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According to the precepts of elementary geometry, the concept of volume depends on the
notions of length and angle and, in particular, perpendicularity... Nevertheless, it turns
out that volume is independent of all these things, except for an arbitrary multiplicative
constant that can be fixed by specifying that the unit cube have volume one.

Peter Lax

We will adopt an approach to the determinant motivated by our intuitive notions of volume;
however, the determinant of a matrix tells us much more. We list here some of its principal uses.

1. The determinant of a matrix gives the signed volume of the parallelepiped generated by its
columns.

2. The determinant gives a criterion for invertibility. A matrix A is invertible if and only if
det(A) 6= 0.

3. A formula for A−1 can be given in terms of determinants; in addition, the entries of x in
the inverse equation x = A−1b can be expressed in terms of determinants. This is known as
Cramer’s Rule.

1 The Determinant of a 2× 2 Matrix.

Viewing a square matrix M as a linear transformation from Rn to itself leads us to ask the question:
How does this transformation change volumes? In the case of a 2×2 matrix, it is possible to compute
the answer explicitly using some familiar facts from geometry and trigonometry.

Let ~u =

[
u1
u2

]
and let ~v =

[
v1
v2

]
. Define M to be the matrix M = [~u ~v]. To examine how M

transforms areas, we look at the action of M on ~e1 and ~e2 (see Figure 1). M~e1 = ~u and M~e2 = ~v
so that M transforms the unit square determined by ~e1 and ~e2 into the parallelogram determined
by ~u and ~v.

Figure 2 shows the parallelogram determined by ~u and ~v. We wish to find its area.
The area of the parallelogram is given by Area = base×height = ‖~u‖h where ‖~u‖ =

√
(u1)2 + (u2)2

is the length of the vector ~u. Define

θ = angle formed by ~u and ~v at the origin,

θu = angle formed by ~u and the positive x-axis,

θv = angle formed by ~v and the positive x-axis.
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Figure 1: The action of M on the unit square.

u

v

h

Figure 2: The parallelogram determined by ~u and ~v.

Note that θ = θv − θu. Now we use some simple trigonometry. Recall that

sin(A−B) = sinA cosB − sinB cosA

and that in a right triangle

sinA =
opposite

hypotenuse
and cosA =

adjacent

hypotenuse
.

Therefore,

sin θ =
h

‖~v‖
, sin θu =

u2
‖~u‖

, cos θu =
u1
‖~u‖

, sin θv =
v2
‖~v‖

and cos θv =
v1
‖~v‖

.

We can now express the area of the parallelogram in terms of the entries of ~u and ~v.

Area = ‖~u‖h = ‖~u‖‖~v‖ sin θ = ‖~u‖‖~v‖ sin(θv − θu)

= ‖~u‖‖~v‖(sin θv cos θu − sin θu cos θv)

= ‖~u‖‖~v‖
(
v2
‖~v‖

u1
‖~u‖
− u2
‖~u‖

v1
‖~v‖

)
= u1v2 − v1u2

This geometric derivation motivates the following definition.

Definition 1. Given a 2 × 2 matrix M =

[
a b
c d

]
we define the determinant of M , denoted

det(M), as
det(M) = ad− bc.

In the example above, the determinant of the matrix is equal to the area of the parallelogram
formed by the columns of the matrix. This is always the case up to a negative sign. Take for
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Figure 3: The action of M on the unit square reverses orientation.

example M =

[
−1 0

0 1

]
. M~e1 = −~e1 and M~e2 = ~e2. The action of M on the unit square is

depicted in Figure 3.
The area of the region is still clearly 1, but det(M) = −1(1) − 0(0) = −1. This is because
the determinant reflects the fact that the region has been “flipped”, i.e. the orientation of the
vectors describing the original parallelogram has been reversed in the image. Generally, we have
det(M) = ±Area, where the determinant is positive if orientation is preserved and negative if it is
reversed. Thus det(M) represents the signed volume of the parallelogram formed by the columns
of M .

