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Complexity and- Analyzability:
Understanding Dynamics
by Simulation '

At a number of places in the preceding chapters the term “complexity”
has been used to refer to social phenomena and to the theories that we
would construct about them. Patterns of social action and interaction
" that involve change over time are inherently-more “complex” than
patterns that do not change, or are considered at only a single point in
time The theories that are used to understand and make generalizations
- about dynamic patterns consequently tend to be more “complex” than
theories of systems in equilibrium or theories that describe patterns of -
covariation across systems at a single point in time. -

The complexity of phenomena, and the complexity of the theories
that we create to understand the phenomena, have consequences for
how we can go about understanding the full implications of our efforts
at theorizing. Some theories are fully comprehensible by logical
deduction (using either “common sense™ or more formal means.! Many
others (particularly when stated in mathematical forms such as linear
~ differential equations or structural equations) can be quite fully
understood by direct solution.2 Many of the theories that are constructed
to describe the dynamics of social action and interaction, however, are
too “complex” to be understood by these means. One of the, main
reasons for formalization of theories about dynamics utilizing semimathe-
matical languages is to enable us to apply an alternative tool for
analyzing and understanding our theories-simulation. -

" In this chapter we will first take a somewhat more rigorous look at the
notion of the “complexity” of a theory and examine why this raises
problems of analyzability. We will then look at how simulation methods
can be used to analyze and make deductions from complex theories.
This discussion has two parts. First we will brietly examine the logic of
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“undefst_anding by simulating,” then we will discuss strategic approaches

to simulation analysis.

Complexity and Analyzabhility

The term “complexity” has a rather clear meaning within systems
. analysis.> Now that we are in command of the basic systems language of
: “gtate spaces,” “connectivity,” and various functional and time relations
. among states, we can provide a definition that is sufficient for our
“purposes. A system may be said to be more compiex than another if it
.- contains more elements in its state space than the other; it may be said to
- be more complex if the states in its state space may take on more values
* than the other (e.g., continuous state systems are more “complex” than
- discrete state systems); it may be said to be more complex than another if
~ the elements in its state space are more extensively interconnected than
those of the other; and, a system is more complex to the order of the
functional forms connecting the states to one another (j.e., a relationship
described by a complex polynomial is more “complex” than one
described by a simple linear equation). Finally, a system is more
complex than another if the time-shapes of the relations among the
Btates are of higher order (e.g., a system connected by relationships
involving third-order delays is more “complex” than one involving
- simple continuous integration). |

. " The logic behind all of the dimensions that lead to increased
“ “gomplexity” in the definition above is this: A system is corplex to the
- degree that we must have more information in order to be certain about
“(that is, to make accurate predictions about) its behavior. Simple
. systems are capable of only a limited variety of possible behaviors: hence
“jtis rather easy to predict their response to any given stimulus. More
_complex systems are far less “analyzable” because they are capable of
producing a larger variety of responses to stimuli. This range of possible
behaviors is frequently termed the “degrees of freedom” of the system,
analogously to the statistical use of the term: Less information is
necessary to make accurate predictions about the dynamics of simple
systems than complex ones. - -

Formal theories about social action and interaction can be regarde

a8 systems (in this case, systems composed of symbols and relations
_among symbols) of varying complexity, just as can the social phenomena
they mimic. Theories are simpler if they have smaller state spaces (fewer
concepts), are conceptualized qualitatively rather than quantitatively,
“have relatively few “laws” goveérning the connections among concepts
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{e.g., a “causal chain” 18 “simpler” than a “path model”). Theories are
simpler if they posit relations among terms that are easily characterized
(e.g., “if-then” or Y = a+bX}) rather than more difficult to describe (e.g.,
“if ¥ is a and not b, then Y is ¢, or In(Y) = sin (X)). And theories are
simpler if they describe relations that occur over time in simple fashions
(e.g., statements about covariation at a time point are “simpler” than -
statements about the effects of prior changes in one variable on
~ subsequent changes in another). '

We need no special intellectual tools to comprehend the meaning of, -

and make deductions from, simple theories. Syllogisms with only a few
terms or single linear equations are “sbvious” in their meanings and
implications.* Slightly more complex theories are still amenable to
direct analysis if we can learn to use certain tools. Quite complex lines of
qualitative relations can be parsed using the rules of formal logic; most
linear and some nonlinear simultaneous equation multivariate models
 can be directly solved with calculus and persistence.

Truly complex theories, however, .often exceed our capacity to
comprehend them. The effects of changing one variable may be almost
impossible to trace if that variable is interconnected in complicated and
dynamic ways with large anumbers of others that are themselves
connected. In many cases the available mathematical and logical tools
are simply insufficient to give determinant answers to questions about
the consequences of changes in variables and the overall behavioral
tendencies of the theory under various conditions. -

Because theories about dynamics must specify relations in time, as
well in functional form, they tend toward complexity. It is in circum-
stances of this kind of complexity that simulation methods are often
used in the physical and social sciences to understand and work out the

implications of theories.

