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Leonhard Euler

1. Mathematicians have searched so far in vain to discover some order in
the progression of prime numbers, and we have reason to believe that it is a
mystery which the human mind will never be able to penetrate. To convince
ourselves so, we have only to cast our eyes on the tables of prime numbers,
which some have taken the trouble to continue beyond 100,000, and we will
notice at once that neither rule nor order reigns. This situation is all the
more surprising since arithmetic gives us unfailing rules, by means of which
we can continue the progression of these numbers as far as we wish, without
however leaving us the slightest trace of any order. I believe myself also
to be rather far from this goal, but I have just discovered a very strange
law among the sums of the divisors of natural numbers, which at first glance
would appear as irregular as the progression of the prime numbers, and which
even seems to encompass it. This rule, which I am going to expand upon, is
in my opinion all the more important because it is the sort of truth we can
persuade ourselves of, without giving a perfect proof. Nevertheless, I will put
forth such evidence that we might almost be able to imagine it as equivalent
to a rigorous proof.

2. The prime numbers are distinguished from other numbers in that they do
not admit any divisors other than unity and themselves. So 7 is a prime num-
ber, because it is divisible only by unity and itself. The other numbers which
have, besides unity and themselves, still other divisors, are called composites,
as for example the number 15, which, besides unity and itself, is divisible by
3 and 5. So in general, if the number p is prime, it will be divisible only by 1
and p; but if p is a composite number, it will have, besides 1 and p, still other
divisors. And therefore in the prime case, the sum of the divisors will be
1+ p, and in the other case, it will be greater than 1 + p. Since the following
thoughts will revolve around the sum of the divisors of each number, I will
use a certain character to indicate this. The letter

∫
, which one employs
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in infinite analysis to indicate integrals, when put in front of a number, will
mean the sum of its divisors. So

∫
12 will signify the sum of all the divisors

of 12, which is 1 + 2 + 3 + 4 + 6 + 12 = 28, so that
∫

12 = 28. That fixed,
we will see that

∫
60 = 168 and

∫
100 = 217. But since unity has no divisor

other than itself, we will have
∫

1 = 1. Since the number 0 is divisible by
every number, the value of

∫
0 will be infinite. However, in what follows I

will assign to it, for each instance put forward, a definite value appropriate
to my design.

3. Having so established this sign
∫

to indicate the sum of the divisors of
the number in front of which it is placed, it is clear that, if p indicates a
prime number, the value of

∫
p will be 1+ p, except for the case where p = 1,

because then we have
∫

1 = 1, and not
∫

1 = 1 + 1. From this we see that
we must exclude unity from the sequence of prime numbers, so that unity,
being the start of whole numbers, it is neither prime nor composite. Now, if
the number p is not prime, the value of

∫
p will be greater than 1+ p. In this

case, we will easily find the value of
∫

p by the factors of the number p. For
let a, b, c, d, etc. be distinct prime numbers, and we will easily see that

∫
ab = 1 + a + b + ab = (1 + a)(1 + b) =

∫
a · ∫ b∫

abc = (1 + a)(1 + b)(1 + c) =
∫

a · ∫ b · ∫ c∫
abcd = (1 + a)(1 + b)(1 + c)(1 + d) =

∫
a · ∫ b · ∫ c · ∫ d

etc.

For the powers of prime numbers, we need specific rules such as:

∫
a2 = 1 + a + a2 =

a3 − 1
a− 1

∫
a3 = 1 + a + a2 + a3 =

a4 − 1
a− 1

and in general
∫

an =
an+1 − 1

a− 1

And by means of these, we will fix the sum of the divisors of each number,
however it may be composed, which will be clear by the following formulas:

∫
a2b =

∫
a2 · ∫ b∫

a3b2 =
∫

a3 · ∫ b2

∫
a3b4c =

∫
a3 · ∫ b4 · ∫ c
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and in general

∫
aαbβcγdδeε =

∫
aα · ∫ bβ · ∫ cγ · ∫ dδ · ∫ eε

Thus, to find the value of
∫

360, since 360 resolves into the factors 23 · 32 · 5,
we will have

∫
360 =

∫
(23 · 32 · 5) =

∫
23 · ∫ 32 · ∫ 5 = 15 · 13 · 6 = 1170.