2 Properties of the Determinant

The convenience of the determinant of an n × n matrix is not so much in its formula as in the
properties it possesses. In fact, the formula for n > 2 is quite complicated and any attempt to
calculate it as we did for n = 2 from geometric principles is cumbersome. Rather than focus on
the formula, we instead define the determinant in terms of three intuitive properties that we would
like volume to have. It is an amazing fact that these three properties alone are enough to uniquely
define the determinant.

2.1 Defining the Determinant in Terms of its Properties

We seek a function D : Rn×n → R which assigns to each n× n matrix a single number. We adopt
a flexible notation: D is a function of a matrix so we write D(A) to represent the number that D
assigns to the matrix A. However, it is also convenient to think of D as a function of the columns
of A and so we write D(A) = D(~a1,~a2, . . .~an) where ~a1,~a2, . . .~an are the columns of the matrix A.

Motivated by our intuitive ideas of volume, we require that the function D have the following
three properties:

Property 1. D(I) = 1.

This can also be written as D(~e1, ~e2, . . . ~en) = 1 since ~e1, ~e2, . . . ~en are the columns of the identity
matrix I. These vectors describe the unit cube in Rn which should have volume 1.

Property 2. D(~a1,~a2, . . .~an) = 0 if ~ai = ~aj for some i 6= j.

This condition says that if two edges of the parallelepiped are the same, then the parallelepiped
is degenerate (i.e. “flat” in Rn) and so should have volume zero.

Property 3. If n− 1 columns are held fixed, then D is a linear function of the remaining entry.
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Stated in terms of the jth column of the matrix, this property says that

D(~a1, . . .~aj−1, ~u+ c~v,~aj+1, . . .~an) = D(~a1, . . .~aj−1, ~u,~aj+1, . . .~an)

+ cD(~a1, . . .~aj−1, ~v,~aj+1, . . .~an)

so that D is a linear function of the jth column when the other columns are held fixed. Note, this
does not mean that D(A+B) = D(A) +D(B)! This is false!

Property (3) reflects the way volumes add. This is best illustrated with a simple example. Let
~u, ~v and ~w be vectors in R2 and let A~x,~y denote the area of the parallelogram generated by ~x and
~y. According to Property (3),

D

([
u1 v1 + w1

u2 v2 + w2

])
= D

([
u1 v1
u2 v2

])
+D

([
u1 w1

u2 w2

])
.

In terms of areas, this would mean that

A~u,~v+~w = A~u,~v +A~u,~w.

To see that the areas actually behave in this way, we draw a diagram. Without loss of generality,
we may assume that ~u lies along the positive x-axis. We let ~z = ~v + ~w.

~u

~v

~w

w2

v2

A~u,~v = u1v2
A~u,~w = u1w2

v2

w2

~w

~v

z2

~z = ~v + ~w

z2 = v2 + w2

~u

z2

~z

A~u,~z = u1z2 = u1(v2 + w2)

It is clear from the diagram that A~u,~v+~w = A~u,~v + A~u,~w: the bases of the parallelograms are the
same and the altitude of the parallelogram formed by ~u and ~z is simply the sum of the altitudes
of the parallelograms formed by ~u and ~v and by ~u and ~w. Property (3) is a direct consequence of
this observation about the additive properties of volume.

2.2 Additional Properties of the Determinant

Our goal is to show that the three properties stated in Section 2.1 actually determine a specific
formula for D in terms of the entries of a given matrix so that there can be only one function
D : Rn×n → R with these three properties. This function we will define as the determinant. In this
section we formulate some of the consequences of Properties (1)-(3) as additional properties which
will be crucial in deriving the formula for the determinant.

Property 4. D is an alternating function of the columns, i.e. if two columns are interchanged,
the value of D changes by a factor of -1.
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Proof. Let’s say we interchange columns ~ai and ~aj of the matrix A. We keep the notation simple
by writing D(~ai,~aj) instead of D(~a1,~a2, . . .~an) since these are the two entries we will be concerned
with. The other entries remain constant.

