7

Simple Processes: One-Way
Transitions, Growth, and Diffusion

Many of the dynamic processes that have been of greatest continuing
interest to social scientists are relatively simple single-state systems that
produce monotonic trends. Psycholcgists and social psychologists have
sought to understand the process of cognitive development; economists
and historians have theorized about the processes of economic growth
and development; political scientists have focused attention on “political
development” and the growth of the state; anthropologists and sociolo-
gists have devoted considerable attention to the processes generating
increasing complexity of social organization. While the particulars of
these research traditions are quite different, they have many commonal-
ities when viewed from a systems perspective as theoretical problems. In
each of these cases our primary attention turns to the behavior of a
single “dependent” variable, and we seek to understand the forces that
lead to its rate of change over time. In most of the models of interest, this
change tends to be in one direction: toward increasing development,
complexity, or whatever. Of course processes of decline, decay, entropy,
and extinction could be modeled as the inverse of growth and
development.

Because such systems are so important in all of the social sciences, it is
quite important that we grasp their dynamics from the current
perspective before we move on to more “complex” problems. In this
chapter we will develop a series of related models of such “one-way”
processes using the substantive example of the diffusion of some trait in
a closed population. This particular problem has received considerable
attention in and of itself because of its wide application (e.g., the spread
of rumors, diseases, religious conversions, etc.). We have chosen it,
however, because the several basic models of diffusion processes
provide prototypes for a very wide range of problems. The several
models that we will explore are all quite “simple” in terms of their
state-spaces, but differ in the complexity of the control structures that
drive and limit change in the “dependent” state. They provide a good
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illustration of the principles of “complexity of control” that we
discussed in the previous chapter, and help us to understand the
dynamics of more complex systems—which are made up of these
simpler parts.

The Problem: Diffusion in Populations

The spread of ideas, beliefs, and behaviors in human populations is
one of the fundamental processes of social change. Social scientists have
been intrigued by the puzzles of why some ideas and practices become
more widespread than others and why some spread “like wildfire,” while
others diffuse very slowly. Diffusion has been studied in the adoption of
agricultural practices medical technology, the spread of rumors, and a
wide variety of other specific contexts.! In all of these cases, the central
concern is explicitly dynamic: Why is it that the rate of change in the
level of adoption or belief in a population is higher or lower? What is the
time-shape of the process? How far does the process proceed before it
stops?

Because diffusion processes are so important, they have received a
good deal of attention from theorists, as well as from analysts concerned
with specific substantive problems. There are extensive literatures that
utilize statistical and mathematical approaches to formalize and analyze
theories about the dynamics of diffusion. The dynamic models that we
will develop here are parallel to these statistical and mathematical
approaches.?

Models of diffusion processes are but one example of a wider class of
models of growth and development. Diffusion models take as their
dependent variable the probability that a transition occurs from a
source (e.g., unaware of a rumor) to an absorbing state (e.g., aware of
the rumor). The “realization” of the underlying stochastic process that
generates such transitions is the proportion of the population that
makes a change in a period of time. There is no reason, however, for us
to restrict our attention to systems that deal with qualitative change.
Quantitative variables as well (like levels of cognitive, economic,
political, or organizational development) can be treated with models
like those that we will discuss below.

Developing the Baseline Model

Inafixed population, let us suppose that actors can fall in one of two
categories: Either they don't know of a proposed innovation or they do.
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Alternatively, one could think about dividing the population into
groups that have adopted or not adopted an innovation, or that do and
don't display any trait of interest. At any point in time, some proportion
of the population are “knowers,” and this proportion changes over time
as some of those who don’t know become knowers. Those who “know,”
however, never become “nonknowers”; the process is unidirectional.
The “material states” or levels in this case are two aggregates: those
who “don’t know” and those who do. These are conserved quantities (a
given actor must either know or not know, but not both), connected by a
single flow rate from not knowingto knowing. The flow in this case goes
in only one direction, as those who don’t know become aware (we leave
aside, for the moment at least, the elaboration of the model to include
people who “forget”). Since the flows are in one direction only, the state
“knower” is an “absorbing state,” and there is a single transition rate.
The chain of material states for this model, then, would be diagramed as
in the first panel of Figure 7.1. A single “level equation” defining the
number of knowers can represent this aspect of the process. We also
want to keep track of the number who don’t know as a separate or
“auxiliary” quantity for reasons that' we will explain shortly. Thus:

L KK =KJHDT)RLIK)
A POP.K:=KK+DK.K

The level equation here says that the number of knowers at the later
point in time (K.K) is equal to the number at the prior point in time (K.J)
plus the integration or accumulation (DT) of the rate of increase or
transition (RI) from not knowing to knowing over the time interval
between J and K. Now we need to make hypotheses about the causes of
change in the number who know or the rate of transition. This is where
the model begins to become interesting.

