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Summary

The incorrect notion that kurtosis somehow measures “peakedness” (flatness, pointiness or 

modality) of a distribution is remarkably persistent, despite attempts by statisticians to set the 

record straight. This article puts the notion to rest once and for all. Kurtosis tells you virtually 

nothing about the shape of the peak - its only unambiguous interpretation is in terms of tail 

extremity; i.e., either existing outliers (for the sample kurtosis) or propensity to produce outliers 

(for the kurtosis of a probability distribution). To clarify this point, relevant literature is reviewed, 

counterexample distributions are given, and it is shown that the proportion of the kurtosis that is 

determined by the central μ ± σ range is usually quite small.
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1. Introduction

By anyone's standard, a lifespan of 109 years is a good run. But it is time we put the term 

“peakedness,” as a descriptor of kurtosis, to rest for good.

We have Karl Pearson to thank for this connection. In (1905) he defined kurtosis as

to measure departure from normality, and coined the terms “leptokurtic,” “mesokurtic,” and 

“platykurtic” to indicate cases where kurtosis is > 0, = 0, and < 0 respectively, stating,

“[departure from normality involves a] degree of flat-toppedness which is greater 

or less than that of the normal curve. Given two frequency distributions which have 

the same variability as measured by the standard deviation, they may be relatively 

more or less flat-topped than the normal curve. If more flat-topped I term them 

platykurtic, if less flat-topped leptokurtic, and if equally flat-topped mesokurtic.”

Since then, numerous articles in statistics journals have appeared concerning the precise 

interpretation of kurtosis. While many have questioned the notion that kurtosis measures 

“peakedness” (specific cites given below), most state that the peak is also relevant, perhaps 

in deference to Pearson. And this is where the problem lies: because even papers in journals 
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such as The American Statistician (TAS) have given a nod to “peakedness” as a descriptor of 

kurtosis, the incorrect interpretation of kurtosis in terms of peakedness persists.

The internet shapes peoples’ perceptions. No less than Wikipedia (en.wikipedia.org/wiki/

Kurtosis, accessed 3/19/2014) reports “...kurtosis ... is any measure of the ‘peakedness’ of 

the probability distribution of a real-valued random variable.” YourDictionary 

(www.yourdictionary.com/kurtosis, accessed 3/19/2014) reports “[kurtosis is] the degree of 

peakedness of the graph of a statistical distribution, indicative of the concentration around 

the mean ... The general form or a quantity indicative of the general form of a statistical 

frequency curve near the mean of the distribution.” PsychWiki (www.psychwiki.com/wiki/

How_do_I_determine_whether_my_data_are_normal%3F, accessed 3/19/2014, reports 

“Kurtosis involves the peakedness of the distribution. Kurtosis that is normal involves a 

distribution that is bell-shaped and not too peaked or flat. Positive kurtosis is indicated by a 

peak. Negative kurtosis is indicated by a flat distribution.”

Similar gaffes are found in modern textbooks. Lee, Lee, and Lee (2013) report “The fourth 

moment around the mean – kurtosis – which characterizes peakedness, is defined by ... .” 

Coolican (2013) states “...kurtosis ... refers to the overall shape of the curve in terms of its 

peak ... .” Katz, Wild, Elmore and Lucan (2013) state, “Kurtosis is characterized by a 

vertical stretching or flattening of the frequency distribution. .... A kurtotic distribution could 

appear more peaked or more flattened than the normal bell-shaped distribution.” Sapp 

(2006) writes “when [kurtosis is] positive the distributions are leptokurtic or peaked.” Taylor 

(2008) states , “... positive and negative [kurtosis values] refer to whether the peak of the 

distribution is ‘sharper’ or higher than a normal distribution or if the peak is ‘flatter’ or 

lower ... .” In McDonald (2007) one finds a misinterpretation of both kurtosis and standard 

deviation: “Leptokurtic – a high-pointed, narrow-based distribution. These tend to have 

small standard deviations... Kurtosis refers to ‘peakedness’ ... .” Reinard (2006), states, in a 

section called “peakedness,” “A measure of kurtosis may be computed to identify the degree 

to which the distribution is peaked or flat.” Cohen (2008) writes, “...a distribution can be 

leptokurtic due to extreme tails or extreme peakedness ... .”