D(~ai,~aj) = D(~ai,~aj) +D(~ai,~ai) by Property (2)
= D(~ai,~aj + ~ai) by Property (3)
= D(~ai,~aj + ~ai)−D(~aj + ~ai,~aj + ~ai) by Property (2)
= D(−~aj ,~aj + ~ai) by Property (3)
= −D(~aj ,~aj + ~ai) by Property (3)
= −D(~aj ,~aj)−D(~aj ,~ai) by Property (3)
= −D(~aj ,~ai) by Property (2)

Property 5. If {~a1,~a2, . . .~an} is a linearly dependent set of vectors, then D(~a1,~a2, . . .~an) = 0.

Proof. If the vectors are linearly dependent then one of them can be written as a linear combination
of the others. Without loss of generality, let’s say that vector is ~a1.

~a1 = c2~a2 + . . .+ cn~an

Then using the fact that D is a linear function of one column when the others are held fixed
(Property (3)), we have

D(~a1,~a2, . . .~an) = D(c2~a2 + . . .+ cn~an,~a2, . . .~an)

= c2D(~a2,~a2, . . .~an) + c3D(~a3,~a2, . . .~an) + . . .+ cnD(~an,~a2, . . .~an)

Note that every term in the last line is zero by Property (2).

An immediate consequence of Property (5) is the fact that a non-invertible matrix must have
determinant equal to zero. This is because the columns of a non-invertible matrix are linearly
dependent and so D is forced to be zero by Property (5).

Property 6. Adding a multiple of one column to another does not change the determinant.

Proof. Suppose the matrix B is obtained from A by adding c times column j to column i. Then

D(B) = D(~a1, . . .~ai−1,~ai + c~aj ,~ai+1, . . .~an)

= D(~a1, . . .~ai−1,~ai,~ai+1, . . .~an) + cD(~a1, . . .~ai−1,~aj ,~ai+1, . . .~an)

= D(A) since the second term is 0.

�
There is one further property of determinants which is very convenient.

Theorem 2.1. If A and B are n× n matrices, then D(AB) = D(A)D(B).

We could prove this formally, but it is more instructive to see why this is true by regarding AB
as the composition of two linear transformations. If S is the linear transformation which multiplies
vectors by A and T is the linear transformation which multiplies vectors by B, then the composition
S ◦ T multiplies vectors by the matrix AB. To see what the determinant of AB must be, we need
only look at how S ◦ T changes volumes.
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U V = T (U) W = S(V )

S ◦ T

T S

T transforms volumes by a factor of D(B) and S transforms volumes by a factor of D(A). This
means that if T (U) = V , then vol(V ) = D(B)vol(U) where vol(X) is the signed volume of the set
X. Similarly, if S(V ) = W , then vol(W ) = D(A)vol(V ). Putting these together,

vol(W ) = D(A)vol(V ) = D(A)D(B)vol(U)

so that the transformation S ◦T changes volumes by a factor of D(A)D(B). This is precisely what
D(AB) represents. So D(AB) = D(A)D(B).

2.3 Checking the 2× 2 Determinant

Before deriving formulas for computing the determinant of an n × n matrix, let’s check that the
determinant of a 2×2 matrix we motivated geometrically in Section 1 satisfies the three properties
we postulated in Section 2.1. Once we check that it has these three properties, we conclude that it
also satisfies all the additional properties of Section 2.2 since these were proved on the basis of the
first three.

Recall that we defined the determinant of a 2× 2 matrix M =

[
a b
c d

]
by det(M) = ad− bc.

