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SUMMARY

We present Bayesian analyses of matrix-variate normal data with conditional independencies
induced by graphical model structuring of the characterizing covariance matrix parameters. This
framework of matrix normal graphical models includes prior specifications, posterior computation
using Markov chain Monte Carlo methods, evaluation of graphical model uncertainty and model
structure search. Extensions to matrix-variate time series embed matrix normal graphs in dynamic
models. Examples highlight questions of graphical model uncertainty, search and comparison in
matrix data contexts. These models may be applied in a number of areas of multivariate analysis,
time series and also spatial modelling.
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1. INTRODUCTION

We introduce and analyze matrix normal graphical models; that is, matrix normal distributions
(Dawid, 1981; Gupta & Nagar, 2000) in which each of the two characterizing covariance matrices
reflects conditional independencies consistent with an underlying graphical model (Whittaker,
1990; Lauritzen, 1996). We present fully Bayesian analysis of the matrix normal model as the
special case of full graphs, and develop computational methods for marginal likelihood com-
putation on a specified graphical model. This enables graphical model search and comparison
for posterior inferences about conditional independence structures. The random sampling frame-
work is extended to matrix-variate time series models that inherit the graphical model structure
to represent conditional independencies in matrix time series. We focus on decomposable graphs
although the general approach will also apply to nondecomposable models.

Matrix-variate normal distributions have been studied in analysis of two-factor linear models
for cross-classified multivariate data (Finn, 1974; Galecki, 1994; Naik & Rao, 2001), in spatio-
temporal models (Mardia & Goodall, 1993; Huizenga et al., 2002) and other areas. Some com-
putational and inferential developments, including iterative calculation of maximum likelihood
estimates (Dutilleul, 1999; Mitchell et al., 2006) and empirical Bayesian methods for Procrustes
analysis with matrix models (Theobald & Wuttke, 2006) have been published. Our work appears
to be the first to develop fully Bayesian analysis of the basic matrix normal model alone, though
that is only a necessary first step to the broader framework of matrix graphical models.

In time series, graphical modelling of the covariance matrix of multivariate data appears in
Carvalho & West (2007a, 2007b). Here we generalize that earlier work to time series of matrix
data, providing fully Bayesian inference and graphical model search related to both row and
column intra-dependencies in the cross-sectional structure of a matrix-valued time series.
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2. MATRIX VARIATE NORMALS, GRAPHS AND NOTATION

The q × p random matrix Y is matrix normal, Y ∼ N (M, U, V ), with mean M (q × p),
column and row covariance matrices U = (ui j ) (q × q) and V = (vi j ) (p × p), respectively,
when

p(Y ) ≡ p(Y | U, V ) = k(U, V ) exp[−tr{(Y − M)′U−1(Y − M)V−1/2}], (1)

where k(U, V ) = (2π)−qp/2|U |−p/2|V |−q/2. The rows yi� (i = 1, . . . , p), and columns y� j ( j =
1, . . . , q), have margins yi� ∼ N (mi�, uii V ) and y� j ∼ N (m� j , v j jU ) with precision matrices
� = V −1 = (λi j ) and � = U−1 = (ωi j ), respectively. The normal conditional distributions have
mean vectors and covariance matrices

E(yi� | y−i�) = mi� − ω−1
i i

∑
s∈(1,...,q\i) ωis(ys� − ms�), cov(yi� | y−i�) = ω−1

i i V,

E(y� j | y−� j ) = m� j − λ−1
j j

∑
t∈(1,...,p\ j) λt j (y�t − m�t ), cov(y�j | y−�j) = λ−1

j j U,

for rows i = 1, . . . , q and columns j = 1, . . . , p. Zeros in � and � define conditional indepen-
dencies. If (i, j) � (s, t) then yi j and yst may, conditional upon y−(i j,st) be dependent through
either rows or columns; conditional independence is equivalent to: at least one zero among λt j

and ωis when s � i, j � t ; ωis = 0 when s � i, j = t ; λ j t = 0 when s = i, j � t . With no loss of
generality, in this section we set M = 0.

