
Structure and dynamics of molecular networks: A novel
paradigm of drug discovery: A comprehensive review

Peter Csermely1,*, Tamás Korcsmáros1,2, Huba J.M. Kiss1,3, Gábor London4, and Ruth
Nussinov5,6

1Department of Medical Chemistry, Semmelweis University, P.O. Box 260. H-1444 Budapest 8,
Hungary 2Department of Genetics, Eötvös University, Pázmány P. s. 1C, H-1117 Budapest,
Hungary 3Department of Ophthalmology, Semmelweis University, Tömőstr. 25-29, H-1083
Budapest, Hungary 4Department of Chemistry and Applied Biosciences, Swiss Federal Institute
of Technology (ETH), Zurich, Switzerland 5Center for Cancer Research Nanobiology Program,
SAIC-Frederick, Inc., National Cancer Institute, Frederick National laboratory for Cancer
Research, Frederick, MD 21702, USA 6Sackler Institute of Molecular Medicine, Department of
Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel
Aviv 69978, Israel

Abstract
Despite considerable progress in genome- and proteome-based high-throughput screening methods
and in rational drug design, the increase in approved drugs in the past decade did not match the
increase of drug development costs. Network description and analysis not only gives a systems-
level understanding of drug action and disease complexity, but can also help to improve the
efficiency of drug design. We give a comprehensive assessment of the analytical tools of network
topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-
protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug
targets is summarized. We propose that network targeting follows two basic strategies. The
“central hit strategy” selectively targets central node/edges of the flexible networks of infectious
agents or cancer cells to kill them. The “network influence strategy” works against other diseases,
where an efficient reconfiguration of rigid networks needs to be achieved. It is shown how
network techniques can help in the identification of single-target, edgetic, multi-target and allo-
network drug target candidates. We review the recent boom in network methods helping hit
identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug
toxicity. Successful network-based drug development strategies are shown through the examples
of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing
>1200 references we suggest an optimized protocol of network-aided drug development, and
provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related
drug development trends helping to achieve these hallmarks by a cohesive, global approach.
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1. Introduction
‘Business as usual’ is no longer an option in drug industry (Begley & Ellis, 2012). There is a
growing recognition that systems-level thinking is needed for the renewal of drug
development efforts. However, interrelated data have grown to such an unforeseen
complexity, which argues for novel concepts and strategies. The Introduction aims to
convey to the Reader that the network description and analysis can be a suitable method to
describe the complexity of human diseases and help the development of new drugs.

1.1. Drug design as an area requiring a complex approach
The population of Earth is growing and aging. Some of the major health challenges, such as
many types of cancers and infectious diseases, diabetes and neurodegenerative diseases are
in desperate need of innovative medicines. Despite of this challenge, fast and affordable
drug development is a vision that contrasts sharply with the current state of drug discovery.
It takes an average of 12 to 15 years and (depending on the therapeutic area) as much as 1
billion USD to bring a single drug into market. In the USA, pharmaceutical industry was the
most R&D-intensive industry (defined as the ratio of R&D spending compared to total sales
revenue) until 2003, when it was overtaken by communications equipment industry (Austin,
2006; Chong & Sullivan, 2007; Bunnage, 2011).

The increasingly high costs of drug development are partly associated

• with the high percentage of projects that fail in clinical trials,

• with the recent focus on chronic diseases requiring longer and more expensive
clinical trials,

• with the increased safety concerns caused by catastrophic failures in the market and

• with more expensive research technologies.

• Moreover, direct costs are doubled, where the second half comes from the
‘opportunity cost’, i.e. the financial costs of tying up investment capital in
multiyear drug development projects (Austin, 2006; Chong & Sullivan, 2007;
Bunnage, 2011).

We have a few hundreds of targets of approved drugs from the >20.000 non-redundant
proteins of the human proteome. Despite the considerably higher R&D investment after the
millennium, the number of new molecular entities (NMEs) approved by the USA Food and
Drug Administration (FDA) remained constant at an annual 20 to 30 compounds. The
number of NMEs potentially offering a substantial advance over conventional therapies is an
even more sobering number of 6 to 17 per year in the last decade (Fig. 1). However, it is
worth to note that looking only at the number of new drugs without considering their
therapeutic value omits an important factor in the analysis (Austin, 2006; Overington et al.,
2006; Chong & Sullivan, 2007; Bunnage, 2011; Edwards et al., 2011; Scannell et al., 2012).

Part of the slow progress is related to the high risks of investments. The development of an
NME-drug costs approximately four times more than that of a non-NME. Moreover, the
‘curse of attrition’ steadily remained the biggest issue of the pharmaceutical industry in the
last decades (Fig. 2). Each NME launched to the market needs about 24 development
candidates to enter the development pipeline. Attrition of phase II studies is the key
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challenge, where only 25% of the drug-candidates survive. The 25% survival includes new
agents against known targets (the ‘me-too’ or ‘me-better’ drugs), and therefore may be a
significant overestimate of the survival rate of drug-candidates directed towards new targets.
The low survival rate is exacerbated further by the very high costs of a failing compound at
this late development stage (Brown & Superti-Furga, 2003; Austin, 2006; Bunnage, 2011;
Ledford, 2012). These high risks made the drug industry cautious, and sometimes perhaps
over-cautious. As the pharmacologist and Nobel Laureate James Black said: “the most
fruitful basis for the discovery of a new drug is to start with an old drug” (Chong & Sullivan,
2007). In fact, analysis of structure-activity relationship (SAR) pattern evolution, drug-target
network topology and literature mining studies all showed the same behavior trend
indicating that more than 80% of the new drugs tend to bind targets, which are connected to
the network of previous drug targets (Cokol et al., 2005; Yildirim et al., 2007; Iyer et al.,
2011a).

Improving the quality of target selection is widely considered as the single most important
factor to improve the productivity of the pharmaceutical industry. From the 1970s target
selection was increasingly separated from lead identification. Drug development process
often fell to the ‘druggability trap’, where the attraction of working on a chemically
approachable target encouraged development teams to push forward projects having a poor
target quality. Additionally, chemical leads were often discovered to have unwanted side-
effects and/or be toxic at later development phases (Brown & Superti-Furga, 2003; Hopkins,
2008; Bunnage, 2011).

The decline in the productivity of the pharmacological industry may stem partly from the
underestimation of the complexity of cells, organisms and human disease (Lowe et al.,
2010). We will illustrate the high level of this complexity by three examples.

• Under ideal conditions only 34% of single-gene deletions in yeast resulted in
decrease in proliferation. However, when knockouts were screened against a
diverse small-molecule library and a wide range of environmental conditions, 97%
of the gene-deletions demonstrated a fitness defect (Hillenmeyer et al., 2008).

• Many of the most prevalent diseases, such as cancer, diabetes and coronary artery
disease have a genetic background including a large number of genes (see Section
5. and Brown & Superti-Furga, 2003; Hopkins, 2008; Fliri et al., 2010). Following
a treatment with a chemotherapeutic agent almost all of 1000 tagged proteins of
cancer cells showed a dynamic response, when their temporal expression levels and
localization were tracked (Cohen et al., 2008).

• As Loscalzo & Barabasi (2011) summarized in their excellent review, diseases are
typically recognized and defined by their late-appearing manifestations in a
partially dysfunctional organ-system. As a part of this, therapeutic strategies often
do not focus on truly unique, targeted disease determinants, but (rightfully) address
the patho-phenotypes of the already advanced disease stage. These advanced patho-
phenotypes have a large number of symptoms, which are not primarily disease-
specific (such as inflammation). This definition of disease may obscure subtle, but
potentially important differences among patients with clinical presentations, and
may also neglect pathobiological mechanisms extending the disease-defining organ
system. Loscalzo & Barabasi (2011) argue that the complexity of disease should be
viewed as an emergent property of a pathobiological system, i.e. a property, which
can not be predicted by studying only the parts of the system, but emerges from the
complex interrelationships of all system components. Kola & Bell (2011) arrive to
the same conclusion urging the reform of the taxonomy of human disease.
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These examples illustrate the extent of non-linearity and interdependence of cellular and
organismal responses. To understand these observations and outcomes, we need novel
approaches.

Over-reliance on inadequate animal or cellular models of disease has been considered to
play a major part in the poor levels of Phase II drug candidate survival-rate. We illustrate the
limitations and dangers of model-selection by three examples.

• 41% of the proteins expressed in rat lungs were absent from equivalent cultured
cells (Lindsay, 2005).

• Animal strains are often in-bred, and are examined in a young age for diseases
having an onset in elderly people (Lindsay, 2005).

• In psychological clinical studies 96% of the patients cover 12% of the world
population (Henrich et al., 2010a). A more equal coverage is also required by the
geographic clustering of rare genetic variants affecting drug efficacy (Nelson et al.,
2012).

There is a growing recognition that systems-level thinking may help to overcome many of
the current troubles of drug development (Brown & Superti-Furga, 2003; Csermely et al.,
2005; Lindsay, 2005; Korcsmáros et al., 2007; Henney & Superti-Furga, 2008; Hopkins,
2008; Westerhoff, 2008; Bunnage, 2011; Chua & Roth, 2011; Farkas et al., 2011; Penrod et
al., 2011; Begley & Ellis, 2012). As a sign of this, leading systems biologists aim to
construct a computer replica of the whole human body, called as the ‘silicon human’ by
2038 (Kolodkin et al., 2012).

In fact, systems-level thinking characterized drug development until the 1970s, when
mechanistic drug-targets were unknown. Until the late 1970s even the concept of the
receptor was not based on sequence and structural data, but on the chemical similarities of
ligands exerting similar pharmacological actions (Brown & Superti-Furga, 2003; Keiser et
al., 2010). It was only after the early 1980s, that the focus shifted from physiological
observations to the molecular level (Pujol et al., 2010).

The renewal of systems-based thinking in drug discovery was helped by the following three
factors. 1.) The development of robust high-throughput platforms to gather large amounts of
comparable molecular data. 2.) The assembly and availability of curated databases
integrating the knowledge of the field. 3.) The emergence of interdisciplinary research to
understand these data (Arrell & Terzic, 2010). Most of the current largest pharmaceutical
firms are products of horizontal mergers between two or more large drug companies which
have been taking place since 1989. Though larger companies have the advantage to fund and
sustain a broader range of larger research programs, the development of large firms and
research enterprises was often considered to decrease flexible responses to novel
development opportunities (Austin, 2006; Gros, 2012). An increased efficiency needs
coordinated networking of large drug development firms, biotechnological companies and
research institutions (Hasan et al., 2012; Heemskerk et al., 2012). Moreover, systems-level
thinking needs a new behavior code of sharing data and approaches. This new alliance is
characterized by the following behavior.

• In systems-level drug development, quality and not quantity of data is a key issue.
A reliable data pipeline must be assembled using appropriate standards and quality
control-metrics keeping in mind the needs of systems biology. This is all the more
important since it may also overcome the unreliability problems which surfaced
recently, when Amgen tried to reproduce data from 53 published preclinical studies
of potential anticancer drugs, and it failed in all but 6 cases (11% reproducibility
rate), or Bayer Health Care could reproduce only 25% of previously published
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preclinical studies (Henney & Superti-Furga, 2008; Prinz et al., 2011; Begley &
Ellis, 2012; Landis et al., 2012).

• Sharing of systems-level results led to a fast development of predictive toxicology,
which is a key step of a more efficient progress (Henney & Superti-Furga, 2008).

Datasets are growing to dimensions, where the three billion nucleotides that comprise the
human genome (International Human Genome Sequencing Consortium, 2004; ENCODE
Project Consortium, 2012) became millionths of the ~1 petabyte data we had in 2008
(Schadt et al., 2009), which have grown well over 1 exabyte (billion times billion bytes) by
2012. These magnitudes require appropriate computational tools to understand them.
Through this review we hope to convince the Reader that network description and analysis
offer novel tools, which can help us to understand the complexity of human disease and
enable the integration of knowledge toward a more efficient combat strategy for healthier
life.

1.2. Molecular networks as efficient tools in the description of cellular and organism
behavior

Complexity can be described through the rather simple saying that ‘in a complex system the
whole is more than the sum of its parts: cutting a horse to two will not result in two small
horses’ (Kolodkin et al., 2012; San Miguel et al., 2012). Newman (2011) summarized a
number of excellent sources to study complexity. A recent summary listed the following
hallmarks of complex systems and their behavior: many heterogeneous interacting parts;
multiple scales; combinatorial explosion of possible states; complicated transition laws;
unexpected or unpredicted emergent properties; sensitivity to initial conditions; path-
dependent dynamics; networked hierarchical connectivity; interaction of autonomous
agents; self-organization, collective shifts; non-equilibrium dynamics; adaptivity to
changing environments; co-evolving subsystems; ill-defined boundaries and multilevel
dynamics (San Miguel et al., 2012). Though this list is certainly still incomplete, and not all
of its parts are characterizing the complex systems of drug discovery, the list shows the
tremendous difficulties we face when trying to understand complex structures and their
behavior. The same report (San Miguel et al., 2012) listed the following major challenges of
complex system studies:

• data gathering by large-scale experiments, data sharing and data assembly using
mutually agreed curation rules, management of huge, distributed, dynamic and
heterogeneous databases;

• moving from data to dynamical models going beyond correlations to cause-effect
relationships, understanding the relationship between simple and comprehensive
models with appropriate choices of variables, ensemble modeling and data
assimilation, modeling the ‘systems of systems of systems’ with many levels
between micro and macro; and

• formulating new approaches to prediction, forecasting, and risk, especially in
systems that can reflect on and change their behavior in response to predictions and
in systems, whose apparently predictable behavior is disrupted by apparently
unpredictable rare or extreme events.

Due to the complexity of the cells, organisms and diseases, extreme reductionism often fails
in drug design. However, the other extreme, taking into account all possible variables of all
possible components, is neither feasible, nor doable. Fortunately we do not have to
challenge the impossible when thinking on complexity in drug design for two major reasons.
On the one hand, the structure of complex systems is not only complicated, but also
modular, and has a number of degenerate segments. This enables us to identify the most
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important system segments as we will show in Section 2. On the other hand, complex
systems often determine a state space, which is also modular, and has a surprisingly low
number of major attractors. In fact, this is what makes the discrimination of phenotypes
possible at all. In other words: complexity has a side of simplicity. As fortunate ‘side-
effects’ of the attractor-segmented, modular state space, many of the emergent properties of
complex systems tolerate a number of errors in the individual data determining them. The
above features of drug design-related complex systems make those descriptions successful,
which are ‘complex’ themselves, meaning that they are neither too simplistic, nor go too
much into details (Bar-Yam et al., 2009; Csermely, 2009; Huang et al., 2009; Mar &
Quackenbush, 2009; Kolodkin et al., 2012). In agreement with these considerations,
mathematical systems theory states that “the scale and complexity of the solution should
match the scale and complexity of the problem” (Bar-Yam, 2004).

Network-approach is a description, which provides a good compromise between extreme
reductionism and the ‘knowledge of everything’. We are by far not alone sharing this view.
Diseases have been perceived as network perturbations (Huang et al., 2009; Del Sol et al.,
2010). In recent years network analysis became an increasingly acclaimed method in drug
design (Hopkins, 2008; Ma’ayan, 2008; Pawson & Linding, 2008; Berger & Iyengar, 2009;
Schadt et al., 2009; Baggs et al., 2010; Fliri et al., 2010; Lowe et al., 2010; Pujol et al.,
2010). In agreement with the expert-opinions, network-applications show a steady increase
of drug design-related publications (Fig. 3). We summarize the major network types
(detailed in Section 3.), network analysis types (detailed in Section 2.), drug design areas
helped by network studies (detailed in Section 4.) and the four key areas of drug design
described in detail as the examples in Section 5. in Fig. 4.

We will detail the definition and types of networks in Section 2.1. The applicability of
network analysis in drug design is determined by the following major factors: 1.) proper
definition of network nodes, edges and edge weights; 2.) data quality and carefully defined,
uniformly applied data inclusion criteria; 3.) data refinement by genetic variability, aging,
environmental effects and compounding pathologies such as bacterial or viral infections
(Arrell & Terzic, 2010; Kolodkin et al., 2012). However, we will not cover details of data
acquisition, since this topic fits better into the broader area of systems biology, which is not
the subject of the current review.

Networks are often viewed via their mathematical representations, i.e. graphs. However, this
often proves to be an over-simplification in drug design for two major reasons. 1.) Network
nodes of cellular systems are not exact ‘points’, as in graph theory, but macromolecules,
having a network structure themselves, as we will show in Section 3.2. 2.) Network nodes
have a lot of attributes in the rich biological context of the cell. 3.) Network dynamics is
crucial in order to understand the complexity of diseases and the action of drugs (Pujol et al.,
2010). Therefore, it is often useful to include edge directions, signs (activation or inhibition),
conditionality (an edge is active only, if one of its nodes has another edge) and a number of
dynamically changing quantitative measures in network descriptions. However, it is
important to warn here that we should not include too many details in network descriptions,
since we may shift our description from optimal towards the ‘knowledge of everything’.
Including more and more details in network science may lead to the trap of ‘over-
complication’, where the beauty and elegance of the approach is lost. This may lead to the
decline of the use of network description and analysis (similarly to the over-use of the
explanatory power and decline of chaos theory, fractals, and many other approaches before).

The optimal simplicity of networks is also important, since networks give us a visual image.
We summarize a rather long list of network visualization techniques in Table 1 showing the
rich variety of approaches to solve this important task. A detailed comparison of some
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methods was described in several reviews (Suderman et al., 2007; Pavlopoulos et al., 2008;
Gehlenborg et al., 2010; Fung et al., 2012). A good visualization method provides a
pragmatic trade-off between highlighting the biological concept and comprehensibility.
Trying several methods is often advisable, since sampling scale and/or bias may lead to
subjective interpretations of the network images obtained.

Correct visualization of networks is not only important for making a pleasing image. The
right hemisphere of our brain works with images, and has the unique strength of pattern
recognition. This complements the logical thinking of the left hemisphere. Regretfully, our
logical thinking can deal with 5 to 6 independent pieces of information at the same time as
an average. However, the complexity of human disease requires an information-handling
capacity, which is by magnitudes higher than that of logical thinking. Pattern recognition by
the right hemisphere copes with this complexity. This is why we also need to see networks,
and may not only measure them. Besides the ‘optimal simplicity’, visualization is another
advantage of networks over data-mining and other very useful, but highly detailed
approaches (Csermely, 2009). To illustrate the network description and analysis in drug
design, we compare the classic view and the network view of drug action on Fig. 5.

As we have described in the previous paragraphs, network description and analysis offer a
wide range of possibilities to understand the complexity of human disease and to develop
novel drugs. As an example of the richness of networks, the ‘semantic web’ covers
practically every conceptual entity appearing in the worldwide-web (Chen et al., 2009a). In
the current review we can not cover all. Therefore, with the exception of the network of
human diseases described in Section 1.3., we will restrict ourselves to molecular networks
ranging from the networks of chemical compounds and of protein structures to the various
networks of the macromolecules constituting the cells. We will not cover the following
areas, where we list a few reviews and papers of special interest:

• networked particles in drug delivery (Rosen et al., 2009; Luppi et al., 2010; Bysell
et al., 2011);

• network of plants as resorurces of herbal remedies and traditional medicines
(Saslis-Lagoudakis et al., 2012);

• cytoskeletal networks or membrane organelle networks (Michaelis et al., 2005;
Escribá et al., 2008; Gombos et al., 2011);

• inter-neuronal, inter-lymphocyte and other intercellular networks including
extracellular matrix, cytokine, endocrine or paracrine networks (Jerne, 1974; Jerne,
1984; Cohen, 1992; Werner, 2003; Werner, 2005; Small, 2007; Acharyya et al.,
2012; Margineanu, 2012);

• the ecological networks of the microorganisms living in human gut, oral cavity,
skin, etc. and their interconnected networks with human cells (Clemente & Ursell,
2012; Ben Jacob et al., 2012; Mueller et al., 2012);

• social networks and their potential effects on spreading of epidemics, as well as
disease-related habits such as drug abuse, smoking, over-eating, etc. (Christakis &
Fowler, 2011);

• network-related modeling methods, such as: neural network models, differential
equation networks, network-related Markov chain methods, Boolean networks,
fuzzy logic-based network models, Bayesian networks and network-based data
mining models (Huang, 2001; Ideker & Lauffenburger, 2003; Winkler, 2004;
Fernandez et al., 2011).
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At the end of the Introduction we will illustrate network thinking by showing the richness
and usefulness of network representations of human diseases.

1.3. The networks of human diseases
Several diseases, such as cancer, or complex physiological processes, such as aging, were
described as a network phenomenon quite a while ago (Kirkwood & Kowald, 1997;
Hornberg et al., 2006; Csermely & Sőti, 2007). In this section we will not detail disease-
related molecular networks (such as interactomes, or signaling networks changing in
disease), since this will be the subject of Section 3. We will describe the large variety of
options to build up the networks of human diseases, where diseases are nodes of the
network, and will show how network-assembled bio-data can be used to predict novel
disease biomarkers including novel disease-related genes.

1.3.1. Network representations of diseases and their therapies—In the network
description, sets of interlined data need first to be structured by defining ‘nodes’. This might
already be rather difficult, as we will show in detail in Section 2.1. However, the definition
of edges, i.e. connections between the nodes, may be an especially demanding task.
Networks of human diseases provide a very good example, since a large number of data
categories are related to the concept of disease enabling the construction of a large variety of
networks (Goh et al., 2007; Rhzetsky et al., 2007; Feldman et al., 2008; Spiro et al., 2008;
Hidalgo et al., 2009; Barabasi et al., 2011; Zhang et al., 2011a; Janjic & Przulj, 2012).

Some of the major disease-related categories are shown on Fig. 6. Human disease can be
conceptualized as a phenotype, i.e. an emergent property of the human body as a complex
system (Kolodkin et al., 2012). Some of the categories, such as symptoms, are related to this
phenotype. Many other categories, such as

• disease-related genes (abbreviated as ‘disease genes’),

• functions of disease genes (marked as gene ontology);

• the transcriptome (i.e. expression levels of all mRNAs + the cistrome, i.e. DNA-
binding transcription factors + the epigenome, i.e. the actual chromatin status of the
cell including DNA and histone modifications, as well as their 3D structure)

• the interactome, the signaling network and the metabolome, are all related to the
underlying genotype, i.e. the constituents of the human body related to the etiology
of the disease. A third group of categories, such as therapies, drugs and other
factors marked as “environment”, represents the effects of the environment (Fig. 6).
Connections (uniformly defined, data-encoded relationships) between any two of
these categories define a so-called bipartite network, where two different types of
nodes are related to each other. Moreover, more than two categories may also form
a network, which is called as a multi-partite network (Goh et al., 2007; Yildirim et
al., 2007; Nacher & Schwartz, 2008; Spiro et al., 2008, Li et al., 2009a; Bell et al.,
2011; Wang et al., 2011a).

We have three options for the visualization of bipartite networks. We will illustrate this in
the example of the network of human diseases and human genes shown to be associated with
a particular disease on Fig. 7 (Goh et al., 2007). We may include both types of nodes and all
their connections to the visual image as shown on the center of Fig. 7. However, the
selection of only a single node type results in a simpler network representation, which is
easier to understand. We have two projections of the full, bipartite network as shown on the
two sides of Fig. 7. In the first type of projection we connect two human diseases, if there is
a human gene, which is participating in the etiology of both diseases (left side of Fig. 7).
Edge weight may be derived here from the number of genes connecting the two diseases.
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Alternatively, we may construct a network of human genes, which are connected, if there is
at least one human disease, where they both belong (right side of Fig. 7; Goh et al., 2007).
Similar projections can be made with any category-pairs, or multiple category-sets of Fig. 6.

1.3.2. The human disease network—The landmark study of Goh et al. (2007) provided
the first network map of the genetic relationship of 516 human diseases. This approach used
the “shared gene formalism” recognizing that diseases sharing a gene or genes likely have a
common genetic basis. Later, this concept was extended with the “shared metabolic pathway
formalism” recognizing that enzymatic defects affecting the flux of “reaction A” in a
metabolic pathway will lead to disease-conditions that are known to be associated with the
metabolites situated downstream of “reaction A” in the same metabolic pathway. The shared
metabolic pathway formalism proved to be better predictor of metabolic diseases than the
shared gene formalism. Another approach is based on the “disease comorbidity formalism”
connecting diseases, which have a co-occurrence in patients exceeding a predefined
threshold. Subsequently, many other studies incorporated a number of other data including
gene-expression levels, protein-protein interactions, signaling components, such as
microRNAs, tissue-specificity, and a number of environmental effects including drug
treatment and other therapies to construct disease similarity networks (Barabasi et al., 2011;
Goh & Choi, 2012; Janjic & Przulj, 2012). We summarize the disease-network types using
two, three or more different datasets in Table 2. We will summarize drug target networks in
Section 4.1.3.

Various data-associations listed in Table 2 enrich each other, as it has been shown in the
example of the orphan diseases, Tay-Sachs disease and Sandhoff syndrome, which did not
share any known disease genes in 2011, but were connected in a literature co-occurrence
based network. The connection of the two diseases was in agreement with the shared
metabolic pathway of their mutated genes. Zhang et al. (2011a) listed several other examples
for such mutual enrichment of various data sets. Comparing Table 2 with Fig. 6 reveals
several combinations of data, which have not been used to form human disease networks
yet. We expect further advance in this rapidly growing field.

As take home messages from the studies listed in Table 2, we summarize the following
observations.

• The intuitive assumption that “hubs (defined here as nodes with many more
neighbors than average in the human interactome) play a major role in adult
diseases” often fails due to the embryonic lethality of these key genes. In
agreement with this, orphan diseases (which are often life-threatening or
chronically debilitating, and affect less than 6.5 patients per 10,000 inhabitants)
tend to be hubs, and are often associated with essential genes. Similarly, diseases
having somatic mutations, such as cancer, have a central position in the human
interactome. Germ-line mutations leading to more common diseases tend to be
located in the functional periphery (but not in the utmost periphery) of the human
interactome (Goh et al., 2007; Feldman et al., 2008; Barabasi et al., 2011; Zhang et
al., 2011a).

• Disease-related genes tend to be tissue specific, with the notable exception of most
cancer-related genes, which are not overexpressed in the tissues from which the
tumors emanate (Goh et al., 2007; Jiang et al., 2008; Lage et al., 2008; Barabasi et
al., 2011).

• Disease-related genes have a smaller than average clustering coefficient avoiding
densely connected local structures (Feldman et al., 2008). Low clustering
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coefficient was successfully applied as a discriminatory feature in the prediction of
disease-related genes (Sharma et al., 2010a).

• Disease-related genes tend to form overlapping disease modules in protein-protein
interaction networks showing even a 10-fold increase of physical interactions
relative to random expectation (Gandhi et al., 2006; Goh et al., 2007; Oti & Bruner,
2007; Feldman et al., 2008; Jiang et al., 2008; Stegmaier et al., 2010; Bauer-
Mehren et al., 2011; Loscalzo and Barabasi, 2011; Xia et al., 2011). Overlaps of
disease modules are also characteristic to comorbidity networks (Rhzetsky et al.,
2007; Hidalgo et al., 2009).

• Genes bridging disease modules in the human interactome may provide important
points of interventions (Nguyen & Jordán, 2010; Nguyen et al., 2011). Genes
involved in the aging process often occupy such bridging positions (Wang et al.,
2009).

• Diseases that share disease-associated cellular components (genes, proteins,
metabolites, microRNAs, etc.) show phenotypic similarity and comorbidity (Lee et
al., 2008a; Barabasi et al., 2011).

• The above findings are recovered, if we go one level deeper in the network
hierarchy than the human interactome, to the level of protein domains and their
interactions (Sharma et al., 2010a; Song & Lee, 2012). Diseases occurring more
frequently are associated with longer proteins (Lopez-Bigas et al., 2004; Lopez-
Bigas et al., 2005). Disease-associated proteins tend to have ‘younger’ folds,
developed later in evolution, which have a smaller ‘family’ of similar folds. These
protein folds are less designable (i.e. a smaller number of possible representations
by different amino acid sequences) weakening the robustness against mutations,
and the fitness of the hosting organism during evolution (Wong & Frishman, 2006).

• Going one level higher in the network hierarchy than the human interactome, to the
level of comorbidity networks, patients tend to develop diseases in the vicinity of
diseases they already had (Rhzetsky et al., 2007; Hidalgo et al., 2009; Barabasi et
al., 2011).

• Disease-hubs of comorbidity networks show a higher mortality than less well
connected diseases, and are often successors of more peripheral diseases. The
progression of diseases is different for patients of different genders and ethnicities
(Lee et al., 2008a; Hidalgo et al., 2009; Barabasi et al., 2011).

Human disease networks are expected to reveal more on the interrelationships of diseases
using both additional data-associations and novel network analysis tools, listed in Section 2.
These advances will not only enrich our integrated view on human diseases, but will also
lead to the following potential uses of human disease networks:

• better classification of diseases (e.g. for putatively useful drugs and therapies) and
predictions for understudied or unknown diseases;

• disease diagnosis and identification of disease biomarkers as described in detail in
Section 1.3.3.;

• identification of drug target candidates (including multi-target drugs, drug
repositioning, etc.) as described in detail in Section 4.1.;

• help in hit finding and expansion as described in detail in Section 4.2.;

• enrich background data for lead optimization (including ADME, side-effects and
toxicity, etc.) as described in detail in Section 4.3.
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An increasing number of publications describe various molecular networks characterizing
the cellular state in a certain type of disease. We have not included their direct description in
this Section, since here we only review the networks of the diseases as network nodes. In
Section 5. we will summarize the drug-design related applications of these molecular
networks in case of four disease families: infections, cancer, diabetes and neurodenegerative
diseases. In the next section we will illustrate the help of network analysis in the diagnosis
and therapy of human diseases by the network-based identification of disease biomarkers.

1.3.3. Network-based identification of disease biomarkers—Network-based
identification of disease related genes was suggested by relatively early studies
(Krauthammer et al., 2004; Chen et al., 2006a; Franke et al., 2006; Gandhi et al., 2006 Oti et
al., 2006; Xu & Li, 2006). In the last few years several network-based methods have been
developed helping the identification of genes related to a particular disease as reviewed by
the excellent summaries of Wang et al. (2011a) and Doncheva et al. (2012a). Table 3
summarizes methods for prediction of disease-related genes using networks as data
representations. We excluded those network-related methods, like those neural network-
based or Bayesian network-based methods, which decipher associations between various,
not network-assembled data. Network prediction methods, which can also be used for
prediction of disease-associated genes will be discussed in Section 2.2.2.

Most of the methods listed in Table 3 identify novel disease-related genes as disease
biomarkers. Several network-based methods outperform former, sequence-based methods in
the identification of novel, disease-related genes. Methods including non-local information
of network topology usually perform better than methods based on local network properties.
As a general trend the more information the method includes, the better prediction it may
achieve. However, with the multiplication of datasets, biases and circularity may also be
introduced, which will lead to an overestimation of the performance. Moreover, it is difficult
to dissect the performance-contribution of the datasets and the prediction method itself.
Additionally, each type of dataset may require a different method for optimal analysis.
Therefore, the separate analysis of each data source was suggested with a subsequent
combination of the ranking lists using rank aggregation algorithms. This procedure also
facilitates backtracking the origin of the most relevant information. Functional GO-term
annotations usually bring crucially important information to the analysis. The inclusion of
interactome edge-based disease perturbations may improve the performance of these
methods even further in the future (Kohler et al., 2008; Navlakha & Kingsford, 2010;
Sharma et al., 2010a; Vanunu et al., 2010; Jiang et al., 2011; Wang et al., 2011a; Cho et al.,
2012; Doncheva et al., 2012a). Importantly, several of the methods in Table 3 are not only
able to diagnose known diseases, but may also identify important features of understudied or
unknown diseases (Huang et al., 2010a; Wang et al., 2011a).

‘Disease-related gene-hunting’ became a very powerful area of medical studies. However,
Erler & Linding (2010) warned that network models, and not their individual nodes, should
be used as biomarkers, since thresholds and changes of individual nodes (such as the protein
phosphorylation at a certain site) may be related to entirely different outcomes in different
network contexts of different patients. We will summarize the concepts treating networks
(and their segments) as drug targets in Section 4.1.7.

Very similar methods to those listed in Table 3 may be applied to network-based
identification of disease-related signaling network, such as phosphorylation or microRNA
profiles, or metabolome profiles. As part of these approaches, metabolic network analysis
was applied to identify metabolites, which may serve as biomarkers of a certain disease (Fan
et al., 2012). Shlomi et al. (2009) identified 233 metabolites, whose concentration was
elevated or reduced as a result of 176 human inborn dysfunctional enzymes affecting of
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metabolism. Their network-based method can provide a 10-fold increase in biomarker
detection performance. Mass spectrometry phosphoproteome analysis combined with
signaling networks and bioinformatics sources like NetworKIN and NetPhorest may provide
biomarker profiles of several diseases such as cancer or cardiovascular disease (Linding et
al., 2007; Yu et al., 2007a; Jin et al., 2008; Miller et al., 2008; Ummani et al., 2011; Savino
et al., 2012).

2. An inventory of network analysis tools helping drug design
Even the best network analytical methods will fail, if applied to a network constructed with
a crude definition. Therefore, we start this section listing the major points of network
definition including network-related questions of data collection, such as sampling,
prediction and reverse engineering. The latter two methods are important network-related
tools to find novel drug target candidates. We will continue and conclude this section by
listing an inventory of the major concepts used in the analysis of network topology,
comparison and dynamics evaluating their potential use in drug design. The section will give
just the essence of the methods, and will provide the interested Reader a number of original
references for further information.

2.1. Definition(s) and types of networks
To define a network we have to define its nodes and edges (Barabasi & Oltvai, 2004;
Boccaletti et al., 2006; Zhu et al., 2007; Csermely, 2009; Lovász, 2012). Network nodes are
the entities building up the complex system represented by the network. Nodes are often
called as vertices, or network elements. Classical, graph-type network descriptions do not
consider the original character of nodes. (A node of such a graph will be “ID-234”, which is
characterized by its contact structure only.) Thus node definition requires a clear sense of
those node properties, which discriminate network nodes from other entities, and make them
‘equal’. Recently, node-weights were successfully applied to characterize the node structure
of a network in a simple form (Wiedermann et al., 2013). In the case of molecular networks,
where nodes are amino acids, proteins or other macromolecules such discrimination is rather
easy. However, subtle problems may still remain. For example, should we include
extracellular proteins as well? If not, what happens, if an extracellular protein is just about to
be secreted? What if it is engulfed by the cell and internalized? Node definition may become
especially difficult in the case of complex data structures, like those we mentioned in
Section 1.3. Time consuming accurate node definitions lead to benefits at subsequent stages.

Network edges are often called interactions, connections, or links. In the molecular networks
discussed in this review edges represent physical or functional interactions of two network
nodes. However, in hypergraph representations meta-edges often connect more than two
nodes. Edge definition often inherently contains a threshold determined by the detection
limit and by the time-window of the observation. Two nodes may become connected, if the
sensitivity and/or duration of detection are increased. A number of recent publications
explored the effect of time-window changes on the structure of social networks (Krings et
al., 2012; Perra et al., 2012). Several concepts of network dynamics detailed in Section 2.5.
are inherently related to time-window of detection. As an example, the distinction of the
popular date hubs (Han et al., 2004a), i.e. hubs changing their partners over time, clearly
depends on the time-window of observation.

Weights of network edges may give an answer to the “where-to-set-the-detection-threshold”
dilemma offering a continuous scale of interactions. Edge weights represent the intensity
(strength, probability, affinity) of the interaction. Edges may also be directed, where a
sequence of action and/or a difference in node influence are included in the edge definition.
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Lovász (2012) gives an excellent summary of the basic dilemmas of network definition
problems.

However, we have many more options than defining network nodes, edges, weights and
directions. Recent network descriptions started to explore the options to include edge
reciprocity (Squartini et al., 2012), or to preserve multiple node attributes (Kim & Leskovec,
2011). Moreover, in reality networks are seldom directed in an unequivocal way. (When
CEOs and VPs are talking to each other, it is not always the case that CEOs influence VPs,
and VPs do not influence CEOs.) However, to date, a continuous scale of edge direction has
not been introduced to molecular networks. Edges may also be colored, where different
types of interactions are discriminated. A special subset of colored networks is signed
networks, where edges are either positive (standing for activation) or negative (representing
inhibition). Edges may also be conditional, i.e. being only active, if one of their nodes
accommodated another edge previously. There are a number of potential uses of these
network representations e.g. in signaling, or in genetic interaction networks.

As a closing remark, the definition of edges often hides one of two fundamentally different
concepts. Network connections may either restrict the connected nodes (this is the case,
where connections represent physical contacts), or may enrich connected nodes (this is the
case, where connections represent channels of transport or information transmission). These
constraint-type or transmission-type network properties may appear in the same network,
where they may be simplified to activation or inhibition like those in signal transduction
networks. Though there were initial explorations of the differences of constraint-type and
transmission-type network properties (Guimera et al., 2007a), an extended application of
this concept is missing.

2.2. Network data, sampling, prediction and reverse engineering
Lovász (2012) gives an excellent summary of the network sampling problem. In most
biological systems data coverage has technical limitations, and experimental errors are
rather prevalent. As part of these uncertainties and errors, not all of the possible interactions
are detected, and a large number of false-positives may also appear (Zhu et al., 2007; De Las
Rivas & Fontanillo, 2010; Sardiu & Washburn, 2011). However, it is often a question of
judgment, whether the investigator believes that only ‘high-fidelity’ interactions are valid,
and discards all other data as potential artifacts, or uses the whole spectrum of data
considering low-confidence interactions as low affinity and/or low probability interactions
(Csermely, 2004; Csermely 2009). The highest quality interactions are reliable, but may not
be representative of the whole network (Hakes et al., 2008). The unavailability of complete
datasets can be circumvented by a number of methods which 1.) help the correct sampling of
networks; 2.) enable the prediction of nodes/edges and 3.) infer network structure from the
behavior of the complex system by reverse engineering. We will discuss these methods in
this section.

2.2.1. Problems of network incompleteness, network sampling—Since complex
networks are not homogenous, their segments may display different properties than the
whole network (Han et al., 2005; Stumpf et al., 2005; Tanaka et al., 2005; Stumpf & Wiuf,
2010; Annibale & Coolen, 2011; Son et al., 2012). Therefore, the use of a representative
sample of the network is a key issue. In the last few years several methods became available
to assess whether the available part of an unknown complete network is a representative
sample. These methods also allow the extrapolation of the partially available network data to
the total dataset (Wiuf et al., 2006; Stumpf et al., 2008). Radicchi et al. (2011) introduced a
GloSS filtering technique preserving both the weight distribution and network topology.
Recently a comparison of several (re)-sampling methods was given (Mirshahvalad et al.,
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2012; Wang, 2012). Guimerà & Sales-Pardo (2009) provided a method to detect missing
interactions (false negatives) and spurious interactions (false positives). Riera-Fernández et
al. (2012) gave numerical quality scores to network edges based on the Markov-Shannon
entropy model. However, data purging methods should be applied with caution, since
unexpected edges of ‘creative nodes’ may also be identified as ‘spurious’ edges, and may be
removed (Csermely, 2008; Lü & Zhou, 2011). Network sampling methods were recently
reviewed by Ahmed et al. (2012).

2.2.2. Prediction of missing edges and nodes, network predictability—
Prediction of missing edges and nodes is not only important to assess network reliability, but
can also be used for predictions of e.g. heretofore undetected interactions of disease-related
proteins, or extension of drug target networks helping drug design (Spiro et al., 2008). In
Section 1.3.3. and Tables 2 and 3 we already listed several methods for the efficient
prediction of new edges and nodes from complex human disease-related datasets. Prediction
is not only a discovery tool, but it also helps to avoid the unpredictable, which is considered
as dangerous. However, as we will see at the end of this section, in complex systems the
least predictable constituents are the most exciting ones.

Lü & Zhou (2011) provided an excellent review of edge prediction. Referring to this paper
for details here we will summarize only the major points of this field.

• Edges can be predicted by the properties of their nodes, e.g. protein sequences, or
domain structures (Smith & Sternberg, 2002; Li & Lai, 2007; Shen et al., 2007;
Hue et al., 2010).

• The similarity of the edge neighborhood in the network is widely used in edge
prediction. Edge neighborhood may be restricted to the common neighbors of the
connected nodes, may include all first neighbors, all first and second neighbors,
cliques, the nodes’ network modules, or the whole network. Consequently,
similarity indices may be local (like the Adamic-Adar index, common neighbors
index, hub promoted index, hub suppressed index, Jaccard index, Leicht-Holme-
Newman index, preferential attachment index, resource allocation index, Salton
index, or the Sørensen index) mesoscopic (like the local path index or the local
random walk index), or global (like the average commute time index, cosine-based
index, Katz index, Leicht-Holme-Newman index, matrix forest index, random walk
with restart index, or the SimRank index). Edge neighborhood may be compared by
using the network degree, preferential attachment methods, fitness values,
community structure, network hierarchy, a stochastic bloc model, a probabilistic
model, or by using hypergraphs (Albert & Albert, 2004; Liben-Novell & Kleinberg
2007; Yan et al., 2007a; Guimerà & Sales-Pardo, 2009; Lü et al., 2009; Zhou et al.,
2009; Chen et al., 2012a; Eronen & Toivonen, 2012; Hu et al., 2012; Musmeci et
al., 2012; Yan & Gregory, 2012; Liu et al., 2013). It is important to note that
methods may perform differently, if the missing edge is in a dense network core or
in a sparsely connected network periphery (Zhu et al., 2012a). The optimal method
also depends on the average length of shortest paths in the network. Edge
prediction methods often require a large increase in computational time to achieve
a higher accuracy (Lü & Zhou, 2011).

• Edge prediction can be performed by comparing the network to an appropriately
selected model network, to a similar real world network, or to an ensemble of
networks (Liben-Novell & Kleinberg 2007; Clauset et al., 2008; Nepusz et al.,
2008; Xu et al., 2011a; Gutfraind et al., 2012).

• Edges can also be predicted by the analysis of sequential snapshots of network
topology (also called as network dynamics, or network evolution, see Section 2.5.;
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Hidalgo & Rodriguez-Sickert, 2008; Lü & Zhou, 2011). In network time-series
older events might have less influence on the formation of a new edge than newer
ones. Additionally, all network evolution models can be used as edge-predictors.
However, one has to keep in mind that network evolution models always include
guesses about the factors influencing the generation of a novel edge (Lü & Zhou,
2011).

Edge prediction of drug-target networks allows the discovery of new drug target candidates
and the repositioning of existing drugs (van Laarhoven et al., 2011). Prediction methods
may combine several data-sources, like mRNA expression patterns, genotypic data, DNA-
protein and protein-protein interactions (Zhu et al., 2008; Pandey et al., 2010). Dataset
combination may help the precision of edge prediction. However, prediction of directed,
weighted, signed, or colored edges of these combined datasets is still a largely unsolved task
(Lü & Zhou, 2011).