But the erroneous interpretations are not confined to textbooks. Even academic journals, 

where one might assume peer review to catch mistakes, promote the fiction. DeCarlo (1997) 

stated “positive kurtosis indicates heavy tails and peakedness relative to the normal 

distribution, whereas negative kurtosis indicates light tails and flatness,” while An and 

Ahmed (2008) state “kurtosis describes the peakedness and tail behavior.” TAS shares blame 

for promoting the confusion, publishing an article by Darlington (1970), who claimed that 

kurtosis is a measure of bimodality, a spectacular misdirection: while it is true that kurtosis 

values at or very near the minimum are indicative of bimodality, Figures 2 and 3 below 

demonstrate that bimodal distributions are possible for all possible values of the kurtosis. A 

TAS paper by Ruppert (1987) attempts to strike a balance between tail and peak definitions, 

concluding that kurtosis measures both peak and tails. Balanda and MacGillivray (1988) 

define kurtosis in TAS as “...the location- and scale-free movement of probability mass from 

the shoulders of a distribution into its centre and tails.” The definition is vague, as the 

authors admit, but the real problem with this definition is that leaves the door too easily 

opened by those who cling to the interpretation of kurtosis as a measure of the center. A 
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similar statement can be made about the TAS article by Kotz and Seiera (2008), “Visualizing 

Peak and Tails to Introduce Kurtosis”: the title alone suggests that kurtosis concerns the 

peak. On the other hand, a TAS paper by Chissom (1970) nicely separated kurtosis from 

peakedness: “...It is difficult to determine the shape of a distribution from the kurtosis value 

alone, since almost any distribution may have a negative kurtosis value.”

Correct interpretations of kurtosis as regards peakedness are also given by Ali (1974), “...

[kurtosis] measures only tailedness... ” and by Johnson, Tietjen, and Beckman (1980): 

“Several densities for which [Pearson's kurtosis = 0] are plotted in Figure B. Each of these 

distributions has zero mean, unit variance, zero skewness, and kurtosis equal to three. A 

considerable degree of shape differences is observed. The notion that kurtosis measures 

‘peakedness’ is clearly not true.” Unfortunately, these articles appeared in Journal of the 

American Statistical Association, a journal not widely read by non-statisticians; thus the 

erroneous misinterpretations of kurtosis in terms of peakedness persist.

A possible reason for the conflation of kurtosis with peakedness is the observation that 

heavy-tailed distributions sometimes have higher peaks than light-tailed distributions; this 

makes the word “peak” seem relevant when discussing kurtosis. However, heavy-tailed 

distributions do not always have higher peaks: Kaplansky (1945) provided examples of 

leptokurtic distributions with higher and lower peak than the standard normal distribution, as 

well similar examples of platykurtic distributions. More extreme counterexamples are given 

in Figures 2 and 3 below, where peaks are infinite for both small and large kurtosis. In any 

event the height of the peak is not relevant to my discussion of peakedness; rather, I am 

concerned with misinterpretations involving shape of the peak. Additionally, comparative 

height of peaks has little relevance for interpreting frequency histograms, particularly for 

data sets with different sample sizes.

To eradicate the persistent, erroneous interpretations of kurtosis in terms of peakedness, the 

terms ‘kurtosis’ and ‘peakedness’ must be disassociated. To be clear, I am not suggesting 

that discussions of peakedness itself (independent of kurtosis) should be eliminated; see 

Proschan (1965) for a thoughtful discussion. Nor am I considering variants of kurtosis such 

as multivariate measures (e.g., Mardia, 1970), or quantile-based measures (e.g., Moors, 

1988). In this article, I give simple, easily understood arguments to demonstrate why the 

classical kurtosis measure and peakedness are unrelated. I show that both extremely large 

and small kurtosis values can easily be associated with distributions that have pointy, flat, 

and infinite bimodal peaks. I also show that the portion of the kurtosis determined by the μ ± 

h σ range is vanishingly small, for all h, when kurtosis is large. Finally, I show that the 

proportion of the kurtosis determined by the μ ± σ range is small, even for distributions with 

moderately small kurtosis.

