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Empirical studies of quantitative genetic variation have revealed robust patterns that are observed
both across traits and across species. However, these patterns have no compelling explanation, and
some of the observations even appear to be mutually incompatible. We review and extend a major
class of theoretical models, ‘mutation–selection models’, that have been proposed to explain
quantitative genetic variation. We also briefly review an alternative class of ‘balancing selection
models’. We consider to what extent the models are compatible with the general observations, and
argue that a key issue is understanding and modelling pleiotropy. We discuss some of the thorny
issues that arise when formulating models that describe many traits simultaneously.
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1. INTRODUCTION
Many quantitative traits show substantial heritable

variation and yet appear to be subject to stabilizing

selection. This is a paradox because stabilizing selec-

tion is expected to eliminate variation. A major

outstanding problem is therefore to deduce the true

nature of selection acting on such traits, and on the

genes that influence them (Barton & Turelli 1989;

Barton & Keightley 2002). The biological reality will

probably be messy. An organism’s phenotype can be

described by an effectively infinite number of traits,

most of which are under some (maybe weak) selection.

These traits are influenced by only a finite number of

genetic factors, and because almost every gene has

some (maybe small) effect on every trait, pleiotropy is

ubiquitous. One can therefore take the view that the

problem is really one of estimation rather than of

hypothesis testing. What is the joint distribution of

allele frequencies and effects on traits and fitness?

However, the estimation problem is very hard. Weak

selection is difficult to measure, the causes of selection

can rarely be determined without experimental manip-

ulations, and we need to estimate whole distributions of

effects and not just those of a few major factors. It

therefore seems that more progress will be made by

using and testing models that are much simpler than

reality. Simple models allow us to draw digestible and

generalizable conclusions. The models can be purely

statistical, in the tradition of the regression models of

the turn-of-the-century biometricians, or mechanistic

and based on Mendelian principles. Fisher (1918) laid
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the foundations for understanding the link between
the two.

Pearson (1903, p. 18) and Robertson (1967)
identified that we can distinguish two kinds of
simplified model for how selection can act on a given
trait, which in the present context are now known as
true and apparent stabilizing selection. In both cases,
individuals with intermediate trait values have higher
fitness. Under true stabilizing selection, intermediate
trait values cause higher fitness, so selection acts on
genes contributing to variation directly, via the trait of
interest. Under apparent stabilizing selection, the trait
of interest is selectively neutral, but mutations affecting
that trait also affect traits that are under selection in
such a way that individuals with extreme values of the
focal trait have lower fitness. A simple example of
apparent stabilizing selection is a single locus with two
alleles and heterozygote advantage for fitness, where the
alleles have additive effects G(1/2)a on a neutral trait.

genotype aa aA AA

fitness (1Ks) 1 (1Kt)
frequency t2/(sCt)2 2st/(sCt)2 s2/(sCt)2

trait value Ka 0 a
q 2005 Th
Putting aside the biological issue of which traits cause
selection, the distinction between real and apparent
stabilizing selection is essentially a semantic one.
A valid population genetic description of the genetic
basis of any trait consists of only the effects of alleles on
the trait and on fitness, and their frequencies (and
perhaps map positions). The difference between real
and apparent stabilizing selection is whether we model
the other (hidden or not measured) traits in order to
determine the net fitness effect of a given allele, or
simply assume a convenient distribution for those
fitness effects.
e Royal Society



1412 T. Johnson & N. Barton Models of quantitative genetic variation
Although purely statistical models have enjoyed
great success in predicting the short-to-medium-term
effects of selection on populations, they can say nothing
about the mechanistic genetic basis of the traits
they describe. The genetic details are important in
themselves, and are crucial for predicting medium-to-
long-term evolution. This is important for assessing the
likely success and implications of attempts to deter-
mine the genetic basis of complex traits such as blood
pressure, susceptibility to many diseases, or the basis
and probable future evolution of drug or pesticide
resistance.

One approach is to extrapolate from the known
genetic bases of traits that have been studied in detail.
In some areas, this approach is a good one; for example,
much is known about the genetic basis of Mendelian
diseases (Hirschhorn et al. 2002). However, much less
is known about the basis of complex genetic diseases.
To extrapolate from what is known is to risk serious bias
because the few factors found so far are probably those
easiest to detect, having uncharacteristically high pene-
trances and simple allelic architectures (Pritchard &
Cox 2002). One might hope that a fruitful approach
would be to identify a suite of observations (including,
but not limited to, those of the type just described) that
seem to apply to quantitative traits in general, and to
inquire what models are consistent with them. To make
inferences and predictions, we must generalize, but
should do so with due caution; our observations are
always of ‘the variation that we observe in a particular
measurement made in a certain way on a particular
population,’ and we should be wary of ‘pretend[ing] to
ourselves that we are dealing with a general property of
the individual rather than a very specific observation of
that property’ (Robertson 1967).

The layout of the paper is as follows. In §2, we
describe some observations that seem to apply to
‘quantitative traits in general’. In §3, we discuss two
types of models of selection on quantitative traits.
Following the literature, we concentrate in §3 on
‘mutation–selection balance’ models in which selection
acts solely to eliminate variation, which is opposed by
continual generation of variation by mutation. How-
ever, in §3d, we also discuss ‘balancing selection
models’ in which selection acts partly to preserve
variation. Although mutation is the ultimate source of
variation, it need not feature explicitly in such models.
In §4, we discuss to what extent the models are
compatible with our general observations, and consider
some thorny issues relevant to models that describe
many traits simultaneously.
2. OBSERVATIONS
(a ) Heritability

The total variation observed in a quantitative trait is
called the phenotypic variance, VP. Ignoring linkage
disequilibrium, this can be decomposed as

VP ZVG CVE C2CovðG;EÞ

ZVA CVD CVI CVE C2CovðG;EÞ; (2.1)

where VG is the genetic variance, VE is the environ-
mental variance, and 2Cov(G, E ) includes effects of
Phil. Trans. R. Soc. B (2005)
genotype!environment interactions (G!E ). The
genetic variance is made up of additive, dominance
and epistatic (interaction) variances, VA, VD and VI,
respectively. Broad sense heritability is VG /VP and
measures to what extent a trait is heritable. This broad
sense heritability can be estimated from comparison of
outbred and inbred lines (given that VGZ0 in the
latter). In many applications, it is the ordinary or
narrow sense heritability, defined as h2ZVA/VP, that is
more important. This can be used to predict (and can
therefore be measured by) the response to artificial
selection, or regressions between phenotypes of related
individuals.

One striking observation is that, although almost any
level of heritability can be found for some trait in some
population, heritabilities for the majority of traits in
either wild or random bred laboratory populations are
typically between 0.2 and 0.6 (Roff 1997; Lynch &
Walsh 1998). There are a few patterns. Traits more
closely related to fitness show lower heritabilities, but
when they are scaled appropriately, we see that this is
because they have much greater VE, and in fact have
greater VG too (Houle 1992). It is puzzling that levels of
heritability are so pervasive, so high and roughly
constant.

The common observation that the great majority of
morphological traits have high heritabilities applies
even to small populations; for example, in the various
species of Galapagos finches (Grant 1986). In such
cases, occasional immigration may compensate for loss
of variation through drift in subpopulations (Grant &
Grant 1992; Keller 1998). Nevertheless, there is no
obvious relation between heritability and population
size. Reed & Frankham (2001) find little correlation
between measures of (primarily) electrophoretic vari-
ation and quantitative variability in wild populations,
which is surprising if both kinds of variation increase
with Ne. However, because electrophoretic variation
also shows only a weak increase with population size
(Gillespie 1991, ch. 1), and a weaker increase than
putatively neutral synonymous sequence variation
(Gillespie 2001 and references therein), the weak
relation between electrophoretic and quantitative
variation becomes less remarkable.