Node prediction is even more difficult, than edge prediction (Getoor & Diehl, 2005; Liben-
Novell & Kleinberg 2007). Predicted nodes may occupy structural holes, i.e. bridging
positions between multiple network modules (Burt, 1995; Csermely, 2008), or may be
identified by methods, like chance-discovery. Chance-discovery uses an iterative annealing
process, and extends the dense clusters observed at lower annealing ‘temperatures’ (Maeno
& Ohsawa, 2008). In fact, the well developed methodology of the identification of disease-
related genes that we detailed in Section 1.3. can be regarded as a node prediction problem,
and may give exciting clues for node prediction in networks other than those of disease-
related data.

The predictability of network edges is not only a function of data coverage and network
structure, but also depends on network dynamics. Comments on edge predictability: the
mistaken identification of unexpected edges as spurious edges (Lü & Zhou, 2011), and the
better predictability of edges in dense cores than those in network periphery (Zhu et al.,
2012a) are both related to the inherent unpredictability caused by network dynamics. As an
example, the edge-structure of date hubs, where hubs change their neighbors (Han et al.,
2004a), is certainly less predictable than that of party hubs, i.e. hubs preserving a rather
constant neighborhood. Date hubs mostly reside in inter-modular positions (Han et al.,
2004a; Komurov & White, 2007; Kovács et al., 2010). Predictability is also related to
network rigidity and flexibility (Gáspár & Csermely, 2013): an edge or node in a more
flexible network position is less predictable than others situated in a rigid network
environment.

Bridging positions are often more flexible and less predictable than intra-modular edges. If a
node is connecting multiple, distant modules with approximately the same, low intensity,
and continuously changing its position, like the recently described ‘creative nodes’ do
(Csermely, 2008), its predictability will be exceptionally low. A shift towards lower
predictability (higher network flexibility) is often accompanied by an increased adaptation
capability at the system level. Moreover, a complex system lacking flexibility is unable to
change, to adapt and to learn (Gyurkó et al., 2013). Thus it is not surprising that highly
unpredictable, ‘creative’ nodes characterize all complex systems. Importantly, these highly
unpredictable nodes help in delaying critical transitions of the systems, i.e. postponing
market crash, ecological disaster or death (Csermely, 2008; Scheffer et al., 2009, Farkas et
al., 2011; Sornette & Osorio, 2011; Dai et al., 2012). In fact, the most unpredictable nodes
are the most exciting nodes of the system having a hidden influence on the fate of the whole
system at critical situations. The prediction of their unpredictable behavior remains a major
challenge of network science.

Csermely et al. Page 15

Pharmacol Ther. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.2.3. Prediction of the whole network, reverse engineering, network-inference
—There are situations, when the network is so incomplete that we do not know anything on
the network structure. However, we often have a detailed knowledge of the behavior of the
complex system encoded by the network. The elucidation of the underlying network from
the emergent system behavior is called reverse engineering or network-inference.

In a typical example of reverse engineering we know the genome-wide mRNA expression
pattern and its changes after various perturbations (including drug action, malignant
transformation, development of other diseases, etc.), but we have no idea of the gene-gene
interaction network, which is causing the changes in mRNA expression pattern. As a rough
estimate, a network of 10,000 genes can be predicted with reasonable precision using less
than a hundred genome-wide mRNA datasets. Network prediction can be greatly helped
using previous knowledge, e.g. on the modules of the predicted network. The correct
identification of the relatedness of mRNA expression sets (position in time series, tissue-
specificity, etc.) may often be a more important determinant of the final precision of
network prediction than the precise measurement of the mRNA expression levels. Models of
network dynamics, probabilistic graph models and machine learning techniques are often
incorporated in reverse engineering methods. Some of these approaches, like Bayesian
methods, require a rather intensive computational time. Therefore, computationally less
expensive methods such as the copula method, or the simultaneous expression model with
Lasso regression were also introduced. The topology of the predicted network often
determines the type of the best method. This is one reason, why combination of various
methods (or the use of iterative approaches) may outperform individual methodologies
(Liang et al., 1998a; Akutsu et al., 1999; Ideker et al., 2000; Kholodenko et al., 2002; Yeung
et al., 2002; Segal et al., 2003; Tegnér et al., 2003; Friedman, 2004; Tegnér & Björkegren,
2007; Cosgrove et al., 2008; Kim et al., 2008; Ahmed & Xing, 2009; Stokić et al., 2009;
Marbach et al., 2010; Yip et al., 2010; Pham et al., 2011; Schaffter et al., 2011; Altay, 2012;
Crombach et al., 2012; Kotera et al., 2012; Marbach et al., 2012). Jurman et al. (2012a)
designed a network sampling stability-based tool to assess network reconstruction
performance.

Reverse engineering techniques were successfully applied to reconstruct drug-affected
pathways (Gardner et al., 2003; di Bernardo et al., 2005; Chua & Roth, 2011; Gosline et al.,
2012). Besides the identification of gene regulatory networks from the transcriptome,
reverse engineering methods may also be used to identify signaling networks from the
phosphorome or signaling network (Kholodenko et al., 2002; Sachs et al., 2005; Zamir &
Bastiaens, 2008; Eduati et al., 2010; Prill et al., 2011), metabolic networks from the
metabolome (Nemenman at al., 2007), or drug action mechanisms and drug target
candidates from various datasets (Gardner et al., 2003; di Bernardo et al., 2005; Lehár et al.,
2007; Lo et al., 2012; Madhamshettiwar et al., 2012).

Though the number of reverse-engineering methods has been doubled every two years, 1.)
the inclusion of non-linear system dynamics, of multiple data sources and of multiple
methods; 2.) distinguishing between direct and indirect regulations; 3.) a better
discrimination between causal relationships and coincidence; as well as 4.) network
prediction in case of multiple regulatory inputs per node remain major challenges of the
field (Tegnér & Björkegren, 2007; Marbach et al., 2010).

2.3. Key segments of network structure
In this section we will give a brief summary of the major concepts and analytical methods of
network structure starting from local network topology and proceeding towards more and
more global network structures. Selection of key network positions as drug target options
has a major dilemma. On the one hand, the network position has to be important enough to
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influence the diseased body; on the other hand, the selected network position must not be so
important that its attack would lead to toxicity. The successful solution of this dilemma
requires a detailed knowledge on the structure and dynamics of complex networks.

2.3.1. Local topology: hubs, motifs and graphlets—A minority of nodes in a large
variety of real world networks is a hub, i.e. a node having a much higher number of
neighbors than average. Real world networks often have a scale-free degree distribution
providing a non-negligible probability for the occurrence of hubs, as it was first generalized
to real world networks by the seminal paper of Barabasi & Albert (1999). If hubs are
selectively attacked, the information transfer deteriorates rapidly in most real world
networks. This property made hubs attractive drug targets (Albert et al., 2000). However,
some of the hubs are essential proteins, and their attack may result in increased toxicity. This
narrowed the use of major hubs as drug targets mostly to antibiotics, to other anti-infectious
drugs and to anticancer therapies. In agreement with these, on average, targets of FDA-
approved drugs tend to have more connections than peripheral nodes, but fewer connections
than hubs (Yildirim et al., 2007). Cancer-related proteins have many more interaction
partners than non-cancer proteins making the targeting of cancer-specific hubs a reasonable
strategy in anti-cancer therapies (Jonsson & Bates, 2006). Besides the direct count of
interactome neighbors algorithms have been developed to identify hubs using Gene
Onthology terms (Hsing et al., 2008). Going one level deeper in the network hierarchy,
amino acids serving as hubs of protein structure networks play a key role in intra-protein
information transmission (Pandini et al., 2012), and may provide excellent target points of
drug interactions.

The emerging picture of using hubs as drug targets can be summarized by two opposite
effects. On the one hand, hubs are so well connected that their attack may lead to cascading
effects compromising the function of a major segment of the network; on the other, nodes
with limited number of connections are at the ‘ends’ of the network, and their modulation
may have only limited effects (Penrod et al., 2011). There are several important remarks
refining this conclusion.

• Not all hubs are equal. Weighted and directed networks are extremely important in
discriminating between hubs. A hub having 20 neighbors connected with an equal
edge-weight is different from a hub having the same number of 20 neighbors
having a highly uneven edge-structure of a single, dominant edge and 19 low
intensity edges. A sink-hub with 20 incoming edges is not at all the same than a
source-hub with the same number 20 outgoing edges. Soluble proteins possess
more contacts on average than membrane proteins (Yu et al., 2004a) warning that
the hub-defining threshold of neighbors can not be set uniformly.

• Hub-connectors, i.e. edges or nodes connecting major hubs also offer very
interesting drug targeting options (Korcsmáros et al., 2007; Farkas et al., 2011).

• Not all peripheral nodes are unimportant. There are peripheral nodes called ‘choke
points’, which uniquely produce or consume an important metabolite. The
inhibition of ‘choke points’ often leads to a lethal effect (Yeh et al., 2004; Singh et
al., 2007).

• Importantly, interdependent networks, i.e. at least two interconnected networks,
were shown to be much more vulnerable to attacks than single network structures
(Buldyrev et al., 2010). We have several interdependent networks in our cells, such
as the networks of signaling proteins and transcription factors, or the interactome of
membrane proteins and the network of the interacting nuclear, plasma,
mitochondrial and endoplasmic reticulum membranes. The excessive vulnerability
of interdependent networks should make us even more cautious in the selection of
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drug target nodes. The options of edgetic drugs, multi-target drugs and allo-
network drugs, we will describe in Section 4.1.6. (Nussinov et al., 2011), may
circumvent the worries and problems related to the single and direct targeting of
network nodes with drugs.

Network motifs are circuits of 3 to 6 nodes in directed networks that are highly
overrepresented as compared to randomized networks (Milo et al., 2002; Kashtan et al.,
2004). Graphlets are similar to motifs but are defined as undirected networks (Przulj et al.,
2006). Motifs proved to be efficient in predicting protein function, protein-protein
interactions and development of drug screening techniques (Bu et al., 2003; Albert & Albert,
2004; Luni et al., 2010; Cloutier & Wang, 2011). Rito et al. (2010) made an extensive search
for graphlets in protein-protein interaction networks and concluded that interactomes may be
at the threshold of the appearance of larger motifs requiring 4 or 5 nodes. Such a topology
would make interactomes both efficient having not too many edges and robust harboring
alternative pathways.

2.3.2. Broader network topology: modules, bridges, bottlenecks, hierarchy,
core, periphery, choke points—Network modules (or in other words: network
communities) are the primary examples of mesoscopic network structures, which are neither
local, nor global. Modules represent groups of networking nodes, and are related to the
central concept of object grouping and classification. Modules of molecular networks often
encode cellular functions. Moreover, the exploration of modular structure was proposed as a
key factor to understand the complexity of biological systems. Therefore, module
determination gained much attention in recent years. Modules of molecular networks are
formed from nodes, which are more densely connected with each other than with their
neighborhood (Girvan & Newman, 2002; Fortunato, 2010; Kovács et al., 2010; Koch, 2012;
Szalay-Bekő et al., 2012). In Section 1.3. we introduced disease modules, i.e. modules of
disease-related genes in protein-protein interaction networks (Goh et al., 2007; Oti &
Bruner, 2007; Jiang et al., 2008; Suthram et al., 2010; Bauer-Mehren et al., 2011; Loscalzo
and Barabasi, 2011; Nacher & Schwartz, 2012). These node-related properties influence the
modular functions, making them attractive network drug-targets (Cho et al., 2012).
However, the determination of network modules proved to be a notoriously difficult
problem resulting in more than two hundred independent modularization methods
(Fortunato, 2010; Kovács et al., 2010).

Modules of molecular networks have an extensive (often called pervasive) overlap, which
was recently shown to be denser than the center of the modules in some social networks
(Palla et al., 2005, Ahn et al., 2010, Kovács et al., 2010; Yang & Leskovec, 2012). This
reflects the economy of our cells using a protein in more than one function. Modules with
sparse edge structure also characterize protein-protein interaction networks (Srihari &
Leong, 2012). Modules of real world networks were shown to form a ‘very small world’
having an average distance of 3 from each other (Li & Li, 2013). Inter-modular nodes are
attractive drug targets.

Bridges connect two neighboring network modules (Fig. 8). Bridges may also be identified
by k-shell analysis (Reppas & Lawyer, 2012). Bridges usually have fewer neighbors than
hubs, and are independently regulated from the nodes belonging to both modules, which
they connect. This makes them attractive as drug targets, since they may display lower
toxicity, while the disruption of information flow between functional network modules
could prove to be therapeutically effective (Hwang et al., 2008). Proteins involved in the
aging process are often bridges (Wang et al., 2009). Proteins bridging disease modules may
provide important points of interventions (Nguyen & Jordán, 2010; Nguyen et al., 2011).
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Inter-modular hubs form a special class of inter-modular nodes (Fig. 8). Date hubs, i.e. hubs
having only a single or few binding sites and frequently changing their protein partners,
were shown to occupy an inter-modular position as opposed to party hubs residing mostly in
modular cores (Han et al., 2004a; Kim et al., 2006; Komurov & White, 2007; Kovács et al.,
2010). Party hubs tend to have higher affinity binding surfaces than date hubs (Kar et al.,
2009). Inter-modular hubs usually have a regulatory role (Fox et al., 2011), and are mutated
frequently in cancer (Taylor et al., 2009).

Nodes occupying a unique and monopolistic inter-modular position have been termed
‘bottlenecks’ (Fig. 8), because almost all information flowing through the network must pass
through these nodes. This makes bottlenecks more effective drug targets than bridges (Yu et
al., 2007b). In agreement with this concept, hub-bottlenecks were shown to be preferential
targets of microRNAs (Wang et al., 2011c) and play an important role in cellular re-
programming (Buganim et al., 2012). However, inhibition of bottlenecks often compromises
network integrity, restricting their use as drug targets to anti-infectious and (in the case of
cancer-specific bottlenecks) anti-cancer therapies (Yu et al., 2007b). In agreement with this
proposition, cancer proteins tend to be inter-modular hubs of cancer-specific networks
offering an important target option (Jonsson & Bates, 2006).

Nodes connecting more than two modules are in modular overlaps. Overlapping nodes
occupy a network position, which can provide more subtle regulation than bridges or
bottlenecks. Modular overlaps are primary transmitters of network perturbations, and are
key determinants of network cooperation (Farkas et al., 2011). Overlapping nodes play a
crucial role in cellular adaptation to stress. In fact, changes in the overlap of network
modules were suggested to provide a general mechanism of adaptation of complex systems
(Mihalik & Csermely, 2011; Csermely et al., 2012). Modular overlaps (called cross-talks
between signaling pathways) are most prevalent in humans, if compared to C. elegans or
Drosophila (Korcsmáros et al., 2010). All these make modular overlaps especially attractive
drug targets (Farkas et al., 2011). As we described earlier, ‘creative nodes’ are in the overlap
of multiple modules belonging roughly equally to each module. These nodes play a
prominent role in regulating the adaptivity of complex networks, and are lucrative network
targets (Csermely, 2008; Farkas et al., 2011).

Despite the important role of hierarchy in network structures (Ravasz et al., 2002; Liu et al.,
2012; Mones et al., 2012), the exploration of network hierarchy is largely missing from
network pharmacology. Ispolatov & Maslov (2008) published a useful program to remove
feedback loops from regulatory or signaling networks, and reveal their remaining hierarchy
(http://www.cmth.bnl.gov/~maslov/programs.htm). Hartsperger et al. (2010) developed
HiNO using an improved, recursive approach to reveal network hierarchy (http://
mips.helmholtz-muenchen.de/hino). The hierarchical map approach of Rosvall & Bergstrom
(2011) used the shortest multi-level description of a random walk (http://www.tp.umu.se/
~rosvall/code.html). A special class of hierarchy-representation and visualization uses the
hierarchical structure of modules, i.e. the concept that modules can be regarded as meta-
nodes and re-modularized, until the whole network coalesces into a single meta-node.
Methods like Pyramabs (http://140.113.166.165/pyramabs.php; Cheng & Hu, 2010) or the
Cytoscape (Smoot et al., 2011) plug-in, ModuLand (http://linkgroup.hu/modules.php;
Szalay-Bekő et al., 2012) are good examples of this powerful approach.

Network hierarchy has recently been involved as a key factor of network controllability (Liu
et al., 2012; Mones et al., 2012), which will be discussed in Section 2.3.4 in detail. However,
not all hierarchical networks are ‘autocratic’, where top nodes have an unparalleled
influence. Horizontal contacts of middle-level regulators play a key role in gene regulatory
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networks. Moreover, such a ‘democratic network character’ increases markedly in human
gene regulation (Bhardwaj et al., 2010).

Similarly, the discrimination between network core and periphery has been published quite a
while ago (Guimerá & Amaral, 2005) and was extended recently to network modules (Li &
Lim 2013), but its applications are largely missing from the field of drug design. As an
example of the possible benefits, choke points were identified as those peripheral nodes that
either uniquely produce or consume a certain metabolite (including here signal transmitters
and membrane lipids too). Efficient inhibition of choke points may cause either a lethal
deficiency, or toxic accumulation of the metabolite (Yeh et al., 2004; Singh et al., 2007).

2.3.3. Network centrality, network skeleton, rich-club and onion-networks—
Network centrality measures span the entire network topology from local to global.
Centrality is related to the concept of importance. Central nodes may receive more
information, and may have a larger influence on the networking community. Thus it is not
surprising that dozens of network centrality measures have been defined. Several centrality
measures are local, like the number of neighbors (the network degree), or related to the
modular structure, like bridging centrality, community centrality, or subgraph centrality.
Centrality measures, like betweenness centrality (the number of shortest paths traversing
through the node), random walk related centralities (like the PageRank algorithm of
Google), or network salience are based on more global network properties. Recently a
number of centrality measures have been defined based on network dynamics (Freeman,
1978; Estrada & Rodríguez-Velázquez, 2005; Estrada, 2006; Hwang et al., 2008; Kovács et
al., 2010; Du et al., 2012; Ghosh & Lerman, 2012; Grady et al., 2012; Gräßler et al., 2012;
Joseph & Chen, 2012; Mantzaris et al., 2013). Global network centrality calculations may be
faster, assessing only network segments and using network compression (Sariyüce et al.,
2012). Network module-based centralities are related to the determination of bridges and
overlaps (Hwang et al., 2008; Kovács et al., 2010), while betweenness centrality is used for
the definition of bottlenecks (Yu et al., 2007b). Both are important drug target candidates as
we discussed in the previous section. As an additional example, high betweenness centrality
hubs were shown to dominate the drug-target network of myocardial infarction (Azuaje et
al., 2011).

The network skeleton is an interconnected subnetwork of high centrality nodes. Network
skeletons may contain hubs (we call this a ‘rich-club’; Colizza et al., 2006; Fig. 9), may
consist of high betweenness centrality nodes (Guimerá et al., 2003), or may comprise inter-
connected centers of network modules (Kovács et al., 2010; Szalay-Bekő et al., 2012).
Network skeletons may be densely interconnected forming an inner core of the network, or
may be truly skeleton-like traversing the network like a highway. In both network skeleton
representations nodes participating in the network skeleton form the ‘elite’ of the network,
like the respective persons in social networks (Avin et al., 2011). Network skeleton nodes
are attractive drug target candidates. As an example of this, Milenkovic et al. (2011) defined
a dominating set of nodes as a connected network subgraph having all residual nodes as its
neighbor. They showed that the dominating set (especially if combined with a network-
module type centrality measure called as graphlet degree centrality measuring the
summative degree of neighborhoods extending to 4 layers of neighbors) captures disease-
related and drug target genes in a statistically significant manner. It will be interesting to see,
whether the recently defined intra-modular dominating sets (Li & Li, 2013) also possess
similar features. Nicosia et al. (2012) defined a subset of nodes (called controlling sets),
which can assign any prescribed set of centrality values to all other nodes by cooperatively
tuning the weights of their out-going edges. Nacher & Schwartz (2008) identified a rich-club
of drugs serving as a core of the drug-therapy network composed of drugs and established
classes of medical therapies.
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Network assortativity characterizes the preferential attachment of nodes having similar
degrees to each other. Network cores (such as rich-clubs, Fig. 9) may or may not be a part of
an assortative network. In a disassortative network low degree, peripheral network nodes are
connected to the network core and not to each other. These core-periphery networks have a
nested structure (Fig. 9). If peripheral nodes are connected to each other and form
consecutive rings around the core, we call the network ‘onion-type’ (Fig. 9). Nested
networks were shown to characterize ecosystems and trade networks, while onion-networks
are especially resistant against targeted attacks (Saavedra et al., 2011; Schneider et al., 2011;
Wu & Holme, 2011). Despite the exciting features of nested and onion networks, these
network characteristics have not been assessed yet in disease-related, or drug design related-
studies.

2.3.4. Global network topology: small worlds, network percolation, integrity,
reliability, essentiality and controllability—The global topology of most real world
networks is characterized by the small world property first generalized in the landmark
paper of Watts & Strogatz (1998). Nodes of small worlds are connected well – as it was
popularized by the proverbial “six degrees of separation” meaning that members of the
social network of Earth can reach each other using 6 consecutive contacts (edges) as an
average. In fact, modern web-based social networks, like Facebook, are an even smaller
world having an average shortest path of 4.74 edges (Blackstrom et al., 2011).

Percolation is a broader term of global network topology than small worldness, since it
refers to the connectedness of network nodes, i.e. the presence of a connected, giant network
component. Sequential attacks on network nodes can induce a progressive and dramatic
decrease of network percolation. Despite being a sensitive measure, to date the concept of
percolation has not been extended to characterize network modules and other non-global
structures of molecular networks (Antal et al., 2009). Percolation is related to network
integrity and network reliability; that is, related to how much of the network remains
connected if a network node or edge fails. In the case of directed networks the connection of
sources or sinks can be calculated separately (Gertsbakh & Shpungin, 2010). The network
efficiency measure of Latora & Marchiori (2001) is a widely used criterion to judge the
integrity of a network. As noted before, intentional attack of hubs can be deleterious to most
real world networks (Albert et al., 2000). The effect of a single attack of the largest hub in
gene transcription networks can be substituted by a surprisingly low number of partial
attacks, which is making the multi-target approaches listed in Section 4.1.5. a viable option
from the network point of view (Agoston et al., 2005; Csermely et al., 2005).

In the case of anti-infectious or anti-cancer agents we would like to destroy the network of
the parasite or of the malignant cell. In other words we need to predict essential proteins as
targets of these therapeutic approaches. This makes network integrity a key measure to
judge the efficiency of drug target candidates in these fields. Prediction of essential proteins
is also important to forecast the toxicity of other drugs. The number of neighbors in protein-
protein interaction networks is an important network measure of essentiality (Jeong et al.,
2001). Later more global network measures were also shown to contribute to the prediction
of node essentiality (Chin & Samanta, 2003; Estrada, 2006; Yu et al., 2007b; Missiuro et al.,
2009; Li et al., 2011a). Edge weights and directions may also significantly alter the
determination of attack efficiency (Dall’Asta et al., 2006; Yu et al., 2007b). Finally, the
constraints of metabolic networks define different contexts of essentiality exemplified by
choke points, i.e. proteins uniquely producing or consuming a certain metabolite (Yeh et al.,
2004; Singh et al., 2007). We will describe metabolic network essentiality in Section 3.6.2.
in detail.

Csermely et al. Page 21

Pharmacol Ther. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The most recent aspect of global network topology is similar to essentiality in the sense that
it is also related to the influence of nodes on network behavior. However, here node
influence is not judged on a ‘yes/no scale’, i.e. by whether the organism survives the
malfunction of the node, but based on the more subtle scale of changing cell behavior. In
this way node influence studies are closely related to network dynamics as we will detail in
Section 2.5. Network centrality measures, or the dominating set of network nodes we
mentioned before, are also related to the influence of selected nodes on others. Recent
publications added network controllability, i.e. the ability to shift network behavior from an
initial state to a desired state, to the repertoire of network-related measures of node
influence. From these initial studies central nodes emerged as key players of network control
(Cornelius et al., 2011; Liu et al., 2011; Banerjee & Roy, 2012; Cowan et al., 2012; Liu et
al., 2012; Mones et al., 2012; Nepusz & Vicsek, 2012; Wang et al., 2012a; Pósfai et al.,
2013). It is important to note that control here is a weak form of control, since we do not
want to control how the system reaches the desired state (San Miguel et al., 2012). Despite
of the clear applicability of network controllability to drug design (i.e. finding the nodes,
which can shift molecular networks of the cell from a malignant state to a healthy state)
there were only a few studies testing various aspects of this rich methodology in drug design
(Xiong & Choe, 2008; Luni et al., 2010). Development of drug-related applications of
network influence and control models is an important task of future studies.

2.4. Network comparison and similarity
As we summarized in Section 2.2., uncovering network similarities is useful to predict nodes
and edges. Alignment of networks from various species identifies interologs corresponding
to conserved interactions between a pair of proteins having interacting homologs in another
organism, or the analogous regulogs in regulatory networks, signalogs in signal transduction
networks and phenologs as disease associated-genes. Thus, network comparison may
uncover novel protein functions and disease-specific changes. All these greatly help drug
design (Yu et al., 2004b; Sharan et al., 2005; Leicht et al., 2006; Sharan & Ideker, 2006;
Zhang et al., 2008; McGary et al., 2010; Korcsmáros et al., 2011). However, the great
potential to uncover network similarities comes with a price: network comparison is
computationally expensive, and remains one of the greatest challenges of the field.

Lovász (2009; 2012) gives an excellent summary of the network similarity problem
including a number of network similarity measures such as edit distance (the number of
edge changes required to get one network from another), sampling distance (measuring the
similarity by an ensemble of random networks), cut distance and similarity distance. A later
study also used an interesting combined distance metrics of the edit and spectral distances
(Jurman et al., 2012b). Similarity measures based on the comparison of the top-k nodes were
recently described (Amin et al., 2012; Lee et al., 2012a). Similarity indices may be local
(comparing the closest neighborhood of selected nodes), mesoscopic (which are usually
based on local walks), or global (often involving extensive, network-wide walks). Edge
neighborhood may be compared by using the modular structure, hypergraphs, network
hierarchy, a stochastic bloc model, or a probabilistic model. Comparison may also use an
ensemble of random, scale-free or other model networks, and the distribution of the best
fitting ensemble. Reviews of Sharan & Ideker (2006), Zhang et al. (2008) and Lü & Zhou
(2011) give further details of the methodology used in the comparison of molecular
networks.

A specific example of network comparison is the comparison of network descriptions of
chemical structures, which we will summarize in Section 3.1. Table 4 summarizes a few
major methods and related web-sites to compare molecular networks. Quite a few methods
compare small subnetworks to larger ones. Sometimes the “small subnetwork” is small,
containing only 3 to 5 nodes. This reduces the problem of finding a motif in a larger network
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(also called as network querying). Recent methods 1.) include an expansion process, which
explores the network structure beyond the direct neighborhood; 2.) compress the network to
meta-nodes, then align this representative network and finally refine the alignment; 3.) use
k-hop network coloring to speed up the comparison of the traditional coloring techniques of
neighboring nodes, or 4.) extend the comparison using multiple types of networks and
functional information (Table 4; Ay et al., 2012; Berlingerio et al., 2012; Gulsoy et al.,
2012). Despite of the extensive progress in the field, additional work is needed to develop
efficient comparison methods for large molecular networks and multiple network datasets. A
widely used area of network comparison is the assessment of two time points, or a time
series of a changing network, which will be discussed in the next section.

2.5. Network dynamics
In this section, which concludes the inventory of network analytical concepts and methods,
we will summarize the approaches describing network dynamics. First we will list the
methods describing the temporal changes of networks, then we describe the usefulness of
network perturbation analysis in drug design, and finally we will draw attention to the
potential use of spatial games to assess the influence of nodes on network cooperation.
Description of network dynamics is a fast developing field of network science holding great
promise to renew systems-based thinking in drug design.

2.5.1. Network time series, network evolution—As we mentioned in Section 2.1.
summarizing the key points of network definition, the time-window of observation is crucial
for the detection of contacts between network nodes. The duration of observation becomes
even more important, when describing the temporal changes of networks, which is also often
called network evolution. (It is important to note that the concept of network evolution
usually has no connection to the Darwinian concept of natural selection.) The order of
network edge development has key consequences in directed networks which differ from
network topology measures, like shortest path, or small world. As an interesting example of
these changes, in the A → B → C connection pattern, A can not influence C, if the B → C
contact preceded the A → B contact. Such effects may slow down the propagation of signals
by an order of magnitude (Tang et al., 2010; Pfitzner et al., 2012).

The description of temporal changes of network structures is related to the difficult concept
and methodology of network comparison and similarity described in the preceding section.
Following the early summary of Dorogovtsev & Mendes (2002) on network evolution,
Holme & Saramäki (2011) had an excellent review on network time-series re-defining a
number of static network parameters, such as connectivity, diameter, centrality, motifs and
modules, to accommodate temporal changes. The prediction algorithms described in Section
2.2. can be used to predict edges that may appear at later time points in evolving networks
(Lü & Zhou, 2011). Prediction may work backwards, to infer past structures of a current
network identifying core-nodes around which the network was organized (Navlakha &
Kingsford, 2011). Recently, a method to test the reversibility of changes in network time-
series was published (Donges et al., 2012). However, most network time description studies
have concentrated on neuronal or social networks offering many, albeit yet untested,
possibilities for drug design.

Recently a number of centrality measures were introduced describing central nodes of
dynamically changing networks (Joseph & Chen, 2012; Mantzaris et al., 2013). The
development of network modules gained considerable attention in network evolution
studies, since this representation concentrates on the functionally most relevant changes in
the network structure. Network modules may grow, contract, merge, split, be born or die.
Some of the modules display a much larger stability than others. The intra-modular nodes of
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these modules bind to each other with high affinity and to nodes outside the module with
low affinity. Interestingly, small modules (of say less than 10 nodes) seem to persist better,
if they have a dense contact structure, while larger modules survive better, if they have a
dynamic, fluctuating membership (Palla et al., 2007; Fortunato, 2010). Mucha et al. (2010)
developed the technique of multislice networks, which monitor the module development of
nodes with multiple types of edges. Taylor et al. (2009) showed that altered modularity of
hubs had a prognostic value in breast cancer and suggested cancer-specific inter-modular
hubs as drug targets in cancer therapies.

Detailed analyses identified change points, i.e. short periods where large changes of modular
structure can be observed (Falkowski et al., 2006; Sun et al., 2007; Rosvall & Bergstrom,
2010). The alluvial diagram (applying the visualization technique of Sankey diagrams)
introduced by Rosvall & Bergstom (2010; Fig. 10) illustrates the temporal changes of
network modules particularly well. Recently the addition of routes between nodes of the
network, called the accessibility graph, was also used successfully to describe network time
series (Lentz et al., 2012).

Dramatic changes of network structure called “topological phase transitions” occur when the
resources needed to the maintain network contacts diminish, or environmental stress
becomes much larger. Networks may develop a hierarchy, a core or a central hub as the
relative costs of edge-maintenance increase. Under extreme circumstances, the network may
disintegrate to small subgraphs, which corresponds to the death of the complex organism
encoded by the formerly connected network (Derényi et al., 2004; Csermely, 2009; Brede,
2010). Change points and topological phase transitions have not been assessed in disease, or
in other therapeutically interesting situations showing an abrupt change, such as apoptosis,
and thus provide an exciting field of future drug-related studies.

Going beyond the changes of system structure, network descriptions may also be applied to
describe changes of systems-level emergent properties. In these descriptions nodes represent
phenotypes of the complex system in the state-space, and edges are the transitions or
similarities of these phenotypes. This approach is used in the network representations of
energy landscapes (or fitness landscapes) resulting in transition networks, and in the
recurrence-based time series analysis resulting in correlation networks, cycle networks,
recurrence networks or visibility graphs (Doye, 2002; Rao & Caflisch, 2004; Donner et al.,
2011). Recently a method to compare two visibility graphs, i.e. two network time series was
published (Mehraban et al., 2013).

2.5.2. Network robustness and perturbations—In the network-related scientific
literature perturbations often mean the complete deletion of a network node. However, in
drug action the complete inhibition of a molecule is seldom achieved. Therefore, when
summarizing network perturbations, we will concentrate on the transient changes of
network-encoded complex systems. Transient perturbations play a major role in signaling
and in the development of diseases. The action of drugs can be perceived as a network
perturbation nudging pathophysiological networks back into their normal state (Gardner et
al., 2003; di Bernardo et al., 2005; Ohlson, 2008; Antal et al., 2009; Huang et al., 2009; Lum
et al., 2009; Baggs et al., 2010; del Sol et al., 2010; Chua & Roth, 2011). Therefore, studies
addressing perturbation dynamics have a key importance in drug design.

Robustness is an intrinsic property of cellular networks that enables them to maintain their
functions in spite of various perturbations. Enhanced robustness is a property of only a very
small number of all possible network topologies. Cellular networks both in health and in
disease belong to this extreme minority. Drug action often fails due to the robustness of
disease-affected cells or parasites. In contrast, side-effects often indicate that the drug hit an
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unexpected point of fragility of the affected networks (Kitano, 2004a; Kitano, 2004b;
Ciliberti et al., 2007; Kitano, 2007). Robustness analysis was used to reveal primary drug
targets and to characterize drug action (Hallen et al., 2006; Moriya et al., 2006; Luni et al.,
2010).

Cellular robustness can be caused by a number of mechanisms.

• Network edges with large weights often form negative or positive feedbacks
helping the cell to return to the original state (attractor) or jump to another,
respectively.

• Network edges with small weights provide alternative pathways, give flexible inter-
modular connections disjoining network modules to block perturbations and buffer
the changes by additional, yet unknown mechanisms. These ‘weak links’ grossly
outnumber the ‘strong links’ participating in feedback mechanisms. Therefore, the
two mechanisms have comparable effects at the systems level.

• Finally, robustness of molecular networks also depends on the robustness of their
nodes, e.g. the stability of protein structures (Csermely, 2004; Kitano, 2004a;
Kitano, 2004b; Kitano, 2007; Csermely, 2009).

We summarize the possible mechanisms through which drugs can overcome cellular
robustness on Fig. 11 (letters in the list correspond to symbols of the figure).

a. Drugs may activate a regulatory feedback helping disease-affected cells to return to
the original equilibrium.

b. Drugs may activate a positive feedback and push disease-affected cells to a new
state.

c. Drugs may transiently lower a specific activation energy helping disease-affected
cells to return to the healthy state.

d. Drugs may decrease activation energies and thus destabilize malignant or infectious
cells causing an ‘error catastrophe’ and activating cell death.

e. Drugs may increase activation energies and thus stabilize healthy cells preventing
their shift to the diseased phenotype (Csermely, 2004; Kitano, 2004a; Kitano,
2004b; Kitano, 2007; Csermely, 2009).

If cellular robustness is conquered, critical transitions, i.e. large unexpected changes, may
also occur. Critical transitions are often responsible for unexplained cases of excessive drug
side-effects and toxicity. Lack of stabilizing negative feedbacks, excessive positive
feedbacks, accumulating cascades may all lead to extreme events characterizing critical
transitions (San Miguel et al., 2012).

Recently increasing attention focused on finding, predicting and influencing extreme events,
i.e. outliers of common (e.g. scale-free) statistics, also called ‘dragon kings’ (Tajer & Poor,
2012; de S. Cavalcante et al., 2013). The detection of early warning signals of these critical
transitions (such as a slower recovery after perturbations, increased self-similarity of the
behavior, or increased occurrence of extreme behavior) was shown to characterize different
complex systems, such as ecosystems, the market, climate change, or population of yeast
cells (Scheffer et al., 2009, Farkas et al., 2011; Sornette & Osorio, 2011; Dai et al., 2012).
Boettiger & Hastings (2012) emphasized the importance of using correct statistics in order
not to ‘over-examine’ systems which are known to undergo critical transitions. Prediction
and control of critical changes (delay/prevention in the case of normal cells and induction/
acceleration in the case of malignant or infecting cells) may be an especially important area
of future drug-related network studies.
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The number of possible regulatory combinations for a given gene increases dramatically
with an increase in input-complexity and network size. For example, with 100 genes and 3
inputs per gene there are a million input combinations for each gene in the network resulting
in 10600 different network wiring diagrams (Tegnér & Björkegren, 2007). The complexity of
precise network perturbation models increases even more with system size. Therefore, it is
not surprising that most studies of network dynamics described small networks with at most
a few dozens of nodes. As an example of this, the Tide software analyzes the combined
effects and optimal positions of drug-like inhibitors or activators using differential equations
of reaction pathways up to 8 components (Schulz et al., 2009). Karlebach & Shamir (2010)
presented an algorithm determining the smallest perturbations required for manipulating a
network of 14 genes. Perturbations of Boolean networks, where nodes may only have an
“on” or “off” mode, describe the dynamics of 20 to 50 nodes. These models often
incorporate activating, inhibiting, or conditional edges, too (Huang, 2001; Shmulevich et al.,
2002; Gong & Zhang, 2007; Abdi et al., 2008; Azuaje et al., 2010; Saadatpour et al., 2011;
Wang & Albert, 2011; Garg et al., 2012). To help these studies a versatile, publicly available
software library, BooleanNet (http://booleannet.googlecode.com) was developed by Albert
et al. (2008). PATHLOGIC-S (http://sourceforge.net/projects/pathlogic/files/PATHLOGIC-
S) offers a scalable Boolean framework for modeling cellular signaling (Fearnley & Nielsen,
2012).

Systems-level molecular networks have a size in the range of thousand to ten-thousand
nodes. At this level of system complexity the optimal selection of the perturbation model
becomes a key issue. At this system size the highly anisotropic perturbation propagation
inside protein structures is usually neglected (we will detail the possibilities to construct
atomic resolution interactomes in Section 4.1.6. on allo-network drugs; Nussinov et al.,
2011). In current network perturbation models of larger systems delays, differences in
individual dissipation patterns, effects of water or molecular crowding are also neglected
(Antal et al., 2009).

We summarized an early promising approach of systems-level perturbation studies in
Section 2.2.3. on reverse engineering. Here perturbations were assessed by systems-level
mRNA expression profiles and the perturbed network was reconstructed from the output
data (Liang et al., 1998a; Akutsu et al., 1999; Ideker et al., 2000; Kholodenko et al., 2002;
Yeung et al., 2002; Segal et al., 2003; Tegnér et al., 2003; Friedman, 2004; Tegnér &
Björkegren, 2007; Ahmed & Xing, 2009; Stokić et al., 2009; Marbach et al., 2010; Yip et
al., 2010; Schaffter et al., 2011; Altay, 2012; Crombach et al., 2012; Kotera et al., 2012).
Reverse engineering techniques were successfully applied to reconstruct drug-induced
system perturbations (Gardner et al., 2003; di Bernardo et al., 2005; Chua & Roth, 2011).

Maslov & Ispolatov (2007) used the mass action law to calculate the effect of a two-fold
increase in the expression of single protein on the free concentration of other proteins in the
yeast interactome. Despite of an exponential decay of changes, there were a few highly
selective pathways, where concentration changes propagated to a larger distance (Maslov &
Ispolatov, 2007). This and other models of network dynamics have been used in various
publicly available algorithms including:

• the system dynamics modeling tool BIOCHAM using Boolean, differential,
stochastic models and providing among others bifurcation diagrams (http://
contraintes.inria.fr/biocham; Calzone et al., 2006);

• the random walk-based ITM-Probe, also available as a Cytoscape plug-in (http://
www.ncbi.nlm.nih.gov/CBBresearch/Yu/mn/itm_probe/doc/cytoitmprobe.html;
Stojmirović & Yu, 2009; Smoot et al., 2011);
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• the mass action-based Cytoscape plug-in, PerturbationAnalyzer (http://
chianti.ucsd.edu/cyto_web/plugins/displayplugininfo.php?
name=PerturbationAnalyzer; Li et al., 2010a; Smoot et al., 2011);

• a user-friendly, Matlab-compatible, versatile network dynamics tool, Turbine
supplying a communication vessels propagation model, but handling any user-
defined dynamics, and enabling the user to simulate real world networks that
include 1 million nodes and 10 million edges per GByte of free system memory,
exporting and converting numerical data to a visual image using an inbuilt viewer
function (www.linkgroup.hu/Turbine.php; Farkas et al., 2011);

• Conedy, a Python-interfaced C++ program capable to handle various dynamics
including differential equations and oscillators (http://www.conedy.org; Rothkegel
& Lehnertz, 2012).

Studying perturbations of larger networks Adilson Motter and colleagues developed an
exciting model of compensatory perturbations showing that surprisingly, a debilitating effect
can often be compensated by another inhibitory effect in a complex, cellular system (Motter
et al., 2008; Motter, 2010; Cornelius et al., 2011). Perturbation dynamics of signaling
networks was extensively analyzed including close to 10 thousand phosphorylation events in
an experimental study of yeast cells (Bodenmiller et al., 2010). As we described in Section
2.2.3. on reverse engineering, perturbation studies are often used to reconstruct networks. As
examples of this, the signaling network of T lymphocytes was reconstructed using single
cell perturbations (Sachs et al., 2005), and the perturbations of 21 drug pairs were predicted
from the reconstituted network of phospho-proteins and cell cycle markers of a human
breast cancer cell line (Nelander et al., 2008). As another example, a perturbation amplitude
scoring method was developed to test the biological impact of drug treatments, and was
assessed using the transcriptome of colon cancer cells treated with the CDK cell cycle
inhibitor, R547 (Martin et al., 2012).

Despite their complexity and robustness, cellular networks have their ‘Achilles-heel’.
Hitting it, a perturbation may cause dramatic changes in cell behavior. Stem cell
reprogramming is a well-studied example of these network-reconfigurations (Huang et al.,
2012a), where special bottleneck proteins may play a pivotal role (Buganim et al., 2012). As
another example of ‘streamlined’ cellular responses, effects of multiple drug-combinations
on protein levels can be quite accurately described by the linear superposition of drug-pair
effects (Geva-Zatorsky et al., 2010).

Recent perturbation studies identified key nodes governing network dynamics. Central
nodes, such as hubs, or inter-modular overlaps and bridges were shown to serve as highly
efficient mediators of perturbations (Cornelius et al., 2011; Farkas et al., 2011). Network
oscillations can be governed by a few central nodes forming a small network skeleton (Liao
et al., 2011). Targets of viral proteins were shown to be major perturbators of human
networks (de Chassey et al., 2008; Navratil et al., 2011). Perturbation mediators are often at
cross-roads of cellular pathways. These key nodes bind multiple partners at shared binding
sites. These shared binding sites can be identified as hot spot residues in protein structures
(Ozbabacan et al., 2010). The fast-developing field of viral marketing identified influential
spreaders of information at network cores and at other central network positions (Kitsak et
al., 2010; Valente, 2012). Spreader proteins may be excellent targets of anti-infectious or
anti-cancer therapies. Conversely, drugs against other diseases need to avoid these central
proteins affecting a number of cellular functions. The identification of influential spreaders
may provide important analogies of future drug target studies.
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2.5.3. Network cooperation, spatial games—Spatial games, i.e. social dilemma
games (such as the well known Prisoners’ Dilemma, hawk-dove or ultimatum games) played
between neighboring network nodes, provide a useful model of cooperation (Nowak, 2006).
In a recent review Foster (2011) described the ‘sociobiology of molecular systems’ and
provided convincing evidence how molecular networks determine social cooperation. We
argue that cooperation of proteins and other macromolecules may offer an important
description of cellular complexity. This view is based on the delicate dynamics of protein-
protein interactions, which proceed via mutual selection of the binding-compatible
conformations of the two protein partners. As the two proteins approach each other, they
signal their status to the other via the hydrogen-bonded network of water molecules. Binding
is achieved by a complex set of consecutive conformational adjustments. These concerted,
conditional steps were called a ‘protein dance’, and can be perceived as rounds of a repeated
game (Kovács et al., 2005; Csermely et al., 2010).

