of the available temporal history,

then predict new edges and compare with the remaining ground truth data. To achieve this, we

feed the graph predicted by the models as the next graph in the sequence back into the model,

which is subsequently used to predict the next graph. This is similar to using RNNs as generative

models to produce text data [217] and can be seen as a combination of both the previous tasks.

Figure 5.10 displays the results for this task, where we compare with the closest baseline from

Section 5.8.2. The results show how TNA is better able to predict new edges into the future,

emphasising its capability to learn a good temporal representation for the vertices.
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Figure 5.10: AUC and AP for the Wiki and UCI datasets when predicting new edges n number
of time points away from the end of the training sequence. Results presented as the mean of
three uniquely trained models, each with a different random seed.

5.9 Conclusion

Whilst a lot of focus has recently been placed on finding methods for learning graph repres-

entations which are accurately able to make predictions about the current state of the graph, few

works have investigated how these models perform for temporal graphs. However, many real-

world graph datasets have rich and complex temporal information available which is disregarded

by the majority of the current approaches for creating vertex representations. This chapter has

explored two new graph specific neural networks for incorporating temporal information in the
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learning process: Temporal Offset Reconstruction and Temporal Neighbourhood Aggregation.

The approaches demonstrate excellent performance through extensive experimental evaluation,

beating several competing temporal and static models on a range of crucial dynamic graph tasks.

5.9.1 Current Limitations

Whilst the work presented in this chapter has been successful in creating temporal graph

embeddings, there are some current limitations with the approach:

• Fixed Input Graph Sizes: Due to the use of GCN layers in both approaches, all graphs in

the time series must have the same adjacency matrix size for the model parameters to be

shared across the sequence. This means that graphs from earlier in the time series, which

may contain a smaller number of vertices, must be padded with place-holder vertices,

containing no edges, to ensure that all graphs have the same number of vertices as the

largest. This leads to redundant computation being performed on the place-holder vertices,

slowing training times and mandating a data pre-processing step.

• Large Memory Requirements: Although the approaches require fewer parameters than

competing ones, the memory requirements for training are still large. This results in only

relatively small graphs being able to be used as input, or larger graphs with shorter temporal

evolutions. The high memory requirement of the approaches is primarily due to the GCN

layers which require the whole graph to be in memory and do not support mini-batching of

the data to alleviate this [128]. Additionally, RNNs grow linearly in memory requirement

with the sequence length [154], meaning that every graph in the time series must fit in

GPU memory.

• Temporal Learning Component Choice: The TNA approach uses an RNN to learn the

temporal change in a graph. However, a new family of models have emerged from the

field of natural language processing, entitled Transformers, which have resulted in large

improvements in temporal tasks [226]. Transformers overcome some of the long term

dependency issues with RNNs and are able to directly access any element in the time

series.
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• Lack of Interpretability: There has been little significant research on if and what graph

topological features are being learned by GCN layers. Additionally, it is an open research

question as to how one would actually measure what temporal change in graph topological

structure is being learned by the RNNs. This means that when compared with the research

performed in Chapter 4, it could be argued the models presented here are less interpretable.

5.9.2 Future Work

For future research, work could be performed to investigate whether replacing the GCN layers

with alternative layers, perhaps ones designed for inductive learning [93], could allow for training

on even larger graph datasets. Additionally this could allow for graphs containing a different

number of vertices in each time step to be modelled. Work could also be performed to investigate

whether incorporating select topological features as input features for each vertex could improve

overall predictive performance. Some work has been performed incorporating the earth-movers,

or Wasserstein distance into a Variational Auto-Encoder model [223] – altering the TNA model

presented here to include this could result in better temporal representations. Finally, additional

tasks could be explored to further assess the performance of the vertex representations, for

example the task of anomaly detection could be performed by looking for abnormal reconstruction

values, indicating a graph not commonly seen during training.