Undirected graphical models can be applied to each of � and � to represent strict conditional
independencies. A graph GV on nodes {1, . . . , p} has edges between pairs of column indices
( j, t) for which λ j t � 0; � has off-diagonal zeros corresponding to within-row conditional in-
dependencies. Similarly, a graph GU on nodes {1, . . . , q} lacks edges between row indices (i, s)
for which ωis = 0. We focus here on decomposable graphs GU and GV . The theory of graphical
models can be now overlaid to define conditional factorizations of the matrix normal density over
graphs. Over GV , for example, we have

p(Y | U, V, GV , GU ) =
∏

PV ∈PV

p(Y�PV | U, VPV )
/ ∏

SV ∈SV

p(Y�SV | U, VSV ), (2)

where PV is the set of complete prime components, or cliques, of GV and SV is the set of
separators. For each subgraph g ∈ {PV ,SV }, Y�g is the q × |g| matrix with variables from the |g|
columns of Y defined by the subgraph, and Vg the corresponding submatrix of V . Each term in
equation (2) is matrix normal, Y�g ∼ N (0, U, Vg) with �g = V −1

g having no off-diagonal zeros.
We can similarly factorize the joint density over GU .

Now, U and V are not uniquely identified since, for any c > 0, p(Y | U, V ) = p(Y | cU, V/c).
There are a number of approaches to imposing identification constraints such as tr(V ) = p
(Theobald & Wuttke, 2006), and possible strategies that use unconstrained parameters; we discuss
the latter in § 8. Our use of hyper-Markov priors over each of U and V with underlying graphical
models, discussed below, makes it desirable to adopt an explicit constraint and we enforce v11 = 1
from here on.

3. MATRIX GRAPHICAL MODELLING

Hyper-inverse Wishart priors are conjugate for covariance matrices in multivariate normal
graphical models (Dawid & Lauritzen, 1993). Hyper-inverse Wishart distributions are compatible
and consistent across graphs, which is critical when admitting uncertainty about graph structures
(Giudici & Green, 1999; Jones et al., 2005). On decomposable graphs, the implied priors on sub-
covariance matrices on all components and separators are inverse Wishart. Use of independent
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hyper-inverse Wishart priors for U, V in the current context is a natural choice, and maintains
compatibility and consistency across graphs GU , GV . To incorporate the identification constraint
v11 = 1, we use a parameter expansion approach. Parameter expansion involves expanding the
parameter space by adding new nuisance parameters, and has been used purely algorithmically to
accelerate Markov chain Monte Carlo samplers (Liu et al., 1998; Liu & Wu, 1999), but can also
be used to induce new priors (Gelman, 2004, 2006) as is germane here.

We assume the prior p(U, V ) = p(U )p(V ) where, using the hyper-inverse Wishart notation
of Giudici & Green (1999) and Jones et al. (2005), the margins are defined by

U ∼ HIWGU (b, B), V = V ∗/v∗
11, V ∗ ∼ HIWGV (d, D). (3)

The density function for U is, following Dawid & Lauritzen (1993),

p(U ) =
∏

PU ∈PU

p(UPU | b, BPU )
/ ∏

SU ∈SU

p(USU | b, BSU ),

where each component is an inverse Wishart density; p(V ∗) has a similar form.
The parameter expansion concept relates to v∗

11 as an added parameter that converts column
scales in V to those relative to the scale of the first column. As we move across graphs GV ,

the priors p(V | GV ) have the same induced priors over subgraph correlation structures but are
no longer in complete agreement for V = V ∗/v∗

11 due to the different parameterizations and
interpretations. This is natural and appropriate. Suppose GV and G ′

V are two graphs with a
common clique C . Each element in diag(VC ) represents the relative scale of variance of that
column to the variance of the first column so that, if GV and G ′

V imply different conditional
dependencies between the first column and columns linked to C , then the induced priors over VC

should indeed be different.
The prior p(V ) is obtained by transformation from V ∗. On any graph GV , V is determined only

by those free elements appearing in the submatrices corresponding to the cliques of the graph,
and the nonfree elements of V are deterministic functions of the free elements (Carvalho et al.,
2007). Let ν be the number of free elements; then the transformation from V ∗ to (V, v∗

11) has
Jacobian (v∗

11)ν−1 leading to

p(V, v∗
11) = HIWGV (v∗

11V | d, D)(v∗
11)ν−1.

Coupled with the prior p(U ) on GU , this defines a class of conditionally conjugate priors in the
expanded parameter space.