The stepwise encounter of protein molecules can be modeled as a series of rounds in
common social dilemma games. In hawk-dove games the more rigid binding partner
(corresponding to the drug) can be modeled as a hawk, while the more flexible binding
partner (corresponding to the drug target) will be the dove. The hawk/dove encounter
corresponds to an induced-fit-like scenario, where the conformational change of the dove is
much larger than that of the hawk. The game is won by drug (hawk), since its enthalpy gain
is not accompanied by an entropy cost. On the contrary, the flexible drug target loses several
degrees of freedom during binding (Kovács et al., 2005; Chettaoui et al., 2007; Schuster et
al., 2008; Antal et al., 2009; Csermely et al., 2010). In agreement with our previous
description (Csermely et al., 2010) we note that induced-fit is conceived here as an
extremity of an extended conformational selection model, where one of the partners (in this
case the drug) is much more rigid than the other.

If we model drug binding with the ultimatum game, the drug and its target want to share the
free energy decrease as a common resource. The drug proposes how to divide the sum
between the two partners, and the target can either accept or reject this proposal, i.e. bind the
drug or not (Kovács et al., 2005; Chettaoui et al., 2007; Schuster et al., 2008; Antal et al.,
2009; Csermely et al., 2010).

Extending the above drug-binding scenario to the network level of the whole cell spatial
game models are not only important to provide an estimate of systems-level cooperation, but
are able to predict, which protein can most efficiently destroy the existing cooperation of the
cell. This is a very helpful model of drug action in anti-infectious or anti-cancer therapies.
Game models also identify those proteins, which are the most efficient to maintain cellular
cooperation. This provides a useful model of drug efficiency in maintaining normal
functions of diseased cells. Recently a versatile program, called NetworGame
(www.linkgroup.hu/NetworGame.php) was made publicly available for simulating spatial
games using any user-defined molecular networks and identifying the most influential nodes
to establish, maintain or break cellular cooperation. Nodes having an exceptional influence
in these cellular games may be promising targets of future drug development efforts (Farkas
et al., 2011).

2.6. Limitations of network-related description and analysis methods
After completing a large inventory of network-related description and analysis methods here
we list some of the major limitations of this approach.

• The first and foremost limitation of all network-related methods is data quality.
Network description is a tool, which depends on the accuracy and coverage of input
data. The entire data set must have the same, well defined quality control. Currently
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we often lack these high-quality data sets especially on system dynamics (Henney
& Superti-Furga, 2008; Prinz et al., 2011; Begley & Ellis, 2012; Landis et al.,
2012).

• The definition of network nodes and edges often restricts network descriptions to
well-defined connections. Hypergraph descriptions, which may overcome this
problem are not wide-spread, and well documented yet. Despite the flexibility
offered by hypergraphs, network descriptions often reduce the dimensions of the
available information. When this is performed without a deep knowledge of the
problem and the system, it may result in significant information loss. We described
these difficulties of network construction in Sections 1.2 and 2.1.

• Visualization of networks improved over the years (see Table 1), but there is still
room for development of 3D, large-capacity, zoom-in-type network visualization
tools.

• Since the information spread is not only local in the cell, network analyis
concentrating only local topological signatures, such as hubs or motifs may not use
the full potency of network description. Definition of network modules or central
nodes resulted in a large number of methods, but has reached a consensus neither in
the applicability nor in overcoming the limitations of these methods. Additional
studies on the identification of influential network nodes and edges are needed.

• Network-based prediction methods also need considerable improvement.

• Comparison of dynamically changing networks needs additional methods.
Generally, the dynamics of complex systems is not adequately described by
networks yet.

Applications of network description and analysis to molecular problems started less than 15
years ago. Therefore, several limitations arise from the current state-of-the-art of network
related studies. Others may indeed pose limits for the use of network analysis. We need a
number of well-based comparative studies in the future to understand the areas, where the
use of network description and analysis gives the most efficient help in drug design. The
following Sections of our review try to help this clarification process.

3. The use of molecular networks in drug design
In this section we will describe molecular networks starting from networks of chemical
substances, followed by protein structure networks (i.e. networks of amino acids forming 3D
protein structures), protein-protein interaction networks, signaling networks, genetic
interaction and chromatin networks (i.e. networks of chromatin segments forming the 3D
structure of chromatin). We will conclude the section with the description of metabolic
networks, i.e. networks of metabolites connected by enzyme reactions. The section will not
give a detailed description of all studies on these networks, but will concentrate only on the
most important aspects related to drug development.

Nodes of the networks above are connected either physically or conceptually. Chemical
compound networks are often constructed by connecting two chemical compounds, if there
is a chemical reaction to transform one of them to the other. This logic is very similar to that
used in the construction of metabolic networks. In another form of chemical compound
networks two drugs are considered similar, if they have a common binding protein. This is
actually the inverse of drug target networks (where two drug targets are connected, if the
same drug binds to them). Substrates and products also have a common binding protein, the
enzyme, serving as the edge of metabolic networks. However, drug-related studies on
metabolic networks often incorporate knowledge of protein-protein interaction and signaling
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networks. Therefore, we will summarize metabolic networks separately, at the end of the
current section. Similarly, drug target networks often use the rich conceptual context of the
drug development process. Therefore, we will re-assess the major features of drug target
networks in Section 4.1.3. However, due to the unavoidable overlaps we encourage the
Reader to compare the sections on chemical compound, metabolic and drug target networks.

3.1. Chemical compound networks
In this section we will summarize all networks which are related to chemical compounds:
structural networks, reaction networks, and the large variety of chemical similarity
networks. Of all these networks, especially the latter, chemical similarity networks can be
used very well in lead optimization and selection of drug candidates. There is a very large
variability in the names of these networks in the literature. Therefore, we selected the most
discriminative name as the titles of sub-sections, and refer to some other network
denotations in the text.

3.1.1. Chemical structure networks—The structure of chemical compounds can be
perceived as a network, where labelled (colored) nodes are the atoms constructing the
molecule, and labelled (colored) edges are the covalent bonds binding the atoms together
(Fig. 12). Chemical structure networks (also called chemical graphs) may use multiple edges
representing multiple bonds. The core electron structure of the various atoms is often
represented as a complete graph. Descriptors of this network structure, such as discrete
invariants representing the chemical structure, connectivity indices, topological charge
indices, electro-topological indices, shape indices and others are useful for quantitative
structure/property and structure/activity (QSPR and QSAR) models (Garcia-Domenech et
al., 2008; Gonzalez-Diaz et al., 2010a). Molgen (http://molgen.de; Baricic & Mackov, 1995)
and Modeslab (http://modeslab.com; Estrada & Uriarte, 2001) are widely used programs to
draw and analyze chemical structure networks. SIMCOMP (http://www.genome.jp/tools/
simcomp) and SUBCOMP (http://www.genome.jp/tools/subcomp) compare chemical
structure networks and show the position of results in molecular pathways (Hattori et al.,
2010).

3.1.2. Chemical reaction networks—The mind-boggling set of 1060 chemical
compounds that can be created by chemical reactions, defines the so-called chemical space
(Kirkpatrick & Ellis, 2004). The size of drug-like chemical space is estimated to be larger
than a million compounds (Drew et al., 2012). The increasing costs of experiments and the
need for compounds with specific properties increased the efforts to apply new tools for
chemical space discovery (Lipinski & Hopkins, 2004). Chemical reactions make the
chemical space continuous. Therefore, their network representation serves as a promising
tool. Nodes of chemical reaction networks are the chemical compounds and their edges are
the reactions transforming them to one another (Christiansen, 1953; Temkin & Bonchev,
1992).

The chemical reaction network, comprising the whole synthetic knowledge of organic
chemistry containing 7 million compounds in 2012, was first assembled by Fialkowski et al.
(2005). Chemical reaction networks may only contain the participating compounds, or may
be bipartite networks, where besides the participating compounds a different type of nodes
represents the reactions (Fig. 13). The chemical reaction network is a small-world
containing hubs, i.e. compounds, which can be formed and transformed to and from many
other compounds. The chemical reaction network contains hubs. Importantly, hub
compounds have a lower market price than chemicals involved in a low number of reactions.
Moreover, hub molecules are more likely to be prepared via new methodologies, and may
also be involved in the synthesis of many new compounds (Grzybowski et al., 2009). The
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chemical reaction network can be separated into a core, containing over 70% of the top 200
industrial chemicals, and a periphery, which has a tree-like structure, and can be easily
synthesized from the core (Bishop et al., 2006). Chemical reaction networks offer help in the
design of ‘one-pot’ reactions without the need for isolation, purification and characterization
of intermediate structures, and without the production of much chemical waste. Gothard et
al. (2012) used 8 filters of 86,000 chemical criteria to identify more than 1 million ‘one-pot’
reaction series. The number of possible synthetic pathways can be astronomical having 1019

routes of just 5 synthetic steps. Network analysis of Kowalik et al. (2012) identified optimal
synthetic pathways of single and multiple-target syntheses using a simulated annealing-
based network optimization. These optimizations help in the synthesis of drug candidate
variants for lead selection.

3.1.3. Similarity networks of chemical compounds: QSAR, chemoinformatics,
chemical genomics—Molecular similarity can be viewed as the distance between
molecules in a continuous high-dimensional space of numerical descriptors (Johnson &
Maggiora, 1990; Bender & Glen, 2004; Eckert & Bajorath, 2007). This high dimensional
similarity space is called the chemistry space, which constitutes an important part of
chemoinformatics (Faulon & Bender, 2010; Krein & Sukumar, 2011; Varnek & Baskin,
2011). Nodes in similarity networks are most often chemical compounds, but may also be
molecular fragments, or molecular scaffolds (Hu & Bajorath, 2011). Edge definition is a
difficult task in similarity networks. Un-weighted networks can be constructed using a pre-
determined similarity threshold, while the extent of similarity may also be used as edge-
weight. From the large number of numerical descriptions of similarity listed in Table 5, we
will first consider those networks, which are based on simple chemical similarity of the
compounds involved using e.g. the Tanimoto-coefficient for the definition of edges (Rogers
& Tanimoto, 1960; Tanaka et al., 2009; Bickerton et al., 2012). We will call these networks
chemical similarity networks.

Chemical similarity networks are also small-worlds possessing hubs with a modular
structure. Similarity hubs may be used as priority starting points in fragment-based drug
design. If hubs become non-hits, many fragment-combinations can be excluded as
candidates, under the assumption that molecules similar to non-hits are also non-hits. This
strategy was shown to explore the chemistry space in much less trials than random selection
or the selection of cluster centers (Tanaka et al., 2009). Well connected fragments can also
be used in library design and in fragment-based database searches. The top 10% of most
frequently occurring molecular segments accounts for the majority of overall fragment
occurrences, thus, storing a relatively small number of fragments can cover a large portion
of the searching space (Benz et al., 2008). Chemical similarity networks were shown to be a
very useful description of the diversity and drug-likeness of bioactive compounds against
various drug targets (Bickerton et al., 2012).

Molecular similarity is particularly important in medicinal chemistry. This is due to the
‘similar property principle’ which states that similar molecules have similar biological
activity (Johnson & Maggiora, 1990). This principle also serves as a basis of most
quantitative structure-activity relationship (QSAR) modeling methods (note that we will use
the term, QSAR to describe structure activity relationships in general). However, the
relationship between chemical similarity and biological activity is not always
straightforward (Martin et al., 2002), which necessitates the use of sophisticated approaches
in drug design, such as the multi-component similarity networks listed in Table 5.

In QSAR-related similarity networks (also called network-like similarity graphs) nodes are
often color-coded according to their biological action potency value (pIC50 or pKi), and
scaled in size based on their contribution to the QSAR landscape features such as ‘activity
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cliffs’ or smooth regions. Near activity cliffs, small changes in molecular structure induce
large changes in biological activity, while in smooth regions of the QSAR landscape
changes in chemical structure only result in small or gradual changes in activity. QSAR-
related similarity networks contain more information than chemical similarity networks. In
contrast, chemical similarity networks were found to be topologically robust to the methods
for representing and comparing chemical information. The choice of molecular
representation (molecular descriptors) may change the interpretation of QSAR landscapes,
where the appropriate selection of similarity (distance) cut-offs was proven to be crucial. If
the cut-off value was too low, there were many isolated nodes; if the cut-off was too high,
QSAR-related similarity networks became overcrowded and less useful for predictions.
QSAR-related similarity networks are small worlds and contain hubs. Subsets of compounds
related by different local QSARs are often organized in small communities (also called as
clusters). High centrality nodes form ‘chemical bridges’ between various compound
communities providing important QSAR information. These nodes can be used for
‘hopping’ between sub-networks having different chemical characteristics. Searching for
nodes with high centrality and a closer look at their properties may contribute to the
discovery of new drug candidates and uncover new directions for mechanistic-, scaffold- or
target-hopping approaches (Gonzalez-Diaz & Prado-Prado, 2008; Hert et al., 2008; Prado-
Prado et al., 2008; Wawer et al., 2008; Bajorath et al., 2009; Prado-Prado et al., 2009;
Gonzalez-Diaz et al., 2010a; Peltason et al., 2010; Prado-Prado et al., 2010; Wawer et al.,
2010; Iyer et al., 2011a; Iyer et al., 2011b; Iyer et al., 2011c; Krein & Sukumar, 2011;
Wawer & Bajorath, 2011a; Wawer & Bajorath, 2011b). SARANEA (http://www.limes.uni-
bonn.de/forschung/abteilungen/Bajorath/labwebsite/downloads/saranea/view) is a freely
available program to mine structure-activity and structure-selectivity relationship
information in compound data sets (Lounkine et al., 2010). Recently, group-based QSAR
models were introduced, providing promising approaches in multi-target drug design
(Ajmani & Kulkarni, 2012). Methods for the systematic comparision of molecular
descriptors, such as that introducted by Bender et al. (2009), are very useful to guide future
work – including network-related applications.

Dehmer et al. (2009) showed the usefulness of network complexity analysis in the
determination of topological descriptor uniqueness. We demonstrate the usefulness of
QSAR-related similarity network descriptors on chirality, since the different enantiomers of
drug candidates can exhibit large differences in activity. Using complex networks, García et
al. (2009) investigated the drug-drug similarity relationship of more than 1,600
experimentally unexplored, chiral 3-hydroxy-3-methyl-glutaryl coenzyme A inhibitor
derivatives with a potential to lower serum cholesterol preventing cardiovascular disease.
Inclusion of chirality in network description may guide synthesis efforts towards new chiral
derivatives of potentially high activity. QSAR-related similarity networks including chiral
information of G protein-coupled receptor ligands identified that opposing chiralities
induced alterations in molecular mechanism (Iyer et al., 2011b).

Another important application of QSAR-related similarity networks is the molecular
fragment network of human serum albumin binding defined by Estrada et al. (2006). The
identification of polar ‘emphatic’ fragments anchoring chemicals to serum albumin and
hydrophobic fragments determining albumin binding was an important step in network-
related prediction of bioavailability.

Interestingly, a similar growth mechanism was found in the evolution of chemical reaction
networks (Fialkowski et al., 2005; Grzybowski et al., 2009) and QSAR-related similarity
networks (Iyer et al., 2011a). Growth was predominantly observed around a few hubs that
emerged early in the growth process, and did not reach whole segments of the network until
a very late phase of development. Analyzing evolving datasets can be very important to
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identify over-sampled regions containing redundant compound structure information, or yet
unexplored regions in the chemical reaction network or QSAR-related similarity network.

The ‘similar property principle’ stating that similar molecules have similar biological
activity (Johnson & Maggiora, 1990) can be reversed, and used for the construction of
similarity networks, which means that compounds having a similar biological action are
similar. Compounds or compound scaffolds can be connected using the similarity of their
protein binding sites, as well as of the protein domains or the entire proteins harboring these
sites. The emerging network defined the ‘pharmacological space’. Hub ligands of this
network were bridges between different ligand clusters. The network representation proved
to be useful for identifying drug chemotypes, and for the probabilistic modeling of yet
undiscovered biological effects of chemical compounds (Paolini et al., 2006; Keiser et al.,
2007; Yildirim et al., 2007; Hert et al., 2008; Park & Kim, 2008; Yamanishi et al., 2008;
Adams et al., 2009; Bleakley & Yamanishi, 2009; Keiser et al., 2009; Hu et al., 2011;
Yamanishi et al., 2011; Tabei et al., 2012). Using the above datasets He et al. (2010)
encoded chemical compounds with functional groups and proteins with biological features
of 4 major drug target classes, and worked out a prediction of drug-target interactions using
the maximum relevance minimum redundancy method. Riera-Fernández et al. (2012) gave
quality-scores of drug-target network edges using the combined information of the chemical
structure network of the drug and the protein structure network of its target.

An important approach to compare the similarity of chemical compounds is to construct the
network of drug-therapy interactions, where drugs are connected, if they are used in the
same therapy class of the five hierarchical Anatomical Therapeutic Chemical (ATC)
classification levels. Average paths in this drug-therapy network are shorter than 3 steps.
Distant therapies are separated by a surprisingly low number of chemical compounds. Inter-
modular, bridging and otherwise central drugs in the drug-therapy network may have more
indications than currently known, thus drug-therapy network data may be useful for drug-
repositioning (Nacher & Schwartz, 2008). Text mining may be an important method to
enrich drug-therapy networks in the future (Ruan et al., 2004).

mRNA expression patterns were the first system-wide descriptors of drug effects enabling
target clustering, target identification, and prediction of the mechanism of action of new
compounds (Marton et al., 1998; Hughes et al., 2000; Lamb et al., 2006; Iorio et al., 2009;
Chua & Roth, 2011). Huang et al. (2010a) connected mRNA expression profiles with a
disease diagnosis database. Using a Bayesian learning algorithm they could query drug-
treatment related mRNA expression profile and decipher drug similarity not only to each
other, but also to specific disease and disease classes.

As we will discuss in detail in Sections 4.1.5. and 4.3.5., drugs seldom have a single effect.
Based on this, the chemical similarity of drugs may be derived from their side-effects,
describing a broader repertoire of drug action than the effect related to the original target.
Campillos et al. (2008) connected drugs sharing a certain degree of side-effect similarity.
This network uncovered shared targets of unrelated drugs and forms an important network
method for drug repositioning.

Going one level further in systems-level abstraction, similarity of compounds can be
measured by comparing the topological similarity of their target neighborhoods in protein-
protein interaction networks (Hansen et al., 2009; Edberg et al., 2012). Li et al. (2009a)
concluded from the investigation of an Alzheimer’s Disease-related dataset, that the
combination of curated drug-target databases and literature mining data outperformed both
datasets when used alone. Systems-level inquiries are helped by ChemProt (http://
www.cbs.dtu.dk/services/ChemProt), a database of more than 700,000 chemicals, 30,000
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proteins and their over 2 million interactions integrated to a human protein-protein
interaction network having over 400,000 interactions (Taboreau et al., 2011).

Baggs et al. (2010) encouraged the inclusion of network readouts (like transcriptome,
proteome, phosphoproteome, metabolome and epigenetic system-wide datasets) in QSAR
methods leading to QNSAR (quantitative network structure-activity relationships). In
agreement with this suggestion, in recent years an increasing number of complex databases
were published, where network reconstitution was used to predict biologically meaningful
clusters of datasets, novel drug-candidate molecules, new drug applications, unexpected
drug-drug interactions, drug side-effects and toxicity. We list these datasets in Table 5. As
noted by Vina et al. (2009), increased reliance on indirect data similarities may compromise
accuracy, but may also enable the exploration of those segments of the data association
landscape, where no direct alignments were available. The aggregative assessment of
multiple (and system-wide) datasets helps to pick up those similarities, which are the most
relevant despite the many uncertainties of the individual data or their associations.

Utilizing the rich repertoire of the assessment of network topology and dynamics, listed in
Section 2, will be helpful for predicting future directions in compound optimization, or
redirecting research efforts to unexplored or more fruitful regions of chemical space.
Moreover, detailed analysis of complex similarity networks are useful for predicting new
targets of existing drugs, i.e. multi-target drug identification and drug repositioning. Finally,
assessment of similarity networks can be used as an efficient predictor of drug specificity,
efficacy, ADME, resistance, side-effects, drug-drug interactions and toxicity.

3.2. Protein structure networks
Proteins are the major targets of drug action, and therefore the description of their structure
and dynamics has a crucial importance in the determination of drug binding sites, as well as
in prediction of drug effects at the sub-molecular level. In this section we will show how
protein structure networks help the characterization of disease-related proteins, the
understanding of drug action mechanisms and drug targeting.

3.2.1. Definition and key residues of protein structure networks—In most protein
structure network representations (also called amino acid networks, residue interaction
networks, or protein meta-structures) nodes are the amino acid side chains. Though
occasionally protein structure network nodes are defined as the atoms of the protein, the
side-chain representation is justified by the concerted movement of side-chain atoms. Edges
of protein structure networks are defined using the physical distance between amino acid
side-chains. Distances are usually measured between Cα or Cβ atoms, but in some
representations the centers of mass of the side chains are calculated, and distances are
measured between them. Edges of unweighted protein structure networks connect amino
acids having a distance below a cut-off distance, which is usually between 4 to 8.5 Å
(Artymiuk et al., 1990; Kannan & Vishveshwara, 1999; Green & Higman, 2003; Bagler &
Sinha, 2005; Böde et al., 2007; Krishnan et al., 2008; Vishveshwara et al., 2009; Doncheva
et al., 2011; Csermely et al., 2012; Doncheva et al., 2012b; Di Paola et al., 2013). A detailed
study compared the effect of various Cα-Cα contact assessments, such as the atom distance
criteria, the isotropic sphere chain and the anisotropic ellipsoid side-chain models, as well as
of the selection of various cut-off distances. The study showed that the atom distance criteria
model was the most accurate description having a moderate computational cost. The best
amino acid pair specific cut-off distances varied between 3.9 and 6.5 Å (Sun & He, 2011).
In protein structure networks with weighted edges, edge weight is usually inversely
proportional to the distance between the two amino acid side-chains (Artymiuk et al., 1990;
Kannan & Vishveshwara, 1999; Green & Higman, 2003; Bagler & Sinha, 2005; Böde et al.,
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2007; Krishnan et al., 2008; Vishveshwara et al., 2009; Doncheva et al., 2011; Csermely et
al., 2012; Doncheva et al., 2012b; Di Paola et al., 2013).

Web-servers have been established to convert Protein Data Bank 3D protein structure files
into protein structure networks, and to provide their network analysis. The RING server
(http://protein.bio.unipd.it/ring) gives a set of physico-chemically validated amino acid
contacts (Martin et al., 2011), and imports it to the widely used Cytoscape platform (Smoot
et al., 2011) enabling their network analysis using the tool-inventory described in Section 2.
Recently a specific, Cytoscape-linked (Smoot et al., 2011) tool-kit for protein structure
network assessment, RINalyzer (http://www.rinalyzer.de) was published. The program is
complemented by a protein structure determination module, called RINerator (http://
rinalizer.de/rindata.php), which determines the protein structure networks and stores pre-
determined protein structure networks of Protein Data Bank 3D protein structure files. The
RINalyzer program was also linked to the NetworkAnalyzer software (http://
med.bioinf.mpi-inf.mpg.de/netanalyzer; Assenov et al., 2008) allowing the comparison of
protein structure networks and the extension of their analysis to protein-protein interaction
networks (Doncheva et al., 2011; Doncheva et al., 2012b).

Protein structure networks are “small worlds”. This is very important for the fast
transmission of drug-induced conformational changes, since in the small-world of protein
structure networks all amino acids can communicate with each other by taking only a few
steps. Path-length analysis of individual amino acid side-chains was shown to be effective in
predicting whether the protein, or its segment, is disordered. In protein structure networks
we may find considerably less large hubs than in other networks. However, the existing
smaller hubs still play an important role in protein structures, since these ‘micro-hubs’ were
shown to increase the thermodynamic stability of proteins (Kannan & Vishveshwara, 1999;
Green & Higman, 2003; Atilgan et al., 2004; Bagler & Sinha, 2005; Brinda &
Vishveshwara, 2005; Del Sol et al., 2006; Alves & Martinez, 2007; Del Sol et al., 2007;
Krishnan et al., 2008; Konrat, 2009; Morita & Takano, 2009; Estrada, 2010; Csermely et al.,
2012). Protein structure networks possess a rich club structure with the exception of
membrane proteins, where hubs form disconnected, multiple clusters (Pabuwal & Li, 2009).

Protein structure networks have modules, which often encode protein domains (Xu et al.,
2000; Guo et al., 2003; Delvenne et al., 2010; Delmotte et al., 2011; Szalay-Bekő et al.,
2012). High-centrality segments of protein structure networks (i.e. hubs, or nodes with high
closeness or betweenness centralities) having a low clustering coefficient participate in hem-
binding (Liu & Hu, 2011). High-centrality, inter-modular bridges play a key role in the
transmission of allosteric changes as we will describe in the next section.

Evolutionary conservation patterns of amino acids in related protein structures identified
protein sectors (Halabi et al., 2009; McLaughlin et al., 2012). A similar concept has been
published by Jeon et al. (2011), who determined that co-evolving amino acid pairs are often
clustered in flexible protein regions. Protein sectors are sparse networks of amino acids
spanning a large segment of the protein. Protein sectors are collective systems operating
rather independently from each other. Segments of protein sectors are correlated with
protein movements related to enzyme catalysis, and sector-connected surface sites are often
places of allosteric regulation (Reynolds et al., 2011).

3.2.2. Key network residues determining protein dynamics—Understanding
protein dynamics is a key step in the prediction of drug-induced changes and the
identification of novel types of drug binding sites. Several questions related to protein
dynamics, such as the mechanism of allosteric changes gained much attention in the last
century (Fischer, 1894; Koshland, 1958; Straub & Szabolcsi, 1964; Závodszky et al., 1966;
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Tsai et al., 1999; Goodey & Benkovic, 2008; Csermely et al., 2010; Szilágyi et al., 2013),
but have not been completely elucidated yet.

Our current understanding indicates that an allosteric change extends across a spectrum: at
one end there is a switch-type conformational change, where signaling appears focused on a
small number of amino acids (Fig. 14A). At the other end, allosteric signaling may involve a
large number of amino acids. In both cases allosteric signals propagate through multiple
trajectories, with different distributions and weights. Pathways often converge at inter-
domain boundaries (Fig. 14B). While protein segments involved in switch-type allosteric
changes may be more rigid, protein segments harboring multiple trajectories may be more
flexible. Convergence points in these latter proteins may mark the more flexible inter-
domain regions. Switch-type mechanism is typical of multidomain proteins, and is often
expressed in all-or-none observable consequences.

Disordered protein regions serve the need for large flexibility, and therefore are often used,
especially in the human proteome (Csermely et al., 2012; Tompa, 2012). Protein structure
network description may be a useful method to describe the complexity of protein structures,
which are neither very rigid, nor very flexible. However, protein structure networks may not
adequately describe the dynamics of very rigid and extremely flexible (e.g. disordered)
protein structures (Szilágyi et al., 2013).

Hinges connecting relatively rigid protein segments often play a decisive role in switch-type
changes. Hinges may be co-localized with independent dynamic segments, which are
situated in the stiffest parts of the protein, and harbor spatially localized vibrations of
nonlinear origin, like those of discrete breathers. Independent dynamic segments exchange
their energy largely via a direct energy transfer, which is in agreement with a switch-type
behavior (Daily et al., 2008; Piazza & Sanejouand, 2008; Piazza & Sanejouand, 2009;
Csermely et al., 2010; Csermely et al., 2012).

In contrast, in allosteric systems, where signaling involves a large number of amino acids,
signals propagate using multiple trajectories (Fig. 14B). These multiple trajectories often
converge at inter-modular residues of protein structure networks (Pan et al., 2000;
Chennubhotla & Bahar, 2006; Ghosh & Vishveshwara, 2007; Tang et al., 2007; Daily et al.,
2008; Ghosh & Vishveshwara, 2008; Sethi et al., 2009; Tehver et al., 2009; Vishveshwara et
al., 2009; Csermely et al., 2012; Gasper et al., 2012).

A given protein may have a spectrum of the above mechanisms for the propagation of
conformational changes. In agreement with this behavior, discrete breathers were shown to
be present at the interface between monoatomic and diatomic granular chain model
(Hoogebom et al., 2010). If certain protein segments become more rigid, the mechanism
may shift towards the first, switch-type signal transduction mechanism. This can be
conceptualized as the propagation of a ‘rigidity-front’, which we recently proposed as a
mechanism of allosteric signaling (Csermely et al., 2012). Panel C of Fig. 14 shows an
illustrative mechanism of rigidity front propagation. Consecutive ‘rigidization’ of protein
segments both induces similar changes in the neighboring segment, and accelerates the
propagation of the allosteric change within the rigid segment. Rigidity front propagation
may use sequential energy transfers (illustrated by the violet arrows; Piazza & Sanejouand,
2009; Csermely et al., 2010), and thus may increase the speed of the allosteric change
(Csermely et al., 2012). The rigidity front propagation model combines elements of ‘rigidity
propagation’ (Jacobs et al., 2001; Jacobs et al., 2003; Rader & Brown, 2011) with the
‘frustration front’ concept of Zhuravlev & Papoian (2010), with the dynamic pre-stress of
proteins as large as a few 100 pN (Edwards et al., 2012), and is in agreement with the recent
proposal of Dixit & Verkhivker (2012) suggesting an interactive network of minimally
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frustrated (rigid) anchor sites (hot spots) and locally frustrated (flexible) proximal
recognition sites to play a key role in allosteric signaling. We will describe the use of
allosteric signal propagation mechanisms to design allo-network drugs (Nussinov et al.,
2011) in Section 4.1.6.

Protein structure networks may be efficiently used to identify key amino acids involved in
intra-protein signal transmission. In these studies topological network analysis was often
combined with the assessment of evolutionary conservation, elastic network models and/or
normal mode analysis. Inter-modular nodes, hinges, loops and hubs were particularly
important in information transmission (Chennubhotla & Bahar, 2006; Chennubhotla &
Bahar, 2007; Zheng et al., 2007; Chennubhotla et al., 2008; Tehver et al., 2009; Liu &
Bahar, 2010; Liu et al., 2010a; Su et al., 2011; Park & Kim, 2011; Dixit & Verkhivker,
2012; Ma et al., 2012a; Pandini et al., 2012). The examination of a hierarchical
representation of protein structure networks showed a key function of top level, ‘superhubs’
in allosteric signaling (Ma et al., 2012a). xPyder provides an interface between the widely
employed molecular graphics system, PyMOL and the analysis of dynamical cross-
correlation matrices (http://linux.btbs.unimib.it/xpyder; Pasi et al., 2012).

The incorporation of novel network centrality measures (described in Section 2.3.3.) and
network dynamics (described in Section 2.5.) will enrich our knowledge of the mechanism
of conformational changes (including allosterism).

3.2.3. Disease-associated nodes of protein structure networks—Proteins related
to more frequently occurring diseases tend to be longer than average (Lopez-Bigas et al.,
2005). Disease-related proteins have a smaller ‘designability’; that is, their folds can be built
up from fewer variants than the average. In other words: disease-related proteins have a
constrained structure, which may explain, why they have debilitating mutations (Wong &
Frishman, 2006). Disease-associated mutations (single-nucleotide polymorphisms) often
occur at sites having a high local or global centrality in the protein structure network, and
are enriched by 3-fold at the interaction interfaces of proteins associated with the disorder
(Akula et al., 2011; Li et al., 2011b; Wang et al., 2012b). Recently, a machine learning
method has been developed to predict the disease-association of a single-nucleotide
polymorphism using the network neighborhood of the mutation site (Li et al., 2011b).

3.2.4. Prediction of hot spots and drug binding sites using protein structure
networks—Key functional residues are very useful in the identification of drug binding
sites as we will discuss in Section 4.2. Usual drug binding sites are cavity-type, and overlap
with substrate or allosteric ligand binding. High centrality residues of protein structure
networks were shown to participate in ligand binding (Liu & Hu, 2011). Protein structure
network position-based scores improved the rigid-body docking algorithm of pyDock (Pons
et al., 2011). Protein structure comparison can also be used for the identification of chemical
scaffolds of potential drug candidates (Konrat, 2009).

Binding sites of edgetic drugs modifying protein-protein interactions (see Section 4.1.2.) are
large and flat, and have been considered as non-druggable for a long time. Hot spots are
those residues of these alternative drug binding sites, which provide a key contribution (>2
kcal/mol) to the decrease in binding free energy. Hot spots tend to cluster in tightly packed,
relatively rigid hydrophobic regions of the protein-protein interface also called hot regions.
Hot spots and hot regions are very helpful; they aid drug design, since 1.) they constitute
small focal points of drug binding, which can be predicted within the large and flat binding-
interface; 2.) these focal points are relatively rigid, helping rigid docking and molecular
dynamics simulations (Clarkson & Wells, 1995; Bogan & Thorn, 1998; Keskin et al., 2005;
Keskin et al., 2007; Ozbabacan et al., 2010). Hot spots can be predicted as central nodes of
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protein structure networks (del Sol & O’Meara, 2005; Liu & Hu, 2011; Grosdidier &
Fernande, 2102).

The elastic network model-guided molecular dynamics simulation of Isin et al. (2012)
showed that different ligands of the β2-adrenergic receptor prefer different predicted
conformers of the receptor. This model predicted a novel allosteric binding site for larger
drugs, such as salmetrol. Since different conformations participate in different metabolic and
signaling pathways, such conformational modeling will be a powerful tool in the
determination of novel drug binding sites and in the analysis of refined drug action
mechanisms.

Despite these advances, the use of the predictive power of protein structure networks is
surprisingly low in the determination of drug binding sites. We believe that the arsenal of
network analytical and network dynamics methods we listed in Sections 2.3. and 2.5. and
their application to protein structure networks will provide a much greater help in the
identification of drug binding sites in the future.

3.3. Protein-protein interaction networks (network proteomics)
Protein-protein interaction networks are one of the most promising network types to predict
drug action or identify new drug target candidates. In this section we will summarize the
major properties of protein-protein interaction networks and will assess their use in the
characterization and prediction of disease-related proteins and drug targets.

3.3.1. Definition and general properties of protein-protein interaction networks
—Protein-protein interaction networks (PPI-networks) are often called interactomes –
especially if they cover genome-wide data. Nodes of protein-protein interaction networks
are proteins, and network edges are their direct, physical interactions. Protein-protein
interaction networks are probability-type networks; that is, the edge weights reflect the
probability of the actual interaction. Interactome edge weights are often calculated as
confidence scores. Interaction probability includes protein abundance, interaction affinity,
and also co-expression levels, co-localization in subcellular compartments, etc. (De Las
Rivas & Fontanillo, 2010; Jessulat et al., 2011; Sardiu & Washburn, 2011; Seebacher &
Gavin, 2011). Table 6 summarizes a number of major protein-protein interaction datasets
concentrating on publicly available, human interactome data. There are several types of
protein-protein interaction networks, which we list below.

• Even though protein-protein interaction datasets usually cover multiple species, the
derived networks, that is, the interactomes are usually species-specific. Interactome
subnetworks may be restricted to cell type, to cellular sub-compartment, or to
certain temporal segments of cellular life, such as a part of the cell cycle, cell
differentiation, malignant transformation, etc. These specializations may be direct,
where the interactions of proteins are experimentally measured in the given species,
cell type, cellular compartment, or condition. In many cases the specializations are
indirect, where the presence of the actual proteins and/or the intensity of the
protein-protein interactions are estimated from mRNA expression levels. Disease-
specific or drug treatment-related interactomes hold promise for future drug
development efforts (De Las Rivas & Fontanillo, 2010; Jessulat et al., 2011; Sardiu
& Washburn, 2011; Seebacher & Gavin, 2011).

• Protein-protein interaction networks may be refined to networks of interacting
protein domains, called domain networks or DDI-networks. Domain networks can
be a better representation of drug action, deciphering domain-specific inhibition or
activation (Fig. 15). Current lists of possible domain-domain interactions predict
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millions of novel, potential protein-protein interactions. However, not all domain-
domain interactions may occur in the cellular context due to hindrances, binding
competition or subcellular localization. Domain-domain interactions and their
networks were used both to score protein-protein interactions (bottom-up approach)
and to predict domain composition and interactions from interactome data (top-
down approach) (Deng et al., 2002; Ng et al., 2003; Santonico et al., 2005; Emig et
al., 2008; Prieto & De Las Rivas, 2010; Yellaboina et al., 2011; Stein et al., 2011).

• Atomic resolution interactomes expand protein-protein interaction networks with
the protein structure networks of each interacting node aiming to construct the 3D
structure of the whole interactome, and discriminating between parallel and
sequential interactions (Kim et al., 2006; Prieto & De Las Rivas, 2010; Bhardwaj et
al., 2011; Clarke et al., 2012; Pache & Aloy, 2012; Sánchez Claros & Tramontano,
2012). It is important to note that atomic level interactomes will never reach the
real 3D complexity of the cell, since protein-protein interactions are probabilistic,
reflecting an average of the possible interactions.

Protein-protein interaction data can be obtained using various high-throughput methods
(such as protein fragment complementation assays, or affinity purification combined with
mass spectrometry), text mining or prediction techniques. For details on the increasing
number of methodologies the Reader is referred to recent reviews on the subject (Chautard
et al., 2009; De Las Rivas & Fontanillo, 2010; Jessulat et al., 2011; Sardiu & Washburn,
2011; Seebacher & Gavin, 2011; De Las Rivas & Fontanillo, 2012; Gonzalez & Kann,
2012). Prediction methods were also summarized in Sections 1.3.3. and 2.2.2., as well as in
Tables 2 and 3. Data-quality is a major problem of interactomes. Sampling bias, missing
interactions and false positives are all important factors influencing the robustness of
interactome results. Evolutionary conservation rates of interactions are often low (Lewis et
al., 2012). High-quality data are more reliable, but are not necessarily representative of
whole interactomes. Some of these problems may be circumvented by using confidence
scores calculated by various methods, such as the summative, network topology-based or
Bayesian network-based models. Since different methods have different biases, composite
scores taking multiple data-types into account perform better (Hakes et al., 2008; Sánchez
Claros & Tramontano, 2012). The size of the human interactome has been estimated to have
650,000 interactions (Stumpf et al., 2008). Though a recent report (Havugimana et al., 2012)
added 14 thousand high-confidence interactions to the growing list of human interactome
edges, currently we are still far from deciphering the full complexity of this richness.

Table 6 lists a number of web-resources used for interactome analysis. A collection of
protein-protein interaction network analysis web-tools can be found in recent reviews
(Ma’ayan, 2008; Moschopoulos et al., 2011; Ma & Gao, 2012; Sanz-Pamplona et al., 2012).
Protein-protein interaction networks are small worlds, have hubs and a well developed,
hierarchical modular structure. These interactomes do not possess such an extensive rich-
club as the social elite, i.e. hubs do not form dense clusters with each other (Maslov &
Sneppen, 2002; Colizza et al., 2006; De Las Rivas & Fontanillo, 2010; Sardiu & Washburn,
2011). Soluble proteins tend to possess more connections than membrane proteins (Yu et al.,
2004a). Steric hindrances severely limit the maximum number of simultaneous interactions.
Tsai et al. (2009) warned that large interactome hubs may often be a result of aggregated
data not taking into account protein conformations, posttranslational modifications,
isoforms, expression differences and localizations. Another possibility to increase binding
partners is sequential binding, which results in the formation of date hubs (as opposed of
party hubs binding their partners simultaneously). Date hubs are often singlish-interface
hubs as opposed to party-hubs, which are multi-interface hubs. Multi-interface hubs display
a greater degree of conformational change than singlish-interface hubs (Han et al., 2004a;
Kim et al., 2006; Bhardwaj et al., 2011). Interestingly, natural product drugs were shown to
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target proteins having a higher number of neighbors than targets of synthetic drugs (Dancík
et al., 2010).

Interactome modules overlap with each other, since most proteins are members of multiple
protein complexes. Modules often correspond to major cellular functions (Palla et al., 2005).
Refined modularization methods define modular cores containing only a few proteins, which
occupy a central position of the interactome module. Major function of core proteins often
reflects a consensus function of the whole module (Kovács et al., 2010; Szalay-Bekő et al.,
2012; Srihari & Leong, 2013). Importantly, protein complexes may also form sparsely
interconnected network modules, which often escape traditional detection methods (Srihari
& Leong, 2012). Date hubs occupy inter-modular positions as opposed to party-hubs, which
are in modular centers. Multi-component hubs (which, similarly to date-hubs, bridge
multiple dense local network components) were enriched in regulatory proteins. Bridges and
other inter-modular nodes play a key role in drug action (Han et al., 2004a; Komurov &
White, 2007; Kovács et al., 2010; Fox et al., 2011; Szalay-Bekő et al., 2012).

As we discussed in Section 2.3.4., interactome hubs were shown to be an important
predictor of essentiality (Jeong et al., 2001). Hub Objects Analyzer (Hubba) is a web-based
service for exploring potentially essential nodes of interactomes assessing the maximum
neighborhood component (Lin et al., 2008). Single-component hubs (i.e. hubs in the middle
of a stable network neighborhood) were shown to be more essential than multi-component
hubs, i.e. hubs connecting multiple dense network regions (Fox et al., 2011). Essential
proteins associate with each other more closely than the average, and tend to be more
promiscuous in their function. Many of these essential genes are housekeeping genes with
high and less fluctuating expression levels (Jeong et al., 2001; Yu et al., 2004c). Later more
global network measures, such as bottlenecks or more globally central proteins were also
shown to contribute to the determination of essential nodes (Chin & Samanta, 2003; Estrada,
2006; Yu et al., 2007b; Missiuro et al., 2009; Li et al., 2011a).

The recent work of Hamp & Rost (2012) uncovered that variability of protein-protein
interactions is much more frequent than previously thought. Besides single-nucleotide
polymorphisms, alternative splicing, addition of N- or C-terminal tags, partial proteolysis
and other post-translational modifications (such as phosphorylation), changes in protein
expression patterns may dramatically reconfigure protein complexes. Dynamic changes of
protein-protein interactions, such as co-expression based clustering are key determinants of
the disease state as we discuss in the next Chapter. Importantly, interactome analysis has not
been adequately extended to the assessment of interactome dynamics, and currently the
application of the tools listed in Section 2.5. is largely missing. The human proteome is
enriched in disordered proteins causing dynamically fluctuating, ‘fuzzy’ interaction patterns
(Tompa, 2012). As an initial example of these studies the yeast interactome was shown to
develop more condensed and more separated modules after heat shock and other types of
stresses than under optimal growth conditions. Importantly, yeast cells preserved a few
inter-modular bridges during stress and developed novel, stress-specific bridges containing
key proteins in cell survival (Mihalik & Csermely, 2011).