Epilogue

This chapter has introduced and rigorously tested two models and associated training pro-

cedures for creating representations of temporal graphs, thereby achieving research objective 3.

The potential of these models is demonstrated by the superior performance on several key tasks

in temporal graph mining.

Over the course of this thesis, various aspects of using machine learning to study graphs have

been investigated. In the final Chapter, the work is drawn to a conclusion with final observations

made and new research directions suggested.
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Chapter 6

Conclusions

Representing large and complex datasets in the form of a graph has been demonstrated to

be beneficial in numerous scientific domains, as it allows for unique insights to be gained by

exploiting the graph’s structure. Often this structural knowledge is captured via the use of

hand-crafted graph-specific algorithms which can be complicated to create and difficult to even

run on large graphs. However, in other fields, most notably Computer Vision, recent advances

in machine learning have enabled significant improvements in performance in many key tasks

which were traditionally tackled via the use of equivalent hand-crafted algorithms.

Consequently, if the same were to hold true for graphs, there is a large potential benefit for

using machine learning to augment or replace traditional approaches for solving key issues in

the field of graph mining. This thesis has explored the use of various techniques to improve the

ability of machine learning to be performed on graphs. The primary research aim and objectives

of the thesis were established in Chapter 1, and recapped here they were designed to address

three primary concerns: global graph representation, increased interpretability of graph-based

representation learning and the incorporation of temporal dynamics into graph-specific machine

learning models.



171

6.1 Summary of Thesis Contributions

This thesis has made various contributions to the field of graph-based machine learning whilst

fulfilling the original research aim and objectives. Whilst the contributions have been explored

in full in the previous chapters, a summary is given in this section.

In Chapter 3, a new method, entitled Graph Fingerprints, for creating a numerical repres-

entation capturing the crucial elements of the topological structure of a given graph is detailed.

The representation explored the hypothesis that combining aggregated features which captured

the characteristics of vertex neighbourhood structure, with global graph topological features, can

accurately represent graph structure. The resulting representation was demonstrated through

experimentation on the crucial tasks of graph comparison and graph classification, using various

real-world and synthetic datasets and compared against competing approaches. In order to

accurately compare and measure the similarity of two graphs, a method was proposed that

combined Graph Fingerprints with the Canberra distance metric. The incorporation of global

features allowed more sensitivity when comparing graphs of different sizes. To allow for graphs

to be classified with a high level of precision, a custom deep neural network was proposed

which used Graph Fingerprints as input. Using this approach allowed both binary and multi-

class classification to be performed with equal or greater accuracy than the state-of-the-art

Graph Kernel-based methods. Further, evidence was provided that demonstrated the Graph

Fingerprints can be extracted from a graph in less time than competing approaches and that

this process can be performed in parallel across a compute cluster, allowing graphs of over 100

million vertices to be processed. Whilst the approach was successful overall, it considered only

a single representation for a graph, and offers no way to represent individual vertices.

In Chapter 4 work moves to considering representation learning at the level of individual ver-

tices within a graph. Recently, numerous unsupervised vertex-level graph embedding techniques

have been proposed which do not require hand-crafted features, instead the representations are

learned as part of the process. These techniques have demonstrated state-of-the-art performance

in important tasks such as vertex classification. However, due to the unsupervised nature

of the learning process, there is a lack of interpretability regarding which, if any, topological

structure is being approximated. This could possibly hinder their use in crucial domains such

as healthcare. Inspired by the work in the previous chapter showing how topological features

can be an excellent representation for a graph, research in this chapter proposed to begin to

bring interpretability to these approaches by investigating whether a mapping can be found from
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the learned embeddings to known topological features. This proposed mapping was investigated

using a combination of supervised and unsupervised methods, which yielded empirical evidence

that several known topological features are approximated in the embedding space. The work

resulted in the interesting discovery that Eigenvector centrality was consistently the feature

most well approximated by the approaches, giving some insight into which topological structures

are being captured.

