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Abstract

Given a finite set of integer vectors, S, we consider the set of all lattice walks comprised as
ordered sequences of steps whose directions come from S. We further restrict our attention those
walks of minimal length, meaning they cannot be shortened through some linear combination
of allowable steps from S. We consider the problem of counting the number of such minimal
walks terminating at a fixed point (a, b) for various choices of the set S.

1 Introduction

Let S be a finite set of vectors in Z2. An S-walk is an ordered sequence s = s1, s2, . . . , sk of steps
with si ∈ S for all i. We may visualize an S-walk as a path beginning at the origin and terminating
at the point whose coordinates are given by s1 + s2 + · · ·+ sk. We say the the number of steps in
a path is its length, and we refer to the elements of S as allowable steps.

The problem of enumerating the walks terminating at a fixed point (a, b) with a, b ∈ N is
classical in combinatorics. For example, when S = {(1, 0), (0, 1)}, the number of such walks is(
a+b
a

)
. When S is an arbitrary set of allowable vectors, there may be several paths of different

lengths that terminate at a fixed point (a, b). For example, if S = {(1, 0), (0, 1), (1, 1)}, then the
path s = (1, 0), (1, 0), (0, 1), (1, 1), (0, 1), (1, 0), (1, 1) is a path of length 7 terminating at the point
(5, 4), and s′ = (1, 1), (1, 0), (1, 1), (1, 1), (1, 1) is a path of length 5 terminating at the point (5, 4).
These walks are illustrated in Figure 1.

Figure 1: A non-minimal S-walk (left) and a minimal S-walk (right) terminating at the point
(a, b) = (5, 4) when S = {(1, 0), (0, 1), (1, 1)}.
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Our goal in this paper is to enumerate the minimal S-walks to a point (a, b) — among all
S-walks terminating at (a, b), we consider only those of minimal length. We will write d(a, b;S)
to denote the S-distance of the point (a, b) from the origin, which counts the number of steps in
a minimal S-walk to (a, b). In the previous example, any S-walk terminating at (5, 4) must utilize
at least 5 steps among {(1, 0), (1, 1)}, so d(5, 4;S) ≥ 5. Therefore, s′ is minimal because it is an
S-walk of length 5. In contrast, s is not minimal. In general, we writeW(a, b;S) to denote the set of
minimal S-walks terminating at the point (a, b). Our goal in this paper is to examine this problem
in several different contexts, exhibiting either explicit closed formulas or generating functions to
determine |W(a, b;S)|.

The rest of the paper is structured as follows. In Section 2, we warm up with the case that
S = {(1, 0), (0, 1), (1, 1)}. In Section 3, we consider the sets

Qn := {(1, 0), (0, 1)} ∪ {(i, n− i) : 0 ≤ i ≤ n},

consisting of the standard basis vectors along with all nonnegative integer vectors whose coordinate
sum equals n for n ≥ 2. We include the standard basis vectors to ensure that every point (a, b)
with a, b ∈ N can be reached by a Qn-walk. Next, we turn our attention to the case that S =
{(1, 0), (0, 1), (u, v)} for arbitrary u, v ∈ N in Section 4. In Section 5, we explore the case that
S = {(1, 0), (0, 1), (2, 1), (1, 2)}. We conclude in Section 6 with some open problems.

2 Minimal walks for S = {(1, 0), (0, 1), (1, 1)}
We begin by examining the set of allowable steps S = {(1, 0), (0, 1), (1, 1)}. In this and subsequent
sections, we have implemented a simple greedy search in Sage [3] to determine the number of
minimal S-walks terminating at a given point (a, b) for small values of a and b. This data is
depicted visually in Figure 2. For example, the circled 20 indicates that there are 20 minimal
S-paths terminating at the point (6, 3).

In that image, we notice that there appear to be two copies of Pascal’s triangle (OEIS sequence
A007318) glued together along the line y = x. Our first result proves that this pattern continues.

Theorem 1. Let S = {(1, 0), (0, 1), (1, 1)} and let (a, b) be a point with a, b ∈ N. Then |W(a, b;S)| =(max(a,b)
min(a,b)

)
.