Stimulus- Response Control

Although we can clearly do better, let’s start theorizing by thinking
about the system in question as one characterized by dumb or simple
stimulus-response control. In such a system, the rate of change is a
function of only exogenous factors: constants, noise, and the action of
independent variables. One very common baseline diffusion model is to
suppose that there is a single exogenous source of stimuli that operates
at a constant rate over time. In this case, the model would have the very
simple form:

R RLKL=EXOGK
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Figure 7.1: Diffusion models.
A EXOG.K = Constant

Suppose, for example, we were interested in customer awareness ofa
new product advertised on television. If we ran the advertisement at a
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constant 100 times per day over the period of interest, we might suppose
that the number of persons aware of the product was a simple function
of the number of times that the advertisement had been run. There are a
number of problems with this theory of how diffusion processes work,
that we shall return to presently. @

This formulation of the dynamics of one-way transitions focuses our
attention on the nature of the exogenous stimulus and its effect on the
rate of change. This effect might be hypothesized to be constant function
of stimulation (e.g., each time the advertisement is run, x number of
people become aware of the product until everyone has been converted),
or might be regarded as having (probably decreasing) marginal returns
such that the second advertisement convinces fewer people than the
first, and so on. As elaborations on this very basic approach, we might
choose to model the rate of external stimuli as a function of causal
variables, or include delayed response of the system to stimuli as parts of
the model.

Self- Referencing Control

As useful as simple stimulus-response models of diffusion (or growth,
or survival) are, they have a number of obvious shortcomings.

One major problem is the assumption in these models that the
“observations are independent.” As we've formulated the problem so
far, the only source of stimulus is exogenous. That is, there is only “point
source” diffusion in that the knowers don't become tellers. There are
many cases of diffusion where such a presumption might be reasonable
(or at least a reasonable approximation), as in the case of advertising in
mass media. While advertisers, of course, hope that “knowers” will
become “tellers” of others, they may not to any greatdegree. Analogously,
if we applied the model to the biological survival of humans, the death of
one individual probably has relatively little effect on the survival
chances of others.? But, there are many cases where those who do
“know” become sources for further diffusion. In the case of the spread of
disease, for example, the rate of change in the number of persons ill is a
positive function of the number who are already ill, because those who
are sick infect others. The spread of rumors in groups or the process of
economic “takeoff to sustained growth” can be seen as similar processes.

From the systems analysis perspective, this kind of a theory is quite
different from the stimulus-response model. The current theory supposes
that the process of diffusion is a self-referencing one: The rate of change
depends upon the current state of the system (that is, the number who
become aware in a period of time depends on the number who already
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know). The process has become self-referencing, and now can be

£ diagramed as in the second panel of Figure 7.1. Exogenous sources of
¢ stimulus may or may not be included, as we see fit, and the “rate
. equations” take the following form:

R RLKL = EXOG.K+(K.K)

The key question here is “f.” That is, in what way does the rate of

- change in knowing (R1.KL) depend on the number who already know

(K.K)? One obvious thought is that each “knower” becomes a “teller” at
aconstant rate (or, in a more stochastic variation, each knower has an
expected value and variance in telling). In this case, the function “f”
becomes a constant (or distribution) number of tellings per “knower”
per unit time.

Another very common variation on this model proposes that those
who become knowers early in the diffusion process are more enthusiastic
tellers than those who come later. In this case, the value of the function
“fisitself a function of the level of the process, declining as some rate as
K.K increases. For example, each knower at the early stages of the
diffusion may tell five new people per unit of time; those who become
converted later may be less enthusiastic, telling only one or two new
people per unit of time. In the DYNAMO language, we might represent
such hypotheses with a table expression to draw a picture of the
hypothesized relation, or use some mathematical function. For
example:

R RLKL=TELLING.K
A TELLING.K = TABLE(VIGOR K K,0,100,20)
T VIGOR =5/4/3/2/1/0

The first statement sets the rate of change in those knowing (RI) to a
quantity called “telling.” This is simply a convenience to help keep the
logical steps clear. The second statement is a calculation involving the
table function. It says that the value of the term TELLING at any time
point K is defined by a table called VIGOR (an arbitrary name) that
defines values corresponding to the variable K.K between 0 and 100 in
increments of 20. The last statement identifies the values corresponding
toK=0,K=20,K=40,K=60,K=80,and K=100as 5, 4, 3,2, 1,and 0,
respectively. That is, as K.K increases from 0 to 100, the rate of telling
declines from five tellings per unit time to no tellings per unit time. The
function defined here is arbitrary, and one might wish to use an ogive,
gamma, Weibull or other parametric form.
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A third frequent variation on the same theme is to hypothesize that
each new knower is initially enthusiastic and tells others at a high rate,
but gradually becomes less enthusiastic. That is, tellers become “ex-
hausted.” The rate of telling in this case is a negative function not of the
level of the process, but rather of the rate of increase in the process. That
is, when a large number of people become knowers in a period of time,
the rate of telling increases even more rapidly. When conversions are
few, there are few enthusiasts, and the rate of telling declines. Processes
of this type can be represented by setting the rate of telling to be a
“delay” of past rates. The hypothesis of initial enthusiasm followed by
rapid decline could be effectively captured with a first-order delay; an
alternative hypothesis might suggest that new converts are initially
hesitant, but then increase telling for a time before losing enthusiasm.
This latter process could be captured by making current rates of
conversion a function of a third-order delay of past rates.