4. POSTERIOR AND MARGINAL LIKELIHOOD COMPUTATION

4·1. Gibbs sampling on given graphs

Assume an initial random sampling context with q × p data matrices Yi (i = 1, . . . , n), drawn
independently from equation (1), and write Y for the full set of data. It is easy to see that, on
specified graphs (GU , GV ), the posterior p(U, V, v∗

11 | Y ) has conditional distributions:

(U | V, v∗
11, Y ) ∼ HIWGU

(
b + np, B +

n∑
i=1

Yi V
−1Y ′

i

)
,

(V | U, v∗
11, Y ) ∼ HIWGV

(
d + nq, D/v∗

11 +
n∑

i=1

Y ′
i U−1Yi

)
I (v11 = 1),

(v∗
11 | U, V, Y ) ∼ IG{a/2 − ν, tr(DV −1)/2},
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where a = ∑
PV

|PV |(2|PV | + d) − ∑
SV

|SV |(2|SV | + d). These distributions form the basis of
Gibbs sampling for the target posterior p(U, V, v∗

11 | Y ). This involves iterative resampling
from the hyper-inverse Wishart, inverse gamma and new conditional hyper-inverse Wishart
distributions. Simulation of the former is based on Carvalho et al. (2007), while sampling the
latter can be done as follows. From Lemma 2.18 of Lauritzen (1996), we can always find a perfect
ordering of the nodes in GV so that node 1 is in the first clique, say C, and then initialize the
hyper-inverse Wishart sampler of Carvalho et al. (2007) to begin with a simulation of the implied
conditional inverse Wishart distribution for the covariance matrix on that first clique. Sampling
VC from an inverse Wishart distribution conditional on the first diagonal element set to unity is
straightforward.

4·2. Marginal likelihood

Exploration of uncertainty about graphical model structures involves consideration of the
marginal likelihood function over graphs. For any pair (GU , GV ), this is

p(Y ) ≡ p(Y | GU , GV ) =
∫

p(Y | U, V )p(U )p(V )dU dV .

The priors in the integrand depend on the graphs although for clarity we drop that from the
notation. In multivariate models, marginal likelihoods can be evaluated in closed form on de-
composable graphs (Giudici, 1996; Giudici & Green, 1999; Jones et al., 2005; Carvalho & West,
2007a, 2007b). In our matrix models, the integral cannot be evaluated but we can generate
useful approximations via use of the candidate’s formula (Besag, 1989; Chib, 1995). Write
	 = {U, V, v∗

11} for all parameters, and suppose that we can evaluate p(θ | Y ) for some sub-
set of parameters θ ∈ 	; the candidate’s formula gives the marginal likelihood via the identity
p(Y ) = p(Y | θ)/p(θ | Y ). Applying this requires that we estimate components of the numerator
or denominator. Choosing θ to maximally exploit analytic integration is key, and different choices
that integrate over different subsets of parameters will lead to different, parallel approximations of
p(Y ) that can be compared. We use two approximations based on marginalization over desirably
disjoint parameter subsets, namely, (A): p(Y ) = p(Y, v∗

11, U )/p(v∗
11, U | Y ) at any chosen value

of θ = {v∗
11, U }, and (B): p(Y ) = p(Y, V )/p(V | Y ) at any value of θ = V . We estimate the

components of these equations that have no closed form, then insert chosen values U, V, v∗
11,

such as approximate posterior means, to provide two estimates of p(Y ).
For (A), first rewrite as

p(Y ) = p(Y, v∗
11, U )p(V | v∗

11, U, Y )

p(v∗
11, U | Y )p(V | v∗

11, U, Y )
= p(Y | V, v∗

11, U )p(U )p(V | v∗
11)p(v∗

11)

p(v∗
11, U | Y )p(V | v∗

11, U, Y )
.

The numerator terms are each easily computed at any {V, v∗
11, U }. The second denominator term

p(V | v∗
11, U, Y ) has an easily evaluated closed form, as in the Gibbs sampling step. The first

denominator term may be approximated by

p(v∗
11, U | Y ) =

∫
p(v∗

11 | Y, V )p(U | Y, V, v∗
11)p(V | Y )dV

≈ 1

M

M∑
j=1

p(v∗
11 | Y, Vj )p(U | Y, Vj , v

∗
11),

where the sum is over posterior draws Vj ; this is easy to compute as it is a sum of the product of
inverse gamma and hyper-inverse Wishart densities.
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For (B), the numerator can be analytically evaluated as

p(V, Y ) =
∫

p(Y, U, V, v∗
11)dU dv∗

11

= qV (2π)−nqp/2 H (b, B, GU )H (d, D, GV )

H (b + np, B + ∑n
i=1 Yi V −1Y ′

i , GU )H{c, tr(DV −1), 1} ,

where

qV =
∏

PV ∈PV

|VPV |−(nq+d+2|PV |)/2
/ ∏

SV ∈SV

|VSV |−(nq+d+2|SV |)/2,

the H (·, ·, G ·) terms are normalizing constants of the corresponding hyper-inverse Wishart dis-
tributions (Giudici & Green, 1999; Jones et al., 2005) and

c =
∑

PV ∈PV

|PV |(2|PV | + d) −
∑

SV ∈SV

|SV |(2|SV | + d) − 2ν.