Proof. By symmetry, we may assume without loss of generality that a ≥ b. Note that d(a, b;S) ≥ a
since an allowable step in S increases the x-coordinate by at most 1. Conversely, d(a, b;S) ≤ a
since (a, b) can be reached by taking b steps in the (1, 1)-direction, followed by a − b steps in the
(1, 0)-direction. Thus d(a, b;S) = a.

In particular, it follows that every step in a minimal S-walk terminating at (a, b) must increase
the x-coordinate, and hence such a walk does not use any (0, 1) steps. Since a (1, 1) step is the
only remaining step that can increase the y-coordinate, a minimal S-walk is comprised of a total
steps, b of which are (1, 1) steps and the remaining a − b of which are (1, 0) steps. There are

(
a
b

)
such paths.
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Figure 2: The number of minimal S-walks terminating at each point (a, b) for 0 ≤ a, b ≤ 10 and
S = {(1, 0), (0, 1), (1, 1)}.

3 Minimal walks for steps of fixed length

Our next goal is to consider the set of allowable steps

Qn := {(1, 0), (0, 1)} ∪ {(i, n− i) : 0 ≤ i ≤ n},

for n ≥ 2. For example, Q3 = {(1, 0), (0, 1), (0, 3), (1, 2), (2, 1), (3, 0)}, and Figure 3 shows data
for the number of minimal Q3-walks. This array did not previously appear in OEIS, but we have
added it as sequence A292435.

In Figure 3, we observe an interesting phenomenon. If we fix a value m = 3q+r with 0 ≤ r < 3,
and consider all points (a, b) with a+ b = m, then the number of minimal Q3-walks terminating at
(a, b) is a multiple of

(
q+r
r

)
. For example, when m = 7 = 3 · 2 + 1, the entries along the diagonal

(3, 9, 15, 21, 21, 15, 9, 3) are all divisible by
(
2+1
1

)
= 3.

In order to justify this phenomenon in general, we introduce an additional piece of terminology.
For Qn, we will call the steps (1, 0) and (0, 1) short steps and the remaining steps of the form
(i, n− i) long steps.

Lemma 2. Let a, b ∈ N and write a + b = n · q + r with 0 ≤ r < n. Then any minimal Qn-walk
terminating at (a, b) uses exactly q long steps and r short steps. Consequently, d(a, b;Qn) = q + r.

Proof. Let s be a (not necessarily minimal) Qn-walk terminating at (a, b), and suppose s uses q′

long steps and r′ short steps. If r′ ≥ n, then we can replace n of those short steps with one long step,
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Figure 3: The number of minimal Q3-walks terminating at each point (a, b) for 0 ≤ a, b ≤ 10.

which would result in shorter path. Here, it is worth noting that we do not require these n short
steps to appear consecutively in s. We can simply remove them from s and append their vector
sum, which is a long step, to the end of the resulting walk. This creates a new walk terminating at
(a, b) with fewer steps.

Therefore, if s is a minimal Qn-walk, then r′ < n. By taking the vector sum of every step in
s, we see that a + b = n · q′ + r′. Since the quotient and remainder in the division algorithm are
unique, we must have q′ = q and r′ = r, meaning s uses q long steps and r short steps.

Let (a, b) ∈ N2 and write a + b = q · n + r with 0 ≤ r < n. We can now use Lemma 2 to see
why |W(a, b;Qn)| is divisible by

(
q+r
r

)
. We can partition W(a, b;Qn) into equivalence classes by

declaring s ∼ s′ if (1) s and s′ use the same number of each step from Qn and (2) the relative order
of the long steps and the relative order of the short steps in s is the same as that in s′. For example,
in Q3, the paths (3, 0), (2, 1), (1, 0), (0, 1), (1, 2), (2, 1) and (1, 0), (3, 0), (0, 1), (2, 1), (1, 2), (2, 1) are
equivalent. The paths equivalent to s are determined by choosing r positions out of q + r total
steps in which we will place the (ordered list of) short steps.