‘Understanding by Experimentation:
The Logic of Simulation

A “simulation” is usually defined as a construct that has the
~appearance or form, but not the substance of some real object.” In a
certain sense, all theories about social action and interaction are
<imulations—theories are artifacts designed to mimic (albeit in highly
selected and abstracted ways) characteristics of real social action.
Both social and physical scientists routinely employ simulations in
~ the study of complex dynamic relations.® Meteorologists create artifacts
(usually computerized models) designed to mimic the interactions of
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- temperature, pressure, humidity, and other factors over space and time,
- Beologists describe the rise and fall of populations of various species in
changing environments over time. Political scientists create models that
mimic swings in voter sentiment; economists seek to mimic trends in
“investment, consumption, interest rates, and the like. In all of these cases
it is the simulation (the theory or model) itself that is the focus of
~attention. In a certain sense, the scientists are studying the simulation as
a way of attempting to understand the reality that it (supposedly)
represents.
~ Itis misleading to think of “simulation analysis” as a single thing. In
fact, there are three distinctive and separate activities that are all often
_¢called “simulation”; making projections, validating theories, and ana-
lyzing theories. When the economist makes a prediction about the
~course of interest rates over the next quarter by projecting forward from
“burrent values of a dynamic model of the economy, (s)he is “simulating.”
‘This type of use of dynamic theory involves the application of a theory
‘that has already been constructed and validated, and is not our focus in
this volume. When political scientists create a dynamic theory of trends
-{n voter sentiment, substitute known values and parameters from a real
‘case, and make “postdictions™ about election outcomes they are
“simulating.” In this case the object of the exercise is to assess the
validity of the theory that gave rise to the simulation model. This use of
simulation for validating models is also outside our interest in this
volume.t | - - |
- The third use of simulation, and probably the least well-understood
“use, is for analyzing and constructing theories themselves. This is the
-application of simulation method that most concerns us here. Social
. soience theories that involve extremely large state spaces with complex
“functional and time connectivity among the elements can rapidly exceed
" the capacity of the analyst to comprehend the implications of the theory.
~This is particularly true for theorics involving dynamics where nonlinear
“and feedback relations exist, To explicate such theories, explore their
implications, and make deductions from them, simulation methods are
often the only available alternative. The use of simulation methods for
this purpose is different from the questions of application and validation
of the theory. In this application, simulation is used to answer such
questions as: Does a pattern of small group interaction embodied in the
formal theory have tendencies toward equilibrium, or not (or more
properly, for what ranges of values of state space elements and relations
among them does the theory display equilibriating behavior)? Which
Jpolitical parties have the largest impact on the overall behavior pattern
‘of coalition formation in a model of legislative dynamics? Which
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exchanges among the business firms in 2 model of a local economy are
the most critical ones in producing the over-time behavioral tendencies
of the model? | -

" Where the purpose of the application of simulation methods is to
understand the theory itself, the logic of the inquiry is a familiar one. We
are attempting to build an understanding of an artifact by experimentally
subjecting it to known stimuli and observing the consequences. With
carefully designed programs of experimentation it is often possible 10
obtain quite sound “approximate solutions™ to the behavioral tendencies -
of even the most complex and nonlinear of theoretical systems.

In thinking about very simple theories such as Y, . = bX,, we can
“simulate” the dynamics without any special aids. That is, we can ask
and answer without difficulty such questions about the dynamics of this
theory as: How does Y behave over time if X is a constant? What is the
responsiveness of Y to changes in X7 Under what circumstances does Y
reach a steady state? In asking and answering these questions, we are
simulating the theory. That is, we are subjecting the theory (in thiscase a
simple linear equation with a lag of one time unit) to a series of mental
experiments. We “plug in” values for X (e.g., X 'is a constant, X varies
randomly, and so on) and calculate the implications for the time track of
Y. We can also, of course, “understand” the implications of this theory
by direct solution of the mathematics: A steady state in Y is attained,
according to this theory, only where X is aconstant, the response of Y to
X (at lag of one time unit) is precisely B, and the value of Y at any time
point can be calculated if we know the value of X at the prior time point,

If our theory was somewhat more complex, involving, say, a system
of several simultaneous linear differential equations, the implications
would be more difficult to work out in one’s head and we might have to
resort to some calculations. We might proceed by altering the values of
each of the variables one at a time and observing the consequences for
other variables. A small system of simultaneous linear differential
equations can also be “understood” by direct solution: The equilibria of
such equation systems can be directly calculated (if they exist), and the
values of partial derivatives are inf ormative about the questions of the
relative importance of variables, Despite the different technology, we
are still striving to understand our theory and work out its implications
by simulating it, just as we were when all the necessary calculations
could be done in one’s head. |
" When the theory that we are trying to get a grasp on is still more
complex, as when there are multiple actors with multiple states coupled
together in nonlinear fashion, we can use simulation methods to
understand its implications. As in the simpler cases above, the logic i8
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straightforward. We systematically vary the values of state space
elements and the relations among them and observe the consequences
for the behavior of the model over time. In complicated models, of
-ourse, we may never be able to achieve a full comprehension of the
“system’s behavior because the variety of possible system states and
relations becomes very large very qulckly We can, however, derive
~approximate solutions.