4. In order to have in view the progression of the sums of the divisors, I
will add the following table, which contains the sums of the divisors of the
natural numbers from unity to up to 100:

∫
1 = 1∫
2 = 3∫
3 = 4∫
4 = 7∫
5 = 6∫
6 = 12∫
7 = 8∫
8 = 15∫
9 = 13∫
10 = 18∫
11 = 12∫
12 = 28∫
13 = 14∫
14 = 24∫
15 = 24∫
16 = 31∫
17 = 18∫
18 = 39∫
19 = 20∫
20 = 42

∫
21 = 32∫
22 = 36∫
23 = 24∫
24 = 60∫
25 = 31∫
26 = 42∫
27 = 40∫
28 = 56∫
29 = 30∫
30 = 72∫
31 = 32∫
32 = 63∫
33 = 48∫
34 = 54∫
35 = 48∫
36 = 91∫
37 = 38∫
38 = 60∫
39 = 56∫
40 = 90

∫
41 = 42∫
42 = 96∫
43 = 44∫
44 = 84∫
45 = 78∫
46 = 72∫
47 = 48∫
48 = 124∫
49 = 57∫
50 = 93∫
51 = 72∫
52 = 98∫
53 = 54∫
54 = 120∫
55 = 72∫
56 = 120∫
57 = 80∫
58 = 90∫
59 = 60∫
60 = 168

∫
61 = 62∫
62 = 96∫
63 = 104∫
64 = 127∫
65 = 84∫
66 = 144∫
67 = 68∫
28 = 126∫
69 = 96∫
70 = 144∫
71 = 72∫
72 = 195∫
73 = 74∫
74 = 114∫
75 = 124∫
76 = 140∫
77 = 96∫
78 = 168∫
79 = 80∫
80 = 186

∫
81 = 121∫
82 = 126∫
83 = 84∫
84 = 224∫
85 = 108∫
86 = 132∫
87 = 120∫
88 = 180∫
89 = 90∫
90 = 234∫
91 = 112∫
92 = 168∫
93 = 128∫
94 = 144∫
95 = 120∫
96 = 252∫
97 = 98∫
98 = 171∫
99 = 156∫
100 = 217

I do not doubt that when one looks at the progression of these numbers, one
would nearly lose hope of discovering the least order in it, because the irreg-
ularity of the sequence of prime numbers is intermixed with it in such a way
that it would at first seem impossible to indicate any law in the progression
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of these numbers without knowing that of the prime numbers. It even seems
that there is more strangeness here than in the prime numbers.

5. Nevertheless, I have noticed that this progression follows a quite regu-
lar law, and that it is even the kind of progression that the geometers call
recursive, so that we can always form each term from those preceding it,
according to a constant rule. For if

∫
n denotes an arbitrary term in this

irregular progression, and
∫
(n − 1),

∫
(n − 2),

∫
(n − 3),

∫
(n − 4),

∫
(n − 5),

etc., the preceding terms, I say that the value of
∫

n is always formed from
the preceding terms by following this formula:

∫
n =

∫
(n− 1) +

∫
(n− 2)− ∫

(n− 5)− ∫
(n− 7)

+
∫
(n− 12) +

∫
(n− 15)− ∫

(n− 22)− ∫
(n− 26)

+
∫
(n− 35) +

∫
(n− 40)− ∫

(n− 51)− ∫
(n− 57)

+
∫
(n− 70) +

∫
(n− 77)− ∫

(n− 92)− ∫
(n− 100)

+ etc.

In this formula, we note:
I. In the alternation of the signs + and −, each repeats two at a time.