At this point, however, the combinatorics of enumerating minimal Qn-walks to a fixed point
(a, b) is somewhat complicated because the linear algebra problem of determining all ways to write
(a, b) as a sum of q long steps and r short steps is difficult to do in generality. Instead, it is easier
to exhibit a generating function that will enumerate all such walks.
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Theorem 3. For all n ≥ 2, the number of minimal Qn-walks can be computed by the generating
function ∑

(a,b)∈N2

|W(a, b;Qn)|xayb =

∞∑
q=0

n−1∑
r=0

(
q + r

r

)( n∑
i=0

xiyn−i

)q

(x+ y)r. (1)

Proof. For fixed q and r, let σ = n · q + r. Expanding
(∑n

i=0 x
iyn−i

)q
encodes all possible ways to

make an ordered list of q long steps, and expanding (x+ y)r encodes all possible ways to make an
ordered list of r short steps. Hence, multiplying these quantities together encodes all possible ways
to make an ordered list of q long steps followed by r short steps. Multiplying by

(
q+r
r

)
accounts

for all possible ways to shuffle these steps together. Therefore, the summand of the generating
function for fixed q and r covers all equivalence classes (as described above) of minimal Qn-walks
terminating along the diagonal where a+ b = σ.

4 Minimal walks for S = {(1, 0), (0, 1), (u, v)}
In this section, we consider an asymmetric set of allowable steps in S = {(1, 0), (0, 1), (u, v)} for
arbitrary integers u, v ≥ 1.

Given a point (a, b) ∈ N2, let m = m(a, b) = min{b auc, b
b
v c}. Concretely, m is the largest integer

such that m · u ≤ a and m · v ≤ b; or in other words, m is the largest number of steps one can take
in the (u, v)-direction without exceeding the x- or y-coordinate of (a, b).

Theorem 4. Let S = {(1, 0), (0, 1), (u, v)} with u, v ≥ 1, and let (a, b) ∈ N2. A minimal S-walk to
the point (a, b) uses exactly m steps in the (u, v)-direction. Consequently,

d(a, b;S) = m+ a−m · u+ b−m · v,

and

|W(a, b;S)| =
(
m+ a−m · u+ b−m · v
m, a−m · u, b−m · v

)
.

Proof. First, we will prove that a minimal S-walk uses exactly m steps in the (u, v)-direction. As
noted above, any S-walk terminating at (a, b) uses at most m steps in the (u, v)-direction. We
claim an S-walk using fewer than m steps in the (u, v)-direction is non-minimal. Indeed, consider
an S-walk using m′ steps in the (u, v)-direction, x steps in the (1, 0)-direction, and y steps in the
(0, 1)-direction, and assume m′ < m.

Since
a = m′ · u+ x ≤ (m− 1) · u+ x = m · u+ x− u ≤ a+ x− u,

it follows that x ≥ u. Similarly, y ≥ v. Since x ≥ u and y ≥ v, we can replace u steps in the
(1, 0)-direction and v steps in the (0, 1)-direction with one step in the (u, v)-direction, resulting in
a shorter path. Thus, a walk using m′ steps in the (u, v)-direction is non-minimal, and hence a
minimal S-walk uses at least m steps in the (u, v)-direction.

Finally, since a minimal S-walk uses m steps in the (u, v)-direction, then it must use a−m · u
steps in the (1, 0)-direction and b−m · v steps in the (0, 1)-direction. This immediately implies the
stated formulas for the distance and number of minimal S-walks.
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Remark 5. In the case that (u, v) = (1, 1), note that m = min(a, b), that m+ a−mu+ b−mv =
a+b−m = max(a, b), and that one of a−mu and b−mv is equal to 0. Thus Theorem 4 generalizes
the results in Section 2.

5 Minimal walks for Q3 = {(1, 0), (0, 1), (2, 1), (1, 2)}
Recall that in Section 3, we considered the set of allowable steps Q3. By removing the vectors (3, 0)
and (0, 3) from this set, we obtain the set Q3 = {(1, 0), (0, 1), (2, 1), (1, 2)}. The combinatorial data
coming from this seemingly simple example did not appear in OEIS [1] and seems interesting in its
own right. We have since added this data to OEIS as sequence A292436.

Figure 4 shows the number of minimal walks for Q3. Here, we have included the lines spanned
by the vectors (2, 1) and (1, 2) for reference. We observe that these lines divide the nonnegative
quadrant into three regions. In the regions weakly above the line y = 2x and weakly below the
line 2y = x, we observe that the number of minimal Q3-walks appears to be a binomial coefficient,
while the behavior between these two lines appears to be different. Our goal in this section is to
explain several patterns in data collected in Figure 4.
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Figure 4: The number of minimal Q3-walks terminating at each point (a, b) for 0 ≤ a, b ≤ 10.