Each of these variations has received some attention in theoretical
and empirical literatures on growth, survival, and diffusion, and may be
more or less applicable to a particular case. The important commonality
across these variations is that the rate of increase (or survival rate, or
transition rate) is dependent in some way upon the current level of the
process itself. Inshort, these theories of diffusion, growth, survival, and
other such one-way transitions are self-referencing and controlled by
feedback.

Goal-Referencing Control

The various theories that we have examined so far deal with the ways
in which growth and diffusion depend on external stimuli and the ways
that they are self-generating. But we have missed something important.
All of the processes that we have discussed so far can be used to explain
why growth or diffusion occur, but have little to say about why it stops
or is limited. To capture this aspect of the processes we must add
negative feedback.

Whatever the source of the stimuli, be they from the environment or
from actors who already know, not all “tellings” result in conversions
from “not knowing” to “knowing.” Since “knowing” is a final or
absorbing state, when stimuli are directed at those who already know,
they have no effect, and hence have no consequence for rates of change.
In closed populations or where there are resource constraints, growth
and diffusion processes are inherently limited by the supply of available
unconverted resources (be they raw materials of some sort, people, or
whatever).
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As an elaboration of this basic idea, we might suppose that all of the
people in the population are not equally “at risk” of making a transition,
even if they are exposed to stimuli. Some may be completely resistant to
change. For example, people who do not have television sets will never
make purchases of products that are advertised only on television. This
kind of “population heterogeneity” is similar to the “mover-stayer”
problem in social mobility analysis, and has often been dealt with in
models of one-way transitions by supposing that there are a group in the
population who cannot be reached, so that the diffusion dynamics
operate with an “upper bound,” or ceiling that is less than the whole
population. In this case, this upper bound of “mobilizable” population
serves as a “goal” state affecting the rate of transition.*

Alternative sets of assumptions about the distribution of “mobiliz-
ability” or resistance to exogenous or self-generating stimuli are quite
frequently used in “survival” analysis. Among the most common of
these sets of assumptions is that of a “liability of newness” in survival
chances or, stated inversely for purposes of diffusion rather than
survival analysis, decreasing marginal returns to stimuli.’ Roughly, this
assumption suggests that the odds that a given stimuli will reach a given
member of the population are distributed as some form of negative
exponential. A relatively large proportion of the population is quite easy
to convert, but smaller additional proportions are increasingly difficult
to reach. In statistical models of such processes, various distributions
are often used to represent the distributions of such odds of “resistance”
to transition.

Thinking about this aspect of the problem from the systems
perspective, we would say that there is a connection between the rate of
change and the system state representing the population of those who
have not undergone transitions, as is shown in the third panel of Figure
7.1. The number of unmobilized or unconverted in the population acts
as a constraint or goal state that is referenced in determining rates of
transition. To capture this aspect of the problem, our rate equations
must now have this general form:

R RLKL = EXOG.K+g(DK.K)

Where DK.K is the difference between the total population and the
number who already know.

The question for the theorist in this model becomes In what way does
the rate of increase in the population of knowers depend on the number
who don't already know? That is, what is “g"? DK.K represents the pool
of those available for conversion from not knowing to knowing, and its
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impact on rates of change has been conceptualized in several alternative
ways.

The most obvious way in which the rate of transition depends on the
number of actors who have not yet made transitions is as an absolute
upper bound. That is, the rate of transition cannot, logically, exceed the
number of actors “at risk.” Thus, even if our model predicted that there
were 100 stimuli to change (“tellings™) generated by either exogenous
sources or by actors who already had made the transition, if there were
only 10 actors available who had not already been converted, 90 of the
tellings would, necessarily, fail to result in conversions. This limitation
could be represented with the simple statement:

R RI.KL = MIN(TELLING.K,DK.K)

That is, the rate of transition (RI) is equal to either the rate of telling (as
we discussed it in several alternative formulations above), or the number
of remaining actors at risk (those who “don’t know” or DK), whichever
is the smaller.

This first formulation of the negative feedback or limiting effects of
the size of the population at risk assumes, implicitly, that a given telling
or stimulus to make a transition will reach an actor at risk if one is
available. This may be a reasonable model in cases where it is easy for
“tellers” to easily distinguish between those who have already made
transitions and those who have not, so that stimuli are directed only at
the unconverted. In many cases, though, this seems rather unrealistic.