II. The progression of the numbers 1, 2, 5, 7, 12, 15, etc. which must be
successively subtracted from the given number n, will become clear as soon
as we take their differences:

N. 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100 . . .

Diff. 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, 7, 15, 8 . . .

because we have all the natural numbers, 1, 2, 3, 4, 5, 6, etc., alternating
with the odd numbers 3, 5, 7, 9, 11, etc., so we can continue the sequence of
these numbers as far as we wish.

III. Although this series goes to infinity, we only have to take, in each case,
the terms starting where the number after the

∫
sign is still positive, omitting

those that contain negative numbers.

IV. If it happens that the term
∫

0 appears in this formula, since its value
is indeterminate in itself, we must, in each case, instead of

∫
0 put the given

number itself.

6. These things noted, it will not be difficult to apply this formula to any
given number and to convince ourselves of its truth, by as many examples
as we would wish to develop. And because I must admit that I am not in a
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position to give a rigorous proof of this law, I will make its correctness seen
by a large enough number of examples.

∫
1 =

∫
0 = 1∫

2 =
∫

1 +
∫

0 = 1 + 2 = 3∫
3 =

∫
2 +

∫
1 = 3 + 1 = 4∫

4 =
∫

3 +
∫

2 = 4 + 3 = 7∫
5 =

∫
4 +

∫
3− ∫

0 = 7 + 4− 5 = 6∫
6 =

∫
5 +

∫
4− ∫

1 = 6 + 7− 1 = 12∫
7 =

∫
6 +

∫
5− ∫

2− ∫
0 = 12 + 6− 3− 7 = 8∫

8 =
∫

7 +
∫

6− ∫
3− ∫

1 = 8 + 12− 4− 1 = 15∫
9 =

∫
8 +

∫
7− ∫

4− ∫
2 = 15 + 8− 7− 3 = 13∫

10 =
∫

9 +
∫

8− ∫
5− ∫

3 = 13 + 15− 6− 4 = 18∫
11 =

∫
10 +

∫
9− ∫

6− ∫
4 = 18 + 13− 12− 7 = 12∫

12 =
∫

11 +
∫

10− ∫
7− ∫

5 +
∫

0 = 12 + 18− 8− 6 + 12∫
13 =

∫
12 +

∫
11− ∫

8− ∫
6 +

∫
1 = 28 + 12− 15− 12 + 1 = 14∫

14 =
∫

13 +
∫

12− ∫
9− ∫

7 +
∫

2 = 14 + 28− 13− 8 + 3 = 24∫
15 =

∫
14 +

∫
13− ∫

10− ∫
8 +

∫
3 +

∫
0 = 24 + 14− 18− 15 + 4 + 15 = 24∫

16 =
∫

15 +
∫

14− ∫
11− ∫

9 +
∫

4 +
∫

1 = 24 + 24− 12− 13 + 7 + 1 = 31∫
17 =

∫
16 +

∫
15− ∫

12− ∫
10 +

∫
5 +

∫
2 = 31 + 24− 28− 18 + 6 + 3 = 18∫

18 =
∫

17 +
∫

16− ∫
13− ∫

11 +
∫

6 +
∫

3 = 18 + 31− 14− 12 + 12 + 4 = 39∫
19 =

∫
18 +

∫
17− ∫

14− ∫
12 +

∫
7 +

∫
4 = 39 + 18− 24− 28 + 8 + 7 = 20∫

20 =
∫

19 +
∫

18− ∫
15− ∫

13 +
∫

8 +
∫

5 = 20 + 39− 24− 14 + 15 + 6 = 42

I believe these examples sufficient to imagine that it is not by sheer luck that
my rule finds itself in agreement with reality.

7. If nevertheless one objects that these examples only prove the correctness
of the first six terms of our sequence: 1, 2, 5, 7, 12, 15, and not that of
the law of progression which I indicated, it will suffice to choose, in order to
verify this law, some examples using larger numbers.
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I. Let 101 be the number for which we wish to find the sum of its divisors.
We have:

∫
101 =

∫
100 +

∫
99− ∫

96− ∫
94 +

∫
89 +

∫
86− ∫

79− ∫
75

+
∫

66 +
∫

61− ∫
50− ∫

44 +
∫

31 +
∫

24− ∫
9− ∫

1

= 217 + 156− 252− 144 + 90 + 132− 80− 124

+ 144 + 62− 93− 84 + 32 + 60− 13− 1

which, adding these numbers two at a time

∫
101 = 373− 396 + 222− 204 + 206− 177 + 92− 14

which gives
∫

101 = 102, from which we conclude that 101 is a prime number,
if we didn’t know it already.