- Simulation, then, is simply a method of understanding by experi-
-mentmg with an artifact. Theories about the dynamics of social action
“and interaction are “artifacts,” and one method for understanding them
1§ to experiment with them or simulate them. “Complex” theories,
-particularly ones involving statements about relations that operate over
-time, can often be understood only by such experimentation, since they
“@xceed our capacity to comprehend their meanings by “common sense™
or direct solution. |

- By their very complexity, however, theories about the continuous-
time continuous-state dynamics of social action also suggest an infinite
range of possible “experiments.” What does one really need to know in
-order to “understand” a theory of this type? And how can we design
“oritical experiments” with our theories to reach this understanding?

Simulation Suategies for Analyzing Complex Theories

~ Social science theories formulated as continuous-state continuous-
time dynamic models can very easily become so complex that the
- optimal strategy for working with them is computer-assisted simulation.
Indeed, one major reason for the formalization of such theories into
“semimathematical” languages is to allow computers to do the tedious
- #nd mechanical calculations necessary to understand the full implications
- of ourtheoretical models. The mechanics of using computers to perform
‘simulation experiments are, for our purposes, rather uninteresting.
“What is of interest for our purposes is the question What should we ask
the computer to calculate? That is, what questions do we want to ask in
~order to analyze our theory and how can we design the necessary critical
-experiments (in this case, the “experiments” being simulations of the
“model on the computer)?
One kind of questmn that we might want to explore by simulation
-consists of “what if . . . ” speculations. What if, for example, there were
fio middle-aged people at a certain point in time in the simple population
mode! we discussed in Chapter Two? What would the time-trace for
total population size look like under this circumstance, as opposed to a
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circumstance in which the middle-aged population was initially set at
some “normal” level? What if half of the male population were
destroyed by a war at a certain point in time; what would the long run
consequences be? | |

These kinds of experiments to explore the implications of theories
about dynamics can be very informative. Indeed, one can test a theory
and sometimes make reasonable decisions about competing specifica-
tions for it on the basis of such experiments. We might, for example,
have in mind two alternative specifications of how actors in competition
with one other respond to one another’s behavior. While holding
everything else constant, we can explore the over-time behavior of the
interaction between the competing parties under the alternative specifi-
cations of how the process works (that is, examining some of the
consequences of specifying a different form of relations among state
space clements). Let us suppose that our experiment with the first
specification of how actors interact yields a pattern of exponential
escalation of conflict between the actors, while our second specification
yields a pattern of a waning exponential decline in conflict levels. We
have not, by this experiment assessed the empirical validity of either of
the theories; we have, however, learned that one or the other 18 a better
specification of what we really meant to say about this aspect of our
theory. | | .

“Whatif . . . ”kinds of experiments with theories can be very valuable
and can be used to make informed decisions about alternative specifica-
tion of the theory. Such experiments, however, tend to be rather
unsystematic. It is also important to subject any dynamic theory to
 systematic experimentation. In. addition to examining specific “realiza-
tions” of the theory to explore specific questions, there are three kinds of
“general” questions that should be explored: equilibrium tendencies,
sensitivity, and transient response. Each of these general questions can
be addressed by particular programs of experimentation with the
theory. -

Equilibrium

One of the most important things to explore about a theory is the type
of behavior over time that it implies. There are two different but closely
related questions here: questions of the equilibrium behavior (that 1s,
loosely, the “long-run” tendencies) and questions about the transient
response, (loosely, the “short-run” behavioral tendencies). |

There has been an unfortunate tendency in the social sciences for
theorists to confuse the notion of the “equilibrium behavior” of systems



Complexity and Analyzability | - - 89

with assertions that (a) social systems do indeed have stable equlibria,
- {b) that observed social patterns, particularly ones that don’t seem to be
- changing very much at the moment, are “in equilibrium,” and (¢) that
such equilibria represent “desirable” adaptations.” Each of these
- assertions may or may not be true with regard to a particular pattern of
~ social action, Examining the equilibrium behavior of a theory of social
" dynamics does not imply the acceptance of any of these assertions.

-~ Exploring the equilibrium tendencies of a system is equivalent to
. wsking what the time traces and final levels of the elements of the state
. space are under a particular set of fixed (and unchanging) initial |
- conditions. For example, we might wish to know what the final level for
- the size of the total population is, given a particular age structure,
- fortility pattern and mortality pattern. If births exceed deaths, of course,
- population does not reach a “stable equilibrium.” We are asking a
. particular kind of “what if . . . " question in equilibrium analysis: What if
- the initial status of the state space were fixed, the parameters of the
model held constant (that is, the relations among the elements of the
state space), and no external or exogenous shocks occurred, |

For any particular specification of the levels of the elements of the
state space and relations among the elements, we are usually interested
in two things about the “equilibrium tendencies”: whether the system
does, in fact, approach a steady state (that is, a condition where the
~ levels of the variables do not change with respect to time); and what the
“time-traces” of the variables look like over time (that is, do they
approach their limits, if any, linearly, by some monotonic function, or
~ dothey oscillate or behave in some unstable fashion). Where models do
“reach a stable equilibrium, we may also be interested in the actual level
- of the state variables at equilibrium as well, Where models do not reach
- a stable equilibrium, we may with to assess these levels at some fixed
point of time, S

The methodology for determining “equilibrium” results by means of
computer aided simulation is obvious and simple. The initial values of
the state space element are set at the desired levels, all sources of
“exogenous” shock or change in the model are eliminated, and the
results of the operation of the model are calculated for as long a period
of time as is necessary. That is, the model is simulated until the values of
the state space elements stop changing at some desired level of acCuracy,
or until the failure to attain a steady state becomes obvious.