We begin by establishing some notation that will be used throughout the proofs in this section.
Given a point (a, b) ∈ N2, consider a minimal Q3-walk, s, terminating at (a, b). Let x, y, z, and w
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respectively denote the number of (1, 0)-, (0, 1)-, (2, 1)-, and (1, 2)-steps in s. Thus

a = x+ 2z + w and b = y + z + 2w. (2)

As in Section 3, we will refer to the steps (2, 1) and (1, 2) in Q3 as long steps and the steps (1, 0)
and (0, 1) as short steps.

Our first goal is to explain the combinatorial data observed in the outer regions where a ≥ 2b
or b ≥ 2a.

Theorem 6. Let (a, b) ∈ N2 with a ≥ 2b. A minimal Q3-walk terminating at (a, b) does not use
any steps in the (0, 1)-direction or in the (1, 2)-direction. Consequently,

d(a, b;Q3) = a− b

and

|W(a, b;Q3)| =
(
a− b
b

)
.

Proof. Consider a minimal Q3-walk, s, terminating at the point (a, b). Let x, y, z, and w be as
defined above. Our first goal is to show y = 0 and w = 0.

Since a ≥ 2b, it follows from Eq. (2) that x ≥ 2y + 3w. Therefore, if y ≥ 1, then x ≥ 2. So if s
uses a (0, 1)-step, then it uses (at least) two (1, 0)-steps. But a (0, 1)-step and two (1, 0)-steps can
be replaced with a (2, 1)-step, which would give a shorter path. Thus y = 0.

Similarly, if w ≥ 1, then x ≥ 3. So if s uses a (1, 2)-step, it uses at least three (1, 0)-steps. But
(1, 2) + 3(1, 0) = (4, 2) = 2(2, 1), so these four steps can be replaced with two (2, 1)-steps, which
would give a shorter path. Thus w = 0 as well.

Since y = 0 and w = 0, Eq. (2) reduces to

a = x+ 2z and b = z,

which is equivalent to x = a − 2b (which is nonnegative since a ≥ 2b) and z = b. Since x + z is
the total number of steps in s, it follows that d(a, b;Q3) = a − b. Finally, to determine a path to
the point (a, b), we must use a − b total steps, b of which go in the direction (2, 1) and a − 2b of
which go in the direction (1, 0). There are

(
a−b
b

)
ways to determine such a path. This completes

the proof.

Since Q3 is symmetric, the following corollary immediately handles the case that b ≥ 2a.

Corollary 7. Let (a, b) ∈ N2 with b ≥ 2a. A minimal Q3-walk terminating at (a, b) does not use
any steps in the (1, 0)-direction or in the (2, 1)-direction. Consequently, d(a, b;Q3) = b − a and
|W(a, b;Q3)| =

(
b−a
a

)
.

Now we turn our attention to the case that (a, b) lies in the central region of Figure 4.

Lemma 8. Let (a, b) ∈ N2 with 1
2b ≤ a ≤ 2b. A minimal Q3-walk terminating at (a, b) uses at

most two short steps.
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Proof. As before, consider a minimal Q3-walk, s, terminating at the point (a, b). Let x, y, z, and
w be as defined above. Assume by way of contradiction that s uses at least three short steps, or
equivalently that x+ y ≥ 3.

If x ≥ 2 and y ≥ 1 (or if x ≥ 1 and y ≥ 2), then s can be shortened by replacing three short
steps with a (2, 1)-step (respectively, with a (1, 2)-step). So we need only consider the case that
x ≥ 3 and y = 0. By symmetry, this will cover the case that x = 0 and y ≥ 3.

Since a ≤ 2b, it follows from Eq. (2) that x ≤ 2y + 3w. Since y = 0 and x ≥ 3, it follows
that w ≥ 1. Thus s uses at least three (1, 0)-steps and one (1, 2)-step, which can be shortened by
replacing 3(1, 0) + (1, 2) = (4, 2) with two (2, 1)-steps. This contradicts our assumption that s is
minimal.