II. Let 301 be the number for which we wish to know the sum of its divisors,
and we will have

∫
301 =

∫
300 +

∫
299− ∫

296− ∫
294 +

∫
289 +

∫
286− ∫

279− ∫
275

+
∫

266 +
∫

261− ∫
250− ∫

244 +
∫

231 +
∫

224− ∫
209− ∫

201

+
∫

184 +
∫

175− ∫
156− ∫

146 +
∫

125 +
∫

114− ∫
91− ∫

79

+
∫

54 +
∫

41− ∫
14− ∫

0

where it is clear how, by means of the differences, we can easily form this
sequence for each case proposed. Now, substituting the sums of the divisors,
we will find

∫
301 = +868− 570 + 307− 416 + 480− 468 + 384− 240 + 360− 392

+ 156− 112 + 336− 684 + 504− 372 + 390− 434 + 504− 272

+ 248− 222 + 240− 80 + 120− 24 + 42− 301

where ∫
301 = +4939− 4587 = 353

from which we recognize that 301 is not prime. Now since 301 = 7 · 43, we
will have ∫

301 =
∫

7 · ∫ 43 = 8 · 44 = 353

by the rule just shown.

8. These examples that I have just developed will no doubt remove any scru-
ple which one could still have about the truth of my formula. But one could



RELATING TO THE SUM OF THEIR DIVISORS 7

be all the more surprised by this nice property, not seeing any connection
between the composition of my formula and the nature of the divisors, the
sum of which the proposition centers upon. The progression of the numbers
1, 2, 5, 7, 12, etc. appears not only to have no relation to the subject in
question, but, seeing that the law of these numbers is interrupted and that
they are a mixture of two different regular progressions, that is

1, 5, 12, 22, 35, 51, etc. and 2, 7, 15, 26, 40, 57, etc.,

it almost seems that such an irregularity would not find a place in analysis.
Furthermore, the lack of a proof must in no small way increase the interest
in this, seeing that it would be almost morally impossible to arrive at the
discovery of such a property, without having been led there by a sure method,
which might be able to take the place of a perfect proof. I also admit that it
is not by pure luck that I fell upon this discovery, but another proposition of
a similar nature which must be judged true, though I cannot prove it, opened
the way for me to arrive at this nice property. And although this investigation
centers only on the nature of numbers, to which infinite analysis would not
seem to have any applicability, it is nevertheless by means of differentiation
and other detours that I was led to this conclusion. I would hope that
one could find a shorter and more natural way to get there, and perhaps
consideration of the route I followed will lead to it.

9. A long time ago I considered, on the occasion of the problem of the
partition of numbers, this expression

(1− x)(1− x2)(1− x3)(1− x4)(1− x5)(1− x6)(1− x7)(1− x8) · · ·

imagining it to continue to infinity. I explicitly multiplied a large number of
these factors together, to see the form of the series that would result, and I
found this progression:

1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − x35 − x40 + · · ·

where the exponents of x are the same numbers that enter into the earlier
formula, and also the signs + and − alternate two at a time. One has
only to undertake this multiplication and to continue it as far as one judges
appropropriate, to convince oneself of the truth of this series. Indeed I have
no other proof for this than a long induction, which I at least pushed far
enough along so that I do not have the slightest doubt about the law by
which these terms and their exponents are formed. I searched a long time



8 DISCOVERY OF A MOST EXTRAORDINARY LAW OF NUMBERS,

in vain for a rigorous proof that this series must be equal to the proposed
expression (1 − x)(1 − x2)(1 − x3) etc. and I put the same request to a few
of my friends whom I knew to be strong in these sorts of questions. But
all have fallen into agreement with me about the truth of this conversion,
without having been able to unearth any source of proof. So it will be a
known truth, however not yet proved, that if one puts

s = (1− x)(1− x2)(1− x3)(1− x4)(1− x5)(1− x6) · · ·

the same quantity s can also be expressed by

s = 1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − x35 − x40 + · · ·

because each person is in a position to convince himself of this truth by
explicit calculation to such a point as he would wish; and it would seem
impossible that the law which we have discovered for 20 terms, for example,
would not be equally true for all the following ones.