(b ) Mutational effects

Clearly, the root source of quantitative genetic variation
is mutation. The rate of input of new variation can be
measured by the increase in variance in an inbred line.
The effect of spontaneous mutation is typically
measured in inbred lines, and thus measures only
homozygous effects. This type of experiment gives
reliable estimates of Vm, the (steady-state) per gener-
ation increase in variance owing to mutation. For many
traits, Vm falls in the range 10K3 VE to 10K2 VE

(reviewed by Lynch 1988; Lynch & Walsh 1998, ch.
12). Again, this is surprisingly constant. However, it is
difficult to disentangle whether this mutational var-
iance is contributed by a few mutations of larger effect,
or many mutations of small effect (Keightley &
Eyre-Walker 1999; Lynch et al. 1999). So far, no
coherent picture has emerged. For example, in
Drosophila melanogaster, the net effect of sponta-
neous mutations is almost always to reduce fitness
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Figure 1. Strength of stabilizing selection used in theoretical
work (e.g. Lande 1975; Turelli 1984) compared with
estimated values (redrawn from Kingsolver et al. 2001),
assuming ‘nor-optimal’ or Gaussian selection so that
Vs=VPZK1=2g.
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components (e.g. Keightley 1996; Fry et al. 1999;
Keightley & Eyre-Walker 1999 and references therein),
whereas in the plant Arabidopsis thaliana, the average
net effect of spontaneous mutations neither increases
nor decreases fitness components (Shaw et al. 2000).
Moreover, when a gamma distribution of effects was
fitted to data for life-history traits in Caenorhabditis
elegans, the highest support was found for a distribution
with mostly equal effects and a coefficient of variation
(CV)x0, and distributions with CVO1 were rejected
(Keightley & Caballero 1997). On the other hand, with
similar data for D. melanogaster, the highest support was
found for CVR1, and distributions with very small CV
were rejected (Fry et al. 1999). Although manipulations
of mutation accumulation lines can be used to infer
average dominance coefficients, such approaches have
limitations and tend to yield averages weighted in a way
that may be of little evolutionary relevance (Caballero
et al. 1997).

More is known about distribution of effects of
artificially induced mutations, primarily those
generated by transposable element insertions. Because
the number of mutations is controlled, the means,
variances, covariances and higher moments of muta-
tional effects on traits (such as bristle number) and on
fitness components can be estimated. For example, a
study of P element-induced mutagenesis on bristle
number traits in D. melanogaster (Mackay et al. 1990)
suggests that mutations have leptokurtic distributions
of effects (which for a gamma distribution implies a
high CV) on both fitness and quantitative traits.
(c ) Just how strong is stabilizing selection?

Many traits appear to be under stabilizing selection;
that is, selection favouring an intermediate value of the
trait. Evidence that extreme phenotypes cause reduced
fitness comes from experimental manipulations, and
from the observed constancy of form over evolutionary
time. Measuring stabilizing selection directly is difficult
because it is only meaningful if measured under natural
conditions. It is usually measured by the (standardized)
quadratic selection gradient, g, defined as the
regression of fitness on squared deviation of trait
value from the mean (after normalizing trait values so
that VPZVar[P ]Z1). If there is no directional selec-
tion, then

gZVar½P�
Cov½W ;P2�

Var½P2�
(2.2)

gZ
Cov½W ;P2�

2Var½P�
ðif P is Gaussian with zero meanÞ:

(2.3)

Observing g!0 is usually interpreted as implying
stabilizing selection, although, strictly, it only implies
a fitness function that is on average convex (Schluter &
Nychka 1994). Many measurements of g are reviewed
and analysed by Endler (1986, ch. 7) and Kingsolver
et al. (2001). A summary of 465 estimates is repro-
duced as figure 1. Studies of this type are intrinsically
unable to distinguish between true and apparent
stabilizing selection. It seems that (apparent) stabilizing
selection and (apparent) disruptive selection are
Phil. Trans. R. Soc. B (2005)
equally common. Although the strength of stabilizing
selection now seems much weaker than had previously
been thought (e.g. as reviewed Endler 1986, ch. 7), it is
nevertheless much stronger than assumed in most
theoretical analyses. The mediangZK0.1 for stabilizing
selection corresponds to a value of Vs=VPZK1=2gZ5
or Vs=VEZ5=ð1Kh2Þ when real stabilizing selection is
modelled using a Gaussian or ‘nor-optimal’ fitness
function

wfexp K
ðzKzoptÞ

2

2Vs

� �
: (2.4)

The parameter Vs has a concrete interpretation; the
reduction in fitness owing to variation around the
optimum is VP /(2Vs) which has median of ca 10%.
Unless heritability is extremely high, the estimated
strengths of stabilizing selection are mostly nowhere
near as weak as the value Vs /VEZ20 or range of
10–100 used in much theoretical work (Lande 1975;
Turelli 1984; Bürger 2000, ch. 7). It is clear that traits
under statistically significant stabilizing selection are
under much stronger selection than has been assumed
in theoretical work. Taking the non-significant esti-
mates at face value suggests many other traits are under
stabilizing selection that would be considered strong,
Vs /VE!10, by theoreticians. However, the distribution
shown in figure 1 includes sampling errors and the true
absolute values of g could be much smaller if these
errors were large. Kingsolver et al.’s (2001) meta-
analysis does not attempt to estimate the true
distribution of g.

There is at least one classic documented example of
apparent stabilizing selection. Kearsey & Barnes
(1970) showed that the strength of stabilizing selection
on Drosophila bristle number depends on the level of
crowding experienced by the larvae at a life stage before
bristle traits are expressed. In this case, at least,
selection on bristle traits must be mediated by other
traits.

(d ) Response to artificial selection

When a population is subjected to artificial selection,
the response of the trait mean at any time depends only



Figure 2. A survey of 10 artificial selection experiments,
redrawn from Weber & Diggins (1990). Total response over
50 generations (R50), normalized by response in the first
generation (R1) is plotted against effective population size
during artificial selection. Over this time-scale, a simple
model that explains the decline as a result of loss of VA owing
to drift (solid lines) fits the data quite well.
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on VA at that time for that trait. Prolonged artificial

selection changes allele frequencies at the underlying

loci, which, in turn, change VA, and therefore the

medium and long-term dynamics of the trait mean

contain information about the underlying genetic basis.

(The dynamics of the trait variance are often noisy and

it is not clear what information they add when VA has

already been inferred from the selection response.)

For practical reasons, the great majority of selection

experiments have been on small populations, number-

ing tens or hundreds. It is remarkable, therefore, that

sustained responses have been seen in such experi-

ments—the classic example being the Illinois corn

experiment (Dudley & Lambert 2004) and, in general,

we see a response that is sustained at a roughly constant

rate for a period of many generations (say, 10–100,

depending on the experiment), after which the rate of

response declines. We know of no example of an

accelerating response to artificial selection on an

outbred base population (although this is the norm

for an inbred base population).

The sustained steady response can be explained by a

mixture of (i) many loci segregating for alleles with

small effects, so that allele frequencies change slowly;

and /or (ii) a large and steady input of mutational

variance (Barton & Keightley 2002, fig. 2b,c). The

eventual decline in rate and plateau of response may be

a result of exhaustion of genetic variation present at the

start of the experiment (fixation of alleles by either

selection or drift), and /or increasing strength of natural

selection opposing artificial selection or its pleiotropic

side effects.