We might find an alternative assumption more reasonable for some
transition processes: that stimuli are distributed at random, and,
consequently the probability that a given stimulus will reach an actor
that has not yet made a transition is simply equal to the proportion of
the population that have not yet changed. The number of conversions or
transitions, then, is equal to the number of tellings or stimuli multiplied
by the odds that a given telling reaches an actor still “at risk.” That is,

A  PR.K = DK.K/POP
R RLKL = (TELLING.K)*(PR.K)

Here the rate of transition (RI) is limited by the proportion of the
population who are at risk (PR), regardless of what process is generating
the stimuli. This statement implicitly incorporates the insight of the
previous one; where there are no unconverted available, the probability
of success (PR) becomes zero, and consequently the rate of transition is
Z€ro.
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All of the models thus far assume, again implicitly, that all of the
actors who have not already made transitions are equally likely to,
should they be exposed to a stimulus. In some cases this is a reasonable
assumption, but more often it is not. Actors are likely to differ from one
another (i.c., they are “heterogeneous”) in a large number of ways that
affect the probability that they will undergo a transition if they are
exposed to stimuli. Physicians presumably differ in their propensity to
experiment with new technologies, some being more willing to try new
treatments, some being more conservative. Some peasants are more
likely to take chances on a new variety of seed recommended by a
government agricultural agent than others.

A variety of assumptions might be made about the ways in which
individual differences among those who have not made transitions
affect the rate of transition. The most common such models of
“population heterogeneity” in transition probabilities assume that
resistance is distributed according to one of several statistical models.
Alternative models suggest that (1) most individuals have low resistance,
and progressively fewer and fewer have higher resistances, or (2)
resistance is “normally” distributed, with relatively few individuals
having low resistance, most having some, and again relatively few
having high levels of resistance.

These alternative assumptions about the distribution of resistance to
change in the population can be embodied in our model by assuming
that those easiest to convert are earliest to make transitions. Conse-
quently, the resistance to conversion increases nonlinearly (either
monotonically or nonmonotonically, depending on how one believes
resistance to be distributed) as the size of the unconverted population
declines. Rather than using the simple multiplier of the previous set of
equations, a mathematical or table function is used to define the
probability (PR) that a given stimulus results in a conversion:

A PR.K = f(DK.K/POP)
R RLKL = TELLING.K*PR.K

where f is a mathematical function like a logarithm, or an arbitrary
function (like a TABLE statement) reflecting the dependence of the
probability of a successful telling on the proportion of the population
who are at risk.

One could, of course, go further in developing baseline models, and
we will suggest some additional possibilities after a time. The basic
forms of “dumb,” “self-referencing,” and “goal-referencing” control
models, though, are of great generality and importance. It is worth
spending some time with them and understanding their dynamic
behavior.
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Dynamics of the Baseline Model

Over time patterns of monotonic growth (or decline) can be produced
by theories that are quite different from one another. In their simplest
forms, however, the stimulus-response, self-referencing, and goal-
referencing control structure models have different characteristic dy-
namic behaviors. Before considering some slightly more elaborate
variations, let’s perform simulation experiments to get a firm grasp on
the shapes of the over-time growth paths implied by the models
discussed in the previous section.

We will consider four alternative formulations of the problem. On
one hand, the stimuli to change may be either exogenous or endogenous.
In the case of diffusion processes, this is equivalent to having the
“telling” come either from external sources (e.g., mass media), or from
“knowers” becoming “tellers” (as in rumor processes). On the other
hand, limitations on the extent and rate of change (goal-referencing
negative feedback) can be either a simple function of the available
resources, or can be seen as increasing as resource limits are approached.
In the case of diffusion, these alternative assumptions are equivalent to
supposing that “tellings” are directed only at those who do not know
(until there are no more), or that “tellings” are distributed at random,
and are hence-successful in direct proportion to the percentage of the
population that do not already know.

Combining the two alternative ideas about the causes of growth and
the two alternative ideas about the way that growth is limited produces
four possible models, each with a characteristic dynamic behavior. In
Figure 7.2, plots of the time traces of simulations of models of these four
types are shown (the DYNAMO program to produce the four scenarios
is appended).

The first trace line in the figure is produced by a model that embodies
the hypotheses that change is driven by exogenous factors (at a constant
rate of five “tellings” per unit of time), and that all tellings reach and
convert nonknowers until the supply of such actors is exhausted. The
growth path is quite predictable from these assumptions: Increases in
the number of actors who know are linear until no more are available for
conversion, at which point the rate of change becomes zero.

The second trace line supposes that there is no exogenous stimulus to
change, that one individual initially “knows,” and that each individual
who “knows” tells, on the average, .75 other actors per unit of time. As in
the first example, “telling” is directed only at those who don't already
know and continues until there are no more such actors. The over-time
behavior of this process is fundamentally different from the first, as it
produces exponential rather than simple accumulating growth. This, of
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Figure 7.2: Basic models of diffusion.

course, is a direct consequence of the self-referencing positive feedback
loop: Knowers become tellers. In the first time period there is one
“knower,” in the second time period 1.75, in the third 1.75 plus 1.75(.75)
etc. The process here is one of contagion in its most rampant form.