2. Terminology

This paper concerns the expected standardized fourth moment (assumed to exist) of a 

random variable X, defined as κ = EZ4, where Z = (X – μX)/σX. (Pearson used “β2” instead of 

κ.) The term κ – 3 (=β2 – 3 in Pearson's terminology) is also termed either kurtosis or 

“excess kurtosis,” depending on the source. For the purposes of this article, κ will be called 
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kurtosis (departing from Pearson), having the well-known properties (a) κ ≥ 1 and (b) κ = 3 

when X is normally distributed. Property (a) follows from Jensens’ inequality: E(Z4) ≥ 

{E(Z2)}2 = 12 = 1; the minimum is attained for the equiprobable two-point distribution. 

Property (b) follows from direct integration.

3. How Data Look

Perhaps the persistence of the term “peakedness” comes from people who look at histograms 

of heavy-tailed data and see a strongly pronounced “peak.” For example, a realization of n = 

1000 Cauchy random variables typically produces a histogram as shown in Figure 1. (Data 

were generated using the “rcauchy” function of R with seed 12344). The graph seems to 

show a distinct narrow “peak” in the center, but this is just an artifact of the scaling of the x 

axis. It is the outliers, i.e., the tails, which determine this appearance.

The data graphed in Figure 1 have sample mean m = –1.55 and standard deviation s = 34.85

The data graphed in Figure 1 have sample mean m = –1.55 and standard deviation s = 34.85 

(using n in the denominator to correspond to the empirical distribution). Letting zi = (xi – 

m)/s, the kurtosis of the empirical distribution is

Let's separate the calculation of kurtosis by data within 1 standard deviation or outside 1 

standard deviation of the mean:

The proportion of the kurtosis statistic that is determined by the data within one standard 

deviation of the mean is thus 0.0073/437.3871 = 0.000017. As this calculation shows, the 

notion that the kurtosis statistic has anything to do with the data near the peak is nothing 

short of silly with these data. On the other hand kurtosis clearly measures primarily the 

outliers in this example. On a related note, Livesay (2007) shows that kurtosis statistic can 

be used as a test for outliers, while Cramér (1946, p. 256) and Rohatgi (1976, p. 102) display 

inequalities relating kurtosis and the propensity of a distribution to produce outliers.

4. Neither Small nor Large Kurtosis Convey Any Useful Information about 

the Shape of the Peak

Johnson, Tietjen, and Beckman (1980) provided examples of distributions with identical 

kurtosis as the normal, with widely different peaks. I provide six additional distributions, 

three with kurtosis less than normal, three with near infinite kurtosis; these examples 

provide even more compelling evidence for the point stated in the title of this section. For 

the first example, I consider symmetric distributions whose means, variances, and kurtosis 

values are all 0, 1, and 2.4, respectively. In Pearson's terminology, these should be 

“platykurtic,” or flat-topped, and are graphed in Figure 2. Apparently, the peaks differ: the 
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triangular distribution has a pointy peak, the devil's tower distribution has a flat peak, and 

the slip-dress distribution has no finite peak at all, but rather two infinite peaks.

Details of the distributions are given as follows.

Devil's tower—f(x) = 0.3334, for |x| < 0.9399; f(x) = 0.2945/x2, for 0.9399 ≤ |x| < 2.3242; 

and f(x) = 0, for 2.3242 ≤ |x|.

Triangular—f(x) = 0.4082 – 0.1667|x|, for |x| < 2.4495; and f(x) = 0, for 2.4495 ≤ |x|.

The slip-dress distribution is easiest to define as a mixture of beta random variables.

Slip-dress—Let Y ~ beta(0.5, 1), let m = 0.7241 and c = 1.5423. Let X be either m + cY, m 

– cY, –m +cY, or –m – cY, each with probability 0.25; such an X has the slip-dress 

distribution.