Finally, Chapter 5 considers how best to incorporate the temporal dynamics present in many

real-world graph datasets into models operating on graph data. The chapter proposed two

novel alternative unsupervised methods for creating vertex level representations which contain

temporal, in addition to, structural information. The first approach trains on offset pairs of

snapshots from a graph’s evolution, where the next time-point is directly predicted from the

first. Despite being limited by only being able to consider a single previous graph, the approach

was shown to create representations which are more robust over multiple future time-points.

The second proposed approach addresses issues from the first by incorporating recurrence into

a new model, meaning that all previous time-points in a graph’s history can be recalled in

order to improve performance. The approach achieved this by allowing vertices to learn their

representations by aggregating information about how their neighbours had changed over time.

Additionally, both proposed approaches demonstrated that sampling the vertex representations

using variational approximations can create better ones overall. This was achieved whilst using a

smaller number of model parameters than competing approaches, owing in part to not requiring

a parameterized decoder. Further, the experimental evidence in the chapter highlighted that

competing approaches can over-fit to older edges, resulting in poor performance at predicting

newly arriving edges.

6.2 Review of Research Aim and Objectives

During the work performed for this thesis, the primary research aim and associated objectives,

established in Chapter 1, have been successfully achieved:

• Firstly, a representation for a single graph using both local and global topological features

was created (Chapter 3). Whilst this was largely achieved successfully, the approach

still requires some hand-tuning as detailed in Section 3.9.1, and more recent end-to-end

approaches may be able to alleviate this issue.
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• Secondly, a family of methods to bring interpretability to graph embeddings via the use of

topological features was proposed and thoroughly evaluated (Chapter 4), thus this research

objective was successfully achieved. The outcome of the evaluation was that, even though a

strong correlation was found between certain known topological features and the embedding

space, attributing causality to this remains an issue (detailed further in Section 6.4.2).

• Thirdly, two new models were successfully created which incorporated temporal graph

dynamics in alternative ways (Chapter 5). The experimental evaluation highlighted that

the approaches performed well on certain datasets sizes, but did not always scale to larger

sizes.

6.3 Evaluation and Analysis of Key Contributions

Sections 6.1 and 6.2 have described the contributions of the research and confirmed that

the original research aim and objectives have been achieved. This section outlines a qualitative

evaluation and analysis of the research contributions made during this thesis.

• This research has successfully identified a descriptive set of topological features that can

be incorporated as a single numerical representation (here termed Graph Fingerprinting).

This is significant because traditional ways of doing this have relied on slow and inefficient

methods such as Graph Kernels.

• The thesis proposes new methods regarding the interpretability of existing graph embedding

approaches and the associated code has also been made available publicly. This is important

as the developed methods can begin to offer some explanation as to why unsupervised graph

embedding approaches have proven so successful. In addition this might potentially allow

graph embeddings to be used more broadly in sensitive fields, such as the medical or legal

domains.

• The thesis provides two novel models (which have been made publicly available) allowing

temporal aspects to be incorporated into graph based machine learning. This is important

because the majority of existing approaches have typically ignored temporal information,

whereas the reality is that many real-world problems in graph mining are dependant upon

evolving graph dynamics.
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• In a wider sense, this research has provided some insights and explanation into how machine

learning is developing with specific respect to graphs. More specifically, that machine

learning models appear to be ‘thinking’ about graphs in a similar way to that of human

experts. This is a critical aspect of this research since this phenomenon has been observed in

other sectors (Computer Vision for example) but hitherto not in the graph-based machine

learning field.

• Overall, this research has highlighted that there are some potential ideological concerns

regarding traditional human-driven versus machine-learned knowledge. This signposts that

there should be caution in future research to the effect that human-driven knowledge is

still valuable, especially with issues regarding scalability and large amounts of data and

thus should not be ignored.