In the third scenario we combine the idea of exogenously driven
growth with the notion that the rate of success of these tellings is
proportional to the number of actors who don't already know. That is,
in the early stages of the process virtually every “telling” results in a
conversion to knowing; in later stages, most telling is redundant. The
consequence of this change in the theory is quite notable. The growth
trace is no longer linear to an upper bound (as in the first model), but is
now a “waning exponential” in which the rate of change is inversely
proportional to the distance from the “goal state” (i.c., complete
elimination of nonknowers).
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In the final scenario the notions of self-referencing growth and goal-
referencing limitation are both present. This model is similar to the
second, in which one individual initially knows, and all individuals who
know tell others. However, in the current model these tellings are
random and are successful in direct proportion to the size of the
nonknowing population. This model produces what is often thought of
as the classical or typical diffusion pattern of S-shaped growth. In the
early stages, the rate of change accelerates as more and more knowers
also become tellers. In the later stages growth slows as a consequence of
the increasing redundancy of the tellings.

For different phenomena, the four models shown in the figure may
provide more or less plausible baselines. The important point about this
exercise follows from the differences among these models. The simplest
of dynamic models (those of monotonic change) have inherently
different realizations depending on the presence or absence of self and
goal-referencing positive and negative feedback. The theorist must,
therefore, give careful thought to the ways in which a particular case of
growth, transition, survival, or diffusion may be self-generating and/ or
self-limiting. Careful prior thought about the causes of change and
limits on change is doubly important because, as we shall see below, it is
possible for models from quite different theories to produce realizations
that appear quite similar. Here, as in most other cases of dynamics, it is
often quite dangerous to reason backwards from the data to the theory.

Variations: Exhaustion and Heterogeneity

The basic models of diffusion processes can be elaborated in a
number of ways to make more realistic and interesting theories. Two of
the most common of these variations are: (1) to make different
assumptions about the propensities of knowers to become tellers and (2)
to make different assumptions about the distribution of resistance to

change in the population. With little difficulty, the basic models can be
elaborated to explore these variations.

Exhaustion

In the self-referencing models that we have considered so far (i.e.,
models in which all “knowers” become “tellers”), we have assumed that
all of the individuals in the population are the same in their propensity to
become tellers, and that they “tell” at a constant rate. In many
circumstances both of these assumptions might be questionable. One
might offer the alternative hypotheses that those who are converted
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early in the process of diffusion are more enthusiastic than those who are
converted later, and hence are likely to “tell” at higher rates. One might
also suppose that the rate of telling by those who know varies with time:
Perhaps converts are initially more likely to try to convert others, but
their enthusiasm for telling declines after a time. Let’s take a closer look
atthe consequences of this latter idea—that tellers become “exhausted.”

The notion that knowers become “exhausted” can be captured by use
of the DELAY functions in DYNAMO. By setting the rate of new
tellings proportional to “delayed” changes in the number of knowers,
alternative time-shapes of telling can be represented. In Figure 7.3 three
alternative scenarios are presented that make different suppositions
about the rate at which knowers become tellers.

The leftmost trace in the figure (#) corresponds to the hypothesis that
knowers become tellers immediately, and continue telling at constant
rates until the population of available nonknowers is used up. The
second trace-line (*) is generated by a model that utilizes a first-order
exponential delay. This time-shape corresponds to tellers having high
levels of enthusiasm initially, but then declining exponentially in their
rates of telling. The third trace-line in the figure (+), utilizes the third-
order or S-shaped delay function. This shape corresponds to a
hypothesis that new converts are initially hesitant to become tellers but
then become tellers with high intensity before becoming exhausted.

The most obvious difference among the three realizations shown in
Figure 7.3 is the speed with which the diffusion process is completed.
With no exhaustion in telling, of course, the process operates much
more rapidly than with either of the other two hypotheses. The model
that supposes initial enthusiasm (the first-order delay) operates more
rapidly than that which supposes initial hesitancy on the part of new
knowers (the third-order delay) because of the multiplication of all
changes through the self-referencing positive feedback of the system.

Beyond the difference in the speed of the process, it is very difficult to
tell the three scenarios of Figure 7.3 from one another. All three have the
same exponential growth pattern, and appear (in this scale of plotting at
least) to have identical smooth traces. The important lesson in this
observation is that rather different theories can often produce results
that are nearly indistinguishable at the empirical level.6 The three trace
lines in Figure 7.3 could differ because the basic rates of telling differ,
because some or all have delays of different average lengths, and/or
because of different time-shapes of the exhaustion of telling. The
distinctions among these theories may be rather marked, as might the
effects of policy interventions based on belief in the efficacy of
alternative models.
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Figure 7.3: Exhaustion of telling.

Heterogeneity

In the theories that we have modeled thus far we have made
assumptions about the distribution of propensities of individuals to
make transitions that may be unrealistic. We have hypothesized either
that all tellings result in conversions, or that the probability that a telling
results in a conversion is a linear function of the distribution of the
population between those who know and those who don't know. In
many cases it might be more realistic to assume that the propensities to
change are not homogeneous across the individuals in a population.