3.3.2. Protein-protein interaction networks and disease—Most human diseases are
oligogenic or polygenic affecting a whole set of proteins and their interactions. In the last
decade several genome-wide datasets became available to characterize disease-related
patho-mechanisms. mRNA expression patterns, genome-wide association studies (GWAS)
of disease-associated single-nucleotide polymorphisms (SNPs) and disease-related changes
in posttranslational modifications (such as the phospho-proteome) are just three of the most
widely used datasets, which may also include system-wide changes of subcellular
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localization. All this information can be incorporated in protein-protein interaction networks
as changes in edge configuration and weights (Zanzoni et al., 2009; Coulombe, 2011).

As we described in Section 1.3., disease-associated proteins do not generally act as
interactome hubs, with the important exception of somatic mutations, such as those
occurring in cancer, where disease-associated multi-interface hubs form an interconnected
rich club (Jonsson & Bates, 2006; Goh et al., 2007; Feldman et al., 2008; Kar et al., 2009;
Barabasi et al., 2011; Zhang et al., 2011a). Disease-related proteins have a smaller clustering
coefficient than average, which was used for the prediction of novel disease-related genes
(Feldman et al., 2008; Sharma et al., 2010a)

Disease-related proteins form overlapping disease modules. Suthram et al. (2010) identified
59 core modules out of the 4,620 modules of the human interactome, which were affected by
mRNA changes in more than half of the 54 diseases examined. These core modules were
often targeted by drugs, and drugs affecting the core modules were more often multi-target
drugs than those acting on ‘peripheral’ modules, which changed their mRNA levels only in a
few specific diseases. Bridges and additional types of overlaps between disease-related
interactome modules may provide important points of interventions (Nguyen & Jordán,
2010; Nguyen et al., 2011).

3.3.3. The use of protein-protein interaction networks in drug design—
Uncovering the estimated ~650,000 interactions of the human interactome (Stumpf et al.,
2008) is an ongoing, key step in network-related drug design efforts (see Rual et al., 2005;
Stelzl et al., 2005; Chautard et al., 2009; Burkard et al., 2011; De Las Rivas & Prieto, 2012;
Havugimana et al., 2012 and databases of Table 6). Databases like ChemProt: http://
www.cbs.dtu.dk/services/ChemProt including 700,000 chemicals and 2 millions of
interactions of their target proteins in various specii (Taboreau et al., 2011) provide a great
help in this process. However, interactome complexity goes much beyond the inventory of
contacts and binding partners, and includes expression level-induced, posttranslational
modification-induced (such as phosphorylation-dependent), cellular environment-induced
(such as calcium-dependent) and protein domain-dependent variations (Santonico et al.,
2005). We illustrate the latter on Fig. 15.

Drug targets have a generally larger number of neighbors than average. In agreement with
assumptions related to disease-associated protein contacts described in the previous section,
the larger number of neighbors comes mostly from the contribution of middle-degree nodes;
but not hubs. Drug targets in cancer are exceptions having a more defined hub-structure.
Drug target proteins have a lower clustering coefficient than other proteins. Drug targets
often occupy a central position in the human interactome bridging two or more modules.
Nodes having an intermediate number of neighbors have an extensive contact structure.
Targeting these non-hub nodes (with the exception of infectious diseases and cancer) is
crucial to avoid unwanted side-effects. As opposed to targets of withdrawn drugs having a
too large network influence, drug target proteins perturb the interactome in a controlled
manner (Hase et al., 2009; Zhu et al., 2009; Butlinck et al., 2012; Yu & Huang, 2012).

Properties of the interactome topology were used to predict and score novel drug target
candidates using mainly machine learning techniques (Zhu et al., 2009; Zhang & Huan,
2010; Yu & Huang, 2012). Network neighborhood similarity to the drug targets test-set
proved to be a good predictor of additional targets (Zhang & Huan, 2010). This feature may
actually show the limits of machine learning-based approaches: since current drug targets
are often similar to each other (Cokol et al., 2005; Yildirim et al., 2007; Iyer et al., 2011a),
machine learning techniques may not be useful to extend the current drug target inventory to
surprisingly novel hits.
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Modulation of specific protein-protein interactions provides a much higher specificity to
restore disease pathology to the normal state than targeting a whole protein. We will
describe methods for the design of such ‘edgetic drugs’ in Section 4.1.2. Conceptually, it is
much easier to develop inhibitors of protein-protein interactions than agents for increasing
binding affinity or stability. The latter option together with the inclusion of interactome
dynamics using the tools listed in Section 2.5. are very promising future trends of the field.
As a recent advance to explore drug-induced interactome dynamics, Schlecht et al. (2012)
investigated the changes in the yeast interactome upon the addition of 80 diverse small
molecules. Their method could identify novel protein-protein contacts specifically disrupted
by the addition of drugs such as the immunosuppressant, FK506.

3.4. Signaling, microRNA and transcriptional networks
“Representations of signaling networks in many textbooks and even in some of the most
recent review articles have in their simplicity a striking similarity to children’s drawings”
(Lewitzky et al., 2012; Fig. 16). The complex representation of a signaling network is
constructed by upstream and downstream subnetworks. The upstream subnetwork contains
the intertwined network of signaling pathways, while the downstream, regulatory part
contains DNA transcription factor binding sites and microRNAs (Fig. 17). As we will show
in the following subsections, both subnetworks are highly structured, are linked to each
other, and are very important in drug discovery. The systems-level exploration and
understanding of signaling networks significantly facilitate drug target identification, target
selection in pathological networks and the avoidance of unwanted side-effects. At the end of
the section we will also point out important network features that make signaling-related
drug discovery a challenging task.

3.4.1. Organization and analysis signaling networks—Signaling pathways, the
functional building blocks of intracellular signaling, transmit extracellular information from
ligands through receptors and mediators to transcription factors, which induce specific gene
expression changes. Signaling pathways constitute the upstream part of signaling networks
(Fig. 17). Over the past decade, it has been realized that signaling pathways are highly
structured, and are rich in cross-talks, where cross-talk was defined as a directed physical
interaction between pathways (Papin et al., 2005; Fraser & Germain, 2009). As the number
of input signals (ligands/receptors) and output components (transcription factors) are
limited, cross-talks between pathways can create novel input/output combinations
contributing to the functional diversity and plasticity of the signaling network (Kitano,
2004a). However, cross-talks have to be precisely regulated to maintain output specificity
(meaning that inputs preferentially activate their own output) and input fidelity (meaning
that outputs preferentially respond to their own input). Regulation of crosstalks to prevent
‘leaking’ or ‘spillover’ can be achieved using different mediation mechanisms, such as
scaffolding proteins, cross-pathway inhibitions, kinetic insulation, and the spatial and
temporal expression patterns of proteins (Freeman, 2000; Bhattacharyya et al., 2006;
Kholodenko, 2006; Behar et al., 2007; Haney et al., 2010; Lewitzky et al., 2012).

The regulatory subnetwork (gene regulatory network) constitutes the downstream part of the
signaling pathway-network (Lin et al., 2012). The gene regulatory network can be separated
into the transcriptional and the post-transcriptional levels. At the transcriptional level,
transcription factors bind specific regions of DNA sequences (called transcription factor
binding sites, or response elements) regulating their mRNA expression. Horizontal contacts
of middle-level regulators play a key role in gene regulatory networks, especially in human
cells. The human transcription factor regulatory network has a basic architecture, which is
independent from the cell type and is complemented by cell type specific segments
(Bhardwaj et al., 2010; Gerstein et al., 2012; Neph et al., 2012).
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MicroRNAs (miRNAs or miRs) are key players of gene regulatory networks, and regulate
gene expression by binding to complementary sequences (i.e. microRNA binding-sites) on
target mRNAs. MicroRNA binding may suspend or permanently repress the translation of
given transcripts (Doench & Sharp, 2004; Guo et al., 2010). In the last decade, it became
evident that nearly all human genes can be controlled by at least one microRNA (Lewis et
al., 2003), and that mutations in microRNA coding genes often have pathological
consequences (Calin & Croce, 2006). Interactome hubs, bottleneck proteins and downstream
signaling components, such as transcription factors are regulated by more microRNAs than
other nodes (Cui et al., 2006; Liang & Li, 2007; Hsu et al., 2008).

Besides biochemical and molecular biological approaches, reverse engineering of genome-
wide transcriptional changes proved to be very efficient for determining signaling networks
as we detailed in Section 2.2.3. Signaling networks are small-worlds and possess signaling
hubs. Networks (partially due to their pathway structures) have modules, and cross-talking
proteins may often be considered as bridges between these modules. In the last decade
several resources have been developed to provide signaling pathways, transcription factor
and transcription factor binding site information, as well as microRNA networks. We
summarize some of these signaling network resources in Table 7. A list of several other
pathway databases can be found at PathGuide (http://pathguide.org; Bader et al., 2006). A
compendium of human transcription factors have been collected and analyzed by Vaquerizas
et al. (2009). Experimentally validated microRNA-mRNA interactions are available from
TarBase (Vergoulis et al., 2012), while predicted interactions can be accessed at TargetScan
and PicTar (Lewis et al., 2005; Krek et al., 2005). To examine the signaling network in a
unified fashion, recently a few integrated resources, like IntegromeDB,
TranscriptomeBrowser 3.0 and SignaLink 2.0, have been developed allowing the
examination of all layers from signaling pathways to microRNAs through transcription
factors (Korcsmáros et al., 2010; Baitaluk et al., 2012; Lepoivre et al., 2012; Fazekas et al.,
2013).

There was considerable progress in defining algorithms to identify the downstream
components of a signaling network affected by the inhibition of a specific protein or protein
set. Such methods identify targets, which inhibit certain outputs of the signaling network,
while leaving others intact, redirecting the signal flow in the network (Ruths et al., 2006;
Dasika et al., 2006; Pawson & Linding, 2008). This recuperates the output specificity and
input fidelity in a drug-target context, where output specificity corresponds to the
minimization of side-effects, while input fidelity represents drug efficiency at the signaling
network level.

The dynamics of signaling networks is regulated by changes in the abundance of their
components, by complex formation, by macromolecular crowding, and subcellular
localization (Lewitzky et al., 2012). The assessment of signaling network kinetics is helped
by perturbation analysis, differential equation models, constrained fuzzy logic models and
Boolean methods. In the latter, the activity of signaling components is represented by 0:1
states connected by directed and conditional edges as we summarized in Section 2.5.2. on
network perturbations (Kauffman et al., 2003; Shmulevich & Kauffman, 2004; Berg et al.,
2005; Antal et al., 2009; Farkas et al., 2011). There are several excellent methods for the
analysis of Boolean networks.

• BooleanNet (http://booleannet.googlecode.com) is a versatile, publicly available
software library to describe signaling network dynamics using the Boolean
description (Albert et al., 2008).
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• PATHLOGIC-S (http://sourceforge.net/projects/pathlogic/files/PATHLOGIC-S)
offers a scalable Boolean framework for modeling cellular signaling (Fearnley &
Nielsen, 2012).

• PathwayOracle (http://old-bioinfo.cs.rice.edu/pathwayoracle) is a fast simulation
program of large signaling networks taking into account their topology (Ruths et
al., 2008a; Ruths et al., 2008b).

• Changes in memory effects (i.e. specific decay times of gene products) greatly
affected Boolean network behavior (Graudenzi et al., 2011a; Graudenzi et al.,
2011b).

• Boolean models can be trained by high-throughput data such as by
phosphoproteomics (Videla et al., 2012).

• Recently the CellNOpt algorithm (http://www.ebi.ac.uk/saezrodriguez/cno) was
introduced, which uses either Boolean logic or constrained fuzzy logic to generate
and analyze cell-specific signaling networks (Morris et al., 2012; Terfve et al.,
2013).

• The method of Chen et al. (2011) is able to identify sub-pathways and principal
components of sub-pathways affected by a drug or disease.

The elucidation of signaling network dynamics can be greatly helped by quantitative
phosphoproteomics (White, 2008). Reaction network analysis pointed out receptor-related
events and not kinase-related events as rate-limiting factors in IL-12 signaling (Klinke &
Finley, 2012). In an interesting study on signaling dynamics, Cheong et al. (2011) assessed
the amount of information transduced by the TNF-related signaling network in the presence
of cellular noise. They found that signaling bottlenecks may have a crucial influence on
signaling capacity in the presence of noise. Negative feedback can reduce noise, increasing
signal capacity in the short term (30 minutes after stimulation). However, negative feedback
behaves as a double-edged sword, and also reduces the dynamic range of the signal input
reducing the capacity in the longer run (4 hours after stimulation). Perturbation modeling
suggested that cancer-related proteins may have a larger than usual signaling capacity
(Serra-Musach et al., 2012). Signal transmission capacity analysis has many unsolved
questions. Currently, we do not understand the decision making limits of the vast majority of
signaling systems. Information-loss, and information-integration all affect the information
handling capacity, which is presumed to be minimally sufficient (Brennan et al., 2012).
Future, network-related analysis of signaling dynamics faces the important task of finding an
optimal ratio of large-scale signaling network topology and refined kinetic details to find
answers to these questions.

3.4.2. Drug targets in signaling networks—Understanding the structure and dynamics
of signaling networks is used more and more often in drug discovery (Pawson & Linding,
2008). Drugs having a similar pharmacological profile reach similarly discrete positions in
signaling networks (Fliri et al., 2009). In signaling networks of healthy cells a distinctive
role was suggested for proteins in the junctions of signaling pathways. These proteins were
termed ‘critical nodes’ by Taniguchi et al. (2006) as exemplified by the PI3 kinase, AKT
and IRS isoforms in insulin signaling. Proteins forming a bridge between signaling modules
(e.g., SHC, SRC and JAK2) have a track record as targets of drug action (Hwang et al.,
2008; Gardino & Yaffe, 2011).

Studies on pathologically altered signaling networks can uncover possible drug targets,
whose malfunction is involved in the etiology of the disease. For example, driver mutations
of tumorigenesis affect a limited number of central pathways (Tomlinson et al., 1996; Ali &
Sjoblom, 2009). Targeting of these specific pathways may prevent tumor growth. However,
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the development of aggressive tumor cells causes a systems-level change of the signaling
network causing the appearance of angiogenetic and metastatic capabilities, as well as the
deregulation of cellular metabolism and avoidance of the immune system (Hanahan &
Weinberg, 2000; Hornberg et al., 2006; Papatsoris et al., 2007; Hanahan & Weinberg,
2011). Changes of cross-talking (i.e. multi-pathway) proteins are key steps in disease-
induced rewiring of the signaling network, e.g. transforming a ’death’ signal into
a ’survival’ signal (Hanahan & Weinberg, 2000; Hornberg et al., 2006; Kim et al., 2007;
Torkamani & Schork, 2009; Mimeault & Batra, 2010; Farkas et al., 2011). Multi-pathway
proteins show a significant change in their expression level in hepatocellular carcinoma
(Korcsmáros et al., 2010).

We have more than 500 types of post-translational modifications offering a rich repertoire
for signaling (Lewitzky et al., 2012). Traditionally, among these, protein kinases are the
most targeted proteins of the cellular signaling network (Pawson & Linding, 2008).
However, the similarity of ATP-binding pockets poses a significant challenge in kinase
targeting. Kinase domains and their target motifs (i.e., specific amino acid sequences in the
substrate proteins) can be accessed in resources such as Phosphosite (Hornbeck et al., 2012),
NetworKIN and NetPhorest (Linding et al., 2008; Miller et al., 2008). Kinase regulatory
domain associations, kinase-associated scaffold proteins and multi-site docking proteins
often direct subcellular localizations, and play a key role determining signaling kinetics and
substrate specificity (Remenyi et al., 2006; Palfy et al., 2012). Scaffolding proteins are
flexible; and they, and multi-site docking proteins may increase network flexibility (by
allowing integrative crosstalks; Lewitzky et al., 2012). However, our systems-level
knowledge on these undirected protein-protein interactions is rather limited. Disruption of
kinase-centered sub-interactomes and/or remodeling of kinase-centered protein complexes
are focus areas of drug design (Brehme et al., 2009; Bandyopadhyay et al., 2010; Li et al.,
2012a).

Protein phosphatases play a dominant role in determining the spatio-temporal behavior of
protein phosphorylation systems (Herzog et al., 2012; Nguyen et al., 2013; Sacco et al.,
2012). Despite their promising effect, only a few protein tyrosine phosphatases are currently
used as therapeutic targets (Alonso et al., 2004). The development of phosphatase-related
drugs is more complicated than that of kinase targeting drugs, since i.) the high-level of
homology between phosphatase domains limits the development of selective compounds; ii.)
contrary to kinases, phosphatase substrate specificity is achieved through docking of the
phosphatase complex at a site distant from the dephosphorylated amino acid (Roy & Ciert,
2009; Shi, 2009); (iii) the targeted sequences are highly charged, and many of the interacting
compounds are not hydrophobic enough to cross the membrane (Barr, 2010). Despite these
difficulties, phosphatase-targeting holds great promise in signaling-related drug design.

In the last decade, microRNAs have been recognized as highly promising intervention points
of the signaling network. Though the use of antisense nucleotides comes with great
challenges in pharmacological availability, microRNA targeting affects mRNA clusters
having a rather specific effect at the transcriptome level (Gambari et al., 2011). Down- or
up-regulation of microRNAs is implicated in more than 270 diseases according to the
Human MicroRNA Disease Database (http://202.38.126.151/hmdd/mirna/md; Lu et al.,
2008) including cardiovascular, neurodegenerative diseases, viral infections and various
types of cancer (McDermott et al., 2011). Identification of new microRNA targets may be
helped by the microRNA clusters associated with the same disease (Lu et al., 2008), or with
expression modules (Bonnet et al., 2010).

MicroRNA targeting is typically a systems-level endeavor. Most microRNAs have a number
of targets, and are in an intensive cross-talk with transcription factors (Lin et al., 2012)
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forming a highly cross-reacting, and cross-regulated network. The microRNA network has
hierarchical layers, and hundreds of ‘target hubs’, each potentially subject to massive
regulation by dozens of microRNAs (Shalgi et al., 2007). Cancer cells, as opposed to normal
cells, have disjoint microRNA networks, where major hubs of normal cells are down-
regulated, and cancer-specific novel microRNA hubs emerge (Volinia et al., 2010).
MicroRNA-regulated drug targets were shown to preferentially interact with each-other, and
tend to form hub-bottlenecks of the human interactome (Wang et al., 2011c). Unwanted,
network-level side-effects of microRNA targeting may be predicted using databases, such as
SIDER (http://sideeffects.embl.de; Kuhn et al., 2010), web-services, such as PathwayLinker
(http://PathwayLinker.org; Farkas et al., 2012) or the other integrated resources listed in
Table 7. Miravirsen, a locked nucleic acid-modified antisense oligonucleotide, targets the
liver-expressed microRNA-122 and is in phase-II clinical trial for treatment of hepatitis C
virus infection (Lindow & Kauppinen, 2012).

3.4.3. Challenges of signaling network targeting—Signal transduction is highly
context-specific: it depends on the gene expression patterns, mRNA stability, protein
synthesis, and degradation conditions. Certain signaling modules (such as regulation of
apoptosis) seem to share evolutionary traits with others, while other signaling proteins
developed more independently. These variabilities necessitate a precise knowledge of the
actual status of the signaling network in the disease condition and in the affected patient
population (Cui et al., 2009; Davis et al., 2012; Hamp & Rost, 2012; Kirouac et al., 2012).

As we have shown in the preceding section, cross-talking (i.e., multi-pathway, bridge)
proteins are in a critical position of the signaling network providing a very efficient set of
potential drug targets (Korcsmáros et al., 2007; Hwang et al., 2008; Kumar et al., 2008;
Spiro et al., 2008; Korcsmáros et al., 2010). However, numerous drug developmental
failures were caused by undiscovered or underestimated crosstalk effects (Rajasethupathy et
al., 2005; Jia et al., 2009). Cross-talking proteins may have opposite roles in healthy and
diseased (such as in malignant) cells. Moreover, targeting of cross-talking proteins may
significantly affect the systems-level stability (robustness) of healthy or diseased cells
(Kitano, 2004b; Kitano, 2007). Targeting proteins in negative feedback loops may suppress
the inhibitory effect of the feedback loop, and thereby activate the targeted pathway (Sergina
et al., 2007). Feedback loops are not always direct, and can exist at multiple levels of a
pathway. In conclusion, targeting multi-pathway and feedback loop proteins requires a
particularly detailed knowledge of signaling network responses (Barabasi et al., 2011;
Berger & Iyengar, 2009).

Systems-level properties are also needed to assess the development of drug resistance and
drug toxicity.

• Development of drug resistance is often a result of a systems-level response of
signaling networks involving mutation of key signaling proteins (such as multi-
pathway proteins), or of the activation of alternative pathways due to system-
robustness (Kitano, 2004a; Logue & Morrison, 2012). As a specific form of drug
resistance, many anticancer drugs induce stress response/survival pathways
directly, or indirectly, by producing a stressful environment (Tomida & Tsuruo,
1999; Chen et al., 2006b; Tiligada, 2006). Thus, systems-level approaches that
combine anti-tumor drugs and stress response targeting may increase therapeutic
efficiency (Tentner et al., 2012; Rocha et al., 2011).

• Hepatotoxicity is a major cause of drug development failures in the pre-clinical,
clinical and post-approval stages (Kaplowitz, 2001). Hepatic cytotoxicity responses
are regulated by a multi-pathway signaling network balance of intertwined pro-
survival (AKT) and pro-death (MAPK) pathways. Importantly, therapeutic
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modulation of cross-talks between these pathways as well as specific pathway
inhibitors could antagonize drug-induced hepatotoxicity (Cosgrove et al., 2010).

We will address network-based assessment of drug toxicity and drug resistance in Sections
4.3.3. and 4.3.6. in more detail.

3.5. Genetic interaction and chromatin networks
In this section we will describe the drug-related aspects of genetic interaction networks.
Genetic interaction networks are related to gene regulatory networks. However, here gene-
gene interactions are often indirect. Chromatin networks encode 3D interactions between
distant DNA-segments of the chromatin structure, and may be regarded as a specific
representation of genetic interaction networks. While genetic interaction networks already
helped drug design, chromatin interaction networks are recent developments holding a great
promise for future studies.

3.5.1. Definition and structure of genetic interaction networks—The most
stringent (and traditional) description of a genetic interaction comes from comparing the
phenotypes of the individual single mutants with the phenotype of the double mutant. We
can distinguish between negative and positive genetic interactions: if the fitness of the
double mutants is worse than the additive effect of the two single mutants, then the genes
have a negative interaction. Conversely, if the fitness of the double mutants is better than
expected, the two genes interact positively. A severe type of negative interactions is
synthetic lethality, when the two single mutants are viable, but their double mutant becomes
lethal. Genes of negative (i.e. aggravating) interactions may operate in parallel processes,
while those of positive (i.e., alleviating or epistatic) interactions may function in the same
process (Guarente, 1993; Hartman et al., 2001; Dixon et al., 2009). The complexity of the
genetic interaction network is illustrated well by compensatory perturbations, where a
debilitating effect can be compensated by another inhibitory effect (Motter, 2010; Cornelius
et al., 2011).

Most comprehensive genome-wide studies were performed in inbred model systems, such as
yeast and worm, as well as in isogenic populations of cultured cells derived from fruit flies
and mammals. It is plausible that many genetic interactions identified in these unicellular
organisms can be relevant for all other eukaryotes (Tong et al., 2004; Roguev et al., 2008;
Dixon et al., 2008; Dixon et al., 2009; Costanzo et al., 2010). However, comparison between
orthologous genes of yeast and worm found less than 5% of synthetic lethal genetic
interactions to be conserved (Byrne et al., 2007). Furthermore, most of the human disease
genes are metazoan-specific. Despite the widespread specificity, there are some genetic
interactions (such as those of DNA repair enzymes, which are commonly mutated in
cancer), which are conserved from yeast to humans (McManus et al., 2009).

Besides mutational studies, system-wide assessments of output signals, such as
transcriptomes, allowed the phenotype analysis of thousands of perturbations inferring a
genetic interaction network. We reviewed the reverse engineering methods allowing
network inference in Section 2.2.3. It appears that no single interference method performs
optimally across all data sets. Therefore, the integration of predictions from multiple
interefence methods seems to give the best results (Marbach et al., 2011). The genetic
interaction network obtained by direct mutational studies, or by reverse engineering methods
exhibited dense local neighborhoods, while highly correlated profiles delineated specific
pathways defining gene function, and were used for pre-clinical drug prioritization (Xiong et
al., 2010). Recently, an algorithm called HotNet was introduced to identify genetic
interaction network clusters (http://compbio.cs.brown.edu/software.html; Vandin et al.,
2012).

Csermely et al. Page 47

Pharmacol Ther. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://compbio.cs.brown.edu/software.html


Mapping of genetic interactions to protein-protein interaction or to signaling networks may
uncover the underlying mechanisms. Consequently, we can define ‘between-pathway’,
‘within-pathway’ and ‘indirect’ types of genetic interactions. With this approach,
approximately 40% of the yeast synthetic lethal genetic interactions were mapped to
physical pathway models identifying 360 between-pathway and 91 within-pathway models
(Kelley & Ideker, 2005). Synthetic lethal gene pairs were found mostly close to each other
(often within the same modules), while rescuing genes were often in alternative pathways
and/or modules (Hintze & Adami, 2008). Combinations of genetic interactions with mRNA
expression patterns, interactome data, gene-drug interactions, or with chemical compound
similarity measures (for details see the compendium of Table 5) offered a great help in the
identification of drug targets and drug-affected genes (Parsons et al., 2006; Hansen et al.,
2009; Gosline et al., 2012).

Measurement of time-series of genome-wide mRNA expression patterns after drug
treatment of 95 genotyped yeast strains led to the identification of novel genetic interaction
network relationships including novel feedback loops and transcription factor binding sites
(Yeung et al., 2011). BioLayout Express gives an integrative network visualization and
analysis of gene expression data (http://www.biolayout.org; Freeman et al., 2007;
Theocharidis et al., 2009). SteinerNet provides integrated transcriptional, proteomic and
interactome data to assess regulatory networks (http://fraenkel.mit.edu/steinernet/; Tuncbag
et al., 2012). Genetic interaction networks may also be defined in a more general manner,
where any types of interactions, such as correlated expression levels, interacting protein
products, or co-participation in a disease etiology or drug action, may form an edge between
two genes serving as nodes of the network (Schadt et al., 2009). Genome-wide association
studies (GWAS) identified single-nucleotide polymorphism (SNP) derived gene-gene
association networks revealing novel between-pathway models (Cowper-Sal-lari et al.,
2011; Fang et al., 2011; Hu et al., 2011; Li et al., 2012b).

3.5.2. Chromatin networks and network epigenomics—An underlying molecular
mechanism establishing genetic interaction networks is the network of long-range
interactions of the 3D chromatin structure. Recent methodologies based on proximity
ligation with next generation sequencing (abbreviated as Hi-C or ChIA-PET) enabled the
construction of a functionally associated, long-range contact network of the human
chromatin structure. This chromatin network contains functional modules, and has a rich
club of hub-hub interactions (Fullwood et al., 2009; Liberman-Aiden et al., 2009; Dixon et
al., 2012; Li et al., 2012c; Sandhu et al., 2012).

The chromatin network determines cancer-associated chromosomal alterations (Fudenberg
et al., 2011). Moreover, the chromatin network configuration was shown to be grossly
altered by the overexpression of ERG, an oncogenic transcription factor activated primarily
in prostate cancers (Rickman et al., 2012). The structure of the chromatin network is largely
determined by inheritable epigenetic factors, such as histone posttranslational modifications,
DNA silencers and nascent RNA scaffolds (Schreiber & Bernstein, 2002; Moazed, 2011;
Pujadas & Feinberg, 2012). Chromatin networks are an exciting and fast-developing area of
network-studies, which will provide promising tools to predict drug-drug interactions, drug
side-effects and system-wide effects of anti-cancer and other drugs inducing chromatin
reprogramming.

3.5.3. Genetic interaction networks as models for drug discovery—The genetic
interaction network of yeast can be used as a system for rational ranking of potential new
antifungal targets; it may also shed light on human drug mechanisms of action, since several
human drugs specifically inhibit the orthologous proteins in yeast (Hartwell et al., 1997;
Cardenas et al., 1999; Hughes, 2002). The identification of 16 genes, whose inactivation
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suppressed the defects in the retinoblastoma tumor suppressor pathway in another widely
used model system, Caenorhabditis elegans, could point out potential targets for
pharmaceutical intervention or prevention of human retinoblastoma-linked tumors (Lee et
al., 2008b). Extending this methodology, McGary et al. (2010) defined orthologous
phenotypes, or ‘phenologs’, which can be regarded as evolutionarily conserved outputs that
arise from the disruption of a set of genes. The phenolog approach identified non-obvious
equivalences between mutant phenotypes in different species, establishing a yeast model for
angiogenesis defects, a worm model for breast cancer, mouse models of autism, and a plant
model for the neural crest defects associated with the Waardenburg syndrome (McGary et
al., 2010).

Many pharmacologically interesting genes, such as nuclear hormone receptors and GPCRs
occur in large families containing paralogues, i.e. duplicated homologous genes. Though
model organisms can significantly help us to understand how human genes interact with
each other, it is important to keep in mind that paralogues often do not have the same
function. This problem can be circumvented by targeting paralogue-sets, which makes the
identification of paralogues and their functions a key point in multi-target drug design
(Searls, 2003).

Wang et al. (2012c) gave an interesting example for the use of genetic interaction networks
in the assessment of the effects of drug combinations. They showed that drug combinations
have significantly shorter effect radius than random combinations. Drug combinations
against diseases affecting the cardiovascular and nervous systems have a more concentrated
effect radius than immuno-modulatory or anti-cancer agents.

3.6. Metabolic networks
In this section we will describe metabolic networks, i.e. networks of major metabolites
connected by enzyme reactions, which transform them to each other. Metabolic networks
are the biochemically constrained subsets of the chemical reaction networks we summarized
in Section 3.1.2. After the description of the structure and properties of metabolic networks
we will summarize their use in drug targeting with special reference to the identification of
essential reactions as potential drug targets in infectious diseases and in cancer.

3.6.1. Definition and structure of metabolic networks—In a metabolic network,
each node represents a metabolite. Two nodes are connected, if there is a biochemical
reaction that can transform one into the other. Edges of metabolic networks represent both
reactions and the enzymes that catalyze them. (We note that metabolic networks may also
have another projection, where nodes are the enzymes and edges are the metabolites
connecting them, but this projection is seldom used, since it is less relevant to biological
processes.) Metabolic processes may be represented as hypergraphs, where edges connect
multiple nodes. An edge may correspond to multiple reactions both in the forward direction
and in the opposite direction. Moreover, some reactions occur spontaneously, and therefore
have no associated enzymes. Most metabolites are fairly general, but the biochemical
reaction structure connecting them is often rather special to the given organism (Guimera et
al., 2007b; Ma & Goryanin, 2008; Chavali et al., 2012).

Reconstruction of metabolic networks became a highly integrative process, which applies
genome sequences, enzyme databases, and specifies the network using transcriptome and
proteome data (Kell, 2006; Ma & Goryanin, 2008). In the last decade several metabolic
networks, such as those of E. coli, yeast and humans have been assembled. Moreover,
recently bacterium-, strain-, tissue- and disease-specific metabolic networks were
reconstituted. However, it should be kept in mind that metabolic network data are often still
incomplete, and often reflect optimal growth conditions (Edwards & Palsson, 2000a; Förster
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et al., 2003; Duarte et al., 2007; Ma et al., 2007; Shlomi et al., 2008; Shlomi et al., 2009;
Folger et al., 2011; Holme, 2011; Chavali et al., 2012; Szalay-Bekő et al., 2012).

Metabolic networks have a small-world character, possess hubs, and display a hierarchical
bow-tie structure similar to other directed networks, such as the worldwide-web. Metabolic
networks have a hierarchical modular structure (Jeong et al., 2001; Wagner & Fell, 2001;
Ravasz et al., 2002; Ma & Zheng, 2003; Ma et al., 2004; Guimera & Amaral, 2005; Zhao et
al., 2006). Correlated reaction sets (Co-sets) are representations of metabolic network
modules encoding reaction-groups with linked fluxes. Hard-coupled reaction sets (HCR-
sets) are those subgroups of Co-sets, where consumption/production rates of participating
metabolites are 1:1. Since all reactions of a HCR-set changes, if any of its reactions is
targeted, HCR-sets help in prioritizing potential drug target lists (Papin et al., 2004;
Jamshidi & Palsson, 2007; Xi et al., 2011). Metabolic networks have a core and a periphery
(Almaas et al., 2004; Almaas et al., 2005; Guimera & Amaral, 2005; Guimera et al., 2007b).
Core and periphery may also be discriminated in the non-topological sense that genes and
gene pairs of the ‘core’ are essential under many environmental conditions, while those of
the ‘periphery’ are needed under some environmental conditions (Papp et al., 2004; Pál et
al., 2006; Harrison et al., 2007).

Metabolic control analysis (MCA) is good for smaller networks where kinetic parameters
are known, while flux balance analysis (FBA), flux-variability analysis (FVA) and
elementary flux mode analysis are very useful methods to characterize systems-level
metabolic responses (Fell, 1998; Cascante et al., 2002; Klamt & Gilles, 2004; Chavali et al.,
2012). Resendis-Antonio (2009) integrated high throughput metabolome data describing
transient perturbations in a red blood cell metabolic network model. This approach may be
applicable for the modeling and metabolome-wide understanding of drug-induced metabolic
changes (Fan et al., 2012). In Table 8 we list resources to define and analyze metabolic
networks.

3.6.2. Essential enzymes of metabolic networks as drug targets in infectious
diseases and in cancer—Metabolic networks help in the identification essential
proteins. This requires a systems-level approach, since an essential metabolite might be
produced by several pathways (Palumbo et al., 2007). As an example of metabolic
robustness, the early work of Edwards & Palsson (2000b) showed that the flux of even the
tricarboxylic acid cycle can be reduced to 19% of its optimal value without significantly
influencing the growth of E. coli. When designing a drug against a metabolic network of an
infectious organism or against cancer cells, many parameters should be kept in mind. We list
a few of them here.

• Network topology analysis is not enough to predict essential enzymes, since it does
not indicate whether the topologically important enzymes are active under specific
conditions. Moreover, metabolic fluxes are determined by gene expression levels
(representative to the affected tissue, or cell status) and by signaling- or interaction-
related activation/inhibition of pathway enzymes. Genes that are not identified
correctly as essential genes are usually connected to fewer reactions and to less
over-coupled metabolites, and/or their associated reactions are not carrying flux in
the given condition (Becker & Palsson, 2008; Chavali et al., 2012; Kim et al.,
2012).

• Infectious organisms often take advantage of the metabolism of the host requiring
the analysis of integrated parasite-host metabolic networks (Fatumo et al., 2011).

• Essentiality is not a yes/no variable: essentiality of a given reaction depends on the
environment of the infectious organism, or cancer cells. Therefore, metabolic
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network-based drug-design should incorporate environment interactions and
stressor effects (Guimera et al., 2007b; Jamshidi & Palsson, 2007; Ma & Goryanin,
2008; Kim et al., 2012).

• A promising current trend, metabolic interactions of bacterial communities, such as
the gut microbiome, are also important factors to consider (Chavali et al., 2012;
Kim et al., 2012).

• Drug targets against infectious organisms or against cancer should be specific for
the target itself or for its drug binding site, or for its network-related consequences
of targeting (Guimera et al., 2007b; Ma & Goryanin, 2008; Chavali et al., 2012).
This highlights the importance of comparing metabolic network pairs.

• Finally, network-analysis offers a great help to predict side-effects (Guimera et al.,
2007b). We will detail network-methods of side-effect prediction in Section 4.3.5.

Enzymes catalyzing a single chemical reaction on one particular substrate are frequently
essential (Nam et al., 2012). Through the analysis of metabolic network structure, choke
points were identified as reactions that either uniquely produce or consume a certain
metabolite. Efficient inhibition of choke points may cause either a lethal deficiency, or toxic
accumulation of metabolites in infectious organisms (Yeh et al., 2004; Singh et al., 2007).
Later choke point analysis was combined with load point analysis (identification of nodes
with a high ratio of k-shortest paths to the number of nearest neighbor edges providing many
alternative metabolic pathways) and with comparison of the metabolic networks of
pathogenic and related non-pathogenic strains. Such methods can test multiple knock-outs
on a high throughput manner predicting effective drug combinations (Fatumo et al., 2009;
Perumal et al., 2009; Fatumo et al., 2011).

Guimera et al. (2007b) developed a network modularity-based method for target selection in
metabolic networks. They systematically analyzed the effect of removing edges from the
metabolic networks of E. coli and H. pylori quantifying the effect by the difference in
growth rate. In both bacteria, essential reactions (edges) mostly involved satellite connector
metabolites that participate in a small number of biochemical reactions, and serve as bridges
between several different modules (Guimera et al., 2007b).

Essential and non-essential genes propagate their deletion effects via distinct routes. Flux
selectivity of a deletion of a metabolic reaction was used to design the appropriate type and
concentration of the inhibitor (Gerber et al., 2008). Recently, several iterative methods have
been constructed, sequentially identifying a set of enzymes whose inhibition can produce the
expected inhibition of targets with reduced side-effects in human and E. coli metabolic
networks (Lemke et al., 2004; Sridhar et al., 2007; Sridhar et al., 2008; Song et al., 2009).
Ma et al. (2012b) assembled ‘damage lists’ of reactions affected by deleting other reactions
using flux-balance analysis. They showed that the knockout of an essential gene mainly
affects other essential genes, whereas the knockout of a non-essential gene only interrupts
other non-essential genes. Genes sharing the same ‘damage list’ tend to have the same level
of essentiality.

A subset of genes and gene pairs may be essential under various environmental conditions,
while most genes are essential only under a certain environmental condition. In yeast
environmental condition-specificity accounts for 37–68% of dispensable genes, while
compensation by duplication and network-flux reorganization is responsible for 15–28 and
4–17% of yeast dispensable genes, respectively (Papp et al., 2004; Blank et al., 2005).
Almaas et al (2005) suggested the use of metabolic network cores to identify drug targets.
Barve et al. (2012) identified a set of 124 superessential reactions required in all metabolic
networks under all conditions. They also assigned a superessentiality index for thousands of
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reactions. Superessentiality of the 37 reactions catalyzed by enzymes having a very low
homology to human genes (Becker et al., 2006; Aditya Barve & Andreas Wagner, personal
communication) can provide substantial help in drug target selection, since the index is not
highly sensitive to the chemical environment of the pathogen.

An interesting approach to narrow metabolic networks to essential components is to identify
essential metabolites. As examples of this process, in two pathogenic organisms a total of
221 or 765 metabolites were narrowed to 9 or 5 essential metabolites, respectively, after the
removal of the currency metabolites, i.e. those present in the human metabolic network and
those participating in reactions catalyzed by enzymes having human homologues. Enzymes
that catalyze reactions involved in the production or consumption of these essential
metabolites may be considered as drug targets. Moreover, structural analogues of essential
metabolites may be considered as drug candidates for experimental evaluation (Kim et al.,
2010; Kim et al., 2011).

Using a comparison of metabolic networks, Shen et al. (2010) provided a blueprint of strain-
specific drug selection combining metabolic network analysis with atomistic level modeling.
They deduced common antibiotics against E. coli and Staphylococcus aureus, and ranked
more than a million small molecules identifying potential antimicrobial scaffolds against the
identified target enzymes.

The analysis of disease-specific metabolic networks is a key step to find ‘differentially
essential’ genes (Murabito et al., 2011). Analysis of cancer-specific human metabolic
networks led Folger et al. (2011) to predict 52 cytostatic drug targets, of which 40% were
targeted by known anticancer drugs, and the rest were new target-candidates. Their method
also predicted combinations of synthetic lethal drug targets and potentially selective
treatments for specific cancers. We will describe network-related anti-infection and anti-
cancer strategies in more detail in Sections 5.1. and 5.2.

3.6.3. Metabolic network targets in human diseases—Many human diseases cause
a metabolic deficiency rather than overproduction making the recovery of a specific
metabolic reaction a widely used drug-development strategy (Ma & Goryanin, 2008).
Systems-level assessment may lead to the development of successful combined-therapies,
such as the combination of Niacin, an inhibitor of cholesterol transportation, with
Lovastatin, an inhibitor of the cholesterol synthesis pathway to reduce blood cholesterol
level (Gupta & Ito, 2002). As a very interesting approach, a flux-balance analysis model was
developed to predict compensatory deletions (also called as synthetically viable gene pairs,
or synthetic rescues), where a debilitating effect can be compensated by another inhibitory
effect (Motter et al., 2008; Motter, 2010; Cornelius et al., 2011). Since inhibition is often a
pharmacologically more feasible intervention than activation, this approach opens novel
possibilities for drug design to restore disease-induced malfunctions. The approach of
Jamshidi & Palsson (2008) to describe temporal changes of metabolic networks is an
example of what seems to be a very promising future direction to study the process of
disease progression, and to design disease-stage specific drug treatment protocols.

4. Areas of drug design: an assessment of network-related added-value
In this section we will highlight the added-value of network related methods in major steps
of the drug design process. Fig. 18 illustrates various stages of drug development starting
with target identification, followed by hit finding, lead selection and optimization including
various methods of chemoinformatics, drug efficiency optimization, ADMET (drug
absorption, distribution, metabolism, excretion and toxicity) studies, as well as optimization
of drug-drug interactions, side-effects and resistance. Table 9 summarizes a few major data-
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sources and web-services, which can be used efficiently in network-related drug design
studies.

4.1. Drug target prioritization, identification and validation
Network-based drug target prioritization and identification is essentially a top-down
approach, where system-wide effects of putative targets are modeled to help in the
identification of novel network drug targets. These network drug targets are non-obvious
from a traditional magic-bullet type analysis aiming to find the single most important cause
of a given disease. Network node-based drug target prediction may highlight non-obvious
hits, and edge-targeting may make these hits even more specific. Drug target networks allow
us to see the system-wide target landscape and, combined with other network methods, help
drug repositioning. Multi-target drug design needs the integration of drug effects at the
system level. The new concept of allo-network drugs may identify non-obvious drug targets,
which specifically influence the major targets causing fewer side-effects than direct
targeting. Finally, treating the whole cellular network (or its segment) as a drug target, gives
a conceptual synthesis of network description and analysis in drug design.

4.1.1. Two strategies of network-based drug targeting: the central hit and the
network influence strategies—Here we propose that our current knowledge
discriminates two network-based drug identification strategies. We name the first strategy
the central hit strategy. This strategy is useful to find drug target candidates in anti-
infectious and in anti-cancer therapies. The second strategy is named network influence
strategy. This strategy uses systems-level knowledge to find drug target candidates in
therapies of polygenic, complex diseases (Fig. 19). In the central hit strategy our aim is to
damage the network integrity of the infectious agent or of the malignant cell in a selective
manner. For this, detailed knowledge of the structural differences of host/parasite or healthy/
malignant networks can help. In the network influence strategy we would like to shift back
the malfunctioning network to its normal state. For this, an understanding of network
dynamics both in healthy and diseased states is required. Knowledge of the existing drug
targets of the particular disease also helps.