• This research has contributed to certain gaps in the literature, especially regarding inter-

pretability and also the temporal nature of many graph datasets. Indeed, this research has

arguably been among the first works to consider these particular aspects in depth.

• The experimental evaluation has demonstrated that the use of synthetic graph data is

acceptable for measuring aspects of run-time performance, but perhaps not for measuring

a model’s predictive capability. This highlights the issue that the lack of availability of

suitable public datasets is a major obstacle in the progression of this field.

6.4 Future Work

Whilst the approaches explored in this thesis have demonstrated, through experimental

evaluation, that they are successful, there is clear scope for future work. This section is divided

into work that could be undertaken to improve the current research and further novel research

that could be conducted as a clear continuation of this research.

6.4.1 Improvements to Current Work

Despite the successes of the overall approaches explored in this thesis, with the benefit

of hindsight, there are some areas in which the research could have been improved. This is
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mostly laid out in the conclusion sections for Chapters 3 4 and 5, however the major items are

summarised in this section.

All of the various approaches explored in this thesis have required the use of varying quant-

ities of real-world and synthetic graph datasets as input. However, due mainly to the limited

availability of large quantities of publicly available datasets, it was not possible to perform exper-

imentation with graphs from all domains. Thus, perhaps the single most impactful improvement

that could be made to the work presented in this thesis would be to expand the datasets upon

which the various methods were evaluated. The global graph classification approach using Graph

Fingerprints (detailed in Chapter 3) in particular was limited by only being able to be tested

on synthetic data. It would therefore be a large validation of the work if the same patterns and

conclusions could be drawn when real-world data was used.

Additionally, the work presented in this thesis focused primarily on undirected graphs with

only a single edge type. Further work would be needed to confirm that the same approaches also

worked on more complicated input data formats, such as directional, weighted or hyper graphs.

6.4.2 Expansions to the Work

Using the research undertaken in this thesis, there are several interesting ways in which work

could continue, the most relevant of which are outlined below.

Creation of Benchmark Datasets: It can be argued that the release of large public benchmark

datasets in the computer vision field have been partially responsible for the increases in predictive

performance across a range of related tasks. Datasets such as MNIST [143] and ImageNet [65]

not only get large amounts of data into the public domain, allowing for a greater amount of

innovation, they can also act as a benchmark against which various competing approaches can be

directly compared. The creation of such a resource for the field of graph mining would bring many

potential benefits and allow for larger and more complex models to be created. This would be a

challenging task however, as graphs typically represent data originating from a range of scientific

disciplines and can contain temporal in addition to other auxiliary information. Complicating

matters further, often the underlying data is of a proprietary nature and held across many

different organisations, thus making the creation of a single representative benchmark dataset

even harder.
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Graph Generative Models: The work performed in this thesis employed the use of several

graph generative models to create synthetic data (Forest-Fire for example [145]), the majority of

which are based on simple statistical rules. There is large scope for machine learning to be used

to generate random graphs that much more closely mimic the structure of a certain set of training

graphs. This could not only result in more training data being made available for approaches

like the ones introduced in this thesis, but it could be used to remove privacy concerns that

might arise from releasing real-world data, as a synthetic copy which mimics the original could

be released instead. One can view the TNA approach (introduced in Chapter 5) as a generative

model, since an unlimited number of future graph states can be generated. However, other

approaches, perhaps based on the framework of a Generative Adversarial Network (GAN) [81]

could produce a broad range of synthetic graphs without requiring temporal data. Some early

work has even been performed using GANs with graphs, however the focus of the work thus far

has been in adapting GANs to perform link prediction, with GraphGAN being a representative

example [230]. However, making such approaches learn from a large corpus of training graphs,

and then produce examples which could plausibly come from the same distribution, would require

a potentially exponential increase in their capacity and processing speed.