Usually we are interested in still more general questions than whether
stable equilibrium is attained, at what level, and by what time pathfora
particular set of initial conditions, The really interesting questions about
the equilibrium tendencies of a theory are not limited to a particular
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“realization,” but rather are the following: Under what conditions 1s
stability attained? Under what conditions are the time paths of variables
“smooth”? Many fairly simple models, and particularly models with
linear relations among state space elements have “general equilibria.”
That is, they display very much the same ‘time-traces and final
conditions of stability regardless of the particular levels of the variables
at the initial time point. Models with nonlinear connections and
feedbacks, however, do not always produce the same kinds of over-time
~ behavior when they begin at different initial levels. | -

To answer these more general questions, the theorist must design and
execute a set of experiments with his or her model. In principle, each
element of the state space must be systematically varied through its
entire range while holding all other variables constant, then while
varying each other variable in a systematic fashion, then each pair of
other variables, etc. In each case, the model is run to its stable result (or
to a fixed time point, if it does not display stability). In principle, if all of
the resulting information could be comprehended, a general solution
about the equilibrinm limits of the theory would be obtained. That is, we
would know under what conditions the theory predicted what kinds of
stable or unstable realizations. |

In practice, such a program of systematic experimentation is usually
both impractical and unnecessary. For models of any complexity, the
" aumber of alternative sets of initial conditions is ridiculously large. Itis

" not worth the time and trouble to generate all of the possible results and
:t is doubtful that we could summarize them in any meaningful way if we
could generate them. A better strategyisto think first, and design a more
intelligent program of experimentation. There are several useful
guidelines. (1) Most variables vary in fairly narrow ranges, and we
probably have little interest in the implications of the theory for
conditions that are not likely to ever be observed, (2) If we consider that
variables in the state space tend to covary, many of the possible
' combinations of initial conditions can also be regarded as less useful,
even if they fall within the plausible ranges for each variable. (3) While
the overall behavior of the model may be quite complex and nonobvious,
portions of the model may be very simple and straightforward. There is
no need to go excessive lengths to explore obvious relationships (but be
careful, not all that appears obvious in complex models, is). (4) Finally,
we can restrict our attention still further by focusing on variables that
are more central to the theory. Elements of the state space that are more
closely coupled with more other elements of the space are likely to be
more consequential in determining the equilibrium behavior of the
system; elements of the state space that are connected to only a small
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number of other elements are likely to be less consequential.

By thinking first, then, the exploration of the equilibrium conditions
of a theory can be considerably simplified. By focusing on the most
“central” (in the network sense of the term) elements of the state space,
by bypassing obvious relationships, and by limiting the ranges of initial
conditions considered, a pretty good picture of the general long-run
behavior implications of the theory can be had. This solution to the
problem of assessing the equilibrium tendencies of complex models
gencrates decidedly “approximate” solutions and understandings, In
complex theories, however, approximate understanding of the implica-
tions of the theory may well be all that is possible. In many circumstances,
particularly in the early phases of constructing and examining alternative
theories of social dynamics, approximate understanding of the equilib-
rium bounds of the theory is all that is necessary.

Sensitivity

- Exploration of the conditions under which atheory implies stability
- or continuing change in the long run is a special case of “sensitivity”
. analysis. More generally, “sensitivity” analysis is an attempt to assess
. which variables or relationships are the most consequential for deter-
mining the over-time behavior of the system, Returning very briefly to
- our simple population model in the earlier chapters we might ask
: whether adding an additional young person to the population or adding
an additional old person to the population has greater consequences for
- the total size of the population in the future (the answer, fairly
_ obviously, is that adding a young person does, because of the
* implications for the birth rate). Alternatively, we might wish to compare
- alternative assumptions about the parameters of the system. For
- example, we might want to know whether a 5% increase in birth rate or a
" 5% decrease in the death rate has greater implications for the size of the
. population in the future. In each case we are asking which variable is
~“more important,” or how “sensitive” the over-time behavior of the
system is to change in particular quantities or relationships.