Theorem 9. Let (a, b) ∈ N2 with 1
2b ≤ a ≤ 2b, and write a+ b = 3q + r with 0 ≤ r ≤ 2. Then

d(a, b;Q3) = q + r

and

|W(a, b;Q3)| =
(
q + r

r

)(
q + r

a− q

)
.

Proof. As before, consider a minimal Q3-walk, s, terminating at the point (a, b). Let x, y, z, and w
be as defined above. By Eq. (2), a + b = x + y + 3(z + w). By Lemma 8, x + y < 3, and hence
by uniqueness of the quotient and remainder in the division algorithm, it must be the case that
x + y = r and z + w = q. But x + y + z + w is the total number of steps used in s, and hence
d(a, b;Q3) = q + r. In particular, r counts the number of short steps used in a minimal path.

Now we turn our attention to counting the number of minimal Q3-walks terminating at (a, b).
Let s be such a walk. We know s uses r short steps. Define a new Q3-walk ŝ as follows: replace
each (1, 0)-step in s with a (2, 1)-step and replace each (0, 1)-step in s with a (1, 2)-step. Note that
ŝ is a Q3-walk that only uses long steps. Moreover, ŝ terminates at the point (a+ r, b+ r) as each
replacement increases the vector sum by (1, 1).

Now let ŵ and ẑ respectively denote the number of (2, 1)- and (1, 2)-steps in ŝ. Applying Eq.
(2) to ŝ gives rise to the system of equations

2ẑ + ŵ = a+ r

ẑ + 2ŵ = b+ r.

The coefficient matrix

[
2 1
1 2

]
is invertible, so this system has a unique solution. We can easily

verify that

ẑ = a− q
ŵ = b− q

is a solution, which can also be derived by inverting the coefficient matrix and making use of the
fact that a+ b = 3q + r.

Moreover, a− q and b− q are both nonnegative because 1
2b ≤ a ≤ 2b. Indeed, 3q + r = a+ b ≤

a+ 2a, and hence 3(a− q) ≥ r ≥ 0. The same logic shows 3(b− q) ≥ r ≥ 0.
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Therefore, the Q3-minimal walks terminating at (a, b) can be constructed as follows. Start with
a Q3-walk using a− q steps in the direction (2, 1) and b− q steps in the direction (1, 2). There are(
a−q+b−q

a−q
)

=
(
q+r
a−q
)

such walks. Next, choose r of those steps to transform into short steps. If the
chosen step is a (2, 1)-step, turn it into a (1, 0) step; if it is a (1, 2)-step, turn it into a (0, 1)-step.
There are

(
q+r
r

)
ways to make these choices. The resulting path terminates at the point (a, b) and

has length q + r = d(a, b;Q3). Thus |W(a, b;Q3)| =
(
q+r
r

)(
q+r
a−q
)
, as desired.

6 Open problems

6.1 Minimal walks for general S = {(1, 0), (0, 1), (u, v), (v, u)}.

Based on the results in Section 5, it seems natural to explore the more general case that our
allowable steps are S = {(1, 0), (0, 1), (u, v), (v, u)} for arbitrary u and v such that u > v ≥ 1.

In this case, the distances seem more complicated than they were in any of our previous ex-
amples. The reason for this is that a point’s distance from the origin is inherently dependent on
its position relative to the N-span of {(u, v), (v, u)}. In particular that distance to point (a, b) can
be determined greedily by finding a nearest point in the N-span of {(u, v), (v, u)} that lies weakly
south and west of (a, b) and filling in the rest of the walk with short steps. This means the dis-
tance changes, often dramatically, depending on a point’s position in a fundamental parallelogram
spanned by (u, v) and (v, u).

For example, consider the case that S = {(1, 0), (0, 1), (3, 5), (5, 3)}. The distances from the
origin to nearby points (a, b) are displayed in Figure 5.

Problem 10. Let S = {(1, 0), (0, 1), (u, v), (v, u)} with u > v ≥ 1 arbitrary. Determine d(a, b;S)
and |W(a, b;S)|.

6.2 Catalan generalizations

Based on the wealth of beautiful combinatorics arising from Catalan and Motzkin paths, the fol-
lowing question is very natural.