Weber & Diggins (1990) showed that selection on

much larger populations of Drosophila led to a

significantly greater response. Reviewing several long-

term experiments, they found that the response ratio of

50 generations to that in the first generation fitted that

expected under the infinitesimal model remarkably

well (figure 2), with little effect of alleles being moved

to fixation by selection. The estimated contribution

of new mutations over this time is negligible under
Phil. Trans. R. Soc. B (2005)
the infinitesimal model, but could be substantial if
alleles of larger effect are involved (Barton & Keightley
2002). However, the responses surveyed by Weber &
Diggins (1990) were lower than expected from stand-
ing variation, which suggests that mutation is not a
significant contributor. In addition, Keightley (2004)
surveyed several selection experiments on inbred
populations and found that the selection response at
50 generations is an order of magnitude lower than
seen in selection on outbreds. Although mutation must
dominate over long time-scales, it does not make a
substantial contribution at 50 generations.

In contrast, Keightley et al. (1996) detected sharp
changes in frequency of neutral markers during 21
generations of artificial selection, which must have
been caused by hitchhiking with quantitative trait locus
(QTL) that were experiencing sharp changes in allele
frequency. However, this experiment began with a
cross between inbred lines, so blocks of genome may
have acted as QTLs with large effects, and recombina-
tion may have released new variation during the
experiment.

For pairs of lines selected for the same trait at the
same intensity but in opposite directions, the response
(after the first generation) is often asymmetric. For
traits thought to be positive components of fitness (e.g.
many aspects of size), the response is greater in the
downward direction (Frankham 1990). In the longer
term, the ‘low’ line often plateaus at some minimum
(e.g. oil content in maize; Dudley & Lambert 2004),
although the response may continue if the trait is
measured on some other scale.

The variance between replicate experiments (the
repeatability of the response) is potentially informative.
The relatively low variance between replicates,
especially when started with small populations, suggests
that the response is not based on alleles at extreme
frequencies in the base population (James 1971;
Frankham 1980; Hill & Caballero 1992), but to our
knowledge, this restriction has not been quantified. This
type of experiment is very noisy, however, and a very
large numbers of replicates would be needed for firm
conclusions to be drawn (Whitlock & Fowler 1999).

(e ) QTL mapping experiments

QTL mapping experiments attempt to determine the
genetic basis of a trait directly. They are analogous to
gene mapping in humans, but have much greater power
and resolution when large controlled crosses can be
made. When QTL are searched for by crossing high and
low lines, typically a small number (ca 10 or less per
chromosome) and of large effect are found (Lynch &
Walsh 1998, ch. 15). Although it will be this type of
work that ultimately determines the genetic basis of any
trait (exactly where the genes are and what are their
effects), they are not a good way to infer the overall
distribution of effects for all genes influencing a trait. This
is because of both ascertainment and statistical biases;
even in large experiments, only the QTL with relatively
large effect are detected, and when their effects are then
estimated those estimates are upwardly biased (Lande &
Thompson 1990; Göring et al. 2001). It is only possible
to correct such biases if independent experiments are
carried out (Lande & Thompson 1990) or if quite
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strong assumptions are made about the distribution of
effects of undetected QTL (Otto & Jones 2000).
Further, many experimental designs cannot give any
information about the frequencies of alleles in natural
populations.

In a study of QTL on chromosome 3 affecting an
index of wing shape in Drosophila melanogaster (Weber
et al. 1999), the authors observed that two contrasting
models fitted their (large) dataset almost equally well.
The first model was built by QTL mapping, and the
best model with 11 QTL and 9 pairwise epistatic
interactions could be made to fit the data closely
(r2Z0.96). The second model was effectively an
infinitesimal model, assuming many loci of individually
small effect and no epistasis. The density along the
chromosome of loci with effects on the trait was fitted
to the data and achieved almost as good a fit (r2Z0.93).
This suggests that there is little power, even in a large
F2 and backcross QTL experiment, to distinguish
these two alternatives.

(f ) Nature and extent of pleiotropy

Understanding the nature and extent of pleiotropy is
fundamental to understanding the evolution of quan-
titative genetic variation. In this paper, we emphasize
the distinction between the maintenance of variation
involving direct selection on the trait of interest, and
indirect explanations in which selection arises from the
pleiotropic effects of the alleles that affect the trait.
Pleiotropy is also central to understanding constraints
on evolutionary change (an issue that we take up
below), and to arguments about the sizes of effects of
adaptive substitutions.

Since the beginning of evolutionary biology, there
has been a widespread belief that pleiotropy is
ubiquitous. Darwin emphasized the importance of
‘correlated growth’, while both Darwin and Fisher’s
emphasis on the importance of slight variations was
based on the argument that major changes would
be eliminated through their deleterious side effects.
(Fisher’s 1930 geometric model of pleiotropy has been
extended by Orr (1998) to show that the distribution of
factors fixed during adaptive evolution follows an
exponential distribution, with a mean that decreases
as the square root of the number of pleiotropic side
effects.) However, the widely held belief in the
importance of pleiotropy has been based on little
systematic empirical evidence (Barton & Turelli 1989;
Orr & Coyne 1992; Stern 2000); indeed, Dobzhansky’s
classic work, which has usually been taken as support
for widespread pleiotropy, often shows quite subtle side
effects of Drosophila visible mutations (Dobzhansky
1937; see Stern 2000). More recent work has shown
extensive pleiotropic effects of major mutations. For
example, Thaker & Kankel (1992) used mitotic
recombination to make small patches of Drosophila
tissue homozygous for recessive lethals; they showed
that 40% are cell lethal and about a third disrupt
development of the visual system.

Large-scale surveys of the effects of gene knockouts
in organisms such as yeast (e.g. Giaever et al. 2002) give
the opportunity for investigations of pleiotropy, but the
technique has not yet been applied to this issue.
However, as Stern (2000) emphasizes, such studies
Phil. Trans. R. Soc. B (2005)
would not tell us about the extent of pleiotropy for

alleles of small effect, which probably contribute the
bulk of quantitative gentic variation. In particular,

changes in regulatory sequence that bind (say) just one
transcription factor may have much more specific

effects than deletions of the whole gene, or changes in
its amino acid sequence. Stern (2000) gives the

example of the gene decapentaplegic (dpp), whose loss
disrupts many developmental processes, and kills the

embryo. However, changes in the adjacent noncoding
sequence cause specific phenotypes. For example, a

2.7 kb deletion causes the wings to be held out from the
body, and also reduces the numbers of sensilla on the

dorsal radius wing, a 0.9 kb deletion causes small gaps

at the distal ends of two wing veins and some extra
venation, and so on.

The common observation that traits can respond
independently to selection shows that there is no

absolute pleiotropic connection between them, but
otherwise tells us little about the nature of pleiotropy

for the individual alleles involved. This is important,
because (as we explain below) pleiotropy may deter-

mine the genetic variance, even when it has no net
effect on changes in the mean. The genetic covariance

between traits is a sum over the covariances contri-
buted by each allele, which may largely cancel.