10. Having then discovered that these two infinite expressions are equal,
although the equality might not be proved, all the conclusions that we might
deduce from this equality will be of the same nature, which is to say truths
not proved. Alternatively, if any one of these conclusions could be proved,
we could conversely derive from it a proof of the mentioned equality; and it
is in this view that I worked these two expressions in several ways, and was
led among other things to the discovery that I just explained, whose truth
must be as certain as that of the equality of these two expressions. This is
the manner in which I operated. These two expressiones being equal,

I. s = (1− x)(1− x2)(1− x3)(1− x4)(1− x5)(1− x6)(1− x7) · · ·
II. s = 1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − x35 − x40 + · · ·

in order to clear the first equation of its factors, I take logarithms, and get

` s = `(1− x) + `(1− x2) + `(1− x3) + `(1− x4) + `(1− x5) + · · ·

Now, to eliminate the logarithms, I take the differentials, which gives this
equation

ds

s
= − dx

1− x
− 2x dx

1− x2
− 3x2 dx

1− x3
− 4x3 dx

1− x4
− 5x4 dx

1− x5
− · · ·
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which I divide by −dx and multiply by x, to get:

−x ds

s dx
=

x

1− x
+

2x2

1− x2
+

3x3

1− x3
+

4x4

1− x4
+

5x5

1− x5
+ · · ·

The second value for this same quantity s gives by differentiation

ds = −dx− 2x dx + 5x4 dx + 7x6 dx− 12x11 dx− 15x14 dx + · · ·

from which, by multiplying by −x and dividing by s dx, we derive another
value for −x ds

s dx which will be

−x ds

s dx
=

x + 2x2 − 5x5 − 7x7 + 12x12 + 15x15 − 22x22 − 26x26 + · · ·
1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − · · ·

11. Let the value of −x ds
s dx = t, and we will have two equal values for this

quantity t

I. t =
x

1− x
+

2x2

1− x2
+

3x3

1− x3
+

4x4

1− x4
+

5x5

1− x5
+

6x6

1− x6
+ · · ·

II. t =
x + 2x2 − 5x5 − 7x7 + 12x12 + 15x15 − 22x22 − 26x26 + · · ·

1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − · · ·
I resolve each term of the first expression into a geometric progression by
ordinary division, and I get:

t = x+ x2+ x3+ x4+ x5+ x6+ x7+ x8+ x9+ x10+ x11+ x12+· · ·
+2x2 +2x4 +2x6 +2x8 + 2x10 + 2x12+· · ·

+3x3 +3x6 +3x9 + 3x12+· · ·
+4x4 +4x8 + 4x12+· · ·

+5x5 + 5x10 +· · ·
+6x6 + 6x12+· · ·

+7x7 +· · ·
+8x8 +· · ·

+9x9 +· · ·
+10x10 +· · ·

+11x11 +· · ·
+12x12+· · ·
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where it is easy to see that each power of x occurs as many times as its
exponent has divisors, since each divisor becomes a coefficient of this same
power of x. Thus, gathering like powers into one sum, the coefficient of each
power of x will be the sum of all the divisors of that exponent. And therefore,
expressing these sums of divisors by prefixing the sign

∫
, like I did above, I

will obtain for t the series which follows

t =
∫

1 · x +
∫

2 · x2 +
∫

3 · x3 +
∫

4 · x4 +
∫

5 · x5 +
∫

6 · x6 +
∫

7 · x7 + · · ·

from which the law of progression is altogether manifest; and, although it
seems that induction has some part in the determination of these coefficients,
when one considers the preceding infinite expression, one will be easily as-
sured of the necessity of this law of progression.