Problem 11. Let a ≥ b and let S be a set of allowable steps. How many minimal S-walks
terminating at (a, b) stay weakly below the line y = x?

For brevity, let us say that an S-Catalan walk is a minimal S-walk that stays weakly below the
line y = x. For integers a, b with a ≥ b, we will write C(a, b;S) to denote the set of all S-Catalan
walks terminating at (a, b).

Consider the set Sn = {(i, n − i) : 0 ≤ i ≤ n}; i.e., the nonnegative integer vectors with
coordinate sum n. We can explore C(a, b;Sn) for several values of n.

For S1 = {(1, 0), (0, 1)} the number of S1-Catalan walks terminating at (a, a) is the a-th Catalan
number, which appear in OEIS as sequence A000108. More generally, the number of walks ter-
minating at (a, b) is a−b+1

a+b+1

(
a+b+1
a+1

)
, which is OEIS sequence A009766. Krattenthaler [2, Corollary

10.3.2] gives a proof of this fact.
For S2 = {(2, 0), (1, 1), (0, 2)}, the number of S2-Catalan walks terminating at (a, a) is the a-th

Motzkin number, which is found in sequence A001006. Indeed, the map sending (2, 0) 7→ (1, 1),
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(1, 1) 7→ (1, 0), and (0, 2) 7→ (1,−1) gives a bijection to classical Motzkin paths comprised of steps
{(1, 1), (1, 0), (1,−1)} that start at (0, 0), terminate at (a, 0), and stay above the line y = 0.

As a next step we can consider S3 = {(3, 0), (2, 1), (1, 2), (0, 3)}. Figure 6 shows the number of
S3-Catalan paths terminating at points (a, b) with a ≥ b and a+ b ≤ 18.

The sequence of nonzero numbers along the line y = x continues as 1, 2, 13, 120, 1288, 15046, . . .
and did not appear in OEIS. We have added it as sequence A292437.

Problem 12. Determine the generating function for

∑
a≥b≥0

|C(a, b;S3)|xayb or
∞∑
a=0

|C(a, a;S3)|ta.

7 Acknowledgments

We gratefully acknowledge support from NSF grant DMS-1600048. We also thank Naomi Cameron,
Tom Edgar, Lara Pudwell, and Jennifer Quinn for providing helpful insights and suggestions over
the course of this project.

References

[1] OEIS Foundation Inc. (2016). The On-Line Encyclopedia of Integer Sequences, http://oeis.org.

[2] Christian Krattenthaler. Lattice path enumeration. In Handbook of enumerative combinatorics, Discrete
Math. Appl. (Boca Raton), pages 589–678. CRC Press, Boca Raton, FL, 2015.

[3] W. A. Stein et al. Sage Mathematics Software (Version 8.0). The Sage Development Team, 2017.
http://www.sagemath.org.

10



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

3

4

5

6

7

1

2

3

4

5

6

7

8

9

10

11

4

5

6

7

8

2

3

4

5

6

7

8

9

10

11

12

5

6

7

1

2

3

4

5

6

7

8

9

10

11

12

13

6

7

8

2

3

4

5

6

7

8

2

3

4

5

6

7

7

8

9

3

4

5

6

7

8

9

3

4

5

6

7

8

8

9

10

4

5

6

7

8

2

3

4

5

6

7

8

9

9

10

11

5

6

7

8

9

3

4

5

6

7

8

9

3

10

11

12

6

7

8

2

3

4

5

6

7

8

9

10

4

11

12

13

7

8

9

3

4

5

6

7

8

9

3

4

5

12

13

14

8

9

10

4

5

6

7

8

9

10

4

5

6

13

14

15

9

10

11

5

6

7

8

9

3

4

5

6

7

14

15

16

10

11

12

6

7

8

9

10

4

5

6

7

8

15

16

17

11

12

13

7

8

9

3

4

5

6

7

8

9

a
b

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

Figure 5: The distance d(a, b; {(1, 0), (0, 1), (3, 5), (5, 3)}) for 0 ≤ a, b ≤ 15.
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Figure 6: Number of S3-Catalan paths terminating at points (a, b) with 0 ≤ a+ b ≤ 18.
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