At this point we introduce the notation that the determinant of a matrix can also be expressed as
the matrix array with absolute value bars instead of square brackets.∣∣∣∣ a b

c d

∣∣∣∣ = det

([
a b
c d

])

Property 1 Check that det(I) = 1.

det(I) =

∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1 · 1− 0 · 0 = 1

Property 2 Check that det(M) = 0 if two columns are the same.

det(M) =

∣∣∣∣ a a
b b

∣∣∣∣ = a · b− a · b = 0

Property 3 Check that if 1 column is held fixed, then the determinant is a linear function of the
remaining column.
Let’s hold the second column fixed and put a linear combination of vectors in the first column.
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Suppose the two columns of M are ~u+ c~v and ~a.

det(~u+ c~v,~a) =

∣∣∣∣ u1 + cv1 a1
u2 + cv2 a2

∣∣∣∣ = (u1 + cv1)a2 − a1(u2 + cv2)

= u1a2 + cv1a2 − a1u2 − a1cv2 = u1a2 − a1u2 + c(v1a2 − a1v2)

=

∣∣∣∣ u1 a1
u2 a2

∣∣∣∣+ c

∣∣∣∣ v1 a1
v2 a2

∣∣∣∣
= det(~u,~a) + cdet(~v,~a)

So we see that the determinant is a linear function of the first column when the second column is
held fixed. The proof for the second column is entirely similar so we omit it.

3 Determinants of Special Matrices and a Criterion for Invertibil-
ity

In this section, we compute the determinants of certain types of matrices which we will then use
to derive general formulas for the determinant of an n × n matrix. The formulas provided will in
fact be derived directly from the properties (1)-(3) that we’ve required the determinant to possess.

Proposition 3.1. The determinant of a triangular matrix is the product of its diagonal entries.

Proof. To fix ideas consider first the case n = 3. Let A be the upper triangular matrix given by

A =

 a11 a12 a13
0 a22 a23
0 0 a33

 .
Applying Property (3) to column 2 while holding the other columns fixed yields∣∣∣∣∣∣

a11 a12 a13
0 a22 a23
0 0 a33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a11 a12 a13
0 0 a23
0 0 a33

∣∣∣∣∣∣+

∣∣∣∣∣∣
a11 0 a13
0 a22 a23
0 0 a33

∣∣∣∣∣∣ .
Notice that the first term on the right is zero since the first and second columns are multiples of
one another. Now we apply Property (3) to column 3 while holding the others fixed to obtain∣∣∣∣∣∣

a11 0 a13
0 a22 a23
0 0 a33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a11 0 a13
0 a22 0
0 0 0

∣∣∣∣∣∣+

∣∣∣∣∣∣
a11 0 0
0 a22 a23
0 0 0

∣∣∣∣∣∣+

∣∣∣∣∣∣
a11 0 0
0 a22 0
0 0 a33

∣∣∣∣∣∣ .
In this expression, the first two terms on the right are both zero, leaving only the third. Putting
these expansions together yields

D(A) =

∣∣∣∣∣∣
a11 0 0
0 a22 0
0 0 a33

∣∣∣∣∣∣ = a11a22a33

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = a11a22a33

as desired.
It is clear that this method of expanding successive columns generalizes to any dimension by

induction. Given an n×n upper triangular matrix, assume we have expanded the first j−1 columns
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as above and discarded the terms which are zero. Expanding the jth column, we see that every
term whose non-zero entry in column j lies in a row above the diagonal is a multiple of a previous
column in the matrix, making that determinant zero. Only the matrix with the entry in the jth

column and jth row survives.
The argument is similar for a lower triangular matrix. �

Proposition 3.2. Let E be an n× n elementary matrix. Then

(a) if E adds c times row i to row j, then D(E) = 1;

(b) if E scales row i by a factor of k, then D(E) = k;

(c) if E interchanges two rows, then D(E) = −1.

Proof. If E is of type (a) in the statement above, then E is a triangular matrix with 1’s on the
diagonal. By Proposition 3.1, D(E) = 1.

If E is of type (b) in the statement above, then E is a triangular matrix with 1’s on the diagonal
except for row i which has diagonal entry k. Again using Proposition 3.1, D(E) = k.