The density function in the denominator is approximated as

p(V | Y ) =
∫

p(V | v∗
11, U, Y )p(v∗

11, U | Y )dv∗
11 dU ≈ 1

M

M∑
j=1

P(V | Y, U j , v
∗
11, j ),

where the sum over posterior draws (U j , v
∗
11, j ) can be easily performed, with terms given by

conditional hyper-inverse Wishart density evaluations.

4·3. Graphical model uncertainty and search

Now admit uncertainty about graphs (GU , GV ) using sparsity-encouraging priors in which
edge inclusion indicators are independent Bernoulli variates (Dobra et al., 2004; Jones et al.,
2005). We now extend Markov chain Monte Carlo simulation for multivariate graphical models
(Giudici & Green, 1999; Jones et al., 2005) to learning on (GU , GV ) in the above matrix model
analysis. Our analysis generates multiple graphs with values of approximate posterior probabili-
ties, using the Markov chain simulation for model search. This relies on the computation of the
unnormalized posterior over graphs, p(GU , GV | Y ) ∝ p(Y | GU , GV )p(GU , GV ) involving the
marginal likelihood value for any specified model (GU , GV ) at each search step. For the latter,
we average the approximate marginal likelihood values from methods (A) and (B). The work in
Jones et al. (2005) includes evaluation of the performance of various stochastic search methods in
single multivariate graphical models; for modest dimensions, they recommend simple local-move
Metropolis–Hastings steps. Here, given a current pair (GU , GV ), we can apply local moves in
GU space based on the conditional posterior p(GU | Y, GV ), and vice-versa. A candidate G ′

U is
sampled from a proposal distribution q(G ′

U ; GU ) and accepted with probability

α = min{1, p(G ′
U | Y, GV )q(GU ; G ′

U )/p(GU | Y, GV )q(G ′
U ; GU )};

our examples use the simple random add/delete edge move proposal of Jones et al. (2005). We
then couple this with a similar step using p(GV | Y, GU ) at each iteration. This requires a Markov
chain analysis on each graph pair visited in order to evaluate marginal likelihood, so implying a
substantial computational burden.
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5. EXAMPLE: A SIMULATED RANDOM SAMPLE

A sample of size n = 48 was drawn from the (q = 8) × (p = 7) dimensional N (0, U, V )
distribution, where, using · to denote zeros to highlight structure, the precision matrices are

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1·85 −0·09 −0·65 · −0·24 0·45 ·
−0·09 0·21 0·08 · · 0·14 −0·13
−0·65 0·08 0·58 0·10 · −0·30 ·

· · 0·10 0·48 · −0·10 ·
−0·24 · · · 0·70 −0·17 ·

0·45 0·14 −0·30 −0·10 −0·17 0·61 −0·36
· −0·13 · · · −0·36 3·72

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0·99 · · −0·33 · 0·05 · ·
· 3·65 0·33 · −0·39 −0·41 · −0·03
· 0·33 2·23 · · −0·38 · ·

−0·33 · · 1·65 · · · ·
· −0·39 · · 2·91 −0·30 · ·

0·05 −0·41 −0·38 · −0·30 4·71 −0·13 −0·40
· · · · · −0·13 1·07 −0·26
· −0·03 · · · −0·40 −0·26 1·45

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

First consider analysis on the true graphs under priors with b = d = 3 and B = 5I8, D = 5I7

and simulation sample size 8000 after an initial, discarded burn-in of 2000 iterations. Convergence
is rapid and apparently fast-mixing in this as in other simulated examples. The corresponding
posterior means of the precision matrices are

�̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1·86 −0·11 −0·68 · −0·28 0·44 ·
−0·11 0·28 0·14 · · 0·16 −0·21
−0·68 0·14 0·68 0·16 · −0·33 ·

· · 0·16 0·59 · −0·15 ·
−0·28 · · · 0·75 −0·14 ·

0·44 0·16 −0·33 −0·15 −0·14 0·71 −0·45
· −0·21 · · · −0·45 4·14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

�̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0·90 · · −0·27 · −0·02 · ·
· 3·23 0·50 · −0·35 −0·22 · −0·12
· 0·50 2·14 · · −0·37 · ·

−0·27 · · 1·46 · · · ·
· −0·35 · · 2·88 −0·41 · ·

−0·02 −0·22 −0·37 · −0·41 4·20 −0·29 −0·08
· · · · · −0·29 0·91 −0·26
· −0·12 · · · −0·08 −0·26 1·58

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Figure 1 gives an implementation check on the concordance of the two marginal likelihood
estimates. These are very close and differ negligibly on the log probability scale even at small
Monte Carlo sample sizes.