So, a small kurtosis such as κ = 2.4 obviously tells you nothing about the peak, whether it is 

flat, pointy, or bimodal.

What about large kurtosis? Figure 3 displays three distributions with the same kurtosis κ ≅ 

6,000; these graphs appear virtually identical to those in Figure 2. In Pearson's terminology, 

these should all be “leptokurtic,” or less flat-topped than the normal distribution.

The distributions in Figure 3 are the ones in Figure 2 mixed with the T(4 + 0.0000001) 

density, with mixing probability 0.0001. Again, the obvious conclusion is that kurtosis tells 

you nothing about the peak, whether it is flat, pointy, or bimodal. While there is more to the 

distributions than shown in Figure 3, (obviously the tails extend to infinity), the central 

0.99999 portions that are shown cover their peaks adequately.

While the counterexample distributions shown in Figures 2 and 3 are symmetric, it would be 

a simple matter to introduce asymmetry without detracting from the point the kurtosis is 

unrelated to peakedness.

5. Why Tails Mostly Determine Kurtosis

On the face of it, the notion that κ is informative about the peak of a distribution is suspect: 

expected values are averages, and averages are highly influenced by extremes; see the 

calculations in Section 3 for example. In this section I provide upper bounds on the 

proportion of kurtosis determined by the center, for general distributions, and calculate these 

proportions for specific distributions. The material contained in this section is an elaboration 

upon similar material presented by Westfall and Henning (2013), p. 252 – 253.

Define Z = (X – μ)/σ for general random variable X, and define a central portion of the 

distribution FZ of Z as Ah = {z: |z| ≤ h}. Define the quantities Centerh = ∫AhZ4 dFZ and 

. Then κ = Centerh + Tailh. But clearly,

(1)
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This implies that the kurtosis is largely determined by the tail, in general: Tailh ≤κ≤≤ Tailh + 

h4. It also follows that for large kurtosis, the portion determined by the center is vanishingly 

small, no matter how many standard deviations from the mean define the center: for any 

sequence of distributions where the kurtosis values tend to infinity, we have Centerh/κ ≤ 

h4/κ → 0, for all h > 0.

The Appendix shows that inequality (1) can be sharpened for h =1 when the density of Z2 is 

continuous and decreasing over the range [0,1]; call this class of distributions C. Defining 

Center = Center1 = ∫A1 z4 dFZ, the Appendix proves that Center ≤ 0.5 in the case where the 

distribution lies in C. Inequality (1) and its extension to the class C show that kurtosis κ is 

determined to within ±0.5 (within ±0.25 for class C) by data outside the range μ ± σ. 

Specifically, defining Tail = Tail1 = , inequality (1) shows in general that Tail ≤κ≤ 

Tail + 1, and when the distribution lies in the class C, the range of possible kurtosis values 

can be sharpened to Tail ≤κ≤ Tail + 0.5.

These inequalities are somewhat loose. For common distributions, the proportion of kurtosis 

determined by the center is usually much smaller. Table 1 shows various distributions and 

the proportion of the kurtosis that is determined by Center = ∫A1z4 dFZ. Entries are 

computed using simulations with 10,000,000 random numbers, generated using R with the 

Mersenne twister random number generator (Matsumoto and Nishimura, 1998), except 

when calculated analytically with ease. R code to perform all simulation-based calculations 

is available online.

Apparently, for all but the most extreme case of the two-point distribution and for 

distributions close to it, very little of the kurtosis is determined by the portion of the 

distribution that is within one standard deviation of its mean. And of course, for distributions 

with infinite kurtosis, the proportion that is determined by any finite central portion is zero, 

no matter how the ‘finite central portion’ is defined.

6. Summary

As I have shown, kurtosis tells you very little about the peak or center of a distribution. 