Graph Model Pre-training: A long line of research has shown that pre-training a deep

neural network on some initial task or dataset can dramatically improve model performance on

a secondary task [71]. One of the commonly accepted explanations for this is that the model

is learning features which are able to be reused across datasets and tasks [96], making a model

trained on a different task a better starting point than the randomly initialised weights typically

used. In some fields, this process of using a model trained on a different dataset and fine-tuning

on a different dataset or task is known as Transfer Learning [218] However, due to the nature

of the architecture of graph-specific models being dataset dependant, particularly the GCN

used in parts of this thesis [128], transferring knowledge across graph datasets is exceptionally

challenging [104]. One possible solution for the pre-training of graph models, using the research

presented in this thesis, would be to have the model pre-trained to predict certain key topological

features from a graph, before then continuing on to the desired task. This could prime the model

with knowledge about the graph’s topological structure which has proven to be useful for the

identification of graphs, as shown in Chapters 3 and 4.

Fully Explainable Graph Models: The work presented in Chapter 4 took some initial steps

toward bringing interpretability to unsupervised graph embeddings. However the proposed

approach was a secondary process which was used after the first model had been trained to
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interpret the results, a common approach in the literature [192]. Further research would be

needed to create a single model which was trained in an end-to-end manner to not only produce

the desired predictions, but to also explain the rules and decision-making process that allowed

the model to arrive at a certain decision. Such a hypothetical model could allow for interpretable

decisions to be made, hopefully increasing the ability of graph-based models to be adopted in

crucial industries such as healthcare and law.
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[135] István A. Kovács, Katja Luck, Kerstin Spirohn, Yang Wang, Carl Pollis, Sadie Schlabach,

Wenting Bian, Dae-Kyum Kim, Nishka Kishore, Tong Hao, Michael A. Calderwood, Marc
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Appendix A

GFP-X Parallel Implementation

A.1 Apache Spark and GraphX

Apache Spark is a general-purpose parallel computing framework for processing massive

datasets [245], the core of which is the Resilient Distributed Dataset (RDD) abstraction. An RDD

is a read only collection of data partitioned across a set of Spark cluster machines and cached in

memory. The RDD concept has further been expanded via the higher-level DataFrames, which

arrange the distributed collection of data into labelled columns similar to a traditional relational

database [12].

GraphX is a system for processing of graph datasets using Spark [235]. It includes a variant

of Google’s Pregel API – the first of the ‘Think Like A Vertex’ (TLAV), designed to bring the

scalability of a Map / Reduce like system to graph processing [162]. Graphs are represented as

specialised versions of RDD’s and thus can be parallelised across a cluster. GraphX includes a

selection of primitive graph algorithms including connected components and triangle count but

additional algorithms must be implemented by the end user using one of the available GraphX

graph traversal API’s: Pregel and Aggregate Messages.
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A.2 Parallel Feature Extraction

Both the GFP-X and GFP-C approaches are written in Scala for the Apache Spark GraphX

package. Spark was chosen due to it’s ability to scale across a distributed environment and it’s use

of in-memory computation. As the main goal of GFP-X was scaleability, using Spark allowed this

to be achieved. GraphX offers a range of implicit functions for extracting common features from

a graph, such as triangle counting, PageRank and connected components – where ever possible,

these methods were utilised. Any features not provided by GraphX must be implemented via one

of the available graph traversal algorithms. To implementing the non-implicit features for GFP-X,

the Aggregate Messages API was utilised. Previous research has shown that key statistics about

a vertex neighbourhood [25] can be very powerful in it’s identification. The Aggregate Messages

API passes information from a vertex to all it’s neighbours and can be considered conceptually

as Map / Reduce for graphs [235]. To use the Aggregate Messages API, a send message and

merge message function must be created to perform the desired computation. The send message

function, analogous to a Map, controls what message is sent by every vertex within a graph. The

merge message, analogous to a Reduce, controls the aggregation of multiple messages arriving at

the same vertex to create a single result. This process is performed in parallel across the Spark

cluster.