Consider graphical model uncertainty with prior edge inclusion probabilities 2/(q − 1) for GU

and 2/(p − 1) for GV . Repeat explorations suggest stability of the marginal likelihood estimation
using smaller Monte Carlo sample sizes, and we use 2000 draws within each step of the model
search. The add/delete Metropolis-within-Gibbs was run for 20 000 iterates starting from empty
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Fig. 1. Logmarginal likelihood values in the example of § 5. The
two estimates A (full line) and B (dashed line) of § 4·2 were
successively re-evaluated and plotted here at differing simulation
sample sizes. The vertical scale has been adjusted by addition of

3583 for clarity.

Fig. 2. True graphs in the simulated data example together with
graphs of highest posterior probability identified from the analysis.

graphs. Results are essentially replicated starting at the full graphs. The most probable graphs
visited, (ĜU , ĜV ), are shown in Fig. 2; these are local modes and also have greater posterior
probability than the true graphs also displayed, and this model was first visited after 2614 Markov
chain steps. The edges in (ĜU , ĜV ) generally have higher posterior edge inclusion probability
than those not included; the lowest probability included edge has probability 0·52, while the
highest probability excluded edge has probability 0·59. Thus, graphs discovered by highest
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posterior probability and by aggregating high probability edges are not dramatically different.
The modal ĜU is sparser than the true GU , reflecting the difficulties in identifying very weak
signals; for example, the modal graph lacks an edge corresponding to the true �1,6 = 0·05, and
the posterior probability of that edge is naturally low. One measure of inferred sparsity is the
posterior mean of the proportion of edges in each graph; these are about 28%, 59·6% for GU , GV ,

respectively. Additional posterior summaries and exploration of the posterior samples suggest
clean convergence of the simulation analysis and the Metropolis–Hastings steps over graphs had
good empirical acceptance rates of about 26%, 9% for GU , GV , respectively.

6. DYNAMIC MATRIX-VARIATE GRAPHICAL MODELS FOR TIME SERIES

Using the theory and methods for matrix normal models developed above, we are now able to
extend our ideas to matrix time series involving two covariance matrices and associated graphical
models. In the notation below, the work of Carvalho & West (2007a, 2007b) is the special case
of vector data with q = 1, U fixed, and inference on (V, GV ) only.

A q × p matrix-variate times series Yt follows the dynamic linear model

Yt = (Iq ⊗ F ′
t )	t + νt , νt ∼ N (0, U, V ),

	t = (Iq ⊗ Gt )	t−1 + ϒt , ϒt ∼ N (0, U ⊗ Wt , V )

for t = 1, 2, . . . , where (a) Yt = (Yt,i j ), the q × p matrix observation at time t ; (b) 	t = (	t,i j ),
the qs × p state matrix comprised of q × p state vectors 	t,i j each of dimension s × 1;
(c) ϒt = (ωt,i j ), the qs × p matrix of state evolution innovations comprised of q × p inno-
vation vectors ωt,i j each of dimension s × 1; (d) νt = (νt,i j ), the q × p matrix of observational
errors; (e) Wt is the s × s innovation covariance matrix at time t ; (f ) for all t, the s-vector Ft and
s × s state evolution matrix Gt are known. Also, ϒt follows a matrix-variate normal distribution
with mean 0, left covariance matrix U ⊗ Wt and right covariance matrix V . In terms of scalar
elements, we have q × p univariate models with individual s-vector state parameters, namely,

Yt,i j = F ′
t 	t,i j + νt,i j , νt,i j ∼ N (0, uiiv j j ), (4)

	t,i j = Gt	t−1,i j + ωt,i j , ωt,i j ∼ N (0, uiiv j j Wt ),

for each i, j and t . Each of the scalar series shares the same Ft and Gt elements, and the reference
to the model as one of exchangeable time series reflects these symmetries. In the example
below, Ft = F and Gt = G, as in many practical models, but the model class includes dynamic
regressions when Ft involves predictor variables. This form of model is a standard specification
(Quintana & West, 1987; West & Harrison, 1997) in which the correlation structures induced
by U and V affect both the observation and evolution errors; for example, if ui j is large and
positive, vector series Yt,i� and Yt, j� will show concordant behaviour in movement of their state
vectors and in observational variation about their levels. Specification of the entire sequence of
Wt in terms of discount factors (West & Harrison, 1997) is also standard practice, typically using
multiple discount factors related to components of the state vector and their expected degrees
of random change in time, as illustrated in the example below. The innovations here concern
graphical modelling and inference on (U, V ). The key theory, conditional on U, V , concerns the
conjugate sequential learning and forecasting as data is processed, as follows.