Asin seeking to understand the long-run or equilibrium implications
- of our theory, sensitivity analysis calls for an intelligently planned set of
- simulation experiments. Again, in principle each variable or relationship-
- or interest should be systematically varied throughout its range while
- holding all the other variables and relationships in the system constant
- #t each of their possible levels. The consequences of each change in the
~variable or parameter of interest for all other system states at some
“future time point could thus be systematically assessed, Again in
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practice such an exercise is, if not impossible, usually wholly
unnecessary. | -

The same principles of design hold for a set of experiments with the
sensitivities of variables and parameters as hold with exploration of
questions about equilibrium. Variables and relationships that are most
“central” to the theory deserve more attention than those that are less
connected. There is little point in exploring the sensitivity of the model
to implausible levels of states or implausible combinations of state
levels. Many relationships may be quite simple, even if the theory as &
whole is not, and hence need less attention. Variables that have very
limited interactions with others in their consequences, for example, are
much easier to understand than those involved in complex feedback
relations (a corollary of the centrality principle).

Good judgment is necessary in deciding how much effort should be
devoted to assessing the sensitivity of the whole theory to change in
particular variables and relationships. Usually a good sense of the
“relative importance” of variables can be had by examining the
connectivity of a theory, and confirmed by relatively simple simulation
- experiments. Once key relationships or variables have been located,
more detailed experiments can be conducted by varying the variable or
relationship in question systematically across its useful range at selected
levels of other variables. | |

As in the case of the analysis of the equilibrium bounds and behavior
of the theory, the analysis of sensitivity by simulation experuments
generates “approximate solutions.” Such solutions may be the only
possible ones for very complex theories. In most cases the approxima-
tions to understanding of sensitivity by simulation are “good enough”
for purposes of developing theories and for comparing alternative

theories.
Transient Response

Equilibrium analysis and sensitivity analysis of asystemare efforts to
answer the general questions: What are the long-run behavioral tenden-~
cies of the dynamics specified in the theory? and Which variables and
relationships are the most consequential for determining the over-time
behavior of the system? The answers to these basic questions tell us a
good deal about the general plausibility of a theory of social dynamics.
In both equilibrium and sensitivity analysis, however, our attention
rends to focus on the “long-run” or “final” consequences of the network
of assumptions that is the theory. While these are very important things
to understand about the theory, we may also be interested in the
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‘behavior of system in the “short-run,” and in the analysis of immediate
Iﬁthﬁr than ultimate consequences of changes in variables.

:» Transient response analysis examines what happens when the system
h subjected to stimuli. Its primary purpose is to trace the cycle of
‘gonsequences resulting from a changc in one part of a complexly

-gonnected system, and thereby to gain an understanding of the forces
nndcrlymg the behavior of real systems in which many stimuli are
mnstantly “shocking” the system.

The nature of the experiments that are conducted to examine the
.u.jnnsncnt responsiveness of models follow from this intent. First the
‘giodel is allowed to run to its steady state for some particular set of

imual conditions; if no such steady state exists, some “baseline™
mllzatmn of the system is used as the startmg point instead. At this
‘point the variable or parameter of interest is subjected to a stimulus with
known characteristics (usually a PULSE, or a STEP, in DYNAMO
!mmnﬁlngy), and the pattern of change in the other variables in the
mtcm is traced as the response occurs along the pathways connecting
;he variables of the system.
;45 .- Returning one last time to the simple population model of the earlier
‘¢hapters, we might conduct a transient response analysis in the
“rfollowmg way. First, to establish a baseline a certain set of initial
«eonditions of the state variables and a certain set of initial conditions
- and a certain set of parameters (i.e., birth rates, death rates, etc.) could
“be specified, and the particular reahzatmn of the model calculated. The
. population model is one that does not attain a steady state across
plausible levels of most variables, so transient response analysis is done
on a “baseline” realization. Next, we might “schedule” a “war” to
_increase the death rate tenfold for a one-year period after some period of
_time, and rerun the model, making no other changes. We could then
" eompare the results of the two realizations to attempt to understand the
 time shape of the system’s response to changes in the death rate. In the
“population model this kind of transient shock reduces total population
:._i’tt all future points in time and creates ﬁscﬂlatmns in the time path of the
mudﬂl as well.
‘‘‘‘ - The analysis of transient response is an important step in under-
jf"f"itandmg most dynamic theories. Where elements in the state-space have
- gomplex over-time relations (delay and feedback), transient response
- testing provides the major device for understanding the process of
change implied by the specification. Sometimes the theorist will find
‘unanticipated consequences of their assumptions in exploring transient
_responses, In designing a program to assess the transient response
- gharacteristics implied by his or her theory, the analyst must again use
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good judgment and the principles of design that have been discussed
with regard to equilibrium and sensitivity analysis. The range of -
alternative experiments that could be done to understand the processes
of change in any dynamic theory of even moderate complexity 18 very
great. Again, however, good judgment and careful experimental design
can often yield very good “approximations” to understanding with
relatively little effort. |

Conclusions

Theories of the kinds of dynamics of interest to social scientists can
rapidly become complex enough to require special aids and tools for
their understanding, as well as for their construction. In this chapter we
have examined how complexity in dynamic theories arises, and
examined one strategy—simulation—for understanding and analyzing
complex theory. | |

Complexity in theories arises from the number of elements of the
state space, the range of values that can be taken by state space elements,
the degree of connectivity of the state space, and nonlinearity in the
functional and time-shapes of relations among state space elements,
Many, though by no means all, theories of the continuous state
continuous time dynamics in the social sciences are of sufficient
complexity that they exceed our capacities to understand their full
implications “intuitively” or by means of general (e.g., mathematical or
logical deductive) solutions. )