If E is of type (c) in the statement above, then E is the identity matrix I, except with rows i
and j interchanged. This is equivalent to starting with I and interchanging columns i and j, so we
may use Property 4 to conclude that D(E) = −1. �

Note that for an elementary matrix E, ET is an elementary matrix of the same type. Proposi-
tion 3.2 implies that D(E) = D(ET ). This yields the next imporant property of determinants.

Property 7. D(A) = D(AT ).

Proof. If A is not invertible, then D(A) = 0 and the echelon form of A has a zero row, i.e. the
rows of A are linearly dependent. This implies that the columns of AT are linearly dependent, so
D(AT ) = 0 by Property 5.

If A is invertible, then A can be written as a product of elementary matrices: A = Ek · · ·E2E1.
Then using Theorem 1 to break up the product, we have

D(A) = D(Ek · · ·E1) = D(Ek) · · ·D(E1)

= D(ET
k ) · · ·D(ET

1 ) = D(ET
1 ) · · ·D(ET

k )

= D(ET
1 · · ·ET

k ) = D((Ek · · ·E1)
T ) = D(AT ) .

�

The importance of Property 7 is that it allows us to conclude that all the properties that we
have stated for columns also work for rows. We see this because the columns of AT are the rows of
A. We highlight these additional properties, letting ~r1, . . . , ~rn denote the rows of A.

Property 2′ If ~ri = ~rj for some i 6= j, then D(A) = 0.

Property 3′ D depends linearly on each row ~ri keeping the remaining n− 1 rows fixed.

Property 4′ If two rows are interchanged, then D changes by a factor of −1.

Property 5′ If {~r1, ~r2, . . . ~rn} is a linearly dependent set, then D(A) = 0.

Property 6′ Adding a multiple of one row to another does not change the determinant.
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What these properties crystallize for us is the way in which elementary row operations affect
the determinant of a matrix. This knowledge is important for both proving further results and
shortening the computation of the determinant. (Computing the determinant of an n × n matrix
directly takes n! calculations. In order to reduce the number of calculations, computer programs
first row reduce the matrix to echelon form using the above rules before computing the determinant.
The triangular form of a matrix in echelon form makes the determinant easy to compute.)

These results have two immediate consequences for general n×n matrices: the first is a formula
for the determinant of a matrix; the second is a criterion for the invertibility of a matrix.

Corollary 3.3. Suppose a square matrix A is reduced to echelon form using only two types of row
operations: the interchange of rows and the addition of a constant multiple of one row to another
(i.e. no scaling of rows is used). Then

D(A) = ±(product of the pivots in echelon form).

Proof. Let U be an echelon form of A obtained by performing only the row operations stated above.
U is an upper triangular matrix so by Proposition 3.1,

D(U) = (product of diagonal entries) = (product of pivots).

U was obtained from A by additions of a constant multiple of one row to another, which do not
change the determinant, and by row interchanges, which only change the sign of the determinant.
So D(A) must agree with D(U) up to its sign. �

Corollary 3.3 immediately gives us a criterion for invertibility. If a matrix A is invertible, any
echelon form of A has no zero pivots and so D(A) cannot be zero by Corollary 3.3. On the other
hand, if A is not invertible, then it has at least one zero pivot and so D(A) = 0. (We already knew
that the determinant of a noninvertible matrix is zero by Property (5) since the columns of the
matrix are linearly dependent. What Corollary 3.3 establishes is the fact that an invertible matrix
has a non-zero determinant.)

Corollary 3.4. A square matrix A is invertible if and only if D(A) 6= 0.

4 A Formula for the Determinant

At this point we seek an explicit formula for the determinant of an n × n matrix for n > 2. The
formula will make it easier for us to get our hands dirty computing determinants. It follows directly
from the properties proved so far. First we establish two convenient facts.

Let E be an n× n elementary matrix and let E′ be the (n+ 1)× (n+ 1) matrix given by

E′ =


1 0 . . . 0
0
... E
0

 .
Lemma 4.1. Let E and E′ be as above. Then D(E) = D(E′).