THEOREM 1. Define Dt = {Dt−1, Yt } for t = 1, 2, . . . , with D0 representing prior information.
With initial prior (	0 | U, V, D0) ∼ N (m0, U ⊗ C0, V ) we have, for all t:
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(i) posterior at t − 1: (	t−1 | Dt−1, U, V ) ∼ N (mt−1, U ⊗ Ct−1, V );
(ii) prior at t: (	t | Dt−1, U, V ) ∼ N (at , U ⊗ Rt , V ) where at = (In ⊗ Gt )mt−1 and Rt =

GtCt−1G ′
t + Wt ;

(iii) one-step forecast at t − 1: (Yt | Dt−1, U, V ) ∼ N ( ft , Uqt , V ) with forecast mean matrix
ft = (In ⊗ F ′

t Gt )mt−1 and scalar qt = F ′
t Rt Ft + 1; and

(iv) posterior at t: (	t | Dt , U, V ) ∼ N (mt , U ⊗ Ct , V ) with mt = at + (Iq ⊗ At )et and Ct =
Rt − At A′

t qt where At = Rt Ft/qt and et = Yt − ft .

Proof. This stems from the theory of multivariate models applied to vec(Yt) (West & Harrison,
1997). The main novelty here concerns the separability of covariance structures. That is: for all
t, the distributions for state matrices have separable covariance structures; for example, (	t |
Dt , U, V ) is such that cov{vec(	t) | Dt, U, V} = V ⊗ U ⊗ Ct; the sequential updating equations
for the set of qs × p state matrices are implemented in parallel based on computations for the
univariate component models, each of them involving the same scalar qt , s−vector At and s × s
matrices Rt , Ct at time t . �

Suppose now that U and V are constrained by graphs GU and GV , with priors as in equation
(3) and sparsity priors over the graphs. Given data over t = 1, . . . , n, the sequential updating
analysis on (GU , GV ) leads to the full joint density

p(Y1, . . . , Yn | U, V ) =
n∏

t=1

p(Yt | U, V, Dt−1) =
n∏

t=1

N (et | 0, qtU, V ),

marginalized with respect to all state vectors. The one-step forecast error matrices et are con-
ditionally independent matrix normal variates. Apart from the scalars qt , this is essentially the
framework of § 2. Thus, with a small change to insert the qt , we are able to directly fit and explore
dynamic graphical models using the analysis for random samples with embedded sequential
updating computations.

7. A MACRO-ECONOMIC EXAMPLE

An example concerns exploration of conditional dependence structures in macroeconomic time
series related to US labour market employment. The data are Current Employment Statistics for the
eight US states, New Jersey, New York, Massachusetts, Georgia, North Carolina, Virginia, Illinois
and Ohio. We explore these data across nine industrial sectors: construction; manufacturing; trade,
transportation and utilities; information; financial activities; professional and business services;
education and health services; leisure and hospitality; and government. In our model framework,
we have q = 8, p = 9 and monthly data over several years. Then U characterizes the residual
conditional dependencies among states while V does the same for industrial sectors, in the
context of an overall model that incorporates time-varying state parameters for underlying trend
and annual seasonal structure in the series. Trend and seasonal elements are represented in
standard form, the former as random walks and the latter as randomly varying seasonal effects.
Specifically, in month t, the monthly employment change in state i and sector j is Yt,i j , modelled
as a first-order polynomial/seasonal effect model (West & Harrison, 1997) with the state vector
comprising a local-level parameter and 12 seasonal factors, so that the state dimension is s = 13.

The univariate models of equation (4) have state vectors 	t,i j = (μt,i j , φt,i j )′, where μt,i j

is the local level and φt,i j = (φt,i j,k, φt,i j,k+1, . . . , φt,i j,11, φt,i j,0, . . . , φt,i j,k−1) contains current
monthly seasonal factors, subject to 1′φt,i j = 0 for all i, j and t . Further, Ft = F (13 × 1) and
Gt = G (13 × 13) for all t, where F ′ = (1, 1, 0, . . . , 0). The state matrix G and the sequence of
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Fig. 3. One of the 72 time series in the econometric example, plotted over
1990–2007. (a): Dots are monthly changes in employment of North Carolina
financial activities and the line joins the corresponding one-step ahead fore-
casts over time. (b): Corresponding standardized one-step ahead forecast errors
et/ √ qt . (c): Corresponding on-line estimated seasonal pattern with 95% point-

wise credible intervals indicated by vertical bars at each month.