Conversely, even if the same genes influence each
trait, different alleles may affect those traits, and so

there may be no genetic covariance between them.
(This appears to be the case, for example, for

abdominal and sternopleural bristles in Drosophila;
association studies show significant effects of the

candidate loci Delta and achaete-scute, but the associ-
ations are with different variants for the two traits; Long

et al. 1998, 2000.) Weber (1992) directly addressed the

question of whether pleiotropic connections between
genes for closely related traits prevent selection from

separating them. He selected on the ratio between two
nearby vein characters, and obtained a large response,

despite a strong allometric relation between the traits.
Again, however, this does not imply that individual

alleles show weak pleiotropy.
Finally, a strong argument for widespread pleiotropy

comes from the remarkably high rate of mutation to
quantitative traits. As we said above, the mutational

heritability, Vm /VE, is in the range 10K3–10K2 (Lynch
1988; Lynch & Walsh 1998, ch. 12). Making the

reasonable assumption that the alleles involved have
effects of one environmental standard deviation ð

ffiffiffiffiffiffi
VE

p
Þ

or less, then the total mutation rate for any given trait
must be at least as large as Vm /VE. Indeed, the few

estimates of the per trait mutation rate we have are
around 0.1 (from maize and mice; Lynch & Walsh

1998, p. 337). The total mutation rate to deleterious

mutations is also uncertain, but is unlikely to be much
greater than 1 for mammals or flowering plants (Drake

et al. 1998; Eyre-Walker & Keightley 1999; Keightley &
Eyre-Walker 2000). Thus, even these rough figures

imply that there cannot be many sets of traits each with
an independent genetic basis. It is most plausible, of

course, that each allele has a distribution of effects on
the (very large) number of traits, but that this

distribution is concentrated on some subset of traits.
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3. MODELS
The simple argument of mutation–selection balance has
attracted much attention, because of both its intuitive and
mathematical simplicity. If many genes contribute, then
the total mutation rate could be large enough for
significant variation to be maintained. Regardless of the
mechanism of selection, we can say generally that
selection coefficients must be the same order of magni-
tude as Vm=VGðZðð1Kh2

broadÞ=h
2
broadÞVm=VEÞ if the steady

state increase in variance owing to mutation is to be
eliminated at the same rate by selection (Barton & Turelli
1989). Of all Vm /VG estimates, 90% are in the range
0.001–0.04 (Houle et al. 1996).

Theoretical predictions of genetic variance at
mutation–selection balance can be classified according
to the type of selection they assume, as follows:
(i)
Phil.
Real stabilizing selection on the single trait of
interest (Lande 1975; Turelli 1984; for a compre-
hensive review see Bürger 2000, chs 4 and 6. In
these models, the strength of stabilizing selection
is a parameter (see §3a).
(ii)
 Multivariate extensions of 1, where there are many
traits, each mutation affects (potentially) all traits
in the model, and fitness is determined by
(potentially) all traits (Lande 1980; Turelli 1985;
Slatkin & Frank 1990; Waxman & Peck 1998;
Wingreen et al. 2003; Zhang & Hill 2003) (see §3b).
(iii)
 The ‘pure pleiotropy’ model (Hill & Keightley
1988). Mutations affecting a measured trait also
affect many other traits, but these traits are not
explicitly modelled and the mutational effects on
them are subsumed into a composite effect on
fitness, called its pleiotropic effect. Stabilizing
selection on the focal trait is assumed negligible
in comparison to selection on pleiotropic effects.
This model has been extensively studied (Hill &
Keightley 1988; Keightley & Hill 1989, 1990;
Barton 1990; Kondrashov & Turelli 1992;
Gavrilets & de Jong 1993; Caballero & Keightley
1994; Zhang et al. 2002; see also appendix A). In
these models, the strength of apparent stabilizing
selection is something that is predicted rather than
input as a parameter (see §3c).
(a ) Real stabilizing selection

Many models of quantitative trait variation are multi-
locus generalizations of Crow & Kimura’s (1964)
continuum of alleles model. These assume that, at
each of n diploid loci, infinitely many alleles are
possible. At each locus, alleles are described by their
effect on the trait, x, so there is a distribution f(x) that
describes the population frequencies of alleles with
each effect. An individual’s trait value is
ZZ

Pn
iZ1ðXiCX 0

i ÞCE, assuming that effects are addi-
tive within and between loci and that there is an
independent random environmental component
EwN(0, VE). It is also usual to assume that stabilizing
selection can be modelled by a nor-optimal or Gaussian
function (equation (2.4)) and that there is a stepwise
Gaussian mutation scheme with rate m at each locus.
For this mutation scheme, when an allele with
effect x mutates the new allele, it has effect x0 where
Trans. R. Soc. B (2005)
x0wN(x,a2) is centred on the previous value x. Here, a2

is the variance in heterozygous effects of mutations.
Early analyses of this model (Kimura 1965; Lande

1975) assumed that f(x) was Gaussian. (This is an
approximation that is never exactly true; Turelli 1984,
and there is no empirical justification; although the
distribution of phenotype values is approximately
Gaussian for many traits, there are almost no data
about the shape of f(x) at each locus.) Under this
assumption, at mutation–selection equilibrium

VGx2n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2Vs

p
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nVmVs

p
ðGaussian approximationÞ (3.1)

(because VmZ2nma2; Lande 1975). Typical data imply
that the number of loci must be small, e.g. h2Z0.5,
Vm /VEZ10K3 and Vs /VPZ50 imply nZ5. Although
this is in itself reasonable, assuming the per locus
mutation rate m%10K4, then implies that the average
mutational effects must be very large relative to the
phenotypic range, a=

ffiffiffiffiffiffi
VP

p
O1. If this were so, the

Gaussian approximation for f(x) would fail, because it
relies on both high mutation rates and relatively small
mutational effects, and therefore this model under the
Gaussian approximation does not fit the data.

Later analyses of this model (Turelli 1984) used a
‘house of cards’ approximation. Under a house of cards
mutational scheme, when an allele with effect xmutates,
the new allele has effect x 0 where x 0wN(0, a2) is
independent of x. This can be motivated on biological
grounds (Kingman 1978) as an alternative to the
stepwise mutation scheme, but, more usually, it is
viewed as an approximation to a variety of mutation
schemes. The house of cards approximation is good
when most individuals carry alleles of small effect and
the variance is contributed by rare individuals carrying
alleles of large effect, that is when f(x) is highly
leptokurtic. In this case, at equilibrium

VGx4nmVs ðhouse of cards approximationÞ (3.2)

(Turelli 1984). For the same typical data as above, the
total rate of mutation in loci affecting the trait must be
2nmZ5!10K3 (again implying that the average muta-
tional effects must be very large, a=

ffiffiffiffiffiffi
VP

p
x

ffiffiffiffiffiffiffi
0:2

p
x0:4).

This is plausible if many loci affect each trait, but then
the total genomic mutation rate sets a limit on how
many traits there can be that have an independent
genetic basis (see below).

Although Turelli (1984) derived this approximation
for the continuum of alleles model, the same result is
obtained for a model of many loci with finite numbers
of alleles (typically two or five; Barton 1986; Slatkin
1987 and references therein). Under the house of cards
approximation, the distribution of effects of alleles
segregating at each locus is much more leptokurtic than
Gaussian: there are common alleles of tiny effect and
almost all the variance is contributed by rare alleles of
large effect. This is well approximated by a ‘rare alleles’
model in which a single allele of zero effect is at high
frequency and one or several rare alleles of large effect
segregate independently (at the same locus, because
they are rare). The genetic variance under such
approximations does not depend on a because these
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rare alleles are independent and are held at frequencies
inversely proportional to their effects.

The domains of applicability of the Gaussian and
house of cards approximations, along with better
approximations and extensions to finite population
models are reviewed by Bürger (1998, 2000).

(b ) Real stabilizing selection on many traits

The natural response to the preceding arguments is to
study the multi-trait generalization of the real stabiliz-
ing selection model. Early work (Lande 1980; Slatkin &
Frank 1990) concluded that real stabilizing selection
on any given trait does not affect apparent stabilizing
selection on other traits. This was an artefact of
assuming that at each locus multivariate normality of
allelic effects on all traits held (Zhang & Hill 2003).
This assumption implies that all loci (not just all traits)
can respond to selection in an arbitrary direction,
which is considered extremely unlikely; there cannot be
enough alleles at each locus (Turelli 1984).