Rather than assuming that individuals will automatically undergo
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a transition if they receive a stimulus (and have not already been
. converted), we might suppose that individuals differ in their resistances.
. The most common models embodying this idea of heterogeneity assume
that the underlying distribution of resistance to change is described by
either a negative exponential or cumulative normal (S-shaped) distribu-
tion. In the former case, most individuals have low resistance to change,
and will undergo transitions if stimulated, but progressively fewer and
fewer have higher and higher resistance. In the latter case, most
individuals are seen as having moderate levels of resistance to change,
while relatively few are very likely and very unlikely to change if
simulated.

We can explore the consequences of these alternative hypotheses by
modifying our basic model slightly. As a baseline, we will assume that
the population is homogeneous in the probability that a telling will
result in a conversion, and that telling is distributed at random from all
knowers. This is the same as the fourth of the baseline models discussed
previously. As a first alternative hypothesis about the distribution of
resistance, we will suppose that most people are relatively easy to
convert (i.e., that resistance is distributed as a negative exponential).
This alternative hypothesis is embodied in our model by using a table
function to map such a relationship between the number of persons in
the population who don’t know, and the probability that a telling will
result in a conversion. That is, as the proportion of the population who
have not been converted declines, the probability of further conversions
also declines. As a second alternative hypothesis, we will assume that the
probability that a telling fails to result in a conversion is a cumulative
normal (S-shaped) function of the proportion of the population who
have not already been converted. That is, the probability of conversion
as a consequence of telling is initially low, increases up to the mean, then
declines again as more and more of the population are converted. This
hypothesis is also modeled by using a table function to map the
relationship between the proportion of the population who have not
already been converted and the probability that a telling will result in a
conversion (the DYNAMO code for these models is appended). The
results of simulations of the three alternative assumptions about the
distribution of resistance are shown as Figure 7.4.

The most important thing to notice about the results of these
experiments with alternative hypotheses about the distribution of
resistance to change is that the shapes of the curves differ. The baseline
model (*) of population homogeneity describes a smooth and symmetric
S-shaped curve over the time period, a consequence of similar shapes of
the effects of the positive and negative feedback forces. The other two
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Figure 7.4: Heterogeneity.

models do not produce symmetric patterns.

If we assume that a large part of the population has little resistance to
change, we would expect the early stages of the diffusion process to be
more rapid than under the assumption of homogeneity. And, indeed,
this is the case, as shown by the trace line (+) of the exponential model.
Since some of the population has quite high resistance to change under
the assumption of the exponential model, however, the final stages of
the diffusion are slower than under the assumptions of the baseline
model. One might describe the consequences of assuming a negative
exponential distribution of resistan , then, as skewing the whole
diffusion process to the “left.” Although we do not perform the
calculations here, the inverse assumption of a positive exponential
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distribution of resistances (that is, most have high resistance) is to
¢ produce a “skew” to the “right.”

The assumption that resistance is normally distributed, rather than

~ constant across members of the population produces a more complicated

pattern (the #s in Figure 7.4). Since there are relatively few actors who
are casy to convert under this hypothesis, the diffusion process is slower
initially than in the baseline example (though it is difficult to see this in
the figure due to the small number of converts in the early stages of
either process). As the large “middle mass” of actors are reached and
converted, however, the process becomes more rapid than in the
baseline (compare the slopes of the *s and the #s in the middle of the
diagram). Finally, as we reach the advanced stage of the process in
which only those with high levels of resistance to change remain, the
process again moves more slowly than in the baseline example.

The alternative hypotheses about the distribution of resistance in the
population produce results that are importantly different: The shape of
the realizations differs, not just the speeds of the processes. Again,
however, the theories might be said to be more different than the
empirical realizations. While the three sets of assumptions that have
been made about the distribution of resistance in the population are very
different, the resulting diffusion curves are sufficiently similar that
exploratory data analysis might not distinguish them.

An Elaboration: Contagion

A wide range of phenomena can be usefully conceptualized as one-
way transition processes or monotonic growths or declines. An even
wider array of interesting social dynamics can be captured with quite
minor modifications of the models that we have considered thus far. To
get a flavor of the possibilities, let’s consider one more elaboration on
the basic diffusion model that enables it to describe the process of
contagion. While the model here is created specifically with reference to
infectious disease, the spread of rumors, fads, and crazes might also be
analyzed with modifications of this model.

In the processes that we have been considering so far, the “event
history” of individuals consists of two states: For a time individuals are
“nonknowers,” then they make a transition to the absorbing state of
“knowing.” Nonfatal infectious diseases have a slightly more elaborate
historical process: First one is well, then ill, and then recovered
(assuming that the disease did not produce death). In the case of a fad or
fashion cycle, individuals are at first unconverted, become active
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believers for a time, then “drop out.” Some may, however, enter an
alternative absorbing state of “permanent convert.” If we allow only a
single absorbing state (i.e., the disease is not fatal, or everyone
eventually gives up on the fad), a simple chain of three states describes
the “material flows” of such a process, as in Figure 7.5.