Simulation of realizations of such theories can often provide
approximate solutions that are sufficient for our purposes. One major
reason for the formalization of theories about dynamics is to enable the
use of computers to calculate the results of large numbers of simulation
“experiments” with theories. |

In addition to experiments with theories that explore particular
realizations (i.e., particular sets of values of variables and forms of
relationships among them), strategies of “research on theory” can be
designed to create approximate general understandings of complex
theories. Most particularly, programs of systematic simulation experi-
ments can be designed to understand the “equilibrium,” “gensitivity,”
and “transient response” implications of theories. Fully determinant
answers to questions about long-run and short-run behavior implied by
the theory, and about the relative importance of particular assumptions
are not possible with simulation methods. In most cases, however,
careful and thorough application of principles of experimental design |
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¢an yield a program of experimentation that provides information
- sufficient to our needs,

Notes

1. Onmethods for the formal analysis of theoretical systems by the application of logical rules, see
_perticularly Dubin (1969), Hage (1972), Hearn (1958), Reynolds (1971), Stinchcombe (1968), and
“Willer (1967). | - |
. 4 For some exemplary discussions of direct solution methods for analysis in social science
_applications, see Abelson (1967), Blau (1970), Blalock (1969), Caplow (1968), Cohen (1962), Coleman
{1964n, 1964b, 1966, 1972, 1973), Davis (1967, 1972), Fararo (1972), Hamblin et al. {1973), Hummeon
{i971), Kassarda (1974), Kemeny and Snell {1962), Land (1970, 1975), Leik and Mesker (1975),
‘Rapoport (1960, 1966); and Rapoport and ‘Chammah (1965). Some outstanding examples of the
approach in other kinds of systems analysis can be found in Braun (1975), Hall (1962}, Luenberger
{19719}, and Takacs (1962). B
3. There are a large number of excellent works in both the “general systems® tradition and in the
disciplinary social sciences that devote extensive discussion to the meaning and implications of systems
eomplexity. My list of favorites includes Ashby (1952, 1958), Baumgartner et al. (1976), Buzns et al.
{1985), Boulding {1970), Brunner and Brewer (1971), the essays in Foerster and Zopf (eds., 1962),
Perrow (1984), Kachen and Deutsch {1980}, Lange (1965), Mesarovic and Macko (1969}, Pattee (1973),
‘Schank and Colby (eds., 1973), Simon (1965, 1981}, Sommerhoff (1969), Weaver (1948), and Weiner
{1948),

4. Actually, this must not be entirely true. A fair amount of training is necessary for the proper
application of even “simple” deduction or for comprehending the “simple” lincar equation.

&, Perhaps the most interesting discussion of the nature of simulation models are contained in the
weays of Abelson (1968) and Simon (1969, 1981),

6. Fordiscussions of the application of simulation methods in various social science disciplines, see
particularly Abelson (1968), Alker and Brunner (1969), Bloomfield and Padelford (1959), Brody
(1963), Coe (1964), Cohen and Cyert (1965), Cole et al, (1973), the essays in Dutton and Starbuck
{1971), Federico and Figliozzi (1981), Guetzkow et al. (eds., 1972), Guetzkow and Valdez (eds., 1981),
Laponce and Smoker (eds., 1972), Levin (£962), Malone (1975), Marshall {1967), McPhee ot al. (1971),
Meier et al. (1969), Oroutt et al, {1961), Patten (1971), and Schmidt and Taylor (1970).

7. Foranexcellent example of this type of validation exercise in pelitical science, see Brunner and
Beewer (1971),

8. The topic of empirical validation of dynamic theories by simulation methods is wid ely discussed
ia 8 number of disciplines, ranging from applied statistics to management and economics. The
taterested reader can get an introduction to this literature by looking at Chorafas (1965}, Coleman
{1964), Deutsch et al. (1977), Dutton and Starbuck (1971), Emshoff and Sisson (1970), Federico and
Fighozzi (1981), Hermana (1967), Martin {1968), Mihram (1972}, Mize and Cox (1968), and Nayloret
sl. (1965). | | - |
"~ 9. The debate in sociology has been particularly bitter as “systems” approaches have been
gonfounded with politically conservative policy positions and structural-functional theorizing. The
dabate sheds a good deal more heat than light, but for the interested reader a good introduction is
provided by the essays in Demerath and Peterson (eds., 1967) and an article by van den Berghe {1963),
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Part IT

The Dynamics of Simple Systems

If we applied the definition of “complexity” that we developed in the
previous chapter to the formal theories of social dynamics that have
most concerned social scientists, we would classify these models as quite

-?‘simplcﬁ“ Most dynamic theorizing in the social sciences focus on the

behavior of systems with relatively few states, low connectedness, and
relatively simple functional and time relations. Perhaps the largest
group of processes that have received attention involve only a single
“dependent” state. Many others involve chains of a few states that are
coupled together in very simple ways, very few involve extensive
feedback or other complexities in their relationships among variables
over time. | | -

~Simple systems, we must hasten to point out, are not trivial. Indeed,
the “simple” systems that we will examine here have dynamics that are of
extreme importance. The dynamics of growth, diffusion, contagion,
population movement, and mobility are all quite effectively modeled (at
least in “baseline” form) as consequences of quite simple dynamic
systems. These dynamic processes are central to our understanding of

-economic, political, and socio-cultural phenomena. Simple models are

W

b
-

M.

widely applied with great profit in all of the disciplinary social sciences.