System destruction of the central hit strategy finds hubs and central nodes of various
networks (the latter are called load-points in metabolic networks), and uses the methods
listed in Section 3.6.2. to find essential enzymes of metabolic networks (Jeong et al., 2001;
Chin & Samanta, 2003; Agoston et al., 2005; Estrada, 2006; Guimera et al., 2007b; Yu et
al., 2007b; Fatumo et al., 2009; Missiuro et al., 2009; Perumal et al., 2009; Fatumo et al.,
2011; Li et al., 2011a). In addition, choke points of metabolic networks, i.e. proteins
uniquely producing or consuming a certain metabolite are also excellent targets in anti-
infectious therapies (Yeh et al., 2004; Singh et al., 2007). In the case of directed, hierarchical
networks nodes at the top of the hierarchy should be attacked by the central hit strategy. Liu
et al. (2012) suggested the random upstream attack to find high position nodes in
hierarchical networks. Recent work on connections of essential reactions and on
superessential reactions (where the latter are needed in all organisms) suggests that essential
reactions form a core of metabolic networks (Barve et al., 2012; Ma et al. 2012b). Cytostatic
drug targets have also been identified through analysis of cancer-specific human metabolic
networks (Folger et al., 2011). Recent anticancer strategies mostly use the cancer-specific
targeting of signaling networks as we will describe in detail in Section 5.2.

At the protein structure level the central hit strategy may mostly target active sites. Targeting
allosteric regulatory sites may be shared by both strategies. These, cavity-like binding sites
are easier to target than the flat, ‘hot-spot’-type protein-protein interfaces mostly involved in
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the network influence strategy (Keskin et al., 2007; Ozbabacan et al., 2010). We will discuss
the network-based identification of ligand binding sites in Sections 4.2.1. and 4.2.2.

Network-based methods of the network influence strategy are much less developed than
those of the central hit strategy. Using the network influence strategy we need to conquer
system robustness to push the cell back from the attractor of the diseased state to that of the
healthy state, which is a difficult task – as we summarized in Section 2.5.2. on network
dynamics. Nodes with intermediate connection numbers located in vulnerable points of
disease-related networks (such as in inter-modular, bridging positions) driving disease-
specific network traffic are preferred targets of the network influence strategy (Kitano,
2004a; Kitano, 2004b; Ciliberti et al., 2007; Kitano, 2007; Antal et al., 2009; Hase et al.,
2009; Zanzoni et al., 2009; Fliri et al., 2010; Cornelius et al., 2011; Farkas et al., 2011; Yu
& Huang, 2012). In signaling networks preferred nodes of the network influence strategy
inhibit certain outputs of the signaling network, while leaving others intact redirecting the
signal flow in the network (Ruths et al., 2006; Dasika et al., 2006; Pawson & Linding,
2008). The network influence strategy often targets network segments, e.g. disease-modules
(Cho et al., 2012), as we will discuss in Section 4.1.7.

It is important to note that the central hit strategy is applied against rapidly growing cells,
such as those of infectious agents or cancer cells. Networks of these cells are in an
‘exploratory phase’, have larger entropy (West et al., 2012), and are presumably much more
flexible, than the networks of differentiated cells. Efficient targeting of flexible systems
having a high plasticity needs the targeting of their central nodes/edges. This is the major
mode through which the central hit strategy operates.

In contrast, the network influence strategy is applied to differentiated cells. Networks of
these cells are in an ‘optimized phase’, where the optimum was re-set for a diseased cell to a
different attractor of its state-space than that of healthy cells. Networks of differentiated
cells are presumably much more rigid than the networks of rapidly growing, undifferentiated
or dedifferentiated cells. Targeting the central nodes/edges of systems having a low
plasticity may easily ‘over-saturate’ the system leading to a change, which becomes too
large to be selective, and causes side-effects and toxicity. Therefore, the network influence
strategy often needs an indirect approach, where e.g. neighbors of the real target are targeted
(allo-network drugs), or multiple targets are targeted ‘mildly’ (multi-target drugs), and their
indirect and/or superposing effects lead to the reconfiguration of diseased network state back
to normal.

In general, the strategy-pair we described here for drug action appears valid, and is a key for
efficient modification of molecular structures, as well as neuronal and social systems at their
different states besides the cellular networks discussed here. Thus, the best targeting
probably depends on the extent of network rigidity. Flexible, plastic systems are ‘under-
defined’, and dissipate the perturbations well. These plastic systems may generally require a
well-defined attack in the form of targeting of their central nodes/edges. On the other hand,
rigid systems are ‘well-defined’, and transmit (but not dissipate) the perturbations well. Thus
optimal modification of rigid systems may be achieved by an indirect, ‘under-defined’ attack
of the neighbors of their central nodes or rigid clusters. Moreover, rigid systems often
contain multiple rigid clusters, and are often multi-modular (Mihalik & Csermely, 2011;
Gáspár & Csermely, 2012). A single central hit may not optimally target a multi-modular,
mult-centered system, which makes the network influence strategy even more efficient.

Network effects of existing drugs (e.g. in the form of drug target networks detailed in
Section 4.1.3.) may help in finding disease-specific network control-points. Drugs showing
an mRNA expression profile that is strongly anticorrelated with a disease expression profile
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might actually reverse some of the disease effects and can be used for drug-repurposing. On
the contrary, positively correlated profiles may reveal side effects (Dudley et al., 2011;
Sirota et al., 2011; Iskar et al., 2012; Pacini et al., 2013). Reverse-engineering methods
finding the underlying network structure from complex dynamic system output data (such as
genome-wide mRNA expression patterns, signaling network or metabolome, see Section
2.2.3.), as well as discriminating the primary targets from secondarily affected network
nodes help in identifying control nodes directing network dynamics (Gardner et al., 2003; di
Bernardo et al., 2005; Hallén et al., 2006; Lamb et al., 2006; Xing & Gardner, 2006; Lehár
et al., 2007; Madhamshettiwar et al., 2012). The identification of disease-specific control-
points of network dynamics will be an exciting task in the near future.

Disease-specificity may well be hierarchical. Suthram et al. (2010) identified 59 modules
out of the 4,620 modules of the human interactome, which are dysregulated in at least half
of the 54 diseases tested, and were enriched in known drug targets. Influence-cores of the
interactome, signaling, metabolic and other networks may be involved in the regulation of
many more diseases than the connection-core (e.g. hub containing rich club) or periphery of
these networks.

Potential methods to find influential nodes redirecting perturbations, affecting cellular
cooperation or asserting network control have been described in Sections 2.3.4., 2.5.2. and
2.5.3. (Xiong & Choe, 2008; Antal et al., 2009; Kitsak et al., 2010; Luni et al., 2010; Farkas
et al., 2011; Liu et al., 2011; Liu et al., 2012; Mones et al., 2012; Banerjee & Roy, 2012 ;
Cowan et al., 2012; Nepusz & Vicsek, 2012; Valente, 2012; Wang et al., 2012a). Influential
nodes may have a hidden influence, like those highly unpredictable, ‘creative’ nodes, which
may delay critical transitions of diseased cells (see Sections 2.2.2. and 2.5.2. for more
details; Csermely, 2008; Scheffer et al., 2009, Farkas et al., 2011; Sornette & Osorio, 2011;
Dai et al., 2012). Finding sets of influence-core nodes with fewer side-effects, or periphery
nodes specifically influencing an influence-core or connection-core node, will be the subject
of Sections 4.1.5. and 4.1.6. on multi-target drugs and allo-network drugs (Nussinov et al.,
2011), respectively.

4.1.2. Edgetic drugs: edges as targets—Perturbations of selected network edges give
a grossly different result than the partial inhibition (or deletion) of the whole node.
Development of drugs targeting network edges (recently called: edgetic drugs) has a number
of advantages (Arkin & Wells, 2004; Keskin et al., 2007; Sugaya et al., 2007; Dreze et al.,
2009; Zhong et al., 2009; Schlecht et al., 2012; Wang et al., 2012b).

• Many disease-associated proteins, e.g. p53, were considered non-tractable for
small-molecule therapeutics, since they do not have an enzyme activity. In these
cases edgetic drugs may offer a solution.

• Edgetic drugs are advantageous, since targeting network edges, i.e. protein-protein
interaction, signaling or other molecular networks, is more specific than node
targeting. This becomes particularly useful, when a protein simultaneously
participates in two complexes having different functions, where only one of these
functions is disease-related, like in the case of the mammalian target of rapamyicin,
mTOR (Huang et al., 2004; Agoston et al., 2005; Ruffner et al., 2007; Zhong et al.,
2009; Wang et al., 2012b).

• Due to its larger selectivity, edge targeting may provide an efficient solution in
targeting networks of multigenic diseases described as the network influence
strategy in the preceding section. Edge targeting may also be used in the central hit
strategy (targeting whole network-encoded systems) in the case of cancer, where
selectivity may be more limited than in targeting of infectious agents. Importantly,
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the selectivity of edgetic drugs is not unlimited: hitting frequent interface motifs in
a network may be as destructive as eliminating hubs. However, “interface-attack”
may affect functional changes better than the attack of single proteins (Engin et al.,
2012).

Edgetic drug development has inherent challenges. Interacting surfaces lack small, natural
ligands, which may offer a starting point for drug design. Moreover, protein-protein binding
sites involve large, flat surfaces, which are difficult to target. However, these flat surfaces
often contain hot spots, which cluster to hot regions corresponding to a smaller set of key
residues, which may be efficiently targeted by a drug of around 500 Daltons (Keskin et al.,
2007; Wells & McClendon, 2007; Ozbabacan et al., 2010). We showed the usefulness of
protein structure networks in finding hot spots in Section 3.2.4., and will summarize the
possibilities to define edgetic drug binding sites in Section 4.2.2.

In one of the few systematic studies on edgetic drugs, Schlecht et al. (2012) constructed an
assay to identify changes in the yeast interactome in response to 80 diverse small molecules,
including the immunosuppressant FK506, which specifically inhibited the interaction
between aspartate kinase and the peptidyl-prolyl-cis-trans isomerase, Fpr1. Sugaya et al.
(2007) provided an in silico screening method to identify human protein-protein interaction
targets. Edgetic perturbation of a C. elegans Bcl-2 ortholog, CED-9, resulted in the
identification of a new potential functional link between apoptosis and centrosomes (Dreze
et al., 2009). The TIMBAL database is a hand curated assembly of small molecules
inhibiting protein-protein interactions (http://www-cryst.bioc.cam.ac.uk/databases/timbal;
Higueruelo et al., 2009). The Dr. PIAS server offers a machine learning-based assessment if
a protein-protein interaction is druggable (http://drpias.net; Sugaya & Furuya, 2011; Sugaya
et al., 2012).

Current development of edgetic drugs is mostly concentrated on protein-protein interaction
networks. (We note here that most metabolic network-related drugs are by definition
‘edgetic drugs’, since in these networks target-enzymes constitute the edges between
metabolites.) Signaling networks and gene interaction networks (including chromatin
interaction networks) are promising fields of edgetic drug development. Scaffolding proteins
and signaling mediators are particularly attractive targets of edgetic drug design efforts
(Klussmann & Scott, 2008). In conclusion of this section, we list a few other future aspects
of edgetic drug design.

• To date, the preferential topology of edge-targets in the human interactome has not
been systematically addressed. Thus, currently we do not know if indeed such a
preference exists. Similarly, little attention has been paid to systematic studies of
edge-weights, i.e. binding affinity-related drug target preference. Low-affinity
binding is easier to disrupt, but interventions may not be that efficient. Disruption
of high-affinity interactions may be more challenging (Keskin et al., 2007).

• Those interactions of intrinsically disordered proteins, which couple binding with
folding, display a large decrease in conformational entropy, which provides a high
specificity and low affinity. This pair of features is useful for regulation of protein-
protein interactions and signaling, and this mechanism is widely used in human
cells. Coupled binding and folding interactions often involve localized, small
hydrophobic interaction surfaces, which provide a feasible targeting option in
edgetic drug design (Cheng et al., 2006).

• Both low-probability interactions and interactions of intrinsically disordered
proteins involve transient binding complexes. Modulation of these transient edges
by ‘interfacial inhibition’ (Pommier & Cherfiels, 2005; Keskin et al., 2007) may be
an option in future edgetic drug design.
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• Edgetic drugs are usually inhibiting interactions (Gordo & Giralt, 2009).
Stabilization of specific interactions is an area of great promise in drug design as
we will discuss in Section 4.1.6. on allo-network drugs (Nussinov et al., 2011).
Since the changed cellular environment in diseases often induces protein unfolding,
general stabilizers of protein-protein interactions in normal cells, such as chemical
chaperones, or chaperone inducers and co-inducers (Vígh et al., 1997; Sőti et al.,
2005; Papp et al., 2006; Crul et al., 2013) offer an exciting therapeutic area of
network-wide restoration of protein-protein interactions.

4.1.3. Drug target networks—A broader representation of drug target networks are the
protein-binding site similarity networks, where network edges between two proteins are
defined by not only common, FDA-approved drugs, but also by a wide variety of common
natural ligands and chemical compounds, as well as by binding site structural similarity
measures. We list a few approaches to construct such protein binding site similarity
networks below.

• Protein binding site networks can be constructed by large-scale experimental
studies. One of these systematic studies examined naturally binding hydrophobic
molecule profiles of kinases and proteins of the ergosterol biosynthesis in yeast
using mass spectrometry. Hydrophobic molecules, such as ergosterol turned out to
be potential regulators of many unrelated proteins, such as protein kinases (Li et al.,
2010b).

• Protein binding site similarity networks may be constructed using a simplified
representation of binding sites as geometric patterns, or numerical fingerprints.
Here similarities are ranked by similarity scores based on the number of aligned
features (Kellenberger et al., 2008).

• Pocket frameworks encoding binding pocket similarities were also used to create
protein binding site similarity networks (Weisel et al., 2010). Pocket frameworks
are reduced, graph-based representations of pocket geometries generated by the
software PocketGraph using a growing neural gas approach. Another pocket
comparison method, SMAP-WS combines a pocket finding shape descriptor with
the profile-alignment algorithm, SOIPPA (Ren et al., 2010).

• Enzyme substrate and ligand binding sites have been compared using cavity
alignment. Clustering of cavity space resembles most the structure of chemical
ligand space and less that of sequence and fold spaces. Unexpected links of
consensus cavities between remote targets indicated possible cross-reactivity of
ligands, suggested putative side-effects and offered possibilities for drug
repositioning (Zhang & Grigorov, 2006; Liu et al., 2008a; Weskamp et al., 2009).

• Andersson et al. (2009) proposed a method avoiding geometric alignment of
binding pockets and using structural and physicochemical descriptors to compare
cavities. This approach is similar to QSAR models of comparison detailed in
Section 3.1.3.

Identifying clusters of proteins with similar binding sites may help drug repositioning, and
could be a starting point for designing multi-target drugs as we will describe in the following
two sections. Binding site similarities help in finding appropriate chemical molecules for
new drug target candidates as described in Section 4.2. However, designing drugs for a
group of targets with similar binding sites is challenging due to low specificity as
exemplified by the drug design efforts against the ATP binding sites of protein kinases.
Construction and analysis of protein binding site similarity networks in these cases can be
helpful to identify proteins, whose active sites are different enough to be targeted
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selectively. Using 491 human protein kinase sequences, Huang et al. (2010b) constructed
similarity networks of kinase ATP binding sites. The recent tyrosine kinase target, EphB4
belonged to a small, separated cluster of the similarity network supporting the experimental
results of selective EhpB4 inhibition.

Signaling components, particularly membrane receptors and transcription factors form a
major segment of drug target networks. Drug target networks are bipartite networks having
drugs and their targets as nodes, and drug-target interactions as edges. These networks can
be projected as drug similarity networks (where two drugs are connected, if they share a
target). We summarized these projections as similarity networks in Section 3.1.3. In the
other projection of drug-target networks, nodes are the drug targets, which are connected, if
they both bind the same drug (Keiser et al., 2007; Ma’ayan et al., 2007; Yildirim et al.,
2007; Hert et al., 2008, Yamanishi et al., 2008; Bleakley & Yamanishi, 2009; Keiser et al.,
2009; van Laarhoven et al., 2011). We describe the drug development applications of this
projection in the remaining part of this section.

Drug target networks are particularly useful for comparisons of drug target proteins, since
such a network comparison can be more informative pharmacologically than comparing
protein sequences or protein structures. Drug target networks are modular: many drug
targets are clustered by ligand similarity even though the targets themselves have minimal
sequence similarity. This is a major reason, why drug target networks were successfully
used to predict and experimentally verify novel drug actions (Keiser et al., 2007; Ma’ayan et
al., 2007; Yildirim et al., 2007; Hert et al., 2008, Yamanishi et al., 2008; Bleakley &
Yamanishi, 2009; Keiser et al., 2009; Yamanishi et al., 2010; van Laarhoven et al., 2011;
Nacher & Schwartz, 2012; Mei et al., 2013).

Chen et al. (2012a) merged protein-protein similarity, drug similarity and drug-target
networks and applied random walk-based prediction on this meta-network to predict drug-
target interactions. Riera-Fernández et al. (2012) developed a Markov-Shannon entropy-
based numerical quality score to measure connectivity quality of drug-target networks
extended by both the chemical structure networks of the drugs and the protein structure
networks of their targets. As we will detail in Section 4.1.6. on allo-network drugs
(Nussinov et al., 2011), the integration of protein structure networks and protein-protein
interaction networks may significantly enhance the success-rate of drug target network-
based predictions of novel drug target candidates. Importantly, many drugs do not target the
actual disease-associated proteins but proteins in their network-neighborhood (Yildirim et
al., 2007; Keiser et al., 2009). Drugs having a target less than 3 or more than 4 steps from a
disease-associated protein in human signaling networks have significantly more side-effects,
and fail more often (Wang et al., 2012c). This substantiates the importance of the targeting
of ‘silent’, ‘by-stander’ proteins further, which may influence the disease-associated targets
in a selective manner (Section 4.1.6.; Nussinov et al., 2011).

We listed a number of drug target databases and resources useful for the construction of
drug-target networks in Table 9 at the beginning of Section 4. However, a refined
representation of a drug target network should also include protein conformations (Fig. 20).
Drugs may favor or disfavor certain protein conformations, and therefore this information is
important for a more detailed understanding of drug action (Isin et al., 2012).

Indirect drug target networks may also be constructed using available data on human
diseases, patients, their symptoms, therapies, or the systems-level effects of drug-induced
perturbations (see Fig. 6 in Section 1.3.1.; Spiro et al., 2008). Recently, several approaches
extended drug/target datasets. Vina et al. (2009) assessed drug/target interaction pairs in a
multi-target QSAR analysis enriching the dataset with chemical descriptors of targets and
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affinity scores of drug-target interactions. Wang et al. (2011b) assembled the Cytoscape
(Smoot et al., 2011) plug-in of the integrated Complex Traits Networks (iCTNet, http://
flux.cs.queensu.ca/ictnet) including phenotype/single-nucleotide polymorphism (SNP)
associations, protein-protein interactions, disease-tissue, tissue-gene and drug-gene
relationships. Balaji et al. (2012) compiled the integrated molecular interaction database
(IMID, http://integrativebiology.org) containing protein-protein interactions, protein-small
molecule interactions, associations of interactions with pathways, species, diseases and Gene
Ontology terms with user-selected integration of manually curated and/or automatically
extracted data. These and other complex approaches to drug target networks (Yamanishi et
al., 2010; Yamanishi et al., 2011; Savino et al., 2012; Tabei et al., 2012; Takarabe et al.;
2012) will lead to the development of prediction techniques of novel drug targets, and
improve drug efficiency, as well as ADMET, drug-drug interaction, side-effect and
resistance profiles.

4.1.4. Network-based drug repositioning—Drug repositioning (or drug repurposing)
aims to find a new therapeutic modality for an existing drug, and thus provides a cost-
efficient way to enrich the number of available drugs for a certain therapeutic purpose. Drug
repurposing uses a compound having a well-established safety and bioavailability profile,
and a proven formulation and manufacturing process, as well as a well-characterized
pharmacology. Most drug repositioning efforts use large screens of existing drugs against a
multitude of novel targets (Chong & Sullivan, 2007). The pharmacological network
approach asks, given a pattern of chemistry in the ligands, which targets a particular drug
may bind (Kolb et al., 2009)? Here we list network-based methods mobilizing and
efficiently using ystems-level knowledge for rational drug repositioning.

• Analysis of common segments of protein-protein interaction and signaling
networks affected by different drugs or participating in different diseases may
reveal unexpected cross-reactions suggesting novel options for drug repurposing
(Bromberg et al., 2008; Kotelnikova et al., 2010; Hao et al., 2012; Ye et al., 2012).
As an example of these efforts, PROMISCUOUS (http://bioinformatics.charite.de/
promiscuous) offers a web-tool for protein-protein interaction network-based drug-
repositioning (von Eichborn et al., 2011).

• As an extension of the above approach, analysis of the complex drug similarity
networks, by modularization, edge-prediction or by machine learning methods,
described in Section 3.1.3. (see Table 5 there), may show unexpected links between
remote drug targets indicating possible cross-reactivity of existing drugs with novel
targets (Zhang & Grigorov, 2006; Liu et al., 2008a; Weskamp et al., 2009; Zhao &
Li, 2010; Gottlieb et al., 2011a; Chen et al., 2012a; Cheng et al., 2012a; Cheng et
al., 2012b; Lee et al., 2012b). Network-based comparison of drug-induced changes
in gene expression profiles (combined with disease-induced gene expression
changes, disease-drug associations, interactomes, or signaling networks), was used
to suggest unexpected, novel uses of existing drugs (Hu & Agarwal, 2009; Iorio et
al., 2010, MANTRA server, http://mantra.tigem.it; Kotelnikova et al., 2010;
Suthram et al., 2010; Gottlieb et al., 2011a; Luo et al., 2011, DRAR-CPI server,
http://cpi.bio-x.cn/drar; Jin et al., 2012; Lee et al., 2012c, CDA server: http://cda.i-
pharm.org; Pacini et al., 2013, DvD server as a Cytoscape plug-in: http://
www.ebi.ac.uk/saezrodriguez/DVD).

• Genome-wide association studies (GWAS) may also be used to construct drug-
related networks helping drug repositioning including in a personalized manner
(Zanzoni et al., 2009; Coulombe, 2011; Cowper-Sal-lari et al., 2011; Fang et al.,
2011; Hu et al., 2011; Li et al., 2012b; Sanseau et al., 2012). Important future
applications may use the comparison of phosphoproteome and metabolome data to
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reveal further drug repositioning option, including personalized drug application
protocols.

• Drug target networks (including drug-binding site similarity networks and drug-
target-disease networks) summarized in the preceding section help in drug
repositioning. Modularization or edge prediction of these networks may reveal
novel applications of existing drugs (Keiser et al., 2007; Ma’ayan et al., 2007;
Yildirim et al., 2007; Hert et al., 2008, Yamanishi et al., 2008; Bleakley &
Yamanishi, 2009; Keiser et al., 2009; Kinnings et al., 2010; Mathur &
Dinakarpandian, 2011; van Laarhoven et al., 2011; Daminelli et al., 2012; Nacher
& Schwartz, 2012).

• Central drugs of drug-therapy networks, where two drugs are connected, if they
share a therapeutic application (Nacher & Schwartz, 2008), such as inter-modular
drugs connecting two otherwise distant therapies, may reveal novel drug
indications. Drug-disease networks have also been constructed and used for this
purpose (Yildirim et al., 2007; Qu et al., 2009). Moreover, disease-disease
networks (Goh et al., 2007; Rhzetsky et al., 2007; Feldman et al., 2008; Spiro et al.,
2008; Hidalgo et al., 2009; Barabasi et al., 2011; Zhang et al., 2011a) and the other
disease and drug-related network representations we listed in Section 1.3.1. (see
Fig. 6 there; Spiro et al., 2008) may also be used for drug repositioning. Edge
prediction methods (detailed in Section 2.2.2.) and network-based machine learning
methods may also be applied to these networks to uncover novel drug-therapy
associations.

• Tightly interacting modules of drug-drug interaction networks (Yeh et al., 2006;
Lehár et al., 2007) may also reveal unexpected, novel therapeutic applications.

• Side-effects of drugs, summarized in Section 4.3.5., may often reveal novel
therapeutic areas. Shortest path, random walk and modularity analysis of side-
effect similarity networks offers a number of novel options for network-based drug
repositioning (Campillos et al., 2008; Yamanishi et al., 2010; Oprea et al., 2011;
Takarabe et al., 2012).

Network-related datasets and methods to reveal drug-drug interactions (Section 4.3.4.), or
drug side-effects (Section 4.3.5.) may all give clues for drug re-positioning. Drug
repositioning also has challenges, such as validation of the drug candidate from incomplete
and outdated data, and the development of novel types of clinical trials (Mei et al., 2012).
However, most network-based methods helping drug repositioning may also be used to
predict multi-target drugs, an area we will summarize in the next section.

4.1.5. Network polypharmacology: multi-target drugs—Robustness of molecular
networks may often counteract drug action on single targets thus preventing major changes
in systems-level outputs despite the dramatic changes in the target itself (see Section 2.5.2.;
Kitano, 2004a; Kitano, 2004b; Papp et al., 2004; Pál et al., 2006; Kitano, 2007; Tun et al.,
2011). Moreover, most cellular proteins belong to multiple network modules in the human
interactome, signaling or metabolic networks (Palla et al., 2005; Kovács et al., 2010; Wang
et al., 2012d). As a consequence, efficient targeting of a single protein may influence many
cellular functions at the same time. In contrast, efficient restoration of a particular cellular
function to that of the healthy state (or efficient cell damage in anti-cancer strategies) can
often be accomplished only by a simultaneous attack on many proteins, wherein the
targeting efficiency on each protein may only be partial. These target sets preferentially
contain proteins with intermediate number of neighbors having an intermediate level of
influence of their own (Hase et al., 2009; Wang et al., 2012d).
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The above systems-level considerations explain the success of polypharmacology, also
called as modular pharmacology, i.e. the development and use of multi-target drugs (Fig. 21;
Ginsburg, 1999; Csermely et al., 2005; Mencher & Wang, 2005; Millan, 2006; Hopkins,
2008; Wang et al., 2012d). The goal of polypharmacology is “to identify a compound with a
desired biological profile across multiple targets whose combined modulation will perturb a
disease state” (Hopkins, 2008). Multiple targeting is a well-established strategy. Snake or
spider venoms, plant defense strategies are all using multi-component systems. Traditional
medicaments and remedies often contain multi-component extracts of natural products.
Combinatorial therapies are used with great success to treat many types of diseases,
including AIDS, atherosclerosis, cancer and depression (Borisy et al., 2003; Keith et al.,
2005; Dancey & Chen, 2006; Millan, 2006; Yeh et al., 2006; Lehár et al., 2007).
Importantly, more than 20 % of the approved drugs are multi-target drugs (Ma’ayan et al.,
2007; Yildirim et al., 2007; Nacher & Schwartz, 2008). Many drugs interact with more than
one transporter, which increases the complexity of polypharmacology (Kell et al., 2012).
Moreover, multi-target drugs have an increasing market-value (Lu et al., 2012). Multi-target
drugs possess a number of beneficial network-related properties, which we list below.

• Multi-target drugs can be designed to act on a selected set of primary targets
influencing a set of key, therapeutically relevant secondary targets.

• Multiple targeting may need a compromise in binding affinity. However, even low-
affinity binding multi-target drugs are efficient: in our earlier study a 50% efficient,
partial, but multiple attack on a few sites of E. coli or yeast genetic regulatory
networks caused more damage than the complete inhibition of a single node
(Agoston et al., 2005; Csermely et al., 2005).

• Via the above, ‘indirect’ targeting, and via their low affinity binding, multi-target
drugs may avoid the presently common dual-trap of drug-resistance and toxicity
(Lipton, 2004; Csermely et al., 2005; Lehár et al., 2007; Zimmermann et al., 2007;
Ohlson, 2008; Savino et al., 2012).

• Due to their low affinity binding, multi-target drugs may often stabilize diseased
cells, which sometimes may be at least as beneficial as their primary therapeutic
effect (Csermely et al., 2005; Csermely, 2009; Korcsmáros et al., 2007; Farkas et
al., 2011).

In summary, multi-target drugs offer a magnification of the ‘sweet spot’ of drug discovery,
where the ‘sweet spot’ represents those few hundred proteins, which are both parts of
pharmacologically important pathways, and are druggable (Brown & Superti-Furga, 2003).
The resulting beneficial effects have two reasons. First, both indirect and partial targeting by
multi-target drugs expands the number of possible targets. Second, low affinity binding
eases druggability constraints, and allows the targeting of partially hydrophilic binding sites
by orally-deliverable, hydrophobic molecules. These two effects cause a remarkable
increase of the drug targets situated in the overlap region of the potential target and
druggable pools. Thus, multi-target drugs are, in fact, target multipliers (Fig. 21; Keith &
Zimmermann, 2004; Csermely et al., 2005; Korcsmáros et al., 2007).

We list a number of network-related methods below to find target-sets of multi-target drugs
by systems-level, rational multi-target design.

• Network efficiency (Latora & Marchiori, 2001), or critical node detection
(Boginski & Commander, 2009) may serve as a starting measure to judge network
integrity after multi-target action (Agoston et al., 2005; Csermely et al., 2005; Li et
al., 2011c). Pathway analysis of molecular networks gives a more complex picture,
and may reveal multiple intervention points affecting pathway-encoded functions,
utilizing pathway cross-talks, or switching off compensatory circuits of network
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robustness. Network methods allow the identification of target sets, which
disconnect signaling ligands from their downstream effectors with the simultaneous
preservation of desired pathways (Dasika et al., 2006; Ruths et al., 2006; Lehár et
al., 2007; Jia et al., 2009; Hormozdiari et al., 2010; Kotelnikova et al., 2010; Pujol
et al., 2010). Deconvolution of network dynamics showing interrelated dynamics
modules, such as those of elementary signaling modes (Wang & Albert, 2011), is a
promising approach for future multi-drug design efforts.

• Experimental testing of drug combinations may uncover unexpected effects in
drug-drug interactions, which may be used for selection of multi-target sets (Borisy
et al., 2003; Keith et al., 2005; Dancey & Chen, 2006; Yeh et al., 2006; Lehár et al.,
2007; Jia et al., 2009; Liu et al., 2010b). Combination therapies may also be
designed using network methods, such as the minimal hitting set method (Vazquez,
2009), or a complex method taking into account adjacent network position and
action-similarity (Li et al., 2011d). Recently, several iterative algorithms were
developed to find optimal target combinations restricting the search to a few
combinations out of the potential search space of several millions to billions of
combinations (Calzolari et al., 2008; Wong et al., 2008; Small et al., 2011; Yoon,
2011; Zhao et al., 2011a). Pritchard et al. (2013) demonstrated the existence of
simple and predictable combination mechanisms using RNA interference
signatures. Network-based search algorithms may improve this search efficiency
even further in the future. Drug combinations against diseases affecting the
cardiovascular and nervous systems have a more concentrated effect radius in the
human genetic interaction network than that of immuno-modulatory or anti-cancer
agents (Wang et al., 2012e). Network methods were applied to predict and avoid
unwanted drug-drug interaction effects and the emergence of multi-drug resistance
as we will describe in Sections 4.3.4. and 4.3.6., respectively.

• Side-effect networks connect drugs by the similarity of their side-effects. Shortest
path and random walk analysis, as well as the identification of tight clusters,
bridges and bottlenecks of these networks (Campillos et al., 2008; Yamanishi et al.,
2010; Oprea et al., 2011; Takarabe et al., 2012) combined with the selective
optimization of side activities (Wermuth, 2006) may be used to design multi-target
drugs.

• The combined similarity networks of chemical molecules including drug targets,
various molecular networks (such as interactomes or signaling networks),
systemwide biological data (such as mRNA expression patterns) and medical
knowledge (such as disease characterization) listed in Tables 5 and 9 (Lamb et al.,
2006; Paolini et al., 2006; Brennan et al., 2009; Hansen et al., 2009; Iorio et al.,
2009; Li et al., 2009a; Huang et al., 2010a; Zhao & Li, 2010; Azuaje et al., 2011;
Bell et al., 2011; Taboreau et al., 2011; Wang et al., 2011b; Balaji et al., 2012;
Edberg et al., 2012) may all be used for multi-target drug design using
modularization method-, similarity score-, network inference-, Bayesian network-
or machine learning-based clustering (Hopkins et al., 2006; Hopkins, 2008; Chen et
al., 2009e; Xiong et al., 2010; Yang et al., 2010; Hu et al., 2011; Takigawa et al.,
2011; Yabuuchi et al., 2011; Cheng et al., 2012a; Cheng et al., 2012b; Lee et al.,
2012c; Nacher & Schwartz, 2012; Yu et al., 2012). We note that some of the above
methods describe and interpret multi-target action and thus need further
development for multi-target prediction.

• Multiple perturbations of interactomes, signaling networks or metabolic networks
may uncover alternative target sets causing a similar systems-level perturbation to
that of the original target set. Differential analysis of networks in healthy and
diseased states may enable an even more efficient prediction (Antal et al., 2009;
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Farkas et al., 2011). Such perturbation studies were successfully applied to smaller,
well-defined networks before using differential equation sets and disease-state
specific Monte Carlo simulated annealing (Yang et al., 2008). Assessment of
network oscillations may reveal central node sets governing the dynamic behavior
(Liao et al., 2011)

• Recent advances in establishing the controllability conditions of large networks and
in defining complex network hierarchy measures (Cornelius et al., 2011; Liu et al.,
2011; Banerjee & Roy, 2012; Cowan et al., 2012; Liu et al., 2012; Mones et al.,
2012; Nepusz & Vicsek, 2012; Wang et al., 2012a; Yazicioglu et al., 2012) may
uncover multiple target sets, as shown by the assessment of the controllability of
smaller networks (Luni et al., 2010).) Controlling sets, which can assign any
prescribed set of centrality values to all other nodes by cooperatively tuning the
weights of their out-going edges (Nicosia et al., 2012) may also be promising in the
identification of multi-target sets.

• Appropriate reduction of the definition of dominant node sets, i.e. sets of nodes
reaching all other nodes of the network, may also be used to determine target sets
of multi-target drugs (Milenkovic et al., 2011). Minimal dominant node set
determination was recently shown to be equal to finding minimal transversal sets of
hypergraphs (i.e. a hitting set of a hypergraph, which has a nonempty intersection
with each edge; Kanté et al., 2011), which extends this technique to the powerful
hypergraph description, where an edge may connect any groups of nodes and not
only two nodes. Definition and determination of appropriately limited dominant
edge-sets (Milenkovic et al., 2011) constitute a powerful approach for multi-target
identification.

• Analysis of transport between multiple sources and sinks in directed networks
(Morris & Barthelemy, 2012), such as in signaling networks or in metabolic
networks may reveal preferred source sets (encoding target sets of multi-target
drugs) preferentially affecting pre-defined sink sets (encoding the desired effects).
Throughflow centrality has been recently defined as an important measure of such
network configurations (Borrett, 2012). Methods to find conceptually similar seed
sets of information spread in social networks (Shakarian & Paulo, 2012) may also
be applied to find multi-target drug sets.

• Recently highly powerful methods were published to design and optimize
multitarget ligands for polypharmacology profiles (Ajmani & Kulkarni, 2012;
Besnard et al., 2012). Besnard et al. (2012) tested 800 automatically designed
multi-target ligands of G-protein coupled receptors, and found that 75% of them
had a correctly predicted polypharmacology profile. This area will remain an
exciting priority of multi-target drug design efforts.

Some of the above methodologies (such as those based on chemical similarity networks)
result in target sets, where lead design is a more feasible process. Target sets, which are
highly relevant at the systems-level, but have diverse binding site structures may require the
identification of a set of indirect targets selectively influencing the desired target set, but
posing a more feasible lead development task. We will describe the network-based
identification of such indirect targets in the next section describing allo-network drugs
(Nusinov et al., 2011). We note that almost all methods finding target sets of multi-target
drugs can be used for drug repositioning summarized in the preceding section. Moreover, all
these methods are related to the in silico prediction of drug-drug interactions (detailed in
Section 4.3.4.) and side-effects (summarized in Section 4.3.5.).
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4.1.6. Allo-network drugs: a novel concept of drug action—Allosteric drugs
(binding to allosteric effector sites; Fig. 22) are considered to be better than orthosteric drugs
(binding to active centers; Fig. 22) due to 4 reasons. 1.) The larger variability of allosteric
binding sites than that of active centers causes less allosteric drug-induced side-effects than
that of orthosteric drugs. 2.) Allosteric drugs allow the modulation of therapeutic effects in a
tunable fashion. 3.) In most cases the effect of allosteric drugs requires the presence of
endogenous ligand making allosteric action efficient exactly at the time when the cell needs
it. 4.) Allosteric drugs are non-competitive with the endogenous ligand. Therefore, their
dosage can be low (DeDecker, 2000; Rees et al., 2002; Goodey & Benkovic, 2008; Lee &
Craik, 2009; Nussinov et al., 2011; Nussinov & Tsai, 2012).

We summarized our current knowledge on allosteric action (Fischer, 1894; Koshland, 1958;
Straub & Szabolcsi, 1964; Závodszky et al., 1966; Tsai et al., 1999; Jacobs et al., 2003;
Goodey & Benkovic, 2008; Csermely et al., 2010; Rader & Brown, 2011; Zhuravlev &
Papoian, 2010; Dixit & Verkhivker, 2012; Szilágyi et al., 2013) from the point of view of
protein interaction networks in Section 3.2.2. In that section we described the rigidity front
propagation model as a possible molecular mechanism of the propagation of allosteric
changes (Fig. 14; Csermely et al., 2012).

The concept of allosteric drugs can be broadened to allo-network drugs, whose effects can
propagate across several proteins via specific, inter-protein allosteric pathways of amino
acids activating or inhibiting the final target (Fig. 22; Nussinov et al., 2011). Earlier data
already pointed to an allo-network type drug action. Inter-protein propagation of allosteric
effects (Bray & Duke, 2004; Fliri et al., 2010) and its possible use in drug design (Schadt et
al., 2009) were mentioned sporadically in the literature. Moreover, drug-target network
studies revealed that in more than half of the established 922 drug-disease pairs drugs do not
target the actual disease-associated proteins, but bind to their 3rd or 4th neighbors. However,
the distance between drug targets and disease-associated proteins was regarded as a sign of
palliative drug action (Yildirim et al., 2007; Barabási et al., 2011), and the expansion of the
concept of allosteric drug action to the interactome level has been formulated only recently
(Nussinov et al., 2011). Interestingly, targeting neighbors was found to be more influential
on the behavior of social networks than direct targeting (Bond et al., 2012).

Allo-network drug action propagates from the original binding site to the interactome
neighborhood in an anisotropic manner, where propagation efficiency is highly directed and
specific. Binding sites of promising allo-network drug targets are not parts of ‘high-
intensity’ intracellular pathways, but are connected to them. These intracellular pathways are
disease-specific in the case of promising allo-network drugs (Fig. 22). Thus allo-network
drugs can achieve specific, limited changes at the systems level with fewer side-effects and
lower toxicity than conventional drugs. Allosteric effects can be considered at two levels: 1.)
small-scale events restricted to the neighbors or interactome module of the originally
affected protein; 2.) propagation via large cellular assemblies over large distances (i.e.
hundreds or even thousands of Angstroms; Nussinov et al., 2011; Szilágyi et al., 2013).
Drugs with targets less than 3 steps (or more than 4 steps) from a disease-associated protein
were shown to have significantly more side-effects, and failed more often (Wang et al.,
2012c); however, rational drug design in recent years proceeded in the opposite direction,
identifying drug targets closer to disease-associated proteins than earlier (Yildirim et al.,
2007). The above data argue that reversing this trend may be more productive. Allo-network
drugs point exactly to this direction.

Databases of allosteric binding sites (Huang et al., 2011a; http://mdl.shsmu.edu.cn/ASD)
help the identification possible sites of allo-network drug action. However, allo-network
drugs may also bind to sites, which are not used by natural ligands. For the identification of
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allo-network drug targets and their binding sites, first the interactome has to be extended to
atomic level (amino acid level) resolution. For this, docking of 3D protein structures and the
consequent connection of their protein structure networks are needed. Thus allo-network
drug targeting requires the integration of our knowledge on protein structures, molecular
networks, and their dynamics focusing particularly on disease-induced changes. We
conclude this section by listing a few possible methods to define allo-network drug target
sites.

• A general strategy for the identification of allosteric sites may involve finding large
correlated motions between binding sites. This can reveal which residue-residue
correlated motions change upon ligand binding, and thus can suggest new allosteric
sites (Liu & Nussinov, 2008) even in integrated networks of protein mega-
complexes.

• Reverse engineering methods (Tegnér & Björkegren, 2007) allow us to
discriminate between ‘high-intensity’ and ‘low-intensity’ communication pathways
both in molecular and atomic level networks, and thus may provide a larger safety
margin for allo-network drugs.

• As we summarized in Section 3.2.2., network-based analysis of perturbation
propagation is a fruitful method to identify intra-protein allosteric pathways (Pan et
al., 2000; Chennubhotla & Bahar, 2006; Ghosh & Vishveshwara, 2007; Tang et al.,
2007; Daily et al., 2008; Ghosh & Vishveshwara, 2008; Goodey & Benkovic,
2008; Sethi et al., 2009; Tehver et al., 2009; Vishveshwara et al., 2009; Park &
Kim, 2011; Csermely et al., 2012; Ma et al., 2012a). A successful candidate for the
inter-protein allosteric pathways involved in allo-network drug action disturbs
network perturbations specific to a disease state of the cell at a site distant from the
original drug-binding site. Perturbation analysis (see Section 2.5.2.; Antal et al.,
2009; Farkas et al., 2011;) applied to atomic level resolution of the interactome in
combination with disease specific protein expression patterns may help the
identification of such allo-network drug targets.

• Central residues play a key role in the transmission of allosteric changes (Section
3.2.2.; Chennubhotla & Bahar, 2006; Chennubhotla & Bahar, 2007; Zheng et al.,
2007; Chennubhotla et al., 2008; Tehver et al., 2009; Liu & Bahar, 2010; Liu et al.,
2010a; Su et al., 2011; Park & Kim, 2011; Dixit & Verkhivker, 2012; Ma et al.,
2012a; Pandini et al., 2012). We may use a number of centrality measures (Kovács
et al., 2010;), including perturbation-based or game-theoretical assumptions (see
Sections 2.5.2. and 2.5.3.; Farkas et al., 2011), to find the level of importance of
proteins and pathways in interactomes, in signaling networks and important amino
acids in their extensions to atomic level resolution (Szalay-Bekő et al., 2012;
Szalay et al., in preparation; Simkó et al., in preparation).

• At both the molecular network level and its extension to atomic level resolution we
may subtract network hierarchy (Ispolatov & Maslov, 2008; Jothi et al., 2009;
Cheng & Hu, 2010; Hartsperger et al., 2010; Rosvall & Bergstrom, 2011; Liu et al.,
2012; Mones et al., 2012; Szalay-Bekő et al., 2012) to assess the importance of
various nodes (proteins and/or amino acids), or we may find nodes or edges
controlling the network by the application of recently published methods
(Cornelius et al., 2011; Liu et al., 2011; Banerjee & Roy, 2012; Cowan et al., 2012;
Liu et al., 2012; Mones et al., 2012; Nepusz & Vicsek, 2012; Wang et al., 2012a;
Pósfai et al., 2013).