Since movements among the states go in only one direction, two rates
(an infection rate and a recovery rate) are sufficient to capture the
dynamics of the situation. Infecticus diseases are spread by direct
contact between persons who are currently ill and those who have not
yet been infected. Consequently, the rate of infection references both of
these states, creating the same dynamic of self-generating and self-
limiting growth that we explored previously. In the current model,
however, there is a difference. Not all persons who have ever been ill act
as sources for further spread of the disease. After a period of time being
ill, individuals recover and no longer act as sources for further infection.
The recovery rate (number of persons recovering per unit time) is
determined by the number who are currently ill (and hence “at risk” of
recovering) and a constant reflecting the average time it takes for
recovery to occur.

The diagram of this process points out the central role played by the
number of persons currently ill in this model. The number of people who
are currently ill has effects on both the rate of recovery and on the rate
infection and hence is the key to the model. How many people are ill at
any given time of course depends on the balance of the intensities of the
infection and recovery processes. These, in turn, are critically dependent
upon the assumptions embodied in the “contact rate” between ill and
susceptible persons, and on the recovery time constant. The effect of the
contact rate is obvious: The more that sick persons come into contact
with susceptible ones, the larger the power of the exponential growth
tendency of the model. The effect of the recovery time constant is also
fairly obvious: The longer that persons are ill, the more rapid will be the
contagion (holding constant the contact rate). Because these two loops
both reference the number of persons who are ill, the rate at which the
diffusion occurs is dependent on the interaction of these two terms. If
the contact rate were zero, for example, it would not matter what the
recovery time was; similarly, though less immediately apparent, if
recovery times are sufficiently short there will be no spread of the disease
(because no people are ill long enough to come into contact with
susceptible while they remain infectious).

The time patterns produced by such a model are shown in the
simulation in Figure 7.6 (the DYNAMO program is, again, appended).

In this model the basic features of our two-state diffusion processes
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Figure 7.5: Contagion.

are preserved. The number of persons at risk (i.e., susceptible) follows
an S-shaped downward path, and the number of recovered follows the
now familiar upward S-shaped trajectory. The two curves, however, are
not mirror images of each other: The growth of the immune population
occurs only after the delay of the average length of the illness period. In
this model then, the new state of “ill”is acting as a “delay,” similar to the
delays introduced in the models previously discussed where we assumed
that tellers became “exhausted™.’
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Figure 7.6: Influenza model.

Directions for Development

Modeled heterogeneity

\

All of the models of diffusion and contagion that we have discussed in
this chapter have made quite simple assumptions about the propensities
of individuals to undergo or to resis: transitions. In many of the models
we have assumed that all of the individuals in the population are
homogeneous in this regard and that which individuals make transitions
is due to purely random processes. In other models we have been
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somewhat more sophisticated, assuming that some individuals are more
difficult to convert than others, leading to population heterogeneity in
resistance to change.

In many circumstances, models such as those that we have developed
here'are perfectly adequate to represent the phenomena of interest. This
is particularly the case where the interest of the theorist focuses on the
behavior of the aggregate as a whole, and not on the status of the
individuals making up that aggregate. In some cases the models that we
have developed here are good representations because it is reasonable to
treat all of the individuals in the population as essentially homogeneous
with regard to their propensities to respond to a given stimulus. But
sometimes it is not.

Suppose that we were interested in the problem of the diffusion of a
new seed variety among the peasants of a village. The simplest theory of
the dynamics of this situation might assume that the peasants were
homogeneous with regard to their propensities to adopt the new seed.
Under this theory, the pattern of diffusion would depend simply on the
time shape of the stimulus and the homogeneous propensity to change.
Becoming somewhat more sophisticated, we might propose that the
peasants are not identical, but are normally distributed around some
mean propensity. The general pattern of diffusions occurring under this
assumption would be the same as in the simpler model, but each
particular diffusion history might appear rather different from the ideal
type.

But peasants are not homogeneous in their propensity to adopt
innovations. Nor can the differences among them be captured very well
by assuming a normal distribution of propensities. Poor peasants in
particular, who might benefit most from the adoption of the new seed,
are often least likely to adopt it. They can least afford the consequences
if the new technology does not live up to expectations. Models of the
diffusion process that do not take this important form of “population
heterogeneity” into account are not likely to be very adequate represen-
tations of the dynamics of diffusion of agricultural innovations.

There are several approaches to dealing with the co mplexity raised by
heterogeneity in the population. In some cases the effect of the
heterogeneity can be directly modeled as a simple function. This is the
approach that we used when we supposed that the distribution of
resistance to change was a negative exponential or cumulative normal
function. In the case of the diffusion of agricultural innovation we might
proceed by supposing that resistances to change were distributed in the
population of interest as a simple function of the distribution of wealth
in the population. In this way, information about the effects of
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“independent variables” (such as the distribution of wealth) can be
added to the basic diffusion model. o

The heterogeneity in the population may be qualitative, as well as
quantitative. Let us suppose that not only wealth, but also ethnicity or
religious beliefs affect the propensity to adopt new innovations. To
capture these effects it might be necessary to divide the population into
separate subpopulations and view the diffusion as a series of parallel
processes occurring simultaneously within the several groups.