Proof. The lemma follows from Proposition 3.2 and the observation that E′ is also an elementary
matrix which represents a row operation of the same type as E. �
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Before proceeding, we will need some new notation. Given an n × n matrix A, we denote by
Aij the matrix obtained by deleting the ith row and jth column of A.

For example, if A =

 1 2 3
4 5 6
7 8 9

 then

A11 =

[
5 6
8 9

]
A32 =

[
1 3
4 6

]
A13 =

[
4 5
7 8

]
.

Lemma 4.2. Consider an n× n matrix A whose first column is a11 · ~e1. Then

D(A) = a11D(A11).

Proof. First, using Property 3′ we expand along the first row of A:

|A| =

∣∣∣∣∣∣∣∣∣
a11 0 . . . 0
0
... A11

0

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
0 a12 0 . . . 0
0
... A11

0

∣∣∣∣∣∣∣∣∣+ . . .+

∣∣∣∣∣∣∣∣∣
0 0 . . . 0 a1n
0
... A11

0

∣∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣∣∣∣
1 0 . . . 0
0
... A11

0

∣∣∣∣∣∣∣∣∣ . (1)

In the first line, every term but the first on the right hand side is zero since the first column of each
matrix is the zero vector. Let B be the matrix remaining on the right hand side of equation (1).

Suppose A11 is not invertible. Then columns 2 through n of B are linearly dependent and
therefore D(A) = D(A11) = 0.

Now suppose A11 is invertible. Then A11 = Ek · · ·E1In−1 for some sequence of elementary
matrices. For each j, let E′j be the elementary matrix given by

E′j =


1 0 . . . 0
0
... Ej

0

 .
Since the first row and column of B are ~e1 and B11 = A11, the sequence of row operations analogous
to that which transforms In−1 into A11 will transform In into B. Thus B = E′k · · ·E′1In. Using
Lemma 4.1 we conclude that

D(A) = a11D(B) = a11D(E′k) · · ·D(E′1) = a11D(Ek) · · ·D(E1) = a11D(A11).

�

Using this result, the formula for the determinant follows quickly. Consider a 3 × 3 matrix A.
Using the linearity of Property (3) on the first column, we write∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a11 a12 a13
0 a22 a23
0 a32 a33

∣∣∣∣∣∣+

∣∣∣∣∣∣
0 a12 a13
a21 a22 a23
0 a32 a33

∣∣∣∣∣∣+

∣∣∣∣∣∣
0 a12 a13
0 a22 a23
a31 a32 a33

∣∣∣∣∣∣
=

∣∣∣∣∣∣
a11 a12 a13
0 a22 a23
0 a32 a33

∣∣∣∣∣∣−
∣∣∣∣∣∣
a21 a22 a23
0 a12 a13
0 a32 a33

∣∣∣∣∣∣+

∣∣∣∣∣∣
a31 a32 a33
0 a12 a13
0 a22 a23

∣∣∣∣∣∣ . (2)
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In the second line we have brought the rows with the non-zero entries in the first column to the
top row while maintaining the relative ordering of the other rows. Since the determinant is an
alternating function of the rows, each exchange introduces a factor of −1. Notice that in the first
term of equation (2), the 2× 2 matrix obtained by deleting the first row and column of the matrix
is A11. In the second term, the matrix obtained by deleting the first row and column is A21. In the
third term, the matrix obtained by deleting the first row and column is A31. Using Proposition 4.2
to evaluate each determinant, we obtain

D(A) = a11D(A11)− a21D(A21) + a31D(A31).

For a general n× n matrix A, we can do the same expansion: expand the determinant into the
sum of n determinants — the first column of the ith term will have ai1 in the ith row and zeroes
elsewhere; then we use i− 1 transpositions to move the ith row to the first row while maintaining
the relative ordering of the other rows; finally, we use Lemma 4.2 to evaluate the determinant of
each matrix. In this way we arrive at the following formula for the determinant of a matrix.

D(A) =
n∑

i=1

(−1)i−1ai1D(Ai1).