• Combination of evolutionary conservation data proved to be an efficient predictor
of intra-protein signaling pathways (Tang et al., 2007; Halabi et al., 2009; Joseph et
al., 2010; Jeon et al., 2011; Reynolds et al., 2011). Similar approaches may be
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extended to protein neighborhoods helping to find starting sites for allo-network
drug action.

• Disease-associated single-nucleotide polymorphisms (SNPs; Li et al., 2011b) and/
or mutations (Wang et al., 2012b) may be part of the propagation pathways of
allosteric effects. In-frame mutations are enriched in interaction interfaces (Wang et
al., 2012b), and provide a potential dataset to assess the existence of allo-network
drug binding sites.

Targeting disease-induced dynamical changes in molecular networks may also be focused
on transient interactions specific to disease. Thus allo-network drugs might also provide a
novel solution to uncompetitive, ‘interfacial’ drug action (Pommier & Cherfiels, 2005;
Keskin et al., 2007). When available, current drugs aim to directly inhibit protein-protein
interactions (Gordo & Giralt, 2009). We note that the methods above are suitable to find
allo-network drugs, which stabilize/restore/activate a protein, its function or one (or more)
of its interactions. The methods we listed here are suitable for finding both primary targets
of allo-network drugs in molecular networks and allo-network drug binding sites in the
amino acid networks of involved proteins. We will describe additional network-related
methods to find binding sites of allo-network drugs proper in Section 4.2.

4.1.7. Networks as drug targets—The last two sections on multi-target drugs and allo-
network drugs already demonstrated the utility of network-based thinking in the
determination of drug-targets. In this closing section on drug target identification we
summarize the ideas considering key segments of networks as drug targets.

Considering molecular networks as targets have gained increasing support in recent papers
on systems-level drug design (Brehme et al., 2009; Schadt et al., 2009; Baggs et al., 2010;
Pujol et al., 2010; Zanzoni et al., 2010; Cho et al., 2012; Erler & Linding, 2012). As we
defined in the starting section on drug target identification, from the network point of view it
is important to discriminate between two strategies: 1.) the central hit strategy aiming to
destroy the network of infectious agents or cancer cells and 2.) the network influence
strategy using the systems-level knowledge to find drug target candidates in therapies of
polygenic, complex diseases (see Fig. 19 and Section 4.1.1. for further details). Here we list
a few major characteristics of both strategies.

Optimal network targeting of the central hit strategy:

• finds hubs and other central nodes or edges of molecular networks or identifies
choke points of metabolic networks, i.e. proteins uniquely producing or consuming
a certain metabolite;

• finds unique targets of infectious agent- or cancer-specific networks.

Optimal network targeting of the network influence strategy:

• shifts disease-specific changes of cellular functions back to their normal range
(Kitano, 2007);

• applies precise targeting of selected network pathways, protein complexes, network
segments, nodes or edges avoiding highly influential nodes and edges of molecular
networks in healthy cells but converging drug effects at specific pathway sites of
diseased cells;

• uses multiple or indirect targeting;

• takes into consideration tissue specificity.

Optimal network targeting of both the central hit and network influence strategies:
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• incorporates patient- and disease stage-specific data (such as single-nucleotide
polymorphisms, metabolome, phosphoproteome or gut microbiome data) ADMET-
related data, side-effect- and drug resistance-related data as detailed in the next
section.

We believe that the arsenal of network (re)construction and network analysis methods we
listed in this review may offer help and promise for the prediction of novel, systems-level
drug targeting possessing the characteristics detailed above.

4.2. Hit finding, expansion and ranking
Following target selection discussed in the preceding section, here we will discuss the
added-value of network-related methods in the search, confirmation and expansion of hit
molecules. Several steps in this process, such as pharmacophore identification, network-
based QSAR models, building of a hit-centered chemical library, hit expansion, as well as
other network-related methods of chemoinformatics and chemical genomics, have already
been discussed in Section 3.1.3. Therefore, the Reader is asked to compare Section 3.1.3
with the current chapter. Here we will first summarize the help provided by network
description and analysis in the determination of ligand binding sites, as applicable to
network nodes as drug targets. We will continue with network methods to find hot spots,
which reside in protein interfaces, and are targets of edgetic drugs. We will conclude the
section by a summary of network-related approaches in hit expansion and ranking.

4.2.1. In silico hit finding for ligand binding sites of network nodes—Node
targeting aims to find a selective, drug-like (low molecular weight, possibly hydrophobic)
molecule that binds with high affinity to the target (Lipinski et al., 2001). There are two
main network-based approaches for the identification of ligand binding sites. A ‘bottom-up
approach’ uses protein structure networks (see Section 3.2. in detail), while a ‘top-down
approach’ reconstructs binding site features from binding site similarity networks (Section
4.1.3.).

For in silico hit prediction, a logical first step is to find pockets (cavities, clefts) on the
protein surface. Medium-sized proteins have 10 to 20 cavities. Ligands often bind to the
largest surface cavities of this ensemble (Laskowski et al., 1996; Liang et al., 1998b; Nayal
& Honig, 2006). Using a protein structural approach, Coleman & Sharp (2010) identified a
hierarchical tree of protein pockets using the travel depth algorithm that computes the
physical distance a solvent molecule would have to travel from a given protein surface point
to the convex hull of the surface. Using the similarity network approach, pocket similarity
networks have been constructed, and their small-world character, hubs and hierarchical
modules were identified. Pocket groups were found to reflect functional separation (Liu et
al., 2008a; Liu et al., 2008b), and may be used for hit identification. However, shape
information alone is insufficient to discriminate between diverse binding sites, unless
combined with chemical descriptors (http://proline.physics.iisc.ernet.in/pocketmatch; Yeturu
& Chandra, 2008; http://proline.physics.iisc.ernet.in/pocketalign; Yeturu & Chandra, 2011).
CAVER (http://caver.cz; Chovancova et al., 2012) uses molecular dynamics simulation to
predict intra-protein transport pathways.

Protein structure networks (Section 3.1.) were relatively seldom used so far to predict ligand
binding sites. However, high-centrality segments of protein structure networks were shown
to participate in ligand binding (Liu & Hu, 2011). Evolutionary conservation patterns of
amino acids in related protein structures identified protein sectors related to catalytic and
allosteric ligand binding sites (Halabi et al., 2009; Jeon et al., 2011; Reynolds et al., 2011).
Protein structure networks were extended, incorporating ligand atoms, participating ions and
water molecules and chemical properties aiming to find network motifs representing a
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favorable set of protein-ligand interactions used for as a scoring function (Xie & Hwang,
2010; Kuhn et al., 2011.) Protein structure network comparison was demonstrated to be
useful for the identification of chemical scaffolds of potential drug candidates (Konrat,
2009).

Similarity clusters or network prediction methods of binding site similarity networks (also
called as pocket similarity networks, or cavity alignment networks; Zhang & Grigorov,
2006; Kellenberger et al., 2008; Liu et al., 2008a; Park & Kim, 2008; Andersson et al., 2009;
Weskamp et al., 2009; Xie et al., 2009a; BioDrugScreen, http://biodrugscreen.org; Li et al.,
2010c; Reisen et al., 2010; Ren et al., 2010; Weisel et al., 2010) can be used to predict
binding site topology of yet unknown proteins. The complex drug target network, PDTD
(http://dddc.ac.cn/pdtd) incorporating 3D active site structures and the web-server
TarFishDock enables simultaneous target and target-site prediction of new chemical entities
(Gao et al., 2008). The versatile protein-ligand interaction database, CREDO (http://www-
cryst.bioc.cam.ac.uk/databases/credo; Schreyer & Blundell, 2009) and the extensive protein-
ligand databases, STITCH (http://stitch.embl.de; Kuhn et al., 2012) and BindingDB (http://
bindingdb.org; Liu et al., 2007) offer an important help to search for potential targets and
identify their binding sites.

4.2.2. In silico hit finding for edgetic drugs: hot spots—Edgetic drugs (Section
4.1.2.) modify protein-protein interactions. Protein-protein interaction binding sites were
considered for a long time as “non-druggable”, since they are large and flat. However,
Clarkson & Wells (1995) discovered hot spots of binding surfaces, which are residues
providing a contribution to the decrease in binding free energy of larger than 2 kcal/mol.
Bogan & Thorn (1998) proposed that hot spots are surrounded by hydrophobic regions
excluding water from the hot spot residues. Hot spots are often populated by aromatic
residues, and tend to cluster in hot regions, which are tightly packed, relatively rigid
hydrophobic regions of the protein-protein interface. Hot spots and hot regions help in
finding hits, since 1.) they constitute small focal points of drug binding, which can be
predicted within the large and flat binding-interface; 2.) these focal points are relatively
rigid, and help in docking. An inhibitor needs to cover 70 to 90 atoms at the protein-protein
interaction site, which corresponds to the ‘Lipinski-conform’ (Lipinski et al., 2001) 500
Dalton molecular weight. Several small molecules were found, which are able to compete
with the natural binding partner very efficiently (Keskin et al., 2005; Keskin et al., 2007;
Wells & McClendon, 2007; Ozbabacan et al., 2010). Druggable hot regions have a concave
topology combined with a pattern of hydrophobic and polar residues (Kozakov et al., 2011).

Hot spots can be predicted as central nodes of protein structure networks (del Sol &
O’Meara, 2005; Liu & Hu, 2011; Grosdidier & Fernande, 2102). In agreement with this,
disease-associated mutations (single-nucleotide polymorphisms) are enriched by 3-fold at
the interaction interfaces of proteins associated with the disorder, and often occur at central
nodes of the protein structure network (Akula et al., 2011; Li et al., 2011b; Wang et al.,
2012b). Using this knowledge, the pyDock protein-protein interaction docking algorithm
was improved by protein structure network-based scores (Pons et al., 2011). Intra-protein
energy fluctuation pathways were proposed to help in the prediction of hot spot localization
(Erman, 2011). Recently the use of associative-memory, water-mediated coarse-grained
protein folding model, AWSEM was also demonstrated to predict protein binding surfaces
well (Zheng et al., 2012a).

Hit identification of edgetic drugs is helped by the TIMBAL database containing ligands
inhibiting protein-protein interactions (http://www-cryst.bioc.cam.ac.uk/databases/timbal;
Higueruelo et al., 2009). The machine learning-based technique of the Dr. PIAS server
assesses if a protein-protein interaction is druggable (http://drpias.net; Sugaya & Furuya,
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2011; Sugaya et al., 2012). Despite the considerable progress of this field in the last decade,
we are still at the beginning of using network-related knowledge to identify edgetic drug
binding sites. Network-related methods for hot spot and hot region identification are also
promising, if applied to aptamers, peptidomimetics or proteomimetics.

4.2.3. Network methods helping hit expansion and ranking—An important step of
hit confirmation is the check of the chemical amenability of the hit, i.e. the feasibility up-
scaling costs of its synthesis. Core and hub positions or other types of centrality of the hits in
the chemical reaction network (Section 3.1.2.; Fialkowski et al., 2005; Bishop et al., 2006;
Grzybowski et al., 2009) are all predictors of good chemical tractability. Moreover, a
simulated annealing-based network optimization uncovered optimal synthetic pathways of
selected hits (Kowalik et al., 2012). In the case of multiple hits, hit clustering can be
performed by modularization of their chemical similarity networks described in Section
3.1.3. Hubs and clusters of hit-fragments in chemical similarity networks may be used for
hit-specific expansion of existing compound libraries (Benz et al., 2008; Tanaka et al.,
2009). QSAR-related similarity networks and the other complex similarity networks we
listed in Table 5 help the lead development and selection efforts we will detail in the next
section.

Hit cluster should usually conform to the Lipinsky-rules of drug-like molecules (Lipinski et
al., 2001) restricting the hit-range to small and hydrophobic molecules with a certain
hydrogen-bond pattern. Leeson & Springthorpe (2007) warned that systematic deviations
from these rules may have a dangerous impact on drug design, increasing late-attritions due
to side-effects and/or toxicity. However, natural compounds also contain a set of ‘anti-
Lipinsky’ molecules, which form a separate island in the chemical descriptor space having a
higher molecular weight and a larger number of rotatable bonds (Ganesan, 2008). The
network-related methods predicting the efficiency, ADME, toxicity, interactions, side-effect
and resistance occurrence detailed in the next section may help in decreasing the risk of non-
conform hit and lead molecules, and highlight issues of drug safety in an early phase of drug
development.

4.3. Lead selection and optimization: drug efficacy, ADMET, drug interactions, side-effects
and resistance

Following hit selection and expansion discussed in the preceding section network-related
methods may also help the lead selection process. Various aspects of lead selection such as
drug toxicity, side-effects and drug-drug interactions are tightly interrelated. The
incorporation of personalized data, such as genome-wide association studies/single-
nucleotide polymorphisms (GWAS/SNPs), signaling network or metabolome data into the
complex network structures which help lead selection may not only predict well the
pharmacogenomic properties of the lead, but also help patient profiling in clinical trials, as
well as therapeutic guideline determination of the marketed product.

4.3.1. Networks and drug efficacy, personalized medicine—Drug efficacy is the
theoretical efficiency of drug action not taking into account the effects in practice, such as
patient compliance. Efficacy is a highly personalized efficiency measure of drug action,
which heavily depends on multiple factors including the genetic background (e.g. single-
nucleotide polymorphisms and other genetic variants assessed in genome-wide association
studies), network robustness and the ADME properties (see next section; Kitano, 2007;
Barabási et al., 2011; Yang et al., 2012). Single-nucleotide polymorphisms (SNPs) may alter
the interaction properties of at least 20% of the nodes in the human interactome (Davis et al.,
2012), and were recently shown to be a reason for the unexpectedly high variability of
protein-protein interactions (Hamp & Rost, 2012). A number of studies assessed the effects
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of SNPs on changing the underlying properties of interactomes and gene-gene association
networks (Akula et al., 2011; Cowper-Sal-lari et al., 2011; Fang et al., 2011; Hu et al., 2011;
Li et al., 2011b; Li et al., 2012b; Wang et al., 2012b), which may change drug efficacy both
directly or indirectly. The integrated Complex Traits Networks (iCTNet, http://
flux.cs.queensu.ca/ictnet), including phenotype/single-nucleotide polymorphism (SNP)
associations, protein-protein interactions, disease-tissue, tissue-gene and drug-gene
relationships, is a rich dataset helping drug efficacy assessments (Wang et al., 2011b).

Incorporation of omics-type data into complex, drug action-related networks will allow the
construction of personalized efficacy profiles. Integration of pharmacogenomics, signaling
network or metabolome data may improve clinical trial design. However, network-related
methodologies for complex drug efficacy profiling have not been developed yet. Similarly,
analysis of the semantic networks of medical records by text mining and by network
analysis techniques is a future tool to improve the assessment of drug efficiency measures,
extending the efficacy with patient compliance and other effects occurring in medical
practice (Chen et al., 2009a). Network-related models may help in the development of
optimal drug dosage and frequency schedules. As an example of this, the study of Li et al.
(2011e) uncovered a ‘sweet spot’ of drug efficacy dose and schedule regions by the
extension of their model to the genetic regulatory network environment of the drug target.
Drug dose and schedule considerations are already parts of the ADME characterization,
which we will detail in the next section.

4.3.2. Networks and ADME: drug absorption, distribution, metabolism and
excretion—The integration of early ADME (absorption, distribution, metabolism,
excretion) profiling to lead selection is an important element of successful drug design.
Prediction of ADME properties using structural networks of lead candidates (Kier & Hall,
2005), molecular fragment networks predicting human albumine binding (Estrada et al.,
2006), chemical similarity networks (Brennan et al., 2009), as well as drug-tissue networks
(Gonzalez-Diaz et al., 2010b), isotope-labeled metabolomes and drug metabolism networks
(Martínez-Romero et al., 2010; Fan et al., 2012), nonlinear diffusion models of drug
partitioning in lipid network structures, such as the startum corneum (Schumm et al., 2010),
multiple binding to transporters (Kell et al., 2012) and complex networks of major cellular
mechanisms participating in ADME determination (Ekins et al., 2006), were all important
advances which can help in incorporating better ADME complexity into the lead selection
process. Despite these methods, there is room to improve ADME prediction and assessment
by network techniques. ADME studies are often combined with toxicity assessments
(ADMET), which we will detail in the next section. Toxicity is related to side-effects
discussed in Section 4.3.5. Drug combinations may have an especially complex ADME
profile due drug-drug interaction effects, which will be described in Section 4.3.4.

4.3.3. Networks and drug toxicity—Toxicity plays a different role in drug targets
identified using the central hit strategy and the network influence strategy of Section 4.1.1.
In the central hit strategy our aim is to kill the cells of the infectious agent or cancer.
Therefore, toxicity is a must here – but it has to be selective to the targeted cells. In the
network influence strategy targeting other diseases, toxicity becomes generally avoidable.
Toxicity is often a network property depending on the extent of network perturbation and
robustness (Kitano, 2004a; Kitano, 2004b; Apic et al., 2005; Kitano, 2007; Geenen et al.,
2012). Network hubs and the essential proteins described in Section 2.3.4. are less
frequently targeted by drugs – with the exception of anti-infective and anti-cancer agents
(Johnsson & Bates, 2006; Yildirim et al., 2007). In contrast, those inter-modular bridges,
which modulate specific information flows, are preferred drug targets (Hwang et al., 2008).
Node centrality in drug-regulated networks correlates with drug toxicity (Kotlyar et al.,
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2012). All these findings give further support to the utility of network-based toxicity
assessments.

Hepatotoxicity is a major reason of drug attritions (Kaplowitz, 2001). The number of
network studies addressing this important issue is increasing, and includes cytokine
signaling networks related to idiosyncratic drug hepatotoxicity (Cosgrove et al., 2010) and
gene-gene interaction networks based on transcriptional profiling (Hayes et al., 2005;
Kiyosawa et al., 2010). Importantly, toxicity-related networks should be understood as
signed networks containing both toxicity promoting effects and detoxifying effects, such as
the glutathione network in liver (Geenen et al., 2012), or hepatic pro-survival (AKT) and
pro-death (MAPK) pathways, where specific pathway inhibitors may antagonize drug-
induced hepatotoxicity (Cosgrove et al., 2010).

Network-based in silico prediction of human toxicity aims to bridge the gap between animal
toxicity studies and clinical trials. Toxicity assessment applications of chemical similarity
networks (Section 3.1.3.; Kier & Hall, 2005; Brennan et al., 2009), as well as the use of
association networks between chemicals and toxicity-related proteins or processes (DITOP,
http://bioinf.xmu.edu.cn:8080/databases/DITOP/index.html; Zhang et al., 2007; Audouze et
al., 2010; Iskar et al., 2012) open a number of additional possibilities for network-
predictions of human toxicity in the future.

4.3.4. Networks and drug-drug interactions—Drug-drug interactions may often
cause highly unexpected effects. As we already described in Section 4.1.5. on network
polypharmacology and multi-target drug design, most of the unexpected drug-drug
interactions are not due to direct competition for the same binding site, but are caused by the
complex interaction structure of molecular networks. Experimental testing of drug-drug
interactions may be used to help infer the underlying molecular network structure, and drug-
drug interaction networks (Borisy et al., 2003; Yeh et al., 2006; Lehár et al., 2007; Jia et al.,
2009) may be used to predict additional drug-drug interactions using network
modularization methods.

A drug-drug interaction network was assembled using drug package insert texts. This
network was extended by potential mechanisms, such as drug targets or enzymes involved in
drug metabolism, and was included in the KEGG DRUG database (http://genome.jp/kegg/
drug; Takarabe et al., 2008; Takarabe et al., 2011; Kanehisa et al., 2012). Recently text
mining rules to refine literature-derived drug-drug interaction networks were proposed
(Kolchinsky et al., 2013). Drug-drug interaction networks may be perceived as signed
networks containing synergistic or antagonistic interactions (Yeh et al., 2006; Jia et al.,
2009), and have hubs, i.e. drugs which are involved in most of the observed interactions (Hu
& Hayton, 2011). Many of the drug-related databases listed in Table 9 may help to uncover
adverse drug-drug interactions. Besides the KEGG DRUG database mentioned above the
DTome (http://bioinfo.mc.vanderbilt.edu/DTome; Sun et al., 2012) database also explicitly
contains adverse drug interactions. Complex chemical similarity networks and drug-target
networks, discussed in Sections 3.1.3. and 4.1.3., respectively, were also used for the
prediction of unexpected drug-drug interactions (Zhao & Li, 2010; Yu et al., 2012).

Drugs may affect each other’s ADME properties by simple competition, or by more refined
network-effects (Jia et al., 2009; Kell et al., 2012), such as the positive synergism of
amoxicillin and clavulanate, where calvulanate is an inhibitor of the enzyme responsible for
amoxicillin destruction (Matsuura et al., 1980). Drug-herb interactions are important aspects
of drug-drug interaction analysis particularly in China, where traditional Chinese medicine
is often combined with Western medicine. Here semantic networks and other combined
networks of drug and herb effects and targets may offer help in prediction of drug safety
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(Chen et al., 2009a; Zheng et al., 2012b). Despite the wide variety of approaches listed,
network techniques provide many more possibilities in the prediction of drug-drug
interaction effects. In practice, all methods listed in Section 4.1.5. on multi-target drugs,
such as perturbation, network influence and source/sink analyses, as well as the drug side-
effect networks described in the next section may be used for the prediction of drug-drug
interactions.

4.3.5. Network pharmacovigilance: prediction of drug side-effects—Discovering
unexpected side-effects by experimental methods alone, is a daunting task requiring the
screen of a large number of potential off-targets. However, side-effects may have their
origin in both single and multi-target. Both are systems-level responses, which allow the
prediction of drug off-targets by computational methods (Berger & Iyengar, 2011; Zhao &
Iyengar, 2012). In this section we introduce several network-related methods of side-effect
identification.

Side-effects may come from the involvement of a single drug target in multiple cellular
functions or may involve multiple drug targets. In a study on protein-protein interaction
networks two third of the side-effect similarities were related to shared targets, while 5.8%
of the side-effect similarities were due to drugs targeting proteins close in the human
interactome (Brouwers et al., 2011). This result may reflect both the concentration of side-
effects in direct drug targets and the efficiency of those allo-network drugs (Section 4.1.6.;
Nussinov et al., 2011), whose direct target is not the primary binding site, but a neighboring
protein in the interactome.

The previous sections uncovered many network-related strategies to avoid side-effects at the
level of target selection. We will summarize only a few major considerations here.

• Avoidance of targeting hubs and high centrality nodes of interactomes, signaling
networks and metabolomes is a general network strategy of side-effect reduction,
especially when using the network influence strategy of Section 4.1.1. against
polygenic diseases such as diabetes. Disease specific, limited network perturbation
is a key systems-level requirement to avoid drug adverse effects (Guimera et al.,
2007b; Hase et al., 2009; Zhu et al., 2009; Yu & Huang, 2012). Network
algorithms focusing the downstream components of node-targeting to a certain
network segment are important methods to reduce potential side-effects at the level
of target identification (Ruths et al., 2006; Dasika et al., 2006; Pawson & Linding,
2008).

• Iterative methods sequentially identified sets of metabolic network edges
corresponding to enzymes, whose inhibition can produce the expected inhibition of
targets with reduced side-effects in humans and in E. coli (Lemke et al., 2004;
Sridhar et al., 2007; Sridhar et al., 2008; Song et al., 2009).

• Unexpected edges between remote targets in ligand binding site similarity networks
(also called as pocket similarity networks, or cavity alignment networks) suggest
potential side-effects (Zhang & Grigorov, 2006; Liu et al., 2008a; Weskamp et al.,
2009).

• Edgetic drugs (Section 4.1.2.) are usually more specific and may have generally
less side-effects than node-targeting drugs. However, common protein-protein
interaction interface motifs are important indicators of potential side-effects of
edgetic drugs (Engin et al., 2012).

• Future analysis may uncover nodes and edges having a major influence on the
occurrence of the disease-specific critical network-transitions mentioned in Section
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2.5.2. These influential nodes will most probably represent the ‘Achilles-heel’ of
network in the disease state, and their targeting will induce fewer side-effects than
the average.

Side-effect prediction is tightly related to drug-target prediction (Section 4.1.) involving the
comparison of novel target(s) with those of existing drugs. The selective optimization of
side-effects (Wermuth, 2006) is a known lead development technique. Consequently both
drug-target interaction networks (Section 4.1.3.; Xie et al., 2009b; Yang et al., 2010; Azuaje
et al., 2011; Xie et al., 2011; Yang et al., 2011; Takarabe et al., 2012; Yu et al., 2012) and
drug-disease networks (Hu & Agarwal, 2009) may be used for the prediction of side-effects.
Analysis of drug-disease networks may be extended using pathway analysis (Hao et al.,
2012). Complex chemical similarity networks (Section 3.1.3.) also use a combination of
network-related data including e.g. interactomes for the prediction of off-target effects (Hase
et al., 2009; Yamanishi et al., 2010; Zhao & Li, 2010). The web-servers SePreSA (http://
SePreSA.Bio-X.cn; Yang et al., 2009a) and DRAR-CPI (http://cpi.bio-x.cn/drar; Luo et al.,
2011) were constructed to show possible adverse drug reactions based on drug-target
interactions. Practically all methods listed in Section 4.1.5. on multi-target drugs may be
used to predict side-effects. As an example, the Monte Carlo simulated annealing network
perturbation method of Yang et al. (2008) correctly predicted the well-known side-effects of
non-steroidal anti-inflammatory drugs and the cardiovascular side-effects of the recalled
drug, Vioxx. Moreover, side-effect determination may be extended to any complex
similarity networks we listed in Table 5 (such as that containing disease-specific genome-
wide gene expression data; Huang et al., 2010a; the Cytoscape plug-in DvD program, http://
www.ebi.ac.uk/saezrodriguez/DVD; Pacini et al., 2013) and to those future network
representations, which will include signaling network or metabolome data. These datasets
may be used to construct personalized or patient cohort-specific side-effect profiles enabling
a better focusing of therapeutic indications and contraindications.

In recent years, many types of side-effect networks, drug target/adverse drug reaction
networks or drug target/adverse target networks were constructed.

• Campillos et al. (2008) and later Yamanishi et al. (2010) and Takarabe et al. (2012)
combined structural similarity and side-effect similarity to construct a side-effect
similarity network of drugs, and used this network to identify novel drug targets for
drug repositioning (Section 4.1.4.).

• Correlation analysis of drug protein-binding profiles and side-effect profiles
revealed the enrichment of drug targets participating in the same biological
pathways (Mizutani et al., 2012).

• Text mining of drug package insert text was used for the construction of side-effect
networks showing a gross similarity of preclinical and clinical compound profiles
(Fliri et al., 2005; Oprea et al., 2011). Text mining of scientific papers may result in
an extended drug-target network revealing potential side-effects (Garten et al.,
2010).

• A drug-target/adverse drug reaction network was contructed from chemical
similarity-based prediction of off-targets and related side-effects of 656 drugs
(Lounkine et al., 2012).

• A network of 162 drugs causing at least one serious adverse drug reaction and their
845 targets showed similar target profiles for similar serious adverse drug
reactions. The MHC I (Cw*4) protein was identified and confirmed as the possible
target of the sulfonamide-induced toxic epidermal necrolysis adverse effect (Yang
et al., 2009b).
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• Yang et al. (2009c) used the CitationRank network centrality algorithm and a
dataset of gene/serious adverse drug reaction associations (collected by text mining
from PubMed records) to identify the association strength of genes with 6 major
serious adverse drug reactions (http://gengle.bio-x.cn/SADR).

Side-effect similarity networks were used for efficient refinement of primary side-effect
identification based on similarities in drug structures (Atias & Sharan, 2011). Network
prediction methods detailed in Section 2.2.2. and network modularization methods may help
to decipher novel side-effects from side-effect networks in the future.

The side-effect database, SIDER (http://sideeffects.embl.de; Kuhn et al., 2010) considerably
enhanced side-effect network studies. The SIDER-derived side-effect network was extended
by biological processes related to Gene Ontology terms and text mining of PubMed data
(Lee et al., 2011). Combination of SIDER data with those on disease-associated genes
showed that drugs having a target less than 3 or more than 4 steps away from a disease-
associated protein in human signaling networks had significantly more side-effects, and
failed more often (Wang et al., 2012c).

Sources of unexpected side-effects can sometimes be focused on a certain tissue or cellular
process. Analysis of tissue-specific network dynamics, such as that of the kidney metabolic
network revealing hypertensive side-effects (Chang et al., 2010), might be a promising
method to predict tissue-specific side-effects. Csoka & Szyf (2009) raised the possibility of
epigenetic side-effects, where a drug modifies the chromatin structure, and thus indirectly
influences a number of other genes. Similarly, microRNA related side-effects may be
developed by the interaction of a drug with the complex microRNA signaling network
(Section 3.4.), where a change in the transcription of a microRNA may influence a set of
rather unrelated proteins and related functions.

4.3.6. Resistance and persistence—In recent years antibiotic resistance became a
major threat of human health (Bush et al., 2011). Antibiotic persistence is a form of
antibiotic resistance, which is related to a dormant, drug-insensitive subpopulation of
bacteria (Rotem et al., 2010). Resistance development against chemotherapeutic agents is a
key challenge of anti-cancer therapies (Section 3.4.3.; Kitano, 2004a; Logue & Morrison,
2012). Resistance development is involved in the application of the central hit strategy
defined in Section 4.1.1. aiming to destroy pathogen- or cancer-related networks.

Ligands may be optimized against resistance by targeting conserved amino acids and main-
chain atoms with strong interactions instead of weaker interactions pointing towards
mutatable residues (Hopkins et al., 2006). Tuske et al. (2004) defined the substrate-envelope
for HIV reverse transcriptase as the space occupied by various conformations of naturally
occurring ligands and their targets. Lamivudine and zidovudine induced resistance by
protruding beyond this substrate-envelope, while tenofovir, which did not have handles
projecting beyond the substrate envelope was more resistant against resistance development
(Tuske et al., 2004). Protein structure network studies may help in designing more resistant-
prone lead molecules.

Development of drug resistance is often a phenomenon involving network-robustness, when
the affected cell activates alternative or counter-acting pathways to minimize the
consequences of drug action (Kitano, 2007). Oberhardt et al. (2010) offer a comprehensive
analysis of metabolic network adaptation of Pseudomonas aeruginosa to a host organism
during a 44-months period. Co-targeting of an additional crucial point of drug-affected
network pathways is an efficient tool to fight against resistance. Drug combinations and
multi-target drugs develop less resistance (Zimmermann et al., 2007; Pujol et al., 2010;
Rosado et al., 2011; Savino et al., 2012). Analysis of pathogen interactomes involving
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random walks or known drug resistance-related proteins plus gene expression changes
revealed pathways often involved in resistance development helping co-target determination
(Raman & Chandra, 2008; Chen et al., 2012b). Resistance-related proteins defined a subset
of pathogen interactome, called resistome. Drug-induced gene expression changes and
betweenness centralities of their interactions were used as weights of resistome edges.
Resistome hubs may serve as important co-targets (Padiadpu et al., 2010). Differential
assessment of molecular networks of normal and resistant pathogens allows more efficient
drug resistant target and/or co-target identification (Kim et al., 2010). As we described in
Section 3.4.3., the combination of anti-tumor drugs and stress response targeting increases
therapeutic efficiency (Tentner et al., 2012; Rocha et al., 2011). The Hebbian learning rule,
i.e. the property of neuronal networks to increase edge-weights along frequently used
pathways (Hebb, 1949) may be extended to molecular networks, and studied as a possible
source of systems-level resistance development.

Importantly, the most efficient synergistic drug combinations typically preferred in clinical
settings may develop a faster resistance, which might argue for other, e.g. antagonistic drug
combinations (Chait et al., 2007; Hegreness et al., 2008). Synthetic rescues (when the
inhibition of a target compensates for the inhibition of another; Section 3.6.3.) are good
candidates for anti-resistant antagonistic co-target action (Motter, 2010). Network
simulation of resistance transmission in bacterial populations also underlined the need for
potent antimicrobials and high-enough doses to kill the susceptible population segment as
soon as possible (Gehring et al., 2010). Network-related methods to fight drug-resistance
may help both anti-infective and anti-cancer strategies as we will describe in the next two
sections.

5. Four examples of network description and analysis in drug design
In this section we will illustrate the usefulness of network-related methods in drug design
with examples of four major threats of human health: infectious diseases, cancer, diabetes
(extended to metabolic diseases) and neurodegenerative diseases. The first two disease
groups (infectious diseases and cancer) are examples of the central hit strategy aiming to
destroy the network of infectious agents or cancer cells (see Section 4.1.1. for a definition of
the two strategies). The last two therapeutic areas (diabetes and neurodegenerative diseases)
are examples of the network influence strategy aiming to re-wire molecular networks of
diseased cells to restore normal function (see Section 4.1.7. for a summary of these two
strategies). The sections on the use of network science to combat these diseases will not give
a comprehensive summary, but will only highlight a few key solutions and their results.

5.1. Anti-viral drugs, antibiotics, fungicides and antihelmintics
Drugs against infectious agents are central hit strategy drugs in the classification that we
introduced in Section 4.1.1. Efficient central hit strategy drugs interfere with viral
replication or kill the infectious cells with high efficiency (instead of temporal growth
inhibition, which may induce resistance), and avoid any toxic effects in humans. We list a
number of selected illustrative examples of network approaches for drug target identification
against pathogenic agents in Table 10.

Integrated host-pathogen networks proved to be very efficient in complex targeting
strategies in the case of viral/host interactomes (Uetz et al., 2006; Calderwood et al., 2007;
de Chassey et al., 2008; Chautard et al., 2009; Navratil et al., 2009; Brown et al., 2011;
Navratil et al., 2011; Prussia et al., 2011; Xu et al., 2011b; Lai et al., 2012; Schleker et al.,
2012; Simonis et al., 2012). Complex databases of viral/host interactions were also
assembled (Zhang et al., 2005). Anti-viral target proteins often emerge as bridges between
host/pathogen and human network modules, as well as hubs or otherwise central proteins of
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the virus-targeted human interactome (Uetz et al., 2006; Calderwood et al., 2007; de
Chassey et al., 2008; Navratil et al., 2011; Lai et al., 2012). Targets of viral proteins were
shown to be major perturbators of human networks (de Chassey et al., 2008; Navratil et al.,
2011). A machine learning technique with a learning set including viral/host intractome-
derived topological and functional information identified several formerly validated viral
targets of the influenza A virus, and predicted novel drug target candidates (Lai et al., 2012).
The combination of viral/host interactome data with siRNA, transcriptome, microRNA,
toxicity and other data may significantly extend the prediction efficiency of antiviral targets
(Brown et al., 2011).

Analysis of integrated bacterial/fungal/parasite and human metabolic networks also became
a widely used tool to predict potential drug target efficiency (Bordbar et al., 2010;
Huthmacher et al., 2010; Fatumo et al., 2011; Riera-Fernández et al., 2012). Chavali et al.
(2012) and Kim et al. (2012) offered comprehensive collections of datasets and analyses of
antimicrobial drug target identification using metabolic networks. Combinations of the
metabolic network and the interactome of Mycobacterium tuberculosis were used to identify
the most influential network target singletons, pairs, triplets and quadruplets (Raman et al.,
2008; Raman et al., 2009; Kushwaha & Shakya, 2010). Multiple targets are useful to prevent
the development of resistance (see preceding section; Raman & Chandra, 2008; Chen et al.,
2012b). However, recent studies showed that synergistic drug combinations, which are
preferred in clinical settings due to their high efficiency, may develop a faster resistance.
Therefore, antagonistic drug combinations should also be tried (Yeh et al., 2006; Chait et al.,
2007; Hegreness et al., 2008).

Complex chemical similarity networks including chemical-genetic interactions (i.e.
hypersensitivity data of mutant strains for chemical compounds; for additional examples see
Table 5) help in the identification of drug targets in anti-infective therapies (Parsons et al.,
2006; Hansen et al., 2009). The (random) upstream attack strategy proposed by Liu et al.
(2012) may uncover even more influential targets than currently known in directed networks
such as metabolic or signaling networks. Mészáros et al. (2011) warned that the selective
targeting of bacterial proteins may involve complex domain architecture. Complex similarity
networks (Vilar et al., 2009) may allow patient- and disease stage-specific target search in
the anti-cancer therapies detailed in the next section. As another approach linking the two
central hit strategy-type drug design areas, anti-infective and anti-cancer therapies, the
assessment of interactome and transcriptome perturbations by DNA tumour virus proteins
highlighted the Notch- and apoptosis-related pathways that also go awry in cancer
(Rozenblatt-Rosen et al., 2012).

5.2. Anti-cancer drugs
Cancer is a systems-level disease (Hornberg, 2006), where the rapidly proliferating system
is characterized by an increase of network entropy (West et al., 2012), i.e. an increase of
network flexibility and plasticity. This increase in network flexibility may characterize the
initial stages of tumor development (such as adenomas) better than later stages of malignant
transformation (such as carcinomas; Dezső Módos, Tamás Korcsmáros and Péter Csermely,
in preparation). Key aims of anti-cancer pharmacology include the identification of targets
and the efficient combination of drugs to overcome the robustness of cancer-specific cellular
networks with the least toxicity and resistance development possible (Kitano, 2004a; Kitano
2004b; Kitano, 2007; Werner, 2011; Cheng et al., 2012c; Rivera et al., 2012). Similarly to
the anti-pathogenic drugs described in the preceding section, anti-cancer drugs mostly
belong to central hit strategy drugs (see Section 4.1.1). However, central targets of cancer
cells are more often central components of healthy cells, than those of infectious agents
discussed in the preceding section. Therefore, as we will discuss in Section 5.2.5., a few
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anti-cancer drugs (presumably those, which target the more rigid networks of advanced
cancer types) start to resemble the network influence strategy-type drugs.

In the following sections we will show the help of interactomes, metabolic and signaling
networks to find cancer-specific drug targets and drug combinations. To illustrate the special
importance of network-level thinking in anti-cancer drug design, we start the section with
the description of autophagy, which is a very promising area to develop novel anti-cancer
drugs – but only if treated in a systems-level context using network description and analysis.

5.2.1. Autophagy and cancer – an example for the need of systems-level view
—Autophagy (cellular self-degradation) has a highly ambiguous role in cancer. On the one
hand, autophagy has tumor suppressing functions a.) by limiting chromosomal instability;
b.) by restricting oxidative stress, which is also an oncogenic stimulus; and c.) by promoting
oncogene-induced senescence. On the other hand, autophagy is used by tumor cells to
escape hypoxic, metabolic, detachment-induced and therapeutic stresses as well as to
develop metastasis and dormant tumor cells (Apel et al., 2009; Morselli et al., 2009; White
& DiPaola, 2009; Kenific et al., 2010; Chen & Klionsky, 2011). Thus autophagy should be
modulated in a cell-specific manner. In cancer cells over-activation of autophagy can induce
cell death, while autophagy inhibitors sensitize cancer cells to chemotherapy. In normal
cells, autophagy stimulators may be useful for cancer prevention by enhancing damage
mitigation and senescence, while autophagy inhibitors can induce tumorigenesis (White &
DiPaola, 2009; Ravikumar et al., 2010; Chen & Karantza, 2011). Network analysis of the
regulation of autophagy may point out such context-specific intervention points. The recent
work of Serra-Musach et al. (2012) showed that in contrast to most cancer-related proteins,
proteins involved in autophagy are more ‘failure-prone’, i.e. can be saturated by
pertubartions faster. This gives an additional rationale to employ autophagy-related proteins
as drug targets corresponding to the ‘Achilles-heel’ of cancer cells. Network approaches
described in all the following sections may be promising for the identification of autophagy-
related drug target candidates.

5.2.2. Protein-protein interaction network targets of anti-cancer drugs—Cancer-
specificity in the anti-cancer drug targets is a primary requirement to avoid toxicity. Target-
specificity may increase by selecting cancer-related mutation events or proteins having
altered gene expression. In addition, all these data can be combined at the network-level
(Pawson & Linding, 2008).

Large-scale sequencing identified thousands of genetic changes in tumors, which were
collected in databases, such as COSMIC (http://www.sanger.ac.uk/genetics/CGP/cosmic;
Forbes et al., 2011) or the Network of Cancer Genes (http://bio.ieo.eu/ncg/index.html;
D’Antonio et al., 2012). Section 1.3.3. and Tables 2 and 3 listed a number of network-
related methods to identify cancer-associated proteins. From the large number of tumor-
associated genes, only a few play a key role in tumor pathogenesis (called driver mutations).
Driver mutations can be characterized by their pathway association. In many tumors p53,
Ras and PI3K are the major signaling pathways containing driver mutations (Li et al.,
2009b; Pe’er & Hacohen, 2011). Genes with co-occurring mutations in the COSMIC
database prefer direct signaling interactions. Genes having a less coherent neighborhood in
the network of co-occurring mutations tend to have a higher mutation frequency (Cui, 2010).
Driver mutations are in cancer-modules and are neighbors of signature genes, whose
expression can be used as a prognostic marker of metastasis and survival in breast tumours
(Li et al., 2010d). Recently pathway and network reconstitution methods were suggested
using patient survival-related mutation data (Vandin et al., 2012).
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In human interactomes, proteins with cancer-specific mutations are hubs. They form a rich-
club, acting as bridges between modules of different functions, and behave as bottlenecks
providing exclusive connections between network segments or are otherwise central nodes
(Jonsson & Bates, 2006; Chuang et al., 2007; Sun & Zhao, 2010; Xia et al., 2011; Rosado et
al., 2011). Preferential connectedness of cancer-related proteins may contribute to their
increased robustness to transmit a large volume of perturbations without being damaged
(Serra-Musach et al., 2012). In agreement with the above observations, targets of anticancer
drugs have a significantly larger number of neighbors than targets of drugs against other
diseases (Hase et al., 2009). Inter-modular interactome hubs were found to associate with
oncogenesis better than intra-modular hubs (Taylor et al., 2009). Integration of the
interactome, protein domain composition, evolutionary conservation and gene ontology data
in a machine learning technique predicted target genes, whose knockdown greatly reduced
colon cancer cell viability (Li et al., 2009b). The interactomes of cancer associated cells,
such as cancer associated fibroblasts may also highlight important prognostic markers of the
disease (Bozóky et al., 2013).

Differential gene expression analysis became one of the key approaches to identify genes
important in diagnosis and prediction of cancer progression. The Oncomine resource
includes more than 18,000 gene expression profiles (http://oncomine.org; Rhodes et al.,
2007a). Oncomine data were extended by drug treatment signatures and target/reference
gene sets providing a network of Molecular Concepts Map (http://
private.molecularconcepts.org; Rhodes et al., 2007b). Differentially expressed proteins in
human cancers were catalogued in the dbDEPC database (http://lifecenter.sgst.cn/dbdepc/
index.do; He et al., 2012). Gene expression profiles may be used for reverse engineering of
cancer specific regulatory networks (Basso et al., 2005; Ergün et al., 2007). Gene expression
subnetworks showed increased similarity with the progression of chronic lymphocytic
leukemia, suggesting that degenerate pathways converge into common pathways that are
associated with disease progression (Chuang et al., 2012).