.~ One goal of the chapters in this section is to reexamine these processes
(a1l of which are treated extenstvely in the statistical and mathematical
Hiteratures as well) within the framework of dynamic “systems” developed

-
-

X
[

in the previous section. These exercises will clarify the nature of the
systems approach and its formal language, improve our understanding
of some of the most common dynamic theories in the social sciences by
translation into this language, and suggest ways in which a wide array of
theoretical problems might be attacked as “simple systems.”

" There are two other reasons for spending a good bit of time with
“simple” systems, in addition to the central role that such systems have
as theories in themselves, Both of these reasons have to do with how we
¢an go about constructing and understanding theories of systems of
greater complexity. - |

~ “Simple” systems are the component parts of complex ones. To
gonstruct theories of complex social dynamics, or to analyze theories of
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high complexity, it is necessary to have a firm grasp on the behavior of
their component parts. To choose a simple example, one cannot
understand the dynamics of the transmission of a message in a social
network without having a grasp of how the individuals composing the
network receive, process, and send inf ormation. The dynamic behavior
of the network (a more complex “system” composed of “subsystems”—
the actors plus the relations among them) is not reducible to the
characteristics of the individuals in the system; but the behavior of the
network is not intelligible without understanding the characteristics of
the individual actors. All of the elements of even the most complex
systems are, in themselves, quite simple, and we will examine these
elements in the chapters in this section. Understanding the dynamics of
these simple systems is a necessary, but not sufficient, condition for
constructing and understanding theories about the dynamics of more
complex systems. | -

In addition to being “building blocks” for more complex models, we
can make a good deal of theoretical progress by tinkering with simple
models and making them “slightly” more complex. Using the language
of system dynamics and the method of analysis by simulation, we need
not be as restrictive in our assumptions about the dynamics of simple -
systems as we would be if we were using statistical or mathematical -
models. -

Statistically formulated statements of theories most often assume
that the populations they describe are homogeneous (i.¢., all individuals
in a given population are equally probable to be subjected to a stimulus
in a period of time and all individuals have the same probability
distribution of responses to stimuli). It is sometimes useful to elaborate
such models by creating multiple populations. Inmodels of movements
between occupational statuses, for example, one early approach to
dealing with the poor fit of simple Markov processes was to divide the
population into “movers” an “stayers.” We will take a look at how
relaxing homogeneity assumptions can provide greater insights in
simple dynamic processes. o

Theories of the dynamics of simple systems have also often assumed
" that the functional relations among variables are linear (or log-linear, in -
some cases), and that the processes are time homogeneous (i.e., they
s avolve smooth integration, rather than lag and delay). Such assump-
- tions are necessary for the successful application of statistical and
mathematical methods to the verification and analysis of the theory, but -
are not necessary if the “approximate” solutions available by simulation -
are sufficient. We will also consider some of the ways that more relaxed
assumptions about the forms of relations among variables and over time

can lead to greater insights about the dynamics of simplée processes.
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| Baselines

- Before we make our theories about the dynamics of “simple” systems
"ﬂhghtly“ more complex by adding nonlinearity, more complex time
i yelations, or population heterogeneity, the “baseline” models should be
thoroughly understood. In many cases, the highly simplified “baseline”
g models of diffusion, growth, and other similar processes do remarkably
Ef -well in accounting for the essence of the dynamics, and additional
g ﬁcmplcxuy may not be worth the effort.! Even if mcrcasmg the

- complexity of such theories does contribute to improving our under-

ttandmg, we must compare them to sxmplcr baselines to determine “*how

.- much” better the more complex theory is. Thus even if the intent of the
& ‘theorist is, ultimately, to create a complcx mndel it is best to start
¢ simple. -

ﬁﬂﬂ?ﬁ-ﬁﬁmﬁﬁwﬁ ”*?-5

Increasing Complexity of “Simple” Systems

Thc simplest of all continuous time, continuous state models is quite
my to envision. It involves a single state, a single rate, and a simple
llgnal as in Figure I1.1,

" This model says that the level of ' accumulates from a source at the
ﬂt& B. The speed of this process is governed by a random process. What
" makes this model so “simple™is that it involves only a single “level,” and
“the process describing the rate of change in this level (1 e,, the “rate™ is a
“single and simple signal (random “white noise,” in this case). The
- behavioral possibilities of the model in Figure II.1 are not very
“interesting. We will, however, spend a few minutes with it later because
ot its 1mp0rtance as a “baseline.” |
% In InCreasing the complexity of this model to the pomt where it can
llnfully represent social dynamics, we can move in either of two
directions. In practice, we usually move in both, but is useful to keep a
‘¢onceptual distinction: (l) the number of states and flows among them
¢an be increased, or (2) the complexity of the control structures
governing these flows can be increased. That is, in different terms, we
‘¢an consider either “more variables” or “nwrc complcx relationships”™
_'.lmong them.