state evolution covariance matrices Wt (13 × 13) are

G =
(

1 0
0 P

)
, P =

(
0 I11

1 0′
)

, Wt =
(

Wt,μ 0
0 Wt,φ

)
,

with the latter having entries as follows. The univariate Wt,μ and 12 × 12 matrix Wt,φ are
defined via discount factors δl and δs and the corresponding block components of Ct as
Wt,μ = Ct−1,μ(1 − δl)/δl and Wt,φ = PCt−1,φ P ′(1 − δs)/δs for each t . The discount factor δl re-
flects the rate at which the levels μt,i j are expected to vary between months, with 100(δ−1

l − 1)%
of information on these parameters decaying each month. The factor δs plays the same role
for seasonal parameters. We use δl = 0·9, δs = 0·95 to allow more adaptation to level changes
than seasonal factors (West & Harrison, 1997); results, in terms of graphical model search and
structure, are substantially similar using other values in appropriate ranges. In application, we
can estimate discount factors and also extend the model to allow changes in discount factors
to model change-points and other events impacting the series, based on monitoring and inter-
vention methods (Pole et al., 1994; West & Harrison, 1997). Such considerations are secondary
to our purposes in using this model for illustration of computational model search analysis for
(U, V, GU , GV ), but practically very germane. Model completion uses initial, vague priors with
m0 = 0, the 104 × 9 matrix, and C0 = 100I13. The constraint that 1′φt,i j = 0 is imposed by
transforming m0 and C0 as discussed in West & Harrison (1997).

Model fitting estimates the movements in trend and seasonality, sequentially generating ma-
trix series et whose row and column covariance patterns relate to (U, V ). The North Carolina
financial activities data and some aspects of the sequential model fit are graphed in Fig. 3. Priors
for (U, V ) use B = 5I8, D = 5I9 and b = d = 3, reflecting the range of residual variation,
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Fig. 4. Highest posterior probability graphs that illustrate aspects of
inferred conditional dependencies among industrial sectors and among

states in analysis of the econometric time series data.
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Fig. 5. Summary of posterior on sparsity of GV in the econo-
metric example. Circled areas are proportional to the fraction
of posterior sampled graphs at several levels of posterior
probability plotted against levels of sparsity SGV measured

as the proportion of edges included.

sparsity-encouraging priors with prior edge inclusion probabilities 2/(q − 1) for GU and
2/(p − 1) for GV . The add/delete Metropolis-within-Gibbs sampler was run for 20 000 steps.
Two chains were run: one starting at empty graphs and one at full graphs. The most probable
model identified, (ĜU , ĜV ), is shown in Fig. 4. This, and the acceptance rates of graphs, were
insensitive to the starting points. Beginning with empty graphs, the most probable model visited
was found after 401 steps; its log posterior probability is −27 695·40, the sparsity of (ĜU , ĜV )
in terms of percentage of edges included is (72·4%, 42·1%) and the acceptance rates are (7·3%,
11·9%). Beginning with full graphs led to a most probable model with log posterior probability
−27 695·43 after 2194 steps, sparsity (73·7%, 41·9%) and acceptance rates (7·7%, 12·2%). Pos-
terior edge inclusion probabilities are also consistent between the two runs; see Table 1. Further,
the most probable graphs sit in a region of graphs of similar sparsity and posterior probability
and the posterior is dense around this mode; see Fig. 5.

Graphs with high probability in the region of the mode seem to reflect relevant dependencies
in the econometric context. There are strongly evident conditional independencies particularly
among subsets of the industrial sectors; see Table 1. Further, the posterior indicates overall



832 HAO WANG AND MIKE WEST

Table 1. Posterior edge inclusion probabilities in graphical model analysis of the matrix econo-
metric time series data

NJ NY MA GA NC VA IL OH

NJ 1 0·05 1·00 0·55 0·01 1·00 1·00 1·00
NY 1 1·00 0·19 0·00 1·00 0·00 0·59
MA 1 0·98 0·96 1·00 1·00 1·00
GA 1 0·93 0·89 0·75 1·00
NC 1 1·00 0·06 1·00
VA 1 0·31 1·00
IL 1 1·00
OH 1

C M T&U I FA P&BS E&H L&H G

C 1 0·02 1·00 0·16 0·75 1·00 0·99 1·00 0·06
M 1 1·00 0·28 0·02 0·98 0·01 0·03 0·01
T&U 1 0·02 1·00 1·00 0·93 1·00 0·02
I 1 0·06 0·34 0·02 0·01 0·55
FA 1 1·00 0·00 0·04 0·02
P&BS 1 0·02 1·00 0·00
E&H 1 0·75 0·02
L&H 1 0·01
G 1