Thus, kurtosis should never be defined in terms of peakedness. To do so is 

counterproductive to the aim of fostering statistical literacy. The relationship of peakedness 

with kurtosis is now officially over.
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Appendix: Bounds on Portion of Kurtosis Determined by the Center

The inequality ∫A1z4 dFZ ≤ 0.5, which states that the portion of the kurtosis that is 

determined the range within one standard deviation of the mean is less than 0.5, is true in 

general when the distribution of Z2 satisfies the monotonicity condition given in the 

following theorem.
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Theorem

: Let Z ~ pZ(z), and let W = Z2. Suppose that W ~ pW(w), where pW(w) is continuous and 

decreasing on the interval [0,1]. Then E{Z4 I(|Z| < 1)} ≤ 0.5.

Proof: Let Y = W2. Then pY(y) = p w(y1/2)/(2y1/2) and E{W I(W < 1)} = ∫[0,1] y pW(y1/2)/

(2y1/2)dy = 0.5∫[0,1] y1/2 pW(y1/2) dy ≤ 0.5∫[0,1] y1/2 pW(y) dy since pW(w) is decreasing on 

the interval [0,1]. Hence E{W2 I(W < 1)} ≤ 0.5 P(|Z| ≤ 1) E{|Z|||Z|≤1} ≤ 0.5. The result E{Z4 

I(| Z| < 1)} ≤ 0.5 follows. □

As a corollary, if the distribution of Z is symmetric, then the result E{Z4 I(| Z| < 1)} ≤ 0.5 

follows even when the distribution of Z is increasing away for 0 in the [0,1] range, provided 

that it increases slower than z.

Corollary

Suppose pZ(z) is symmetric. Then result E{Z4 I(| Z| < 1)} ≤ 0.5 follows if pZ(z)/z is 

decreasing for 0 <z < 1.

Proof: Let W = Z2. Then pW(w) = pZ(w1/2)/w1/2 and the result follows. □

As suggested by the inequality E{W2 I(W < 1)} ≤ 0.5 P(|Z| ≤ 1) E{|Z|≤|Z|≤1} shown in the 

proof of the Theorem, and by the results in Table 1, the “≤ 0.5” inequality result of the 

Theorem and Corollary is somewhat loose. To investigate the looseness, consider a class of 

densities for which f(z) = c|z|p when |z| <1. Since ∫f(z)dz =1 it follows that p > –1, but the 

densities are otherwise completely unspecified for |z| ≥1. Also because ∫f(z)dz =1, it follows 

that c ≤ (p + 1)/2. Then

The corollary condition that pZ(z)/z is decreasing for 0 < z < 1 implies p <1 in this class, in 

which case E{Z4 I(|Z| ≤ 1)} < 1/3, rather than ≤ 0.5 as shown in the Theorem and Corollary. 

Additionally, E{Z4 I(|Z| ≤ 1)} → 0 as p → –1 in this class.
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Figure 1. 
Histogram of a random sample of 1000 Cauchy random numbers. Dotted lines show mean ± 

one standard deviation of the empirical distribution.
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Figure 2. 
Distributions with identical kurtosis = 2.4: solid = devil's tower, dashed = triangular, dotted 

= slip-dress.
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Figure 3. 
Central 0.99999 probability range of distributions with identical kurtosis ≅ 6,000.
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Table 1

Proportion of kurtosis determined by the range [μ–σ,μ+σ] for various distributions

Distribution Kurtosis Center/Kurtosis

Two Point (0.5, 0.5) 1.00 1.000

Two Point(0.5+σ, 0.5–σ) 1.00 0.500

0.5N(–9,1) + 0.5N(9,1) 1.05 0.352

0.5N(–2,1) + 0.5N(2,1) 1.72 0.099

Uniform 1.80 0.064

Slip-Dress 2.40 0.063

Devil's Tower 2.40 0.055

0.5N(–1,1) + 0.5N(1,1) 2.50 0.048

Triangular (Symmetric) 2.40 0.045

Normal 3.00 0.037

T 10 4.00 0.028

Logistic 4.20 0.026

Exponential 9.00 0.023

Laplace 6.00 0.015

T 5 9.00 0.012

Empirical, Figure 1 437.4 1.7×10-5
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