‘Consider the modification of Fxgure IL1 shown in Figure I1.2.

“* In Figure I1.2, the theory has become more complex by the addition
‘bf more independent variables and more complex relations between the
independent variables and the single material state (Y). Roughly
translated, the theory in Figure I1.2 could be stated as follows. The level
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L Y.K=Y.J+(DT) (B.JK)
R B.KL=NOISE

Figure IL1: Simple baseline model.

“of Y changes over time at rates (B) proportional to the discrepancy (D)
between a goal (G) and the current state of the system (Y). However, the
response involves delay of an average duration of one period and having
the shape of a third-order exponential (DELAY3,1). The discrepancy
between the goal and the current state of the system might be calculated
as a simple difference (D = G - Y). Goals, however, might be set as a
function of a level of motivation (MM) and the current level of the
system (Y), in some complex way. For example, the goal at any point in
time is some fraction (determined by MM) of the current status of the
system, | -

In this case, the “control” system displays considerable complexity.
" Indeed, the control structure could be said to represent a structure that 1$
“self-referencing” and “goal directe »_that is, the rate of change in Y
depends on the level of Y, and the action taken (B) is a function of a
comparison of the current state of the system to some goal, and the goal
is itself variable according to the state of the system.

This kind of elaboration of a simple system is of considerable
importance in the study of human behavior. While many dynamic
processes may be modeled with quite “simple” or “dumb” control
structures, other forms of social behavior may require that we regard the
control systems as being “smarter.” Smarter control structures make
reference to the self, are aware of the physical and informational
environments, and formulate action strategies in very complex ways. As
we proceed through the development of models in this section, one way
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Figure 11.2: More elaborate control.

in which we will elaborate “simple” dynamics is to make them “smarter.”
- The elaboration of our simple baseline that is shown as Figure IL.3
represents another direction of movement toward greater complexity.
This model has three “dependent” variables (the number of persons
who are WELL, the number who are ILL, and the number who are
DEAD). Transitions occur back and forth between WELL and ILL at
rates governed by constants (the INFection rate and the RECovery
rate); transitions occur between WELL and DEAD at a constant rate
(DA, DAN) and between ILL and DEAD at constant rates (DD,
'DDN). Models of this type, that describe movements of “things” among
multiple “statuses” are common in all of the social sciences—differing
only in the definitions of “things” and definitions of “statuses,”
The theory in Figure I1.3 is more complex than the one in Figure I1.1
primarily because it includes more elements in its state space. The
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DEAD d

ILL . K=J1 L. J+<DT) (INF.JIJK-REC.JK~DD.JK)
WELL .K=WELL.J+(DTI{REC.JK~INF.JK-DA.JK)
PEAD.K=DEAR.J+ (DT) (DA. JK+DD.JK)
INF ., KL=IN

EIN=. . .

RELC . KL=RN

RH=' w uy

DA.KL=DAN

DAN=. . .

DD.KL=DDN

DDNe, . . ' \

nanIOORCaArie-Er

Figure I1.3: More elaborate state space.

connections among the states remain quite simple (indeed, unrealistically
s0). While maintaining quite sirnple forms of relationships among the
elements of the state space, the state space is expanded to include
multiple simultaneous equations or processes.

Outline of Part II

In the four chapters that follow, we have two major goals. First, we
will become comfortable with the basic “building blocks™ of more
complex systems, and develop an understanding of their dynamic
behavior. Second, we will examine some of the most widely used
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“simple” dynamic systems models in the social sciences using the
DYNAMO language and simulation methods. As we do both of these
things, we will be developing skills in systems thinking, translation from
everyday to formallanguage, and a sense of how simulation experiments
can be used to enrich the insights of “theoretical research” on the wide
range of social science problems that can be characterized as “simple”
systems, . | | -
The first two chapters (6 and 7) deal with systems that are relatively
simple in terms of their state spaces, but increasingly complex in their
“rates” or control systems. We will first discuss the basic ideas of
“dumb” and “smart” control structures, and the related ideas of
“feedforward™ and “feedback.” We will look at the construction of
simple systems with increasingly complex control structures, and
‘examine their typical dynamic behaviors. After these basic principles
“are in hand, we will illustrate the utility of such simple models by
developing a theories of growth, decline, diffusion, and contagion.
The following two chapters (8 and 9) concern elaboration of models
with relatively simple control structures into more complex systems by
the addition of states. We will first discuss the architecture of “chains,”
and look at the wide applicability of such models for subject matter of
interest to social scientists. To illustrate the dynamics of “chain” models,
~we will then develop models of three kinds of processes of great interest
and generality: age structures of populations, models of vacancy chains
and models of multistate mobility and transition processes. |

Note

1. The role of “baseline” models in theory building is extensively discussed in an article and
rejoinder by Mayhow (1984), and a sympathetic critique by Turner and Hanneman (1984),
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