For parameter values that allow a house of cards
approximation to be made, Waxman & Peck (1998)
show that for R3 traits, there is a spike in the
equilibrium density function (i.e. a non-zero fraction
of the population have exactly the optimum pheno-
type). (They also show that this behaviour will occur
when there are a large number of traits, even if the HoC
approximation does not apply.) This suggests a possible
inadequacy of the model—it predicts a phenomenon
that seems implausible. Wingreen et al. (2003) show
that this behaviour arises from an unrealistic modelling
assumption, that there is no correlation between the
effects of a given mutation on the different traits
(pointed out by Turelli 1985). Thus, as the number of
traits grows, the probability of a mutation having a
small overall effect vanishes. When such a correlation is
allowed (Wingreen et al. 2003), the model is no longer
inadequate.

Zhang & Hill (2003) applied the rare alleles
approximation to a model of many traits, allowing
correlations in mutational effects and multivariate
Gaussian real stabilizing selection applying to all traits.
They show that for real weak stabilizing selection on
many traits, there can be strong apparent stabilizing
selection on any given trait. When considering a
segregating allele with an effect (say a) on a focal
trait, the pleiotropic effects of that allele on all other
traits cause it to have a net fitness effect (say s). Zhang &
Hill (2003) found that, under reasonable conditions,
the distribution of s becomes normal with a variance
that tends to zero as the number of traits in the model
increases. Thus, in this limit, their multivariate model
becomes like a pure pleiotropy model or the Zhang
et al. (Zhang & Hill 2002; Zhang et al. 2004) extension
of it (§3c below). However, as Zhang & Hill (2003)
point out, there is no empirical support for this
behaviour of their multivariate model, and indeed,
there is substantial evidence to the contrary (e.g.
Mackay et al. 1990, see §2b). Zhang & Hill (2003)
conclude that the observed strong apparent stabilizing
selection cannot be caused by only weak real stabilizing
selection on many traits. Although any organism has
many traits under apparent stabilizing selection, many
of those traits could be correlated and perhaps real
Phil. Trans. R. Soc. B (2005)
stabilizing selection acts on just a few, in which case the
limiting behaviour of the Zhang & Hill (2003) model
need not apply (see below).

(c ) Pure pleiotropy

There was a need to analyse models in which each
mutation affected several traits, and selection acts
simultaneously on many traits, as described above.
However, explicit multitrait models have often made
unrealistic assumptions and /or have proved hard to
draw general conclusions from. An early key insight of
Hill & Keightley (1988) was that is not necessary to
model the multivariate distribution of all these trait
values. Instead, one can focus on a single trait of
interest, and subsume the effects of mutations on all
other traits into their effects on a composite trait,
fitness. When it is assumed that any real stabilizing
selection on the focal trait is negligible in comparison to
selection on these pleiotropic side effects, we have a
‘pure pleiotropy’ model.

The simplest assumption to make is that all
mutations have an equal pleiotropic effect on fitness.
Each allele has a random effect on the trait; less fit
individuals carry more such alleles and so tend to have
more extreme phenotypes, giving rise to apparent
stabilizing selection (Robertson 1967; Barton 1990;
Kondrashov & Turelli 1992).

More realistic models are parameterized by a
bivariate distribution m(a, s) describing the effects of
mutations on the focal trait (a) and on fitness (s), and
the effective population size Ne. In fact, the choice of
the functional form for m(a, s) is the main distinguish-
ing feature between the many studies (Hill & Keightley
1988; Keightley & Hill 1989; Barton 1990; Keightley &
Hill 1990; Kondrashov & Turelli 1992; Caballero &
Keightley 1994; Tanaka 1996; Zhang et al. 2002).
However, as we illustrate in appendix A, it is possible to
derive some results without making any specific
assumptions about m(a, s).

Studies of this model have assumed that all
mutations (at either one or several loci) segregate
independently (or that only two alleles ever segregate at
a given locus) and that all mutations lower fitness, using
a diffusion approximation from Kimura (1969) that is a
slight generalization of the rare alleles model. Most
studies assume that allelic effects are codominant and
combine across loci additively for the trait and multi-
plicatively for fitness, but in a few studies, these
assumptions have been relaxed to allow dominance
coefficients that covary with the effects (Caballero &
Keightley 1994; Zhang et al. 2004). Although Zhang
et al. (2002) claim that a pure pleiotropy model can
reproduce the observed VG and observed strength of
(apparent) stabilizing selection, our interpretation of the
data of Kingsolver et al. (2001; see also figure 1) and the
analysis in appendix A suggest that if Vm /VE!10K2,
then Vs /VPO50 and thus gOK0.01, and so that this
cannot be true.

The pure pleiotropy model has two specific weak-
nesses. First, its behaviour is sensitive to Ne, and
for many choices of m(a, s), it has the unfortunate
property that VG/N as Ne/N, and so holding
VEfVm fixed means that h2 tends to 1 as Ne increases
(Keightley & Hill 1990; Caballero & Keightley 1994).
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Figure 3. Two modelling distributions that could be used in the pure pleiotropy model. The distributions look similar and have
similar observable moment-based summaries, but model predictions (VG and Vs /VE, from appendix A and assuming h2Z0.2)
are sensitive to behaviour of the density near sZ0, which given a rich enough class of modelling distributions is decoupled from
the moments of the whole distribution.
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(However, the slope becomes very weak for leptokurtic
distributions.) Although infinite populations do not
exist, there is no reported correlation between herit-
ability and population size. The cause of this behaviour
is segregation of effectively neutral mutations with
substantial effects on the trait. Figure 3 and appendix A
show that controlling the behaviour of a continuous
m(a, s) in the neighbourhood of sZ0 prevents the
VG/N behaviour. (Zhang & Hill 2002 use a
discontinuous m(a, s) with a cutoff at smin as an
alternative remedy.) This highlights a serious problem,
that model behaviour can be an artefact of using readily
available modelling distributions (such as the multi-
variate gamma). These distributions are indexed by a
few parameters such as their moments, and fitting these
to values estimated from data cause spurious changes in
the behaviour of the density near sZ0 for which there is
no empirical basis. Using a richer class of distributions
can totally decouple the moments from the behaviour
of the density near the origin, which does not avoid the
problem that the model behaviour depends on an
essentially arbitrary assumption about the form of the
distribution m(a, s). There are few data on mutations of
small effect; yet these critically determine the behaviour
of the model.

The second weakness of the pure pleiotropy model is
that it can only explain very weak apparent stabilizing
Phil. Trans. R. Soc. B (2005)
selection, much weaker than what is observed (as noted
above). We show in Appendix A (see also Zhang et al.
2002) that the pure pleiotropy model with an infinite
population predicts that

VsðapparentÞO
V 2

G C2VEVP

4Vm

; (3.3)

which is a more stringent condition than VsOV 2
G=Vm

(Zhang & Hill 2003) whenever h2!1=
ffiffiffi
7

p
x0:38.

Because VGR0, condition (3.3) absolutely cannot be
satisfied unless

Vs

VP

O 2
Vm

VE

� �K1

; (3.4)

which is typically greater than 50 (implying
gOK(1/100)), and is not true for most traits (figure 1).

Stronger correlations between fitness and trait value
(and hence stronger apparent stabilizing selection)
could be generated if there is epistasis (Kondrashov &
Turelli 1992; Gavrilets & de Jong 1993), but this has
unfortunately been neglected in most models.