Interactome nodes may be marked according to their up- or down-regulation in cancer, and
may identify clusters of proteins involved in cancer progression, such as in metastasis-
formation (Rhodes & Chinnaiyan, 2005; Jonsson et al., 2006; Hernández et al., 2007).
Network analysis measures (e.g. degree, betweenness centrality, shortest path, etc.) of
integrated interactome and expression data ranked cancer related proteins for target
prediction, and showed their central network position (Wachi et al., 2005; Platzer et al.,
2007; Chu & Chen, 2008; Mani et al., 2008).

However, altered expression of mRNAs is generally not enough to predict target efficiency
(Yeh et al., 2012). mRNAs are often regulated by microRNAs, thus the inclusion of
microRNA pattern analysis improves prediction as we will show in the next section.
Moreover, the analysis of proteomic changes is also necessary in most cases (Pawson &
Linding, 2008, Gulmann et al., 2006). Changes in protein levels may act synergistically
(Maslov & Ispolatov, 2007). Starting from this idea, random walk-based interactome
analysis identified sub-networks, which were around ‘seeds’ changing their protein levels in
colorectal cancer, and screened these subnetworks using the level of the synergistic
dysregulation of the associated mRNAs in colorectal cancer (Nibbe et al., 2010). Inclusion
of additional data in the interactome and gene expression datasets, such as protein domain
interactions, gene ontology annotations, cancer-related mutations, or cancer prognosis
information refined predictions further (Franke et al., 2006; Pujana et al., 2007; Chang et al.,
2009; Lee et al., 2009; Wu et al., 2010; Xiong et al., 2010; Yeh et al., 2012).

5.2.3. Metabolic network targets of anti-cancer drugs—The metabolism of cancer
cells is adapted to meet their proliferative needs in predominantly anaerobic conditions
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(Warburg, 1956). Network modeling uses a number of cancer-specific pathways of energy
metabolism (Resendis-Antonio et al., 2010; Vazquez et al., 2011; Khazaei et al., 2012; Kung
et al., 2012). Metabolic networks of several cancer-types such as that of colorectal cancer
were constructed recently (Martínez-Romero et al., 2010). Li et al. (2010e) used the k-
nearest neighbor model to predict the metabolic reactions of the NCI-60 set (a set of 60
human tumor cell lines derived from various tissues of origin) influenced by approved anti-
cancer drugs, and extended their method to suggest possible enzyme targets for anti-cancer
drugs. Through the analysis of cancer-specific human metabolic networks Folger et al.
(2011) predicted 52 cytostatic drug targets, of which 40% were targeted by known anti-
cancer drugs, and the rest were new target-candidates. However, it should be kept in mind
that key enzymes of cancer-specific metabolism, such as the PKM2 isoenzyme of pyruvate
kinase playing a predominant role in the Warburg-effect (Warburg, 1956; Steták et al., 2007;
Christofk et al., 2008; Kung et al., 2012), were also shown to play a direct role in cancer-
specific signaling (Gao et al., 2012). Both metabolic and signaling networks are directed
networks, where a hierarchy can be established, and where targeting of upstream, more
influential nodes may be a fruitful strategy (Liu et al., 2012). We will review the use of
signaling networks in anti-cancer therapies in the next section.

5.2.4. Signaling network targets of anti-cancer drugs—Signaling-related anti-
cancer therapies increasingly outnumber metabolism-related chemotherapy options. From
the network point of view this trend is due to the more developed signaling in humans than
in pathogens, and to the increased selectivity of signaling interactions as compared to
metabolism-related targeting.

Mass spectrometry can be effectively used for the analysis of post-translational
modifications during the progression of cancer. Post-translational modifications, e.g.
phosphorylation may change due to changes in the cellular environment and regulation
under physiological conditions, but also due to a mutation at the phosphorylation site, or at a
protein binding interface regulating kinase or phosphatase activity (Pawson & Linding,
2008). The bioinformatics resources NetworKIN (http://networkin.info; Linding et al., 2007)
and NetPhorest (http://netphorest.info; Miller et al., 2008) can help in the analysis cancer-
related signaling changes.

Rewiring of cancer-related changes of signaling networks is a primary aim in signal
transduction-related anti-cancer therapies (Papatsoris et al., 2007). Cancer-specific changes
in gene expression may activate or inactivate noncanonical edges in signal transduction
networks (Klinke, 2010). Higher complexity of cancer-specific signaling network was
shown to correlate with shorter survival (Breitkreutz et al., 2012). Proteins with cancer-
related mutations are often hubs of human signaling network and are enriched in positive
signaling regulatory loops (Awan et al., 2007; Cui et al., 2007; Cloutier and Wang, 2011; Li
et al., 2012a). Alteration in crosstalking, multi-pathway, inter-modular proteins of signaling
networks was proposed to be a key process in tumorigenesis (Hornberg et al., 2006; Taylor
et al., 2009; Korcsmáros et al., 2010; Rivera et al., 2012).

The mammalian target of rapamycin (mTOR) is an important example of multi-pathway
effects. mTOR has a key role in cell growth and regulation of cellular metabolism. In most
tumors, mTOR is mutated, causing a hyper-active phenotype (Zoncu et al., 2011). Though
mTOR activity was expected to be a promising therapeutic target, drugs showed poor results
in clinical trials. mTOR could not meet node-targeting expectations because of its multi-
pathway position, participating in at least two major signaling complexes, mTORC1 and
mTORC2 (Huang et al., 2004; Caron et al., 2010; Catania et al., 2011; Pe’er & Hacohen,
2011; Fingar & Inoki, 2012).
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Edgetic drugs specifically targeting mTOR interactions may selectively influence cancer-
specific mTOR functions (Section 4.1.2.; Ruffner et al., 2007). Another example of edgetic
anti-cancer therapy options is that of nutlins, which block the interaction between p53 and
its negative modulator MDM2 activating the tumor suppressor effect of p53 (Vassilev et al.,
2004). Cancer-related proteins have smaller, more planar, more charged and less
hydrophobic binding interfaces than other proteins, which may indicate low affinity and
high specificity of cancer-related interactions (Kar et al., 2009). These structural features
make lead compound development of cancer-related edgetic drugs a challenging task.

microRNAs are increasingly recognized as highly promising, non-protein intervention
points of the signaling network (see also in Section 3.4.). Loss- or gain-of-function
mutations of microRNAs have been identified in nearly all solid and hematologic types of
cancer (Calin & Croce, 2006; Spizzo et al., 2009). In addition, microRNAs were recently
found as a form of intercellular communication (Chen et al., 2012c). Thus, alteration of
microRNA content may have an effect on the microenvironment of tumor cells. Drug-
induced changes in the expression of specific microRNAs can induce drug sensitivity
leading to an increased inhibition of cell growth, of invasion and of metastasis formation
(Sarkar et al., 2010). However, microRNAs have a dual role in cancer, acting both as
oncogenes targeting mRNAs coding tumor-suppression proteins, or tumor suppressors
targeting mRNAs coding oncoproteins (Iguchi et al., 2010; Gambari et al., 2011). This
suggests the use of systems-level, network approaches to select microRNA targets.

Combination of cancer-specific mRNA and microRNA expression data may be used to infer
cancer-specific regulatory networks (Bonnet et al., 2010). microRNAs involved in prostate
cancer progression preferentially target interactome hubs (Budd et al., 2012). microRNA
networks obtained from 3,312 neoplastic and 1,107 nonmalignant human samples showed
the dysregulation of hub microRNAs. Cancer-specific microRNA networks had more
disjoined subnetworks than those of normal tissues (Volinia et al., 2012). The fast growing
complexity of signaling networks still awaits a comprehensive treatment in anticancer
therapies.

5.2.5. Influential nodes and edges in network dynamics as promising drug
targets—As we mentioned in the introduction of Section 5, the central hit strategy of anti-
cancer drug design would often hit a protein, which is also central in the networks of healthy
cells. Therefore, here the more indirect targeting of the network influence strategy may also
prove useful. Many targets of anti-cancer therapies are not directly cancer-related (Hornberg
et al., 2006; Cheng et al., 2012c). Context can influence network behavior in at least four
different ways: a.) the genetic background (e.g., single-nucleotide polymorphisms and other
mutations); b) gene expression changes (caused by e.g. transcription factor, epigenetic or
microRNA changes); c.) neighboring cells; and finally d.) exogenous signals (e.g. nutrients
or drugs) all providing increment to the patient-specific, context-dependent responses to
anti-cancer therapy (Klinke, 2010; Pe’er & Hacohen, 2011; Sharma et al., 2010b).
Differential gene expression and phosphorylation studies were already shown to be useful to
distinguish among different stages of cancer development in the preceding sections. The
next challenging step is to examine the cancer-induced dynamic changes on a network-level.

The examination of differential networks of cancer stages, or networks of drug treated and
un-treated cells, is one of the first steps in possible solutions (Ideker & Krogan, 2012).
Network level integration of cancer-related changes (such as mutations, gene expression
changes, post-translational modifications, etc.) may capture key differences in network
wiring (Pe’er & Hacohen, 2011).

Csermely et al. Page 80

Pharmacol Ther. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Network dynamics may be assessed by the dissipation of perturbations, which can be used
for the prioritization of drug target candidates. The early work of White & Mikulecky (1981)
used a small network to assess the dynamics of methotrexate action. Stites et al. (2007)
studied changes of Ras signaling in cancer using a differential equation model applied to a
limited signaling network-set. They concluded that a hypothetical drug preferably binding to
GDP-Ras would only induce a cancer-specific decrease in Ras signaling. Shiraishi et al.
(2010) identified 6,585 pairs of bistable toggle switch motifs in regulatory networks forming
a network of 442 proteins. Among the 24 conditions examined, mRNA expression level
changes reversed the ON/OFF status of a significantly high number of bistable toggle
switches in various types of cancer, such as in lung cancer or in hepatocellular carcinoma.
Serra-Musach et al (2012) found that cancer-related proteins have an increased robustness to
transmit a large volume of perturbations without being damaged. Extensions of such
investigations to network-wide perturbations (modulated by neighboring cells and
exogenous signals) will be an important research area for finding influential nodes/edges
serving as drug target candidates.

5.2.6. Drug combinations against cancer—As we have shown in the preceding
sections cancer is a systems-level disease, where magic-bullet type drugs may fail. Partially
redundant signaling pathways are hallmarks of cancer robustness. Thus an inhibitor of a
particular hallmark may not be enough to block the related function. Moreover, when
inhibitors of a specific cancer hallmark are used separately, they may even strengthen
another hallmark, like certain types of angiogenesis inhibitors increased the rate of
metastasis. In most failures of anti-cancer therapies, unwanted off-target effects and
undiscovered feedbacks prevented the desired pharmacological goal. Combination therapies
and multi-target drugs may both overcome system robustness and provide less side-effects
(see Section 4.1.5.; Gupta et al., 2007; Berger & Iyengar, 2009; Wilson et al., 2009; Azmi et
al., 2010; Glaser, 2010; Hanahan & Weinberg, 2011).

Cancer-specific subsets of the human interactome can provide a guide for the development
of multi-target therapies. Mutually exclusive gene alterations which share the same
biological process may define cancer type-related interactome modules (Ciriello et al.,
2012b). Other types of cancer-related network modules were identified as sub-interatomes,
as in colorectal cancer. These were centered on proteins, which markedly change their
levels, and showed a synergistic dysregulation at their mRNA levels (Nibbe et al., 2010).
Simultaneous targeting of these modules may be an efficient therapeutic strategy.

Multiple-targets can be identified using cancer-specific metabolic network models.
Combinations of synthetic lethal drug targets were predicted in cancer-specific metabolic
networks (Moreno-Sánchez et al., 2010; Folger et al., 2011). Ensemble modeling, which
exploited a perturbation of known targets in a subset of 58 central metabolic reactions, was
used to predict target sets of key enzymes of central energy metabolism (Khazaei et al.,
2012).

Potential drug target sets were identified by an algorithm, which calculates the downstream
components of a prostate cancer-specific signaling network affected by the inhibition of the
target set (Dasika et al., 2006). In the particular example of EGF receptor inhibition,
subsequent applications of drug combinations were shown to have a dramatically improved
effect. This unmasked an apoptotic pathway, and via complex signaling network effects
dramatically sensitized breast cancer cells to subsequent DNA-damage (Lee et al., 2012d).
These findings substantiate Kitano’s earlier emphasis on the importance of cancer
chronotherapy (Kitano 2004a; Kitano 2004b; Kitano, 2007).
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Tumors contain a highly heterogeneous cell population. Drug combinations may act via an
intracellular network of a single cell; but also via inhibiting subsets of the heterogeneous
population of malignant cells. Cell populations and their drug responses can be perceived as
a bipartite graph. Applying minimal hitting set analysis allowed the search for effective drug
combinations at the inter-cellular network level (Vazquez, 2009).

As we showed in this section, analysis of network topology and, especially, network
dynamics can predict novel anti-cancer drug targets. Incorporation of personalized data,
such as mutations, singalome or metabolome profiles to the molecular networks listed in this
section may enhance patient- and disease stage-specific drug targeting in anti-cancer
therapies.

5.3. Diabetes (metabolic syndrome including obesity, atherosclerosis and cardiovascular
disease)

Diabetes is the first of our two examples showing the applications of the network influence
strategy defined in Section 4.1.1., where therapeutic interventions need to push the cell back
from the attractor of the diseased state to that of the healthy state. Diabetes is a multigenic
disease tightly related to central obesity, atherosclerosis and cardiovascular disease, a
connection also revealed by network representations (Ghazalpour et al., 2004; Lusis &
Weiss, 2010; Stegmaier et al., 2010). Here we summarize network-related methods to
predict novel drug target candidates in diabetes and related metabolic diseases.

Type 2 diabetes is the most common form of diabetes that is characterized by insulin
resistance and relative insulin deficiency. T2D-db is a database of molecular factors
involved in type 2 diabetes (http://t2ddb.ibab.ac.in; Agarwal et al., 2008) providing useful
information for the construction of various diabetes-related networks. Combination of
interactome and diabetes-related gene expression data identified the possible molecular basis
of several endothelial, cardiovascular and kidney-related complications of diabetes, and
revealed novel links between diabetes, obesity, oxidative stress and inflammatory
abnormalities (Sengupta et al., 2009; Mori et al., 2010). Similar studies suggested a network
of protein-protein interactions bridging insulin signaling and the peroxisome proliferator-
activated receptor-(PPAR)-related nuclear hormone receptor family (Liu et al., 2007b).
Refinement of interactome data containing domain-domain interactions combined with the
earlier observation that disease-related genes have a smaller than average clustering
coefficient (Feldman et al., 2008) led to the prediction of type 2 diabetes-related genes
(Sharma et al., 2010a). Inter-modular interactome nodes between type 2 diabetes-, obesity-
and heart disease-related proteins may play a key role in the dysregulation of these complex
syndromes (Nguyen & Jordán, 2010; Nguyen et al., 2011).

Type 1 diabetes is primarily related to the dysregulation of insulin secretion of pancreatic β-
cells, where β-cell dedifferentiation was recently shown to play an important role (Talchai et
al., 2012). The β-cell endoplasmic reticulum stress signaling network is an important
regulator of this process (Fonseca et al., 2007; Mandl et al., 2009). Integration of
interactome and genetic interaction data revealed novel protein network modules and
candidate genes for type 1 diabetes (Bergholdt et al., 2007).

Reconstruction of changes of the human metabolic network of skeletal muscle in type 2
diabetes enabled the identification of potential new metabolic biomarkers. Analysis of gene
promoters of proteins associated with the biomarker metabolites led to the construction of a
diabetes-related transcription factor regulatory network (Zelezniak et al., 2010). Recently an
integrated, manually curated and validated metabolic network of human adipocytes,
hepatocytes and myocytes was assembled. Several metabolic states, such as the alanine-
cycle, the Cori-cycle and an absorptive state, as well as their changes between obese and
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diabetic obese individuals were characterized (Bordbar et al., 2011). Such studies will
highlight key enzymes of metabolic network, where a drug-induced activity and/or
regulation change may significantly contribute to the rewiring of the metabolic network to
its normal state.

Insulin signaling is in the center of the etiology of metabolic diseases. Several studies
highlighted diabetes-responsible segments of the human signaling network enriching and re-
focusing the traditionally known insulin signaling pathway. The mammalian target of
rapamycin (mTOR) protein is one of the focal points of the insulin signaling network. From
the two mTOR-related signaling complexes mentioned in the preceding section, Complex 1
(mTORC1) is a key player in nutrient-related signaling involving the hypothalamus,
peripheral organs, adipose tissue differentiation and β-cell dependent insulin secretion
(Catania et al., 2011; Fingar & Inoki, 2012). An siRNA knockout screen of 300 genes
involved in the lipolysis of 3T3-L1 adipocytes led to the identification of a core, insulin
resistance-related subnetwork of the insulin signaling pathway highlighting a number of
novel genes related to insulin-resistance, such as the sphingosine-1-phosphate receptor-2 (Tu
et al., 2009). Reconstruction of the subnetwork of human inteactome related to insulin
signaling and the determination of its hubs and bottleneck proteins (Durmus Tekir et al.,
2010) is an ongoing work, which will uncover many important novel targets of therapeutic
interventions in the future. As an additional extension of insulin signaling, recent studies
started to uncover the changes and most influential members of the microRNA regulatory
network in diabetes (Huang et al., 2010; Zampetaki et al., 2010). Phosphoproteome-studies
help to extend the insulin signaling network further, and to uncover its time-dependent
changes (Schmelzle et al., 2006).

Tissue-specific gene expression data identified metabolic disease-specific regulatory
network modules, and revealed the involvement of both macrophages and the inflammatome
in the pathogenesis of metabolic diseases (Schadt et al., 2009; Lusis & Weiss, 2010; Wang
et al., 2012f). These studies show the inter-pathway and inter-organ complexity reached in
the network understanding of metabolic disease. In Section 4.1.7. we summarized the
network influence strategy; that is, to rewire the cellular networks from their diseased state
to healthy state as a tool to help in successful drug design. This includes avoiding network
segments which are essential in healthy cells, and focusing on targeting pathway sites
specific to diseased cells, and the use of multiple or indirect targeting. For this, metabolic
disease network studies need to apply network dynamics methods such as we listed in
Section 2.5. Systematic, network-based identification of edgetic, multi-target and allo-
network drugs (see Section 4.1.) could also be beneficial. Refined network methods should
also incorporate patient- and disease stage-specific data. These are intimately related to the
network consequences of aging, which will be described in the next section.

5.4. Promotion of healthy aging and neurodegenerative diseases
Aging is one of the most complex processes of living organisms. Aging was described as a
network phenomenon (Kirkwood & Kowald, 1997; Csermely & Sőti, 2007; Simkó et al.,
2009; Chautard et al., 2010). In the first half of this section we will summarize the few
initial network studies on age-related multifactorial changes. Besides cancer and the
metabolic syndrome described in the preceding sections, neurodegeneration is one of the
major aging-associated diseases. In the concluding part of the section we will describe
network-related studies on the prediction of potential drug targets to prevent and slow down
various forms of neurodegeneration, such as Alzheimer’s, Parkinson’s, Huntington’s and
prion-related diseases.
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5.4.1. Aging as a network process—Aging organisms show similar early warning
signals of critical phase transitions (i.e.: slower recovery from perturbations, increased self-
similarity of behavior and increased variance of fluctuation-patterns) as described for a wide
variety of complex systems (Section 2.5.2.; Scheffer et al., 2009, Sornette & Osorio, 2011;
Dai et al., 2012). Aging can be perceived as an early warning signal of a critical phase
transition, where the phase transition itself is death (Farkas et al., 2011). However, this
sobering message also has a positive implication: phase transitions of complex systems can
be slowed down, postponed, or prevented by nodes having an independent and unpredictable
behavior (Csermely, 2008). The identification of these nodes may lead to the discovery of
novel molecular agents promoting healthy aging.

The complexity of the aging process is illustrated well by the duality of possible aging-
related trends in network changes. Aging-related disorganization causes an increase of non-
specific edges, and an aged organism has fewer resources predicting the loss of network
edges during aging. Thus, small-worldness may often be lost during the aging process, and
the hub-structure may get reorganized. Aging networks are likely to become more rigid, and
may have less overlapping modules (Söti & Csermely, 2007; Csermely, 2009; Kiss et al.,
2009; Simkó et al., 2009; Gáspár & Csermely, 2013). The longest documented lifespan is
currently 122 years achieved by a French woman (Allard et al., 1998). It is currently an open
question, whether lifespan has any upper limits. It will be an interesting if future aging-
related studies of network topology and behavior will predict any upper limit of human
lifespan.

Aging-associated genes form an almost fully connected sub-interactome (also called
longevity networks; Budovsky et al., 2007), and occupy both hub (Promislow, 2004;
Ferrarini et al., 2005; Budovsky et al., 2007; Bell et al., 2009) and inter-modular positions
(Xue et al., 2007). Aging-associated genes are concentrated in 4 modules of the yeast
interactome (Barea & Bonatto, 2009). Similarly, age-related gene expression changes
preferentially affect only a few modules of the human brain and Drosophila interactomes
(Xue et al., 2007). The sub-interactome of aging-genes can be extended by their neighbors
and the related network edges. The extended network provides a target-set to identify novel
aging-related genes (Bell et al., 2009). The sub-interactomes of aging-associated genes and
major age-related disease genes highly overlap with each other. Aging-genes bridge other
genes related to various diseases (Wolfson et al., 2009; Wang et al., 2009).

Longevity networks are enriched by key signaling proteins (Reja et al., 2009; Simkó et al.,
2009; Wolfson et al., 2009; Borklu Yucel & Ulgen, 2011). The complexity of age-related
processes is exemplified well by the extensive cross-talks of age-related signaling pathways
(de Magalhaes et al., 2012). As an example, the growth hormone-related pathways, the
oxidative stress-induced pathway and the dietary restriction pathway all affect the FOXO
(Daf-16) transcription factor (Greer & Brunet, 2008). The yeast gene regulatory network
was reconstituted by reverse engineering methods using age-associated transcriptional
changes. The regulatory network revealed novel aging-associated regulatory components
(Lorenz et al., 2009). MicroRNAs play an important role in aging-related signaling events
(Chen et al., 2010b). Network analysis will help the identification of critical nodes of age-
related signaling. These nodes may serve as potential targets of drugs promoting healthy
aging.

During the aging process, the nuclear pore complexes become more permeable (D’Angelo et
al., 2009). It is likely that age-induced increase of permeability is a general phenomenon
involving other cellular compartments (Simkó et al., 2009) and increasing in the number of
non-specific edges of the inter-organelle network.
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Though drug development efforts are rapidly increasing in the field, currently there are only
a few drugs which directly target the aging process (Simkó et al., 2009; de Magalhaes et al.,
2012). To date, it is an open question, if central hit strategy-type or network influence
strategy-type drug targeting (aiming to target key network nodes, or aiming to influence
aging-related changes, respectively) will be the most efficient route for finding appropriate
drugs for the promotion of healthy aging. Most probably the network influence strategy will
be the ‘winner’, and the anti-aging drugs of the future will be multi-target drugs, providing
an indirect influence on key processes of aging networks. For this additional studies on
aging-related dynamics of molecular networks are needed.

5.4.2. Network strategies against neurodegenerative diseases—As Lipton (2004)
remarked, according to some predictions by 2050 the entire economy of the industrialized
world could be consumed by the costs of caring for the sick and elderly. Neurodegenerative
diseases, such as Alzheimer’s, Parkinson’s, Huntington’s and prion diseases constitute one
of the major aging-related disease-class besides cancer and metabolic diseases. Although
several symptomatic drugs are available, a disease-modifying agent is still elusive making
novel approaches especially valuable (Dunkel et al., 2012; Funke et al., 2012; Mei et al.,
2012).

We listed the major network-related methods to uncover novel neurodegenerative disease-
associated genes, potential drug targets, or for drug repositioning in Table 11. Two major
network methodologies emerge, which are widely used in connection with
neurodegenerative diseases. One of them constructs, or extends disease-related protein-
protein interaction networks and predicts novel disease-associated proteins. This appears a
straightforward technique, since a neurodegenerative disease causes a major reconfiguration
of cellular protein complexes. The other major method uses network analysis of
differentially expressed genes in disease-affected patients or model organisms. This method
identifies novel regulatory and signaling components involved in disease progression. Both
methods may identify disease-affected pathways, which may be used to construct “heat-
maps” identifying novel drug target candidates (Dunkel et al., 2012; Mei et al., 2012).

When summarizing neurodegenerative disease-related network efforts, it was surprising that,
besides a few initial attempts in Alzheimer’s disease, how little attention was devoted to
chemical similarity networks, metabolic networks, signaling networks and drug-target
networks in this field. Dysregulated, over-acting signaling pathways have a major
contribution to all neurodegenerative diseases, and their network analysis would deserve
more attention. A good anti-neurodegenerative drug is typically a network influence
strategy-type drug reconfiguring the distorted pathways of disease-associated networks
(Lipton, 2004; Dunkel et al., 2012). Learning more on changes in network dynamics during
neurodegenerative disease progression would be a major advance of drug design efforts in
this crucially important field.

6. Conclusions and perspectives
The value of every drug design technology must be assessed by asking: “How much does
the new technology help to solve one of the two central problems: the identification and
validation of a disease-specific target or the identification of a molecule that can modify this
target in a way that makes therapeutic sense?” (Drews, 2003; Brown & Superti-Furga,
2003). Network description and analysis may offer novel leads in both questions. In this
concluding section we will highlight the promises and perspectives of network-aided drug
development.
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6.1. Promises and optimization of network-aided drug development
One of the major promises of network description and analysis is their help to overcome the
“one-effect/one-cause/one-target” magic bullet-type drug development paradigm (Ehrlich,
1908). Magic bullets do work – sometimes. When designing “central hit strategy-type”
drugs (Sections 4.1.1. and 4.1.7.), which target key nodes of the network to eliminate
pathogens or malignant cells, eradicating single hit may be beneficial. However, pathogen
resistance or unexpected toxicity of anti-cancer drugs (and resistance against them) may dog
the outcome. In the development of “network influence strategy-type drugs”, where an
efficient reconfiguration of rigid networks needs to be achieved, network dynamics has to be
reset from its disease-affected state back to normal (Sections 4.1.1. and 4.1.7.). Under these
circumstances, the traditional approach of rational drug discovery selecting a single and
central target often fails. The paucity of disease-modifying anti-neurodegenerative drugs
described in the preceding section is an example for the need for novel approaches in
network influence strategy-type drug design.

James Black described well a wide-spread behavior saying that ‘the most fruitful basis for
the discovery of a new drug is to start with an old drug’ (Chong & Sullivan, 2007). We
started our review with the statement that ‘business as usual’ is no longer an option in drug
industry (Begley & Ellis, 2012). Currently, there is a broad consensus that this state, where
the vast majority of new drugs are related to existing ones, needs to change (Section 1.1.;
Cokol et al., 2005; Yildirim et al., 2007; Iyer et al., 2011a).

Nonetheless, the question is how to find ‘surprisingly novel drugs’. The failure of some
efforts using the reductionist approach of rational drug design shifted the thinking to the
other extreme that ‘we need unbiased research methods to cover complexity’. Indeed,
unbiased methods (including network analysis or machine learning) may successfully
predict novel drug targets. However, clearly, artificial intelligence may miss ‘true’ surprises
(Section 2.2.2.). This leads to our first major conclusion, which we summarized in Fig. 23:
network description and analysis should be combined with human creativity and background
knowledge.

Network analysis helps in comprehending the vast amounts of systems-level data, which
accumulated over the last decade. However, network analysis alone is clearly insufficient
and has to be complemented with the intuitions coming from background knowledge
(Valente, 2010). In this process creativity (marked as the ‘surprise factor’ in Fig. 23), which
strives for novelty, and identifies it in networks as the ‘prediction of the unpredictable’
(Section 2.2.2.) can not be overlooked. Combined, the current boom in network dynamics-
related methods can help in discovering the key actors in the cellular community, which are
the hidden masterminds of cellular changes in health and in disease (Fig. 23).

Our second major conclusion is that a protocol of network-aided drug development would
be aided by alternating exploration and optimization phases of drug design (Fig. 23.). In the
exploration phase background knowledge may be temporarily suppressed. In contrast, in the
optimization phase we need to suppress the playfulness and ambiguity tolerance of the
exploration phase, and rank the options by rigorous application of background knowledge
including all the well-orchestrated rules of the drug development process (Csermely, 2013;
Gyurkó et al., 2013). Importantly, the sequence of exploration and optimization phases may
be applied repeatedly, providing a more detailed ‘zoom-in’ of the optimal (drug) target than
a single round of exploration/optimization (Fig. 23). The utility of repeated exploration/
optimization rounds was shown in a number of examples ranging from thermal cycles of
simulated annealing optimization (Möbius et al., 1997) to the human learning process
(Bassett et al., 2011).
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Drug design-related networks became increasingly complex during the past decade. Albert
Einstein’s saying that “the supreme goal of all theory is to make the irreducible basic
elements as simple and as few as possible without having to surrender the adequate
representation of a single datum of experience” (Einstein, 1934) (also called ‘Einstein’s
razor’, extending the Occam’s razor theorem advocating only the simplest solution)
encourages finding the optimal network representation, which is simple enough, but not too
simple. Finding the optimal complexity of network representation in the drug discovery
process is an important task. Eventually, the recurring application of exploration and
optimization phases shown in Fig. 23 suggests that network data coverage should be
extended in consecutive phases separated by recurrent network simplifications based on
background knowledge.

Thomas Singer wrote a few years ago “Extrapolation of preclinical data into clinical reality
is a translational science and remains an ultimate challenge in drug development.” (Singer,
2007). Addressing this challenge our third and last major conclusion stresses the importance
of network prediction of these human data, which are not available experimentally. This
includes overcoming three major hurdles (Fig. 2; Brown & Superti-Furga, 2003; Austin,
2006; Bunnage, 2011; Ledford, 2012): 1.) insufficient drug efficacy; 2.) unexpected major
adverse effects; 3.) unexpected forms of human toxicity. Network analysis may help
ameliorate the efficacy by taking into account patient-, disease stage-, age-specificities
(Section 4.3.1.); it may help obtain a better prediction of side-effects (Section 4.3.5.) and
predictive human toxicology (Section 4.3.3.; Henney & Superti-Furga, 2008).

Network science is a novel area of biology; and this is particularly the case with respect to
drug design. We often lack rigorous comparisons of existing methods, which could have
allowed a more critical approach to some of them. It is an ongoing effort of the current years
to develop benchmarks, gold-standards and rigorous assessment tools in network science.

6.2. Systems-level hallmarks of drug quality and trends of network-aided drug
development helping to achieve them

In this closing section we identify the systems-level hallmarks of drug quality, and list the
major trends of network-aided drug development helping to achieve them. From the network
point of view we propose two strategies in finding drug targets: 1.) the central hit strategy
aiming to destroy the network of infectious agents or cancer cells and 2.) the network
influence strategy aiming to shift the network dynamics of polygenic, complex diseases back
to normal (Fig. 19; Sections 4.1.1. and 4.1.7.). Both strategies converge to the same level of
network complexity in hit finding, hit expansion, lead selection and optimization phases. We
note that these two strategies appear as general strategies to design the most efficient attack
of flexible, plastic systems (using the central hit strategy) or rigid systems (using the
network influence strategy) valid from molecular structures, through molecular and cellular
networks to social and engineered networks or ecosystems.

Table 12 lists the systems-level hallmarks of drug target identification and validation, hit
finding and development, as well as lead selection and optimization. We believe that the
systematic application of these systems-level hallmarks will not only help the identification
of novel drug targets, but will also streamline the drug design process to be more selective,
less attrition-prone and more profitable.

Table 12 also includes the most important network-related drug design trends helping the
accomplishment of various systems-level hallmarks. We highlight the development of
edgetic drugs (Section 4.1.2.), multi-target drugs (Section 4.1.5.) and allo-network drugs
(Section 4.1.6.) among the richness of network strategies to find novel drug targets. We
believe that there are a large number of unexplored drug targets, which are the hidden
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masterminds of cellular regulation. Analysis of network dynamics can help to find them.
Incorporation of disease-stage, age-, gender- and human population-specific genetic,
metabolome, phosphoproteome and gut microbiome data; the development of human
ADME and toxicity network models; and the use of side-effect networks to judge drug
safety, may greatly increase the efficiency of the drug development process.

Network-related methods – if applied systematically (and carefully) – will uncover a number
of novel drug targets, and will increase the efficiency of the drug development process.
Analysis of the structure and dynamics of molecular networks, extended by the network
dynamics of constituting proteins and in particular their binding sites, provides a novel
paradigm of drug discovery.
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Fig. 1.
Number of new molecular entities (NME, a drug containing an active ingredient that has not
been previously approved by the US FDA) approved by the US Food and Drug
Administration (FDA). Blue bars represent the total number of NMEs, whereas red bars
represent “priority” NMEs that potentially offer a substantial advance over conventional
therapies. Source: http://www.fda.gov/Drugs/default.htm
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Fig. 2.
Success rate of new molecular entities (NMEs) by R&D development phases. The figure
shows the combined R&D survival by development phase for 14 large pharmaceutical
companies. (Reprinted by permission from the Macmillan Publishers Ltd: Nature Chemical
Biology, Bunnage, 2011, Copyright, 2011.) Note that attrition figures for early phases might
be even higher, since an early problem might be first neglected making a failure only at a
later phase (Brown & Superti-Furga, 2003).
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Fig. 3.
Network-application in drug-design related publications. Data are from PubMed using the
query of “network AND drug” for title and abstract words. The number of publications in
2012 is an extrapolation.
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Fig. 4.
Uses of network description and analysis in drug design. Numbers in parentheses refer to
section numbers of this review.
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Fig. 5.
Classic and network views of drug action. Made after the basic idea of Berger and Iyengar
(2009).
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Fig. 6.
Options for network representations of disease-related data. The figure summarizes some of
the options to assess disease-related data using network description and analysis. Each
ellipse represents a type of data. Arrows stand for possible network representations. 1:
Human disease networks discussed in this section and in Table 2. 2: Additional network-
related data helping the identification of disease-related human genes (acting like possible
drug targets) detailed in Table 3. 3: Drug target networks discussed in Section 4.1.3.
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Fig. 7.
Two projections of the human disease network. On the middle of the figure a segment of the
bipartite network of human diseases and related human genes is shown. On the projection on
the left side two diseases are connected, if they have at least one common gene. On the
projection on the right side two genes are connected, if they have at least one common
disease (reproduced with permission from Goh et al., 2007; Copyright, 2007, National
Academy of Sciences, U.S.A.).
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Fig. 8.
Bridge, inter-modular hub and bottleneck. The network on the left side of the figure has two
modules (modules A and B marked by the yellow dotted lines), which are connected by a
bridge and by an inter-modular hub. By the removal of the red edge from the network on the
left side, the former bridge obtains a unique and monopolistic role connecting modules A
and B, and is therefore called as a bottleneck.
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Fig. 9.
Rich club, nested network and onion network. The figure illustrates the differences between
a network having a rich club (left side), having a highly nested structure (middle) and
developing an onion-type topology (right side). Note that the connected hubs of the rich club
became even more connected by adding the 3 red edges on the middle panel. Connection of
the peripheral nodes by an additional 10 red edges on the right panel turns the nested
network to an onion network having a core and an outer layer. Note that the rich club
network already has a nested structure, and both the nested network and the onion network
have a rich club. Larger onion networks have multiple peripheral layers.
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Fig. 10.
Alluvial diagram illustrating the temporal changes of network communities. Each block
represents a network module with a height corresponding to the module size. Modules are
ordered by size (in case of a hierarchical structure within their super-modules). Darker
colors indicate module cores. Modules having a non-significant difference are closer to each
other. The height of the changing fields in the middle of the representation corresponds to
the number of nodes participating in the change. To reduce the number of crossovers,
changes are ordered by the order of connecting modules. To make the visualization more
concise transients are passing through the midpoints of the entering and exiting modules and
have a slim waist. Note the split of the blue module, and the merge of the orange and red
modules. (Reproduced with permission from Rosvall & Bergstrom, 2010.)
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Fig. 11.
Mechanisms of drug action changing cellular robustness. Panel A shows a 2-dimensional
contour plot of the stability landscape of healthy and diseased phenotypes. Healthy states are
represented by the central and the adjacent two minima marked with the large orange
arrows, while all additional local minima are diseased states. Darker green colors refer to
states with larger stability. Thin blue and red arrows mark shifts to healthy and diseased
states, respectively. Dashed arrows refer to less probable changes. Panel B illustrates
mechanisms of drug action on cellular robustness. The valleys and hills are a vertical
representation of the stability-landscape shown on Panel A along the horizontal dashed
black line. Blue symbols represent drug interactions with disease-prone or disease-affected
cells, while red symbols refer to drug effects on cancer cells or parasites. (a) Counteracting
regulatory feedback; (b) positive feedback pushing the diseased cell or parasite to another
trajectory; (c) a transient decrease of a specific activation energy enabling a shift back to
healthy state; (d) ‘error-catastrophe’: drug action diminishing many activation energies at
the same time, causing cellular instability, which leads to cell death; (e) general increase in
activation energies leading to the stabilization of healthy cells to prevent their shift to
diseased phenotype.
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Fig. 12.
Example of a chemical structure network. From the network point of view chemical
structures are networks with differently labelled (colored) nodes representing different kinds
of atoms and differently labelled (colored) edges related to different types of bonds. The
chemical stucture network representation of aspirin is shown. Black circles, red triangles and
blue rectangles represent carbon, oxygen and hydrogen atoms, respectively. Dotted black
edges stand for single bonds, while red solid edges represent double bonds.
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Fig. 13.
Directed and bipartite network representations of chemical reaction networks. On the middle
panel the 4 reactions of the left side of the figure are represented as a directed network of
participating compounds. On the bipartite network of the right panel green circles represent
chemicals, while red rectangles stand for reactions. (Figures were adapted from Fialkowski
et al., 2005 and from Grzybowski et al., 2009.)
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Fig. 14.
Saltatoric signal transduction along a propagating rigidity-front: a possible mechanism of
allosteric action in protein structures. Panel A shows two rigid modules of protein structure
networks (corresponding to protein segments or domains). Such modules have little overlap,
behave like billiard balls, and transmit signals ‘instantaneously’ (illustrated with the violet
arrows). Panel B shows two flexible modules. These modules have a larger overlap, and
transmit signals via a slower mechanism using multiple trajectories, which converge at key,
bridging amino acids situated in modular boundaries. Panel C combines rigid and flexible
modules in a hypothetical model of rigidity front propagation of the allosteric
conformational change. In the 3 snapshots of this illustration of protein dynamics (organized
from left to right) the 3 protein segments become rigid from top to bottom. Consecutive
‘rigidization’ of protein segments both induces similar changes in the neighboring segment,
and accelerates the propagation of the allosteric change within the rigid segment. Rigidity
front propagation may use sequential energy transfers (illustrated by the violet arrows), and
may increase the speed of the allosteric change approaching that of an instantaneous process
(Piazza & Sanejouand, 2009; Csermely et al., 2010; Csermely et al., 2012).
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Fig. 15.
The effect of more detailed representation of protein-protein interaction networks in
representation of drug mechanism action. The left side of the figure shows a hypothetical
protein-protein interaction network (yellow nodes). The middle panels show two
representations of the very same network as a domain-domain interaction network (green
nodes). Note that on the middle top panel the edge marked with red connects domains A1
and B2 while on the middle bottom panel the same edge connects domains A2 and B2. Note
that these two representations can not be discriminated at the protein-protein interaction
level (shown on the left side marked with green nodes). If domain A2 (highlighted with red)
is inhibited by a drug (and there is limited domain-domain interaction in protein A), this
single edge-change leaves the sub-interactome in the right top panel intact. On the contrary,
in the right bottom panel, the inhibition of domain A2 leads to the dissociation of the
subnetwork. The figure is re-drawn from Figure 2 of Santonico et al. (2005) with
permission. An atomic level resolution of the interactome can discriminate even more subtle
changes as we will discuss in Section 4.1.6. on allo-network drugs (Nussinov et al., 2011).
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Fig. 16.
The dumpling soup representation of growth factor initiated signaling. (Reproduced with
permission from Lewitzky et al., 2012.)
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Fig. 17.
Structure of the signaling network. The figure illustrates the major components of the
signaling network including the upstream part of the signaling pathways and their cross-
talks and the downstream part of gene regulation network. The gene regulation network
contains the subnetworks of transcription factors, their DNA-binding sites and regulating
microRNAs. Directed protein-protein interactions may encode enzyme reactions, such as
phosphorylation events, while undirected protein-protein interactions participate (among
others) in formation of scaffold and adaptor complexes.
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Fig. 18.
The drug development process. Green boxes illustrate the major stages of the drug
development process starting with target identification, followed by hit finding, hit
confirmation and hit expansion leading to lead selection/optimization and concluded by
clinical trials. Lead search and lead optimization are helped by various methods of
chemoinformatics (left side), drug efficiency optimization, ADMET (drug absorption,
distribution, metabolism, excretion and toxicity) studies, as well as optimization of drug-
drug interactions, side-effects and resistance (right side). Yellow ellipses summarize a few
major optimization criteria, while orange ellipses refer to the subsections of Section 4
discussing the given drug development stage.
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Fig. 19.
Illustrative figure on the two major strategies to find network nodes as drug targets. The
central hit strategy (represented by dark blue symbols) is useful to find drug targets against
infectious agents or in anti-cancer therapies. These cells are presumed to have flexible
networks. The central hit strategy targets central nodes (often forming a core of the network)
or ‘choke points’, which are peripheral nodes uniquely producing or consuming a cellular
metabolite. The network influence strategy (represented by red symbols) is needed to use the
systems-level knowledge to find the targets in therapies of polygenic, complex diseases. The
differentiated cells of these diseases are presumed to have rigid networks. Targeting central
nodes here may cause an ‘over-excitement’ of the system leading to side-effects and
toxicity. Thus the network influence strategy targets nodes, which are neither hubs nor
otherwise central nodes themselves, but occupying strategically important disease-specific
network positions able to influence central nodes. (In a typical case the network influence
strategy targets are neighbors of central nodes exerting an indirect influence on the central
nodes often representing the ‘real targets’.) Solid lines represent network edges with high
weight, while dashed lines represent network edges with low weight.
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Fig. 20.
A refined representation of a drug target network includes protein conformations. In current
drug target network representations drug targets (gray circles) are interpreted as single
entities connected through drugs (black circles). In these representations protein
conformations preferred or dispreferred by a certain drug are ignored. For a more complete
understanding of the interactions of drugs to their targets a target should be represented by
its different functionally relevant conformations (differently colored shapes within grey line
enclosed areas). Drug targets that are represented by single structures are connected to drugs
by blue dashed lines. The target conformations that preferentially bind a drug are connected
by red dashed lines. (Reproduced by permission from Isin et al., 2012.)

Csermely et al. Page 168

Pharmacol Ther. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 21.
Multi-target drugs are target multipliers. The top left panel and the red circle of the bottom
left part of the figure shows the targets of single-target drugs situated in pharmacologically
interesting pathways and the hits of chemical proteomics, which represent those proteins,
which can interact with druggable molecules. (The numbers are only approximate, and in
case of the human proteome contain only the non-redundant proteins.) The overlap between
the two sets constitutes the ‘sweet spot’ of drug discovery (Brown & Superti-Furga, 2003).
On the right side of the figure the expansion of the ‘sweet spot’ is shown by multi-target
drugs. The top left part illustrates the action of multi-target drugs. Yellow asterisks highlight
the indirect targets, where the changes initiated by the multiple primary targets are
superposed. It is a significant advantage, if these targets are disease-specific. On the bottom
left part the indirect targets of multi-target action and the allowed low affinity binding of
multi-target drugs both expand the number of pharmacologically relevant targets, while low-
affinity binding enlarges the number of druggable proteins. The overlap of the two groups
(the ‘sweet spot’) displays a dramatic increase.