The Aggregate Messages API is used in three of the vertex features for GFP-X; the mean

PageRank score, number of two hop away neighbours and mean local clustering score for a

vertex’s neighbourhood. To capture the mean PageRank score for a vertex’s neighbourhood, the

PageRank score, computed for each vertex using the implicit GraphX function, is used as the

attribute to be passed in the send message — as well as a counter variable. This results in each

vertices PageRank score being sent to all it’s neighbours. The merge message function then sums

the incoming PageRank score messages at each vertex and divides by the total number of counters

received, resulting in each vertex having the mean PageRank score for it’s neighbourhood.

The methodology is a generalised way of capturing the mean of any vertex feature across it’s

neighbourhood — using it also for the mean neighbourhood local clustering score and number

of two hop away neighbours. This method is extremely efficient and is fully parallelised across

a cluster. The method could be expanded to aggregate a feature from multiple hops away from

a vertex, capturing information about it’s extended neighbourhood, using multiple iterations of

the send-merge process.

All the features for GFP-X and their extraction method are detailed in Table A.1. Each
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vertex feature is returned as a VertexRDD, containing the vertex ID and the feature value. The

global features are returned as a single DataFrame containing all global feature values. In order

to scale to massive graphs, even when running on a single machine, memory management is a

key concern. Spark allows data to be cached in memory to improve application performance,

but programs can be unstable if the data requirements exceeds the amount of available memory.

Due to this, we allowed the graph to cache to disk if memory space is limited. To improve the

memory footprint of GFP-X, each feature is extracted and then immediately aggregated so that

the original VertexRDD can be removed from memory.

A.3 Parallel Graph Comparison

The function for feature creation utilises the Spark DataFrame API, which allows for each

set of vertex features to be aggregated efficiently and in parallel using the implicit statistics

functionality. Once all the features have been aggregated, they are joined to create a vertex

and global feature vector, both of which are stored as DataFrames. To compute the similarity

between two graphs, these feature vectors are compared using the Canberra distance which has

been implemented using the RDD API. The two vectors being compared are first joined together,

then a single Map / Reduce iteration can be used to compute the distance. In the Map phase,

the absolute difference between each vector elements is divided by their absolute sum. These

results are then summed in the Reduce phase. Using Apache Spark for all components, not just

the graph feature extraction, of GFP-X and GFP-C, ensures that they will still be scaleable as

graph datasets continue to grow.

The GFP-X and GFP-C frameworks have been open sourced under a GPLv3 licence and are

available on GitHub1. In addition, the code used to run each experiment, generate the synthetic

datasets used and the implementation of NetSimile, written in the Graph-Tool package [63], are

also available in the same repository.

1 https://github.com/sbonner0/GFPX-GraphSimilarity
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Table A.1: GFP-X Feature Extraction Method

Feature Extraction Method

Eigenvector Centrality Value Extracted using the Sparkling-Graph pack-
age [21].

PageRank Score Extracted using the implicit GraphX
method.

Average PageRank of Neighbourhood Extracted using Aggregate Messages mean
neighbourhood method described in sec-
tion A.2.

Total Degree Extracted by counting the number of ver-
tices incident on each vertex.

Two-Hop Away Neighbours Extracted using the Aggregate Messages
methodology by each vertex sending the
number of neighbours it has to its neigh-
bourhood.

Local Clustering Score Extracted via the Sparkling-Graph pack-
age.

Average Clustering of Neighbourhood Extracted using the mean neighbourhood
Aggregate Messages method.

Graph Order Extracted by counting the number of ver-
tices within the VertexRDD.

Graph Size Extracted by counting the number of edges
within the EdgesRDD.

Number of Triangles Extracted using the implicit GraphX func-
tion and a custom Map / Reduce function.

Number of Components Extracted via the implicit GraphX func-
tion.

Number of Vertices In Largest Component Extracted via a custom Map / Reduce
method.
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