The pure pleiotropy model has recently been
extended to include real stabilizing selection on the
focal trait (Zhang & Hill 2002; Zhang et al. 2004). One
property of this model seems to be that if VG is high,
VS,TxVS,R (where T denotes total and R denotes real).
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This illustrates that pleiotropic effects on fitness cannot
give the appearance of much stronger stabilizing
selection than the real stabilizing selection acting on a
trait. In combination with the arguments reviewed here
that it is unrealistic to assume independent real
stabilizing selection on many traits, this causes quite
serious difficulties for mutation–selection models.

(d ) Balancing selection models

Balancing selection can maintain variation in several
ways. The best known is by heterozygote advantage,
but this cannot be invoked as a general explanation
for either molecular or quantitative variation: haploids
and habitual selfers show substantial variation
(e.g. Charlesworth & Mayer 1995; Podolsky 2001).
Selection that favours rare alleles provides a more
general mechanism; frequency dependence can be
direct (e.g. at plant self-incompatibility loci), or
indirect, for example, being mediated by interactions
between host and parasite. Fluctuating selection alone
eliminates variation (Haldane & Jayakar 1963), but
when combined with a low rate of mutation, sustains a
succession of selective substitutions that maintain
variability (e.g. Kondrashov & Yampolsky 1996; Bürger
1999, 2000, p. 344). Finally, variation can be sustained
by migration between local populations that experience
different selection (Felsenstein 1979; Barton 1999).

All these models can operate either via direct
selection on a quantitative trait, or indirectly when
trait variation results from the pleiotropic effects of
balanced polymorphisms (Robertson 1956; Gillespie
1984; Barton 1990). Heterozygotes will be fitter if they
tend to be closer to the trait optimum (Wright 1935;
Hastings & Hom 1989), or are less sensitive to a
fluctuating environment (Gillespie & Turelli 1989;
Turelli & Barton 2004). Frequency-dependent selec-
tion can arise if individuals with similar trait values
compete for resources (e.g. Roughgarden 1972; Slatkin
1979; Bürger & Gimelfarb 2004), and migration along
a cline in trait optimum can maintain variation
(Felsenstein 1979; Barton 1999). However, we do
not have clear examples of any of these direct
mechanisms, and the arguments above make indirect
pleiotropic explanations more plausible. If substantial
numbers of balanced polymorphisms are maintained
by selection, then we expect them to contribute to trait
variance.
4. DISCUSSION
We are in the somewhat embarrassing position of
observing some remarkably robust patterns, that are
consistent across traits and species, and yet seeing no
compelling explanation for them. Our models are for
the most part sensitive to parameters such as popu-
lation size and selection strength, and worse, some
observations appear incompatible—for example,
strong stabilizing selection and high heritability, or
small numbers of identified QTL, and sustained and
replicable selection response. The key observations are:
(i)
Phil.
high heritability (h2x0.2–0.6) for a wide range of
traits (Lynch & Walsh 1998), only weakly depen-
dent on population size;
Trans. R. Soc. B (2005)
(ii)
 sustained and replicable response to artificial
selection, which increases with population size
(Weber & Diggins 1990);
(iii)
 high mutational heritability (Vm /VEx10K3–10K2;
Lynch & Walsh 1998, ch. 12);
(iv)
 strong stabilizing selection in natural populations
(Vs!10VP; Kingsolver et al. 2001); and
(v)
 frequent identification of QTL with substantial
effects (Lynch & Walsh 1998, ch. 15).
For traits that appear to be under stabilizing
selection, mutation–selection balance models have
difficulty explaining the measured strength of selection
without assuming that it is mostly contributed by real
rather than apparent stabilizing selection. Yet there
cannot be real stabilizing selection on an indefinitely
large number of independent traits. Models of stabiliz-
ing selection on multiple traits must face the question
of just how many independently evolvable traits there
are. Plainly, the phenotype as a whole is described by an
infinite number of traits—not just the infinite number
of measurements needed to describe adult shape, but
also the change in morphology and behaviour through
time, and across different environments.

One problem is that relatively high total mutation
rates must be invoked to explain observed levels of
variation, and indeed available estimates of per-trait
mutation rates are high, about 0.1 (Lynch & Walsh
1998). As discussed in §2f, the total mutation rate then
sets quite a low limit on the number of traits that can
have completely disjoint genetic bases. If most
mutations affect several traits, then it is not adequate
to model each trait in isolation.

A second problem with assuming that a very large
number of independent traits are highly heritable, and
also subject to strong stabilizing selection, is that the
reduction in fitness owing to deviation from the optimal
phenotype is ~nVG /Vs, and so at most ten or so
independent traits could have Vs!10VG. This argu-
ment is a purely phenotypic one, and does not depend
on how variation is maintained. If deviations from each
of a large number of traits reduce fitness independently,
and if each of those traits has high variance, then net
fitness must be low.

The basic difficulty we face comes from the
apparently high heritabity of every measured trait. If
the stabilizing selection we observe is ‘apparent’, then
there is no problem; individuals extreme for one trait
will tend to be extreme for others, breaking the
assumption of independence. If we keep to the basic
model of stabilizing selection on many traits, then
strong selection can act on only a few of them. We can
define directions in which selection acts independently
by taking the eigenvectors of the covariance matrix that
generalizes Vs. Then, the strength of stabilizing
selection along the great majority of directions must
be weak (VG /Vs!1/n). However, selection can act
strongly in a few directions (including key traits such as
body size); if we make measurements on some arbitrary
trait, it is likely to include components from the few
strongly selected traits, and we will observe strong
stabilizing selection. Although, in principle, the Pear-
son–Lande–Arnold (Pearson 1903; Lande & Arnold
1983) approach to measuring multivariate selection
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gradients could demonstrate such a pattern, the
statistical difficulties seem daunting.

As well as having an infinite dimensional phenotype,
it is also clear that organisms can evolve in a large but
finite number of dimensions within this infinite-
dimensional phenotype space. A naive view would
associate each gene with a single dimension. Such a
simple relation might be justified for a structural
protein or metabolic enzyme, where all that matters is
the amount produced or the flux catalysed—though
even this ignores the interaction of even such simple
genetic functions with other genes and with the
environment. As Stern’s (2000) example of dpp
discussed in §2f above makes clear, genes involved in
development may be influenced by multiple regulatory
sequences, and different variants may show qualitat-
ively different phenotypes. We can think of each allelic
variant as causing a particular phenotypic change,
corresponding to a particular direction in phenotype
space.

The number of possible regulatory sequence var-
iants is enormous—potentially 43000 for a 3 kb region
that influences gene expression. However, what is
relevant is the number of variants that is available to an
evolving population. In the short term, this is the
number of haplotypes segregating in the population,
which might be small. However, in a reasonably large
population, recombinants between these will be avail-
able within a few generations, as will all single-
nucleotide mutations. (In extremely large populations,
and with a high mutation rate, multiple mutations will
also be available. For example, Lehman & Joyce (1993)
selected on a mutagenised population of ca 1013 RNA
molecules, and estimated that all possible four-step
mutations were available in the base population
(Lehman, personal communication). However,
for moderately sized populations (e.g. !109) with low
mutation rates, we need consider only single-step
mutations.)

The argument is complicated by sequence variability
within populations. Gavrilets (2004) has emphasized
that many interconnected sequences can satisfy the
same phenotypic constraints, so that populations can
spread across large ‘nearly neutral networks’. Thus,
relatively few mutations may be needed to cross from
one high-fitness network to another (Schultes & Bartel
2000 give an intriguing example, involving two
different ribozymes). If a population is spread across
diverse sequences, then single-step mutations can
generate many more alleles. However, it is hard to see
how to quantify this argument, because it depends on
epistatic effects of genetic background.