12. Let us substitute this value in place of t in the second second expression
for this same letter t, which, cleared of fractions, reduces to this form:

0 = t(1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − · · ·)
− x− 2x2 + 5x5 − 7x7 − 12x12 − 15x15 + 22x22 + 26x26 + · · ·

Now, putting the preceding value of t into this equation, we will find

0=
∫

1·x+
∫

2·x2+
∫

3·x3+
∫

4·x4+
∫

5·x5+
∫

6·x6+
∫

7·x7+
∫

8·x8+
∫

9·x9+ . . .

−x−
∫

1·x2−
∫

2·x3−
∫

3·x4−
∫

4·x5−
∫

5·x6−
∫

6·x7−
∫

7·x8−
∫

8·x9− . . .

−2x2−
∫

1·x3−
∫

2·x4−
∫

3·x5−
∫

4·x6−
∫

5·x7−
∫

6·x8−
∫

7·x9− . . .

+5x5+
∫

1·x6+
∫

2·x7+
∫

3·x8+
∫

4·x9+ . . .

+7x7+
∫

1·x8+
∫

2·x9+ . . .

First, it is easy to observe that the coefficients of each power of x is the sum
of divisors: first the exponent of this power itself, and then the other smaller
numbers which result when we successively subtract from the exponent the
numbers 1, 2, 5, 7, 12, 15, 22, 26, etc. Second, if the exponent of the
power of x is equal to a term from this numerical sequence, then this same
term also goes with the coefficients. Third, the order of the signs needs no
explanation. Thus, we will conclude in general that the power xn will have
these coefficients:

∫
n− ∫

(n− 1)− ∫
(n− 2) +

∫
(n− 5) +

∫
(n− 7)− ∫

(n− 12)− ∫
(n− 15) + · · ·
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all the way until we get to the negative numbers. But if any of these numbers
prefixed by the sign

∫
is zero, then we must put in its place the number n

itself, so that in this case, we have
∫

0 = n and the sign of this term follows
the general order of the others.

13. So then, since the infinite expression of the preceding § must be equal to
zero regardless of the value we give to the quantity x, it follows of necessity
that the coefficients of each separate power, taken together, must be equal
to zero, and therefore we will have the following equations:

∫
1− 1 = 0∫
2− ∫

1− 2 = 0∫
3− ∫

2− ∫
1 = 0∫

4− ∫
3− ∫

2 = 0∫
5− ∫

4− ∫
3 + 5 = 0∫

6− ∫
5− ∫

4 +
∫

1 = 0∫
7− ∫

6− ∫
5 +

∫
2 + 7 = 0





or





∫
1 = 1∫
2 =

∫
1 + 2∫

3 =
∫

2 +
∫

1∫
4 =

∫
3 +

∫
2∫

5 =
∫

4 +
∫

3− 5∫
6 =

∫
5 +

∫
4− ∫

1∫
7 =

∫
6 +

∫
5− ∫

2− 7

and in general we will have:

0 =
∫

n−∫
(n−1)−∫

(n−2)+
∫
(n−5)+

∫
(n−7)−∫

(n−12)−∫
(n−15)+ · · ·

and consequently

∫
n =

∫
(n− 1) +

∫
(n− 2)− ∫

(n− 5)− ∫
(n− 7) +

∫
(n− 12) +

∫
(n− 15)− · · ·

which is the same expression I gave above and which expresses the law ac-
cording to which the sums of the divisors of natural numbers are continued.
In addition to the reason for the signs and for the nature of the progression
of the numbers

1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, . . .

we also see, by what I have just put forward, the reason why, in the case where
the term

∫
0 occurs, we must put in its place the number n itself, which could

have seemed the strangest part of my expression. This reasoning, although
it is still very far from a perfect proof, will nevertheless permit the lifting
of several doubts concerning the bizarre form of the expression which I just
expanded upon.