This is called the cofactor expansion along the first column of A.
The importance of this formula is that it allows us to define the determinant of a matrix

inductively: we define the determinant of an n×n matrix in terms of the determinants of (n−1)×
(n− 1) matrices. We begin by defining the determinant of a 1× 1 matrix A = [a] by det(A) = a.
Then we proceed to two dimensions and so on using the following definition.

Definition 2. Let A be an n× n matrix. Define the determinant of A to be

det(A) =

n∑
i=1

(−1)i+1ai1 det(Ai1).

In fact, we can do a similar expansion along any row or column of A, simply by following
the procedure outlined above for expanding the determinant and then moving each position in the
chosen row or column into the upper left corner of the matrix through a sequence of row and column
exchanges. In order to move the entry in the ith row and jth column of the matrix into the upper
left hand corner and preserve the order of the other rows and columns, we need i−1 row exchanges
and j − 1 column exchanges. Each exchange introduces a factor of −1 to the determinant of that
term.

In this way we obtain additional formulas for the determinant. If we choose to expand along
the ith row of A, we have

det(A) =

n∑
j=1

(−1)i+j−2aij det(Aij) =

n∑
j=1

(−1)i+jaij det(Aij).

This is called the cofactor expansion along the ith row of A. If we choose to expand along the
jth column of A, we have

det(A) =

n∑
i=1

(−1)i+jaij det(Aij).

This is called the cofactor expansion along the jth column of A.
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The term “cofactor expansion” stems from the the fact that the quantity Cij = (−1)i+j det(Aij)
is called the (i, j)-cofactor of the matrix A.

Note that if A is 2× 2, then this formula for the determinant agrees with the one we motivated

geometrically in Section 1 from the area of a parallelogram. Setting A =

[
a11 a12
a21 a22

]
, we see that

A11 = [a22] and A12 = [a21] so expanding along the first row,

det(A) =
2∑

j=1

(−1)1+ja1j det(A1j)

= (−1)1+1a11 det(A11) + (−1)1+2a12 det(A12)

= a11 · a22 − a12 · a21.

Let’s practice using the cofactor expansions to compute the determinants of some matrices.

Example 1. Let A =

 1 3 −3
−3 −5 2
−4 4 −6

. We expand along the first row.

det(A) = (−1)1+1a11 det(A11) + (−1)1+2a12 det(A12) + (−1)1+3a13 det(A13)

= (−1)2(1)

∣∣∣∣ −5 2
4 −6

∣∣∣∣+ (−1)3(3)

∣∣∣∣ −3 2
−4 −6

∣∣∣∣+ (−1)4(−3)

∣∣∣∣ −3 −5
−4 4

∣∣∣∣
= (30− 8)− 3(18 + 8) + (−3)(−12− 20)

= 22− 78 + 96 = 40

Example 2. Let B =

 0 1 3
−2 −3 −5

4 −4 4

. We expand along the first column.

det(B) = (−1)1+1b11 det(B11) + (−1)2+1b21 det(B21) + (−1)3+1b31 det(B31)

= (−1)2(0)

∣∣∣∣ −3 −5
−4 4

∣∣∣∣+ (−1)3(−2)

∣∣∣∣ 1 3
−4 4

∣∣∣∣+ (−1)4(4)

∣∣∣∣ 1 3
−3 −5

∣∣∣∣
= 0− (−2)(4 + 12) + (4)(−5 + 9)

= 32 + 16 = 48

Example 3. Let C =


−2 −3 −5 2

0 1 3 −3
2 0 0 1
4 −4 4 −6

. We expand along the third row.

det(C) = (−1)3+1c31 det(C31) + (−1)3+2c32 det(C32) + (−1)3+3c33 det(C33)

+ (−1)3+4c34 det(C34)

= (−1)4(2) det(A) + (−1)5(0) det(C32) + (−1)6(0) det(C33) + (−1)7(1) det(B)

= 2(40) + 0 + 0− 48 = 32
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