If we assume that each variant specifies a unique
direction of change in phenotype space, then we can
find a rough upper bound on the number of dimensions
through which a population can evolve. On this
argument, the number of available alleles corresponds
to the number of dimensions; for an organism with
20 000 genes, each with 3 kb of coding sequence each
site of which can mutate to three alternative bases, we
have ca 2!108 dimensions available. This ignores
complex rearrangements such as insertions and del-
etions, and ignores the (smaller) contribution from
variation in amino acid sequence. However, it is a gross
Phil. Trans. R. Soc. B (2005)
overestimate, in that gene function might naturally fall
into a small number of dimensions—for example,
determined by the strength of binding to a few
transcription factors. Nevertheless, even if one guesses
that 100 independent dimensions are available for each
gene, there are still ca 2!106 dimensions available to
short-term evolution.

The potentially large number of dimensions through
which a population can evolve has consequences for the
way we think of stabilizing selection, and for the
likelihood of pleiotropic side effects. If we think of
individual genes or nucleotide sites, then there is no
great difficulty in accommodating the mutation load
associated with a large number of allelic variants: the
mutation rate per site is extremely low, and so the total
mutation rate need not be unacceptably high.

As discussed above, the idea that organisms evolve in
a space of very high dimension has motivated emphasis
on micromutations as the basis for adaptive change.
Fisher’s (1930) geometric model encapsulates this
idea, in terms of the model of multivariate stabilizing
selection that underlies the models reviewed here. Orr
(1998, 2000) has developed this model to describe
‘adaptive walks’, in which populations evolve by
substituting successive mutations; this can be seen as
the low heritability limit of a model of selection
response where variation is maintained by mutation.
This quantifies the advantage to modularity, which has
recently been much discussed in qualitative terms
(Wagner & Altenberg 1996; Carroll 2001; Hansen
2003). Essentially, when mutations have random
effects on many traits, they will probably disrupt the
majority even when causing an advantageous change to
one of them. Hence, restricting the effects of mutations
to a few dimensions (‘modularity’) increases evolva-
bility by reducing deleterious pleiotropy. However, as
Hansen (2003) points out, modularity also reduces the
variety of changes that can be made, and so it is not
obvious what the optimal dimensionality is.

How can we distinguish whether heritable variation
is predominantly due to mutation, rather than balan-
cing selection? This issue has been hard to resolve for
variation in individual genes, despite the much greater
effort expended on the problem, and the much greater
information available from sequence data. However,
one clear prediction is that the alleles responsible for
trait variation should be at high frequency if they are
maintained by balancing selection, but probably rare if
maintained by mutation. Associations between traits
and rare (presumably deleterious) transposable
elements (e.g. Aquadro et al. 1986) give good evidence
in favour of mutation–selection balance. Conversely,
associations with common molecular variants have
been taken as evidence for balancing selection (e.g.
Long et al. 2000). However, unless one can identify the
variants that actually cause trait variation, neutral
divergence within allelic classes obscures these kinds
of test.

Because mutation–selection models predict that
most variation is contributed by rare alleles with
large effects on traits, they thus predict that allele
frequencies and thus VG will increase substantially
under artificial selection, which could lead to an
accelerating response over time. This has never been
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observed. However, such patterns may not be detect-
able above the noise introduced by random drift if the
population is small (Nex100) as in most experiments
(see Bürger 2000, p. 337). Moreover, when we say
‘large effects’, we mean large relative to the standing
variation at each locus. If enough genes contribute,
these effects could be small compared with the
distribution of phenotypes, and so allele frequencies
would change only slowly during artificial selection (the
infinitesimal model). If this model is supplemented by
alleles of large phenotypic effect that arise by mutation
during the selection experiment, then it still predicts a
steady selection response (Barton & Keightley 2002)
and can also explain the observation that some allele
frequencies do change quickly.

Inference from the relation between declining
selection response and Ne is not straightforward.
Although the data surveyed by Weber & Diggins
(1990) are consistent with an infinitesimal model,
negative responses when selection was relaxed (e.g. Yoo
1980) show that the decline must be attributed partly
to countervailing natural selection. In larger popu-
lations, new alleles are generated by mutation and so
those with smaller deleterious pleiotropic effects will be
selected. We are not aware of any explicit predictions
from this alternative model that could be compared
with the data of Weber & Diggins (1990; but see Otto
2004 for general results for weak selection). It is not
clear to us whether more detailed observations of the
effects of relaxed selection could in principle dis-
tinguish balancing selection from pleiotropic
mutation–selection balance.

Whether quantitative genetic variation is maintained
by balancing selection or by mutation–selection bal-
ance, one expects that in small populations (Nes!1),
genetic variance will be reduced. Thus, the lack of
reduction even in populations with effective size
perhaps Nex1000 suggests that selection coefficients
on the alleles are of the order 0.001 or greater. This is
consistent with the argument that if variation is
maintained by any kind of mutation–selection balance,
then selection coefficients must be of the same order
as the mutational heritability, Vm /VGx0.001–0.04.
Systematic experiments on the effect of drift on genetic
variance could help narrow these rough bounds.

We are grateful to Reinhard Bürger, Peter Keightley and an
anonymous referee for helpful comments. T.J. is supported by
BBSRC grant number 206/D16977.
APPENDIX A
(a ) A general pure pleiotropy model for

an infinite population

In this appendix, we study the infinite population
version of the pure pleiotropy model (Hill & Keightley
1988; Barton 1990; Zhang et al. 2002 and references
therein). The model parameters include a bivariate
distribution of mutational effects, m(s, z), where s is the
effect on fitness and z is the effect on the focal trait.
Many studies have focused on the finite population
version of this model because, for the (continuous)
m(s, z) they choose, the genetic variance VG tends to
infinity (and so h2/1) as Ne/N.
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Rather than choose any particular parametric family
for m(s, z), we allow an arbitrary distribution. However,
we do assume infinite sites, rare alleles and multi-
plicative effects on fitness across sites. One purpose of
our analysis is to identify conditions under which an
infinite population model has finite VG (and perhaps Vs

and other observable quantities). This is motivated by
the lack of any observed correlation between h2 and Ne.
If we believe that a mutation–selection model can
explain observed roughly constant heritabilities over a
wide range of Ne, then we may wish to focus on models
that are well behaved in the limit Ne/N. On the basis
of the following analysis, we argue that ill behaviour of
some previously studied models is an artefact of
considering a limited class of distributions, rather
than a property of the pure pleiotropy model with a
continuous m(s, z) per se.