US states: NJ, New Jersey; NY, New York; MA, Massachusetts; GA, Georgia; NC, North Carolina; VA, Virginia;
IL, Illinois; OH, Ohio. Industrial sectors: C, industrial construction; M, manufacturing; T&U, trade, transportation &
utilities; I, information; FA, financial activities; P&BS, professional & business services; E&H, education & health
services; L&H, leisure & hospitality; G, government.

sparsity levels through posterior means of about 73% for the proportion of edges included in GU

and about 42% in GV . Figure 5 further illustrates aspects of the posterior over sparsity for GV .

8. FURTHER COMMENTS

We have introduced Bayesian analysis of matrix-variate graphical models in random sampling
and time series contexts. The main innovations include new priors for matrix normal graphical
models, use of the parameter expansion approach, inference via Markov chain Monte Carlo
for a specific graphical model, evaluation of marginal likelihoods over graphs using coupled
candidate’s formula approximations, and the extension of graphical modelling to matrix time
series analysis.

On the use of parameter expansion, Roy & Hobert (2007) and Hobert & Marchev (2008)
provide theoretical support for the method in Gibbs samplers; in our models, this approach
induces tractable and computationally accessible posteriors, leads to good mixing of Markov chain
simulations, and is theoretically fundamental to the new model/prior framework in addressing
identification issues directly and naturally.

On model identification, an alternative approach might use unconstrained hyper-inverse
Wishart priors for each of (U, V ) and run the Markov chain Monte Carlo simulation on the
unconstrained parameters, similar to a strategy sometimes used in multinomial probit models
(McCulloch et al., 2000). It can be argued that this is computationally less demanding than using
our explicitly constrained prior and that inferences can be constructed from the simulation output
by transforming to constraint-compatible parameters (Uv11, V/v11). We had considered this, and
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note that posterior simulation analysis is marginally faster than under the explicitly identified
model; in empirical studies, however, we find the computational benefit to be of negligible prac-
tical significance. Importantly, this approach relies on a proper prior for the effectively free,
unidentified parameter v11, and is sensitive to that choice. More importantly, the implied prior on
(Uv11, V/v11) is nonstandard and difficult to interpret, and raises questions in prior elicitation
and specification; for example, the implied margins for variances are those of ratios of inverse
gamma variates and difficult to assess compared to the traditional inverse gamma, and there are
now dependencies in priors on left and right covariance matrices. Perhaps most important are the
resulting effects on approximate marginal likelihoods; in examples we have studied, the approach
yields very different marginal likelihoods and the impact of the marginal prior on the unidentified
v11 plays a key role in that. In contrast, and though very slightly more computationally demand-
ing, the direct and explicitly constrained hyper-inverse Wishart prior is easy to interpret, specify
and, with results from Carvalho et al. (2007), implement; synthetic examples have verified the
resulting efficacy of the simulation and model search computations.

Our use of candidate’s formula to provide different approximations to marginal likelihoods over
graphs can be extended to multiple such approximations. We have explored other constructions,
and found no obvious practical differences in the resulting estimates in simulated examples. This
is an area open for theoretical investigation and in other model contexts. This also offers a route
to extending the analysis here to nondecomposable graphical models.

Our examples are in modest dimensional problems where local move Metropolis–Hastings
methods for the graphical model components of the analysis can be expected to be effective,
building on experiences in multivariate models (Jones et al., 2005). To scale to higher dimensions,
alternative computational strategies such as shotgun stochastic search over graphs (Dobra et al.,
2004; Jones et al., 2005; Hans et al., 2007) become relevant. A critical perspective is to define
analysis that will rapidly find regions of graphical model space supported by the data. It is far
better to work with a small selection of high-probability models than a grossly incorrect model
on full graphs, and as dimensions scale the latter quickly becomes infeasible. Shotgun stochastic
search and related methods reflect this and offer a path towards faster, parallelizable model search.
There is also potential for computationally faster approximations using expectation-maximization
style and variational methods (Jordan et al., 1999).

An interesting class of matrix graphical structures arises under autoregressive correlation
specifications for the two covariance matrices. This generates a class of Markov random field
models that is of potential interest in applications such as texture image modelling. With the
matrix data representing a spatial process on a rectangular grid, taking covariance matrices U and
V as those of two stationary autoregressive processes provides flexibility in modelling patterns
separately in horizontal and vertical directions. We have experimented with examples that suggest
potential for this direction in applying the new theory and methods we have presented.
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