Csermely et al. Page 169

Pharmacol Ther. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 22.
Comparison of orthosteric, allosteric and allo-network drugs. Top parts of the three panels
illustrate the protein structures of the primary drug targets showing the drug binding site as a
green circle. Bottom parts of the panels illustrate the position of the primary targets in the
human interactome. Red ellipses illustrate the ‘action radius’, i.e. the network perturbation
induced by the primary targets. In the top part of the middle panel the allosteric drug binds
to an allosteric site and affects the pharmacologically active site of the target protein
(marked by a red asterisk) via the intra-protein allosteric signal propagation shown by the
dark green arrow. In the top part of the right panel the signal propagation (illustrated by the
light green arrows) extends beyond the original drug binding protein, and via specific
interactions affects two neighboring proteins in the interactome. The pharmacologically
active site is also marked by a red asterisk here. Orange arrows illustrate an intracellular
pathway of propagating conformational changes, which is disease-specific in case of
successful allo-network drugs. Allo-network drugs allow indirect and specific targeting of
key proteins by a primary attack on a ‘silent’ protein, which is not involved in major cellular
pathways. Targeting ‘silent’, ‘by-stander’ proteins, which specifically influence
pharmacological targets, not only expands the current list of drug targets, but also causes
much less side-effects and toxicity. Adapted with permission from Nussinov et al. (2011).
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Fig. 23.
Optimized protocol of network-aided drug development. The figure illustrates the two major
phases of discovery having three segments marked as boxes on the left side of the triple
arrows. The “surprise factor” box denotes originality (as the highest level of human
creativity), a strong drive to discover the unexpected, including playfulness and ambiguity
tolerance. The “unbiased systems-level network analysis” box marks the network methods
described in this review. The “background knowledge” box includes all our contextual,
background knowledge on diseases, drugs and their actions, as well as the validation
procedures guiding our judgment on the quality of the drug discovery process. In the
exploration phase the surprise factor is dominant. At this phase background knowledge may
be temporarily suppressed. On the contrary, at the optimization phase we need to suppress
the surprise factor, and rank our previous options by the rigorous application of our
background knowledge. The arrow at the bottom of the figure marks the heretofore not
rigorously applied method that the sequence of exploration and optimization phases may be
applied repeatedly, which gives a much more precise ‘zoom-in’ to the optimal (drug) target
than a single round of exploration/optimization.
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Table 1

Network visualization resources

Name Website References

Arena3D http://arena3d.org Secrier et al., 2012

ArrayXPath http://www.snubi.org/software/ArrayXPath Chung et al., 2005

AVIS http://actin.pharm.mssm.edu/AVIS2 Berger et al., 2007

BioLayout Express 3D http://www.biolayout.org Freeman et al., 2007; Theocharidis et
al., 2009

BiologicalNet works http://biologicalnetworks.net Kozhenkov & Baitaluk, 2012

BioTapestry http://www.biotapestry.org Longabaugh, 2012

BisoGenet http://bio.cigb.edu.cu/bisogenet-cytoscape Martin et al., 2010

CellDesigner http://www.celldesigner.org Kitano et al., 2005

Cell Illustrator http://www.cellillustrator.com Nagasaki et al., 2011

CFinder http://www.cfinder.org Adamcsek et al., 2006

Cytoscape http://www.cytoscape.org Smoot et al., 2011

GenePro http://wodaklab.org/genepro Vasblom et al., 2006

GeneWays http://anya.igsb.anl.gov/Geneways/GeneWays.html Rhzetsky et al., 2004

GEOMIi http://sydney.edu.au/engineering/it/~visual/valacon/geomi/ Ahmed et al., 2006

Gephi http://gephi.org Bastian et al., 2009

Graphviz http://www.graphviz.org Gansner & North, 2000

Gridlayout http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm Li & Kurata, 2005

Guess http://graphexploration.cond.org/index.html Adar, 2006

Hive Plots http://www.hiveplot.com Krzywinski et al., 2012

Hybridlayout http://www.cadlive.jp/hybridlayout/hybridlayout.html Inoue et al., 2012

Hyperdraw http://www.bioconductor.org/packages/release/bioc/html/hyperdraw.html Murrell, 2012

IM Browser http://proteome.wayne.edu/PIMdb.html Pacifico et al., 2006

IPath http://pathways.embl.de Yamada et al., 2011

JNets http://www.manchester.ac.uk/bioinformatics/jnets Macpherson et al., 2009

KGML-ED http://kgml-ed.ipk-gatersleben.de Klukas & Schreiber, 2007

LEDA http://www.algorithmic-solutions.com/leda/about/index.htm Mehlhorn & Näher, 1999

MAVisto http://mavisto.ipk-gatersleben.de Schwobbermeyer & Wunschiers, 2012

Medusa http://coot.embl.de/medusa Hooper & Bork, 2005

ModuLand www.linkgroup.hu/modules.php Szalay-Bekő et al., 2012

Multilevel Layout http://code.google.com/p/multilevellayout Tuikkala et al., 2012

NAViGaTOR http://ophid.utoronto.ca/navigator Brown et al., 2009

NetMiner http://www.netminer.com/index.php

Network Workbench http://nwb.cns.iu.edu NWB Team, 2006

Ondex http://www.ondex.org Köhler et al., 2006

Osprey http://biodata.mshri.on.ca/osprey/servlet/Index Breitkreutz et al., 2003

Pajek http://pajek.imfm.si/doku.php Batagelj & Mrvar, 1998
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Name Website References

PathDraw http://rospath.ewha.ac.kr/toolbox/PathwayViewerFrm.jsp Paek et al., 2004

Pathway Tools http://bioinformatics.ai.sri.com/ptools Karp et al., 2010

PATIKA http://www.patika.org Dogrusoz et al., 2006

PaVESy http://pavesy.mpimp-golm.mpg.de/PaVESy.htm Lüdemann et al., 2004

PhyloGrapher http://www.atgc.org/PhyloGrapher

PIMWalker http://pimr.hybrigenics.com Meil et al., 2005

PIVOT http://acgt.cs.tau.ac.il/pivot Orlev et al., 2003

PolarMapper http://kdbio.inesc-id.pt/software/polarmapper Goncalves et al., 2009

ProteinNetVis http://graphics.cs.brown.edu/research/sciviz/proteins/home.htm Jianu et al., 2010

ProteoLens http://bio.informatics.iupui.edu/proteolens Huan et al., 2008

RedeR http://bioconductor.org/packages/release/bioc/html/RedeR.html Castro et al., 2012

RING http://protein.bio.unipd.it/ring Martin et al., 2011

SoNIA http://www.stanford.edu/group/sonia Bender-deMoll & McFarland, 2006

Transcriptome -Browser http://tagc.univ-mrs.fr/tbrowser Lepoivre et al., 2012

UCSF structureViz http://www.cgl.ucsf.edu/cytoscape/structureViz Morris et al., 2007

VANTED http://vanted.ipk-gatersleben.de Rohn et al., 2012

VisANT http://visant.bu.edu Hu et al., 2009

VitaPad http://sourceforge.net/projects/vitapad Holford et al., 2005

WebInterVie wer http://interviewer.inha.ac.kr Han et al., 2004b

yFiles http://www.yworks.com/en/index.html Becker & Royas, 2001

yWays http://www.yworks.com/en/products_yfiles_extensionpackages_ep2.htm

Summaries of Suderman et al. (2007), Pavlopoulos et al. (2008), Gehlenborg et al. (2010) and Fung et al. (2012) compare some of the options
above.
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Table 2

Human disease-related networks and network datasets

Type of related data (types of network nodes)* Name and additional description, website References**

• disease

• disease related genes

human disease network (Cytoscape plug-in
DisGeNET: http://ibi.imim.es/DisGeNET/
DisGeNETweb.html)

Goh et al., 2007;
Feldman et al., 2008;
Bauer-Mehren et al.,
2010; Stegmaier et al.,
2010

• disease

• disease-related genes

• interactome

• publication

gene-based, interactome-enriched and scientific
publication based human disease networks

Zhang et al., 2011a

• disease

• interactome module

• mRNA changes

disease-responsive interactome module-based human
disease network (disease correlations based on
disease-induced changes in mRNA expression of
interactome modules)

Suthram et al., 2010

• disease

• mRNA changes at the transcriptome level

• drugs

a Bayesian network-based disease-responsive
transcriptome analysis to construct a human disease
network

Huang et al., 2010a

• disease

• disease-related genes

• interactome

• protein/DNA interaction

• tissue

• drug

iCTNet: a Cytoscape plug-in to construct an
integrative network of diseases, associated genes,
drugs and tissues (http://www.cs.queensu.ca/ictnet)

Wang et al., 2011b

• disease

• disease-related genes

• interactome

• Gene Onthology terms

Biomine: an integrated bio-entity network with more
than a million entities and 8 million edges (http://
biomine.cs.helsinki.fi)

Eronen & Toivonen,
2012

• disease

• expression patterns

• microRNA targets

• network modules of interactome,
transcriptome

PAGED: an integrated bio-entity network with more
than a million entities from 20 organisms (http://
bio.informatics.iupui.edu/PAGED)

Huang et al., 2012b

• disease

• disease-related genes

• interactome

• protein gene regulation pathways

• Gene Onthology terms

• small molecule (drug)

• species

An integrated bio-entity network Bell et al., 2011
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Type of related data (types of network nodes)* Name and additional description, website References**

• disease

• adjacent members of metabolic pathways

metabolic pathway-corrected human disease network Lee et al., 2007

• disease

• microRNA

microRNA/disease association-based disease network
obtained from publication data

Lu et al., 2008

• patient

• disease

• disease

• environmental factor

• disease-related genes

disease comorbidity network etiome: a database +
clustering analysis of environmental + genetic (=
etiological) factors of human diseases

Rhzetsky et al., 2007;
Hidalgo et al., 2009 Li et
al., 2009a

*
Here we included only those networks and datasets, which contained human diseases. Drug target networks and network datasets will be

summarized in Section 4.1.3.

**
References containing direct network analysis are marked with italic. All other references are referring to datasets, which are potential sources of

future network representations.
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Table 3

Network-based predictions of disease-related genes as biomarkers

• Type of prediction methods*

• Type of data used

Name and additional description, website References

• similarity-based

• protein structure descriptor-related QSAR

new disease-related proteins are predicted by their
structural similarity to known disease-related proteins

Vilar et al., 2009

• interaction-based

• (predicted) interactome

new disease-related genes are predicted by their
interactome neighborhood

Krauthammer et al.,
2004; Chen et al.,
2006a; Oti et al.,
2006; Xu & Li, 2006

• iterative summary of interactome and
disease neighborhood

• disease similarity network, interactome

measures the neighborhood association in both the
interactome and disease similarity networks and
iteratively calculates the similarity of the node to diseases

Guo et al., 2011

• semantic similarity score

• semantic similarity networks of diseases
and related genes

calculates a semantic similarity score between gene
ontology terms as well as human genes associated with
them

Jiang et al., 2011

• summarized network neighborhood of
several candidate genes

• disease, gene-descriptions, disease related
genes, interactome, mRNA co-expressions,
pathways

constructs an integrative network and predicts candidate
genes by their network closeness to known disease-
related genes; Prioritizer: http://129.125.135.180/
prioritizer

Franke et al., 2006

• shortest path length

• disease, gene-descriptions, disease related
genes, interactome, mRNA co-expressions

uses a maximum expectation gene cover algorithm
finding small gene sets to predict associated new disease-
related genes

Karni et al., 2009

• user-defined path distance from known
disease-related genes

• up to 10 integrated interactomes

new disease-related genes are predicted by their
interactome closeness to known disease-related proteins;
Genes2Networks: http://actin.pharm.mssm.edu/
genes2networks

Berger et al., 2007

• interaction-based

• disease-related mutations, domain-domain
resolved interactome

new disease-related genes are predicted by their
association to previously known disease-related genes at
protein-protein domains affected by the disease-
associated mutations of the known disease related gene

Sharma et al., 2010a;
Song & Lee, 2012

• interaction-based

• disease-related mutations, 3D structurally
resolved interactome

new disease-related genes are predicted by their
association to previously known disease-related genes at
3D modeled protein-protein interfaces affected by the
disease-associated mutations of the known disease
related gene

Wang et al., 2012b

• clustering

• disease-related genes, interactome

• closeness

• disease-related genes, disease network,
interactome

new disease-related genes are predicted by their common
protein-protein interaction network module with previous
disease-related genes closeness of unrelated proteins is
calculated in the interactome from protein products of
disease-related genes, and compared with phenotype
similarity profile: large closeness marks a potential new
disease-related gene; CIPHER: http://rulai.cshl.edu/tools/
cipher

Navlakha &
Kingsford, 2010; Wu
et al., 2008

• random walk

• disease-related genes, disease network,
interactome

random walks in the interactome are started from protein
products of disease-related genes: frequent visits of a
previously unrelated protein mark a potential new
disease-related gene; Cytoscape plug-in GPEC: http://
sourceforge.net/p/gpec

Kohler et al., 2008;
Chen et al., 2009b; Le
& Kwon, 2012
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• iterative network propagation

• disease-related genes, disease network,
interactome

iterative steps of information flow from disease-related
and between interacting proteins: after convergence a
large flow of a previously unrelated protein marks
potential new disease-related gene; Cytoscape plug-in
PRINCIPLE/PRINCE: http://www.cs.tau.ac.il/~bnet/
software/PrincePlugin

Vanunu et al., 2010;
Gottlieb et al., 2011b

• random walk with re-starts in both
networks

• disease-related genes, disease network,
interactome

random walk in both the interactome and the disease
networks: number of frequent visits marks candidate
genes

Li & Patra, 2010

• NetworkBlast algorithm to align
interactome and disease networks

• disease-related genes, disease network,
interactome

after alignment of the interactome and disease networks
finds high scoring subnetworks (bi-modules); candidate
genes have the highest scoring bi-modules

Wu et al., 2009a

• information flow with statistical correction

• disease-related genes, interactome

statistically corrects random walk- based prediction with
the degree distribution of the network; DADA: http://
compbio.case.edu/dada

Erten et al., 2011a

• topological network similarity

• disease-related genes

calculates neighborhood similarity in the interactome and
prioritizes candidate genes; VAVIEN: http://
diseasegenes.org

Erten et al., 2011b

• neighborhood similarity

• disease-related genes, interactome,
expression patterns

calculates expression weighted neighborhood similarity
(using Katz centrality or other methods) in the
interactome

Zhao et al., 2011b;
Wu et al., 2012

• semantic-based centrality

• disease-related genes, interactome,
pathways

calculates data-type weighted centrality in the integrated
network and uses it as a rank of candidate genes

Gudivala et al., 2008

• direct neighbor-based Bayesian predictor

• disease-related genes, disease network,
interactome, pathways

constructs candidate protein complexes in a virtual pull-
down experiment, and scores candidates by measuring
the similarity between the phenotype in the complex and
disease phenotype

Lage et al., 2007

• genetic linkage analysis of gene network
clusters

• disease-related genes, text mining-based
associations (binding, phosphorylation,
methylation, etc.)

calculates genetic linkage analysis of connected clusters
in a text mining-derived direct interaction network

Iossifov et al., 2008

• random forest learning

• disease, disease related genes, disease
networks, single-nucleotide polymorphisms
(SNPs)

predict deleterious SNPs and disease genes using the
random forest learning method, uses interactomes and
deleterious SNPs to predict disease-related genes by
random forest learning

Care et al., 2009

• random walk, iterative network propagation
(PRINCE/PRINCIPLE)

• disease, disease related genes, interactome,
protein/DNA interaction, tissue, drug

a Cytoscape plug-in to construct an integrative network
of diseases, associated genes, drugs and tissues; iCTNet:
http://www.cs.queensu.ca/ictnet

Wang et al., 2011b

• machine learning

• disease, disease related genes, gene
annotations, interactome, expression levels,
sequences

integrative methods using similarities of neighbors or
shortest paths in multiple data sources including
interactomes; Endeavour: http://esat.kuleuven.be/
endeavour; Phenopred: http://www.phenopred.org

Radijovac et al., 2008;
Tranchevent et al.,
2008; Linghu et al.,
2009; Costa et al.,
2010
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• rank coherence with target disease and
unrelated disease networks

• disease, disease related genes, gene
annotations, interactome, expression levels,
genome-wide association studies

Calculates rank coherences between the integrated
network characteristic to the target disease and unrelated
diseases; rcNet: http://phegenex.cs.umn.edu/Nano

Hwang et al., 2011

*
The Table summarizes methods using networks as data representations. We excluded those methods, like neural network or Bayesian network-

based methods, which decipher associations between various, not network-assembled data. Several methods are included in the excellent reviews
of Wang et al. (2011a) and Doncheva et al. (2012a).
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Table 4

Comparison methods of molecular networks

Name* Network type(s)** Description and website References

AlignNemo protein-protein interaction networks Uncovers subnetworks of proteins and
uses an expansion process, which
gradually explores the network beyond
the direct neighborhood. http://
sourceforge.net/p/alignnemo

Ciriello et al.,
2012a

Differential dependency network
analysis

transcriptional networks A set of conditional probabilities is
proposed as a local dependency model,
and a learning algorithm is developed
to show the statistical significance of
the local structures. http://
www.cbil.ece.vt.edu/software.htm

Zhang et al.,
2009

Graphcrunch2, C-GRAAL, MI-GRAAL multiple networks Compares networks with random
networks. Additionally, clusters nodes
based on their topological similarities
in the compared networks. http://bio-
nets.doc.ic.ac.uk/graphcrunch2; http://
bio-nets.doc.ic.ac.uk/MI-GRAAL

Kuchaiev et
al., 2011a;
Kuchaiev et
al., 2011b;
Memisevic &
Pzrulj, 2012

IsoRankN (IsoRank Nibble) metabolic networks Uses spectral clustering on the induced
graph of pair-wise alignment scores.
http://isorank.csail.mit.edu

Liao et al.,
2009

MetaPathway-Hunter metabolic networks Finds tree-like pathways in metabolic
networks. http://www.cs.technion.ac.il/
~olegro/metapathwayhunter

Pinter et al.,
2005

MNAligner molecular networks Combines molecular and topological
similarity using integer quadratic
programming, enabling the comparison
of weighted and directed networks and
finding cycles beyond tree-like
structures. http://doc.aporc.org/wiki/
MNAligner

Li et al., 2007

Module Preservation measures module preservation in
different datasets

Uses several module comparison
statistics based on the adjacency
matrix, or on the basis of pair-wise
correlations between numeric
variables. http://
www.genetics.ucla.edu/labs/horvath/
CoexpressionNetwork/
ModulePreservation

Langfelder et
al., 2011

NeMo gene co-expression networks Detects frequent co-expression
modules among gene co-expression
networks across various conditions.
http://zhoulab.usc.edu/NeMo

Yan et al.,
2007b

NetAlign protein-protein interaction networks Aligns conserved network
substructures. http://
netalign.ustc.edu.cn/NetAlign

Liang et al.,
2006

NetAligner protein-protein interaction networks
+ pathways

Compares whole interactomes,
pathways and protein complexes of 7
organisms. http://
netaligner.irbbarcelona.org

Pache et al.,
2012

NetMatch Cytoscape plug-in for molecular
networks

Finds subgraphs of the original
network connected in the same way as
the querying network. Can also handle
multiple edges, multiple attributes per
node and missing nodes. http://
baderlab.org/Software/NetMatch

Ferro et al.,
2007

PathBLAST search of smaller linear pathways Finds smaller linear pathways in
protein-protein interaction networks.
http://www.pathblast.org

Kelley et al.,
2004
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Name* Network type(s)** Description and website References

PINALOG protein-protein interaction network Combines information from protein
sequence, function and network
topology. http://www.sbg.bio.ic.ac.uk/
~pinalog

Phan &
Sternberg,
2012

Rahnuma metabolic networks Represents metabolic networks as
hypergraphs and computes all possible
pathways between two or more
metabolites. http://portal.stats.ox.ac.uk:
8080/rahnuma

Mithani et al.,
2009

*
The summaries of Sharan & Ideker (2006) and Zhang et al. (2008) describe and compare some of the methods above.

**
The network type is indicating the primary network, where the method has been tested. However, most methods are applicable to other types of

molecular networks.
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Table 5

Chemical compound similarity networks

Basis of chemical compound similarity References

chemical compound similarity networks

chemical similarity based on e.g. the Tanimoto-coefficient QSAR-related similarity
networks (a freely available program to mine structure-activity and structure-selectivity
relationship information in compound data sets, SARANEA: http://www.limes.uni-
bonn.de/forschung/abteilungen/Bajorath/labwebsite/downloads/saranea/view)

Tanaka et al., 2009; Bickerton et al., 2012
Estrada et al., 2006; García et al., 2009;
Gonzalez-Diaz & Prado-Prado, 2008; Hert et al.,
2008; Prado-Prado et al., 2008; Wawer et al.,
2008; Bajorath et al., 2009; Prado-Prado et al.,
2009; Gonzalez-Diaz et al., 2010a; Lounkine et
al., 2010; Peltason et al., 2010; Prado-Prado et
al., 2010; Wawer et al., 2010; Iyer et al., 2011a;
Iyer et al., 2011b; Iyer et al., 2011c; Krein &
Sukumar, 2011; Wawer & Bajorath, 2011a;
Wawer & Bajorath, 2011b

BioAssay network: bioassay data of chemical compounds from PubChem Zhang et al., 2011b

similarity of protein binding sites Paolini et al., 2006; Keiser et al., 2007; Hert el
al., 2008; Park & Kim, 2008; Adams et al.,
2009; Keiser et al., 2009; Hu et al., 2011

network of drug-receptor pairs with multitarget QSAR Vina al., 2009

CARLSBAD: a Cytoscape plug-in for connecting common chemical patterns to biological
targets via small molecules http://carlsbad.health.unm.edu

drug-target network combined with the chemical structure network of the drug and the
protein structure network of its target giving quality-scores of drug-target networks

Riera-Fernández et al., 2012

similarity of mRNA expression profiles extended with disease mRNA expression profiles:
Connectivity Map http://www.broadinstitute.org/cmap

Lamb et al., 2006; Iorio et al., 2009; Huang et
al., 2010a

side-effect similarity of drugs Campillos et al., 2008

protein-protein interaction network topology of the target neighborhood (a database of
more than 700,000 chemicals, 30,000 proteins and their over 2 million interactions
integrated to a human protein-protein interaction network having over 400,000 interactions,
ChemProt: http://www.cbs.dtu.dk/services/ChemProt)

Hansen et al., 2009; Li et al., 2009a; Taboreau et
al., 2011; Edberg et al., 2012

integrated bio-entity relationship datasets and networks

structural similarity, QSAR, gene-disease interactions, biological processes, drug
absorption, distribution, metabolism and excretion (ADME) data and toxicity mechanisms

Brennan et al., 2009

integrated semantic network of chemogenomic repoitories, Chem2Bio2RDF http://
cheminfov.informatics.indiana.edu:8080

Chen et al., 2010

drug therapeutic and chemical similarity with protein-protein interaction network data:
drugCIPHER

Zhao & Li, 2010

protein-protein interactions, protein/gene regulations, protein-small molecule interactions,
protein-Gene Ontology relationships, protein-pathway relationships and pathway-disease
relationships: bio-entity network (IBN)

Bell et al., 2011

phenotype/single-nucleotide polymorphism (SNP) associations, protein-protein
interactions, disease-tissue, tissue-gene and drug-gene relationships: integrated Complex
Traits Networks, iCTNet Cytoscape plug-in, http://flux.cs.queensu.ca/ictnet

Wang et al., 2011b

protein-protein interactions, protein-small molecule interactions, associations of
interactions with pathways, species, diseases and Gene Ontology terms with the user-
selected integration of manually curated and/or automatically extracted data: integrated
molecular interaction database, IMID, http://integrativebiology.org

Balaji et al., 2012
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Table 6

Protein-protein interaction network resources

Name Content Website References

3did domain-domain interaction
with 3D data

http://3did.irbbarcelona.org Stein et al.,
2011

APID interactome exploration http://bioinfow.dep.usal.es/apid/index.htm Prieto et al.,
2006

atBioNet integration of 7 interactomes,
protein complex identification

http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm Ding et al.,
2012

BioGRID integrated protein-protein
interaction data

http://thebiogrid.org Stark et al.,
2011

BioProfiling inference of network data from
expression patterns

http://www.bioprofiling.de Antonov et
al., 2009

DIP experimental protein-protein
interaction data

http://dip.doe-mbi.ucla.edu Salwinski et
al., 2004

DomainGraph Cytoscape plug-in for domain-
domain interaction analysis

http://domaingraph.bioinf.mpi-inf.mpg.de Emig et al.,
2008

DOMINE domain-domain interaction data http://domine.utdallas.edu Yellaboina
et al., 2011

Estrella detection of mutually exclusive
protein-protein interactions

http://bl210.caspur.it/ESTRELLA/help.php Sánchez
Claros &
Tramontano,
2012

HAPPI human protein-protein
interaction data

http://discern.uits.iu.edu:8340/HAPPI Chen et al.,
2009c

HINT High quality human protein-
protein interaction data

http://hint.yulab.org Das & Yu,
2012

HPRD human protein-protein
interaction data

http://www.hprd.org Goel et al.,
2012

Hubba identification of hubs
(potentially essential proteins)

http://hub.iis.sinica.edu.tw/Hubba Lin et al.,
2008

IntAct curated protein-protein
interaction data

http://www.ebi.ac.uk/intact/main.xhtml Kerrien et
al., 2012

IntNetDB human protein-protein
interaction data

http://hanlab.genetics.ac.cn/sys Xia et al.,
2006

IRView protein interacting regions http://ir.hgc.jp Fujimori et
al., 2012

MiMI protein interaction information http://mimi.ncibi.org Gao et al.,
2009

MINT protein-protein interactions in
refereed journals

http://mint.bio.uniroma2.it/mint Licata et al.,
2012

NeAT
(Network
Analysis
Tools)

interactome analysis http://rsat.ulb.ac.be/neat/ Brohée et
al., 2008

NetAligner interactome comparison http://netaligner.irbbarcelona.org Pache et al.,
2012

PanGIA a Cytoscape plug-in for
integration of physical and
genetic interactions into
hierarchical module maps

http://prosecco.ucsd.edu/PanGIA Srivas et al.,
2011

Pathwaylinker combines protein-protein
interaction and signaling data

http://PathwayLinker.org Farkas et al.,
2012
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Name Content Website References

PINA interactome analysis http://cbg.garvan.unsw.edu.au/pina Wu et al.,
2009b;
Cowley et
al., 2012

PIPs human protein-protein
interaction prediction

http://www.compbio.dundee.ac.uk/www-pips McDowall
et al., 2009

PPISearch search of homologous protein-
protein interactions across
many species

http://gemdock.life.nctu.edu.tw/ppisearch Chen et al.,
2009d

STRING integrated protein-protein
interaction data

http://string.embl.de Szklarczyk
et al., 2011

UniHI human protein-protein
interaction and drug target data

http://www.unihi.org Chaurasia &
Futschik,
2012

The Table is focused on recently available public databases or web-servers applicable to human protein-protein interaction data and/or to drug
design. Network visualization tools were listed in Table 1. A collection of protein-protein interaction network analysis web-tools can be found in
recent reviews (Ma’ayan, 2008; Moschopoulos et al., 2011; Ma & Gao, 2012; Sanz-Pamplona et al., 2012). The Reader may find a more extensive
list of web-sites in recent collections (http://ppi.fli-leibniz.de; Seebacher & Gavin, 2011).
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Table 7

Signaling network resources

Name Content Website References

IPAVS

signaling pathway resources

http://ipavs.cidms.org Sreenivasaiah
et al., 2012

Reactome http://reactome.org Croft et al.,
2011

NCI Nature – Pathway
Interaction Database http://pid.nci.nih.gov Schaefer et al.,

2009

NetPath http://netpath.org Kandasamy et
al., 2010

JASPAR

transcription factor – transcription
factor binding information

http://jaspar.genereg.net
Portales-
Casamar et al.,
2010

HTRIdb http://www.lbbc.ibb.unesp.br/htri Bovolenta et
al., 2012

MPromDB http://mpromdb.wistar.upenn.edu Gupta et al.,
2011

PAZAR
http://pazar.info

Portales-
Casamar et al.,
2007

OregAnno http://oreganno.org Griffith et al.,
2008

Expander transcription factor and microRNA
target prediction form gene

expression data

http://acgt.cs.tau.ac.il/expander Ulitsky et al.,
2010

TarBase

mRNA-microRNA target information

http://diana.cslab.ece.ntua.gr/tarbase Vergoulis et al.,
2012

TargetScan http://www.targetscan.org Lewis et al.,
2005

PicTar http://pictar.mdc-berlin.de Krek et al.,
2005

miRecords

integrated resource of microRNA
target information

http://mirecords.biolead.org Xiao et al.,
2009

miRGen http://diana.cslab.ece.ntua.gr/mirgen Alexiou et al.,
2010

TransMir

regulatory information of
microRNAs

http://202.38.126.151/hmdd/mirna/tf Wang et al.,
2010a

PutMir

http://www.isical.ac.in/~bioinfo_miu/TF-miRNA.php

Bandyopadhyay
&
Bhattacharyya,
2010

MiRandola extracellular microRNA database http://atlas.dmi.unict.it/mirandola Russo et al.,
2012

IntegromeDB

integrated signaling network
resources

http://integromedb.org Baitaluk et al.,
2012

SignaLink 2.0

http://signalink.org

Korcsmáros et
al., 2010;
Fazekas et al.,
2013

TranscriptomeBr owser 3.0 http://tagc.univ-mrs.fr/tbrowser Lepoivre et al.,
2012
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Table 8

Metabolic network resources

Name Content Website References

KEGG metabolic pathway resource http://kegg.jp Kanehisa et al.,
2012

MetaCyc http://metacyc.org Caspi et al.,
2012

HumanCyc http://humancyc.org Romero et al.,
2005

SMPDB small Molecule (e.g., drug)
Pathway Database

http://smpdb.ca Frolkis et al.,
2010

HMDB Human Metabolome Database http://hmdb.ca Wishart et al.,
2009

BRENDA comprehensive enzyme data
resource

http://brenda-enzymes.info Scheer et al.,
2011

YeastNet yeast metabolic network http://comp-sys-bio.org/yeastnet Herrgard et al.,
2008

iMAT an
other
metabolic
network
construction
and analysis
tools

several metabolic network
construction and analysis tools

http://www.cs.technion.ac.il/~tomersh/methods.html Shlomi et al.,
2008; Zur et
al., 2010

ModelSEED
and its
Cytoscape
plug-in,
CytoSEED

genome level metabolic
network reconstruction and
analysis

https://github.com/ModelSEED, http://sourceforge.net/projects/cytoseed Henry et al.,
2010; DeJongh
et al., 2012

Markov
Chain Monte
Carlo
modeling

Bayesian inference method to
uncover perturbation sites in
metabolic pathways

ftp://anonymous@dbkweb.mib.man.ac.uk/pub/Bioinformatics_BJ.zip Jayawardhana
et al., 2008

PyNetMet Python library of tools for the
analysis of metabolic models
and networks

http://pypi.python.org/pypi/PyNetMet Gamermann et
al., 2012
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Table 9

Drug-design related resources

Name Content Website References

Section 4.1. Drug target prioritization, identification and validation

Pubchem repository of small molecule
biological activities

http://pubchem.ncbi.nlm.nih.gov Wang et al.,
2010b

chEMBLdb chemical properties and
biological activities of drug-
like molecules

https://www.ebi.ac.uk/chembldb Gaulton et al.,
2012

DailyMed drug package instert texts http://dailymed.nim.nih.gov de Leon, 2011

DrugBank integrated drug and drug
target information resource

http://drugbank.ca Knox et al.,
2011

PharmGKB http://pharmgkb.org Thorn et al.,
2010

Therapeutic Target Database http://bidd.nus.edu.sg/group/cjttd/TTD_HOME.asp Zhu et al.,
2012b

MATADOR http://matador.embl.de Günther et al.,
2008

Supertarget http://insilico.charite.de/supertarget Hecker et al.,
2012

KEGG DRUG http://genome.jp/kegg/drug Kanehisa et
al., 2012

TDR drug targets of neglected
tropical diseases

http://tdrtargets.org Agüero et al.,
2008

PDTD - Potential Drug
Target Database

information on drug targets http://dddc.ac.cn/pdtd Gao et al.,
2008

DTome drug-target network
construction tool

http://bioinfo.mc.vanderbilt.edu/DTome Sun et al.,
2012

My-DTome myocardial infarction-related
drug target interactome

http://my-dtome.lu Azuaje et al.,
2011

PROMISCUO US interactome-based database
for drug-repurposing

http://bioinformatics.charite.de/promiscuous von Eichborn
et al., 2011

MANTRA mRNA expression profile-
based server for drug-
repurposing

http://mantra.tigem.it Iorio et al.,
2010

CDA combinatorial drug assembler
and drug repositioner (mRNA
expression profiles, signaling
networks)

http://cda.i-pharm.org Lee et al.,
2012c

Section 4.2.1 Hit finding for ligand binding sites

STITCH 3 integrated network resource
of chemical-protein
interactions

http://stitch.embl.de Kuhn et al.,
2012

CARLSBAD Cytoscape plug-in connecting
commin chemical patterns to
biological targets via small
molecules

http://carlsbad.health.unm.edu

BindingDB binding affinity data for
almost a million protein-
ligand pairs

http://bindingdb.org Liu et al.,
2007

BioDrugScreen structural protein ligand
interactome + scoring system

http://biodrugscreen.org Li et al.,
2010c
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Name Content Website References

CREDO a protein-ligand interaction
database including a wide
range of structural
information

http://www-cryst.bioc.cam.ac.uk/databases/credo Schreyer &
Blundell,
2009

Section 4.2.2. Hit finding for protein-protein interaction hot spots

TIMBAL a curated database of ligands
inhibiting protein-protein
interactions

http://www-cryst.bioc.cam.ac.uk/databases/timbal Higueruelo et
al., 2009

Dr. PIAS - Druggable
Protein-protein Interaction
Assessment System

machine learning-based web-
server to judge, if a protein-
protein interation is druggable

http://drpias.net Sugaya &
Furuya, 2011;
Sugaya et al.,
2012

Section 4.3. Drug efficiency, ADMET, drug-drug interactions, side-effects and resistance

Supertarget drug metabolism information http://insilico.charite.de/supertarget Hecker et al.,
2012

KEGG DRUG http://genome.jp/kegg/drug Kanehisa et
al., 2012

ACToR integrated toxicity resource http://actor.epa.gov Judson et al.,
2012

DITOP drug-induced toxicity related
protein database

http://bioinf.xmu.edu.cn:8080/databases/DITOP/index.html Zhang et al.,
2007

DCDB drug combination database http://www.cls.zju.edu.cn/dcdb Liu et al.,
2010b

DTome adverse drug-drug interactions http://bioinfo.mc.vanderbilt.edu/DTome Sun et al.,
2012

KEGG DRUG http://genome.jp/kegg/drug Kanehisa et
al., 2012

SIDER drug side-effect resource http://sideeffects.embl.de Kuhn et al.,
2010

DRAR-CPI drug-binding structural
similarity based server for
adverse drug reaction and
drug repositioning

http://cpi.bio-x.cn/drar Luo et al.,
2011

DvD an R/Cytoscape plug-in
assessing system-wide gene
expression data to predict
drug side effects and drug
repositioning

http://www.ebi.ac.uk/saezrodriguez/DVD Pacini et al.,
2013

NPC approved and experimental
drugs useful for drug-
repositioning

http://tripod.nih.gov/npc Huang et al.,
2011b

SePreSA binding pocket
polymorphism-based serious
adverse drug reaction
predictor

http://sepresa.bio-x.cn Yang et al.,
2009a; Yang
et al., 2009b

SADR-Gengle PubMed record text mining-
based data on 6 serious
adverse drug reactions

http://gengle.bio-x.cn/SADR Yang et al.,
2009c

Pharmacol Ther. Author manuscript; available in PMC 2014 June 01.

http://www-cryst.bioc.cam.ac.uk/databases/credo
http://www-cryst.bioc.cam.ac.uk/databases/timbal
http://drpias.net
http://insilico.charite.de/supertarget
http://genome.jp/kegg/drug
http://actor.epa.gov
http://bioinf.xmu.edu.cn:8080/databases/DITOP/index.html
http://www.cls.zju.edu.cn/dcdb
http://bioinfo.mc.vanderbilt.edu/DTome
http://genome.jp/kegg/drug
http://sideeffects.embl.de
http://cpi.bio-x.cn/drar
http://www.ebi.ac.uk/saezrodriguez/DVD
http://tripod.nih.gov/npc
http://sepresa.bio-x.cn
http://gengle.bio-x.cn/SADR
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Table 10

Illustrative examples of the use of network methods in anti-viral drugs, antibiotics, fungicides and
antihelmintics

Drug design area Network method References

Protein-protein interaction networks

drug target identification identification of (pathogen-specific) hubs as potentially
essential proteins (http://hub.iis.sinica.edu.tw/Hubba)

Lin et al., 2008; Kushwaha & Shakya,
2009

identification of clique-forming, high-centrality, or
otherwise topologically essential proteins

Real et al., 2004; Estrada, 2006; Flórez et
al., 2010; Milenkovic et al., 2011; Raman
et al., 2012; Zhang et al., 2012

Metabolic networks

drug target identification comparative load point (high-centrality) and choke point
(unique reaction) analysis of pathogenic and non-
pathogenic bacteria (with the identification of conserved
critical amino acids forming similar cavities:
UniDrugTarget server, http://117.211.115.67/UDT/
main.html)

Perumal et al., 2009; Chanumolu et al.,
2012

selection of essential metabolites Kim et al., 2011

selection of super-essential reactions Barve et al., 2012

drug target identification, drug
repositioning

strain-specific anti-infective therapies by comparative
metabolic network analysis

Shen et al., 2010

Drug-target, drug-drug similarity and complex dataset networks

target identification, drug
repositioning

drug target network of Mycobacterium tuberculosis Kinnings et al., 2010

prediction of drug activity against
different pathogens

multi-tasking QSAR drug-drug similarity network
analysis

González-Díaz & Prado-Prado, 2007;
Prado-Prado et al., 2008; Prado-Prado et
al., 2009; Prado-Prado et al., 2010; Prado-
Prado et al., 2011

drug target identification interactome, signaling network and gene regulation
network of Mycobacterium tuberculosis

Vashisht et al., 2012
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Table 11

Illustrative examples of network strategies against neurodegenerative diseases

Type of network Drug design benefit References

Alzheimer’s disease

protein-protein interaction network (extended
with drug interactions)

prediction of novel disease-related genes and
novel disease-associated drugs from existing
ones by interactome proximity

Krauthammer et al., 2004; Li et al.,
2009a; Yang & Jiang, 2010; Hallock &
Thomas, 2012; Raj et al., 2012

differentially co-expressed gene networks of
normal and Alzheimer’s disease affected
patients

identification of co-expressed gene modules
and disease-related transcription factors

Ray et al., 2008; Satoh et al., 2009;
Liang et al., 2012

network of differentially expressed microRNAs
of Alzheimer’s affected patients

prediction of novel disease-associated
signaling pathways and regulators

Satoh, 2012

drug binding site similarity networks prediction of novel drug targets Yang et al., 2010

drug target networks of anti-Alzheimer’s herbal
medicines

prediction of novel drug targets Sun et al., 2013

Parkinson’s disease

differentially co-expressed gene networks of
normal and Parkinson’s disease affected
patients

identification of central disease- associated
genes

Moran & Graeber, 2008

Poly-glutamine (polyQ) expansion diseases (Huntington’s disease, ataxias)

protein-protein interaction network of poly-
glutamine proteins (and their known
interactome neighbors)

identification of novel modifiers of disease
progression

Goehler et al., 2004; Lim et al., 2006;
Kaltenbach et al., 2007; Kahle et al.,
2011

Prion disease

differentially co-expressed gene networks of
normal and prion disease affected mice

identification of disease-associated pathways
and modules

Hwang et al., 2009; Kim et al., 2011
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Table 12

Systems-level hallmarks of drug quality and trends of network-related drug design helping to achieve them

Systems-level hallmark of drug quality Network-related drug design trend

Drug target identification

• using the central hit strategy: drug hits central (or
otherwise essential) network nodes, whose efficient
inhibition selectively destroys infectious agent or
cancer cell

• using the network influence strategy: drug hits
disease-specific network segments (nodes, edges or
their sets), whose manipulation shifts disease-
affected functions back to normal

Drug target validation

• network dynamics-based, disease-specific early
and robust human biomarkers are used for drug
target validation, drug added-value assessment
over current standard care, and translation for later
monitoring in clinical trials

• disease stage-related differential interactome, signaling network,
metabolic network data (including protein abundance, human/
comparative genetic data and microRNA profiles, optionally
combined with protein, RNA and chromatin structure
information, as well as with subcellular localization)

• network comparison and reverse engineering

• disease-specific models of network dynamics (including
deconvolution, perturbation, hierarchy, source/sink/seeder
analysis and network influence)

• drug target, patient and therapy-related networks helping multi-
target design and drug repositioning

• use of weighted, directed, signed, colored and conditional edges
or hypergraph structures

• network prediction methods (sensitized for finding the
unexpected)

• in the central hit strategy: network centrality measures; host/
parasite, host/cancer network combinations at the local
ecosystem level

• in the network influence strategy: network controllability,
influence, dynamic network centrality; compensatory deletions;
edgetic, multi-target and allo-network drugs; chrono-therapies
(temporal shifts in administration of drug combinations)

Hit finding and development

• hit finding and ranking is helped by network
chemoinformatics

• hit expansion and library design is helped by
chemical reaction networks

besides application of the trends listed above

• complex chemical similarity (QSAR) networks including
chemical similarity networks, multi-QSAR networks, pocket
similarity networks, and chemical descriptors of ligand binding
sites, integrated bio-entity networks

• chemical reaction networks

• network analysis of protein structures and correlated segments
of protein dynamics

• analysis of the substrate envelope to avoid drug resistance
development

• hot spot, and hot region identification

Lead selection and optimization

• optimization of drug efficacy, selection of robust
efficacy end-points and patient populations are
guided by network pharmacogenomics, as well as
by disease-stage, age-, gender- and population-
specific metabolome, phosphoproteome and gut
microbiome data

• ADME and toxicity data are ‘humanized’, side-
effect, drug-drug interaction and drug resistance
evaluation are helped, as well as indications and
contraindications are defined by extensive network
data

besides application of the trends listed above

• network extension by disease-stage, age-, gender- and human
population-specific genetic, metabolome, phosphoproteome and
gut microbiome data

• analysis of semantic networks from medical records

• human ADME and toxicity network models

• network methods of multi-target drug design to uncover adverse
drug-drug interactions

• assessment of side-effect networks

• antagonistic drug combinations to avoid drug resistance
development
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