We use a haploid model. This applies for diploids
either (i) when additive effects are assumed, or (ii) in the
rare alleles approximation where mutant homozygotes
can be ignored (Zhang et al. 2004). Our model is
therefore parameterized by the distribution of hetero-
zygous mutant effects. We follow the distribution f(x, z)
in an infinite population of haplotypes, where 0%X is
the negative ln-fitness andKN!Z!N is the trait value
of a randomly selected individual. Mutation effects are
drawn from the distribution m(x, z). Mutational effects
on negative ln-fitness, 0%XhKln(1KS ), and on the
trait, KN!Z!N, are all additive across loci. Here,
X or Z can both denote a property of either an
individual or a mutation. The distributions of interest
have moment generating functions

Mf ðu; vÞZEf ðe
uXCvZ ÞZ

Ð Ð
euxCvzf ðx; zÞ dz dx; (A 1)

and Mmðu; vÞZEmðe
uXCvZ Þ, respectively. Because

effects on fitness are assumed to be multiplicative
across loci, and effects on the trait are neutral, the
population stays in linkage equilibrium and it is
sufficient to follow an asexual population, for which
f(x, z) is dynamically sufficient. The recursion for
selection is

M 0
f ðu; vÞZMf ðuK1; vÞ=Mf ðK1;0Þ; (A 2)

and the recursion for mutation as a Poisson process with
rate nm per haplotype is

M 00
f ðu; vÞZM 0

f ðu; vÞe
nmðMmðu;vÞK1Þ; (A 3)

(see Johnson 1999). For an isogenic initial condition
Mf(u, v, tZ0)Z1, at time t,

Mf ðu;v;tZtÞZexp nm
XtK1

iZ0

MmðuKi;vÞKMmðKi;0Þ

 !
;

(A 4)

and a stationary distribution can be found by taking the
limit t/N (see Johnson 1999). We can therefore write
down the a, bth cumulant of the stationary distribution
f(x, z), by differentiating the cumulant generating
function (which is the logarithm of the moment
generating function) and assuming the order of
differentiation, summation and integration can be
interchanged as follows:
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XN
iZ0

ð ð
eKixðeuxCvz K1Þ

mðx; zÞdz dx
���
uZ0;vZ0

; (A 7)

ka;bZnm

ððXN
iZ0

da

dua
db

dvb

eKixðeuxCvzK1Þmðx;zÞ
���
uZ0;vZ0

dzdx;

(A 8)

ka;bZnm

ðð XN
iZ0

eKixxazbmðx;zÞdzdx; (A 9)

ka;b Z nmEm

1

1KeKX
XaZb

� �
; (A 10)

ka;b Z nmEm

XaZb

S

� �
: (A 11)

Cases of (A 11) for particular (a, b) were found by
Zhang & Hill (2002) and Zhang et al. (2002), although,
in the latter case, with the denominator replaced by ~s
representing the combined effects of pleiotropic and
real stabilizing selection. To our knowledge, the simple
and general relationship between the cumulants of the
distribution over individuals and the moments of the
distribution over mutations is novel.

Often, we will be interested in m(x, z) that are
symmetric about zZ0. Therefore, f(x, z) will also be
symmetric about zZ0 and Ef(Z )Z0. Then, some
useful relationships between the cumulants k and the
central moments m are

k1;2 Zm1;2 ZEf ðXZ2ÞKEf ðXÞEf ðZ
2Þ; (A 12)

k0;2 Zm0;2 ZEf ðZ
2Þ; (A 13)

k0;4 Zm0;4 K3m2
0;2 ZEf ðZ

4ÞK3Ef ðZ
2Þ2: (A 14)

(i) Genetic variance
Suppose an individual’s breeding value is GZZCZ0,
where Z and Z 0 are independent genetic contributions
withcommondistribution f(x,z).Then(whenEf(Z )Z0),

VG ZEf ððZCZ 0Þ2ÞZ 2Ef ðZ
2ÞZ 2k0;2 Z 2nmEm

Z2

S

� �
:

(A 15)

A special case is when mutational effects X and Z are
independent, so

VG Z
2nm

�sH
EmðZ

2Þ; (A 16)

and we see that VG is finite if, and only if, the
distribution of selection coefficients has non-zero
Phil. Trans. R. Soc. B (2005)
harmonic mean ð�sHÞ. This was stated less explicitly by
Barton (1990).

Expressions for VG when mutational effects X and Z
are not independent were derived previously for the
special case where m(s, z) is a reflected bivariate gamma
distribution (Zhang & Hill 2002; Zhang et al. 2002).
Zhang et al. (2002) suggest that an ‘arbitrary cutoff’ in
the support of m(s) would stop VG/N up as Ne/N,
and consider a discrete distribution of selection
coefficients. Our analysis shows that this is not
necessary. Equation (A 15) shows that finite
Em(Z2/S ) is necessary and sufficient for finite VG.
Loosely speaking, when mutational effects are small,
their effect on the trait z must typically be ‘smaller’ thanffiffi
s

p
(where s is their effect on fitness). For example, if the

conditional random variable

Zjs%k
ffiffi
s

p
U ; (A 17)

for k a finite constant, and some ‘umbrella’ random
variable U with distribution independent of s and finite
variance, then

VG ZEm

Z2

S

� �
%k2EðU2Þ; (A 18)

is finite. It can be proved that this condition only has to
hold in the neighbourhood of the origin, by partitioning
Em($) according to whether s!e or sRe for any small
eO0 and noting that the latter expectation is always
finite.
(b ) Apparent stabilizing selection

We define ~g as the regression of log-fitness on squared
trait value, after normalization so that the trait variance
VP is one. This will be approximately equal to g (the
stabilizing selection gradient, or regression of relative
fitness on squared normalized trait value; see §2c or
Lande & Arnold 1983) when most individuals have
fitness close to one. ~gZK1=ð2Vs=VPÞ when Gaussian
stabilizing selection is assumed.

An individual’s phenotype is PZZCZ 0CE where z
and z 0 are independent genetic contributions with
common distribution f(x, z) and EwN(0, VE) is an inde-
pendent environmental contribution. (More formally, we
define a distribution f ðx; z; x0; z0; eÞZ f ðx; zÞf ðx0; z0ÞfðeÞ
where f(e) is a Gaussian density.) Then, using (2.2),
Ef ðZÞZEf ðZ

0ÞZEf ðEÞZ0, symmetry between (X, Z )
and(X 0,Z0), and the fact thatEf ðE

4ÞZ3Ef ðE
2Þ2, we have

~gZVP

Covf ½KX KX 0; ðZCZ 0 CEÞ2�

Varf ½ðZCZ 0 CEÞ2�
; (A 19)

~gZVP

K2ðEf ðXZ2ÞKEf ðXÞEf ðZ
2ÞÞ

2Ef ðZ
4ÞC2Ef ðZ

2Þ2 C2VEðVE C4Ef ðZ
2ÞÞ

;

(A 20)

where the initial VP term arises because g is
defined in terms of normalized trait values. Using
(A 12), (A 13) and (A 14) we can write this in terms of
cumulants

~gZVP

Kk1;2

k0;4 C4k2
0;2 CVEð2VE C4k0;2Þ

; (A 21)
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and the equivalent strength of Gaussian stabilizing
selection is

Vsx
K1

2 ~g=VP

Z
4k2

0;2 Ck0;4 C2VEðVE C2k0;2Þ

2k1;2

; (A 22)

Vsx
K1

2 ~g=VP

Z
V 2

G CEm
Z4

S

� �
C2VEVP

V 0
m

; (A 23)

where (when mutations have mostly small effects on
fitness, XxS )

V 0
m Z 2k1;2 Z 2nmEm

XZ2

S

� �
x2nmEmðZ

2Þ

%2nmEm

Z

Hz

� �2� �
Z 4Vm; (A 24)

when Hz%1 and V 0
m*Vm when Hz%1/2 (where Hz is

the dominance coefficient, which can covary with Z ).
Inequalities that follow from (A 23) have been

derived before (especially VsRV 2
G=Vm; see Zhang

et al. 2002; Zhang & Hill 2003). Our result applies
for an arbitrary distribution of mutational effects, and
also is more stringent. Assuming Hz%1, (A 23) can be
rewritten

Vs

VP

V 4
Vm

VE

� �K1

2C
ðh2Þ2

1Kh2

� �
: (A 25)

If Vm /VE!10K2, then this implies Vs /VPO50 for any
heritability.
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