There are obviously limits on how far one might wish to go in
modeling population heterogeneity. At some point, and for some
purposes, a completely different approach to systematic theorizing and
analysis of diffusion might be far more appropriate than the types of
models that we have discussed in this chapter. In many cases for
studying diffusion dynamics particularly, discrete-state and social-
network models may provide better tools. Discrete-state modeling
languages allow one to associate variable characteristics with each actor
in the population and hence create models that describe situations in
which the population in completely heterogeneous with regard to
characteristics that affect probabilities of transitions. Each peasant, to
continue our illustration, might be characterized by his or her religion,
ethnicity, age, income, and other characteristics. Such models are
particularly useful if the interest of the investigator is at the level of
individual rather than aggregate behavior, and, of course, where high
levels of relevant heterogeneity force such a choice for realism.

Social network models of phenomena like diffusion take the insights
of general discrete-state models and push them much further. In social-
network models, the probabilities of transitions for individuals depend
not only upon the characteristics of the individuals, but also on the
network of relations among individuals. For example, the probability
that an particular actor will be subjected to a stimulus in a particular
period of time can be seen as dependent on how many other individuals
the actor has contact with (where the stimulus is spread by self-
referencing growth). In the aggregate, of course, such “connectedness” is
captured by assumptions about the average contact rates. Where
individuals are heterogeneous, however, such average rates of connected-
ness are of little help in predicting dynamics. In network models,
individual resistance to change may also be seen as a consequence of
social position, as well as individual characteristics. In network models,
individuals may reference others as well as themselves in making
decisions about whether to adopt or not to adopt an innovation. Again,
the network approach may be more appealing than the continuous-state
approach where interest focuses on individual transition probabilities,
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or when heterogeneity in distribution of network positions is so high as
to require it.

Continuous States and Aggregates.

All of the examples of one-way transition processes in this chapter
have been drawn from the study of diffusion and other very similar
processes. Consequently, the discussion has been in terms of system
states that are aggregates of actors or proportions of populations of
actors. Because we have been using these particular examples, much of
the discussion has used terminology that implies discrete states and
qualitative transitions; for example, individuals make transitions from
being nonknowers to being knowers.

It is important to emphasize that the theories and models that have
been developed here deal with continuous states. Many of the models
that have been used to describe diffusion and contagion processes might
serve equally well as baselines for thinking about change in such things
as individual’s attitudes, levels of economic production, and other
“continuous” variables. For example, the dynamics of the intensity of a
person’s confidence in a group leader could be approached as a simple
growth process. The rate of change in confidence might be seen to
depend on exogenous events (e.g., the leader’s perceived performance),
be partially self generating (perhaps by selective perception and ego
defensive attribution), and partially self-limiting (perhaps as a conse-
quence of the upper limits on the total emotional intensity possible for a
given individual). Similarly, the process of economic production could
be approached as a simple “transition” model in which raw materials
make transitions to finished goods which make further transitions, with
delay, to become waste.

Theories that see emotional intensity and economic production as
relatively simple chains of transitions governed by exogenous, self-
referencing, and goal-referencing feedback may or may not be useful
ways of thinking about the dynamics of these phenomena. And the ways
that we think about the dynamics of diffusion and contagion as
involving “contact rates,” “tellings,” “immunity,” “resistance to change,”
and so on do not apply to theorizing about the dynamics of belief or
material production. Our point is simply that the models developed in
previous sections with specific reference to diffusion have similar
structures as systems to models of other continuous state dynamics.
Economic production is not the same thing as the spread of a rumor, but
it is possible to theorize about the dynamics of the two processes using
systems that have very similar structures, and hence similar forms of
possible dynamic behavior.
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Conclusions

Many dynamic processes of interest to theorists can be usefully
thought of as relatively simple one-way transitions or processes. Such
macrosocial phenomena as diffusion, contagion, growth, and decline
can all be captured by models with relatively few “states.” Microlevel
parallels involving one-way transitions among *“qualitative” states or
monotonic change in “quantitative” states are also easy to imagine. We
have by no means exhausted the range of possible applications with the
examples in this chapter. We have, however, provided an introduction
to some of the most commonly occurring types of systems models of this
type.

Our discussion has been in terms of the increasing complexity of
models with few states as they move from having “simple” control
structures to having more “complex” ones. “Simple” systems that
respond only to external stimuli can produce a very wide variety of
behavior, depending on the nature of the stimulus, and on the
complexity of the response. It is useful to think of almost all simple
systems representations of the dynamics of social action as being “open”
in the sense that they respond to exogenous stimuli. Theorizing about
what external factors affect rates of transition and growth is always a
useful first step in approaching problems such as those that we have
dealt with here.

In many ways, though, the more interesting aspects of social
dynamics are produced by more complicated aspects of control
structures that are self-referencing and goal-referencing. Models of
diffusion are particularly useful as illustrations because the ways in
which self-referencing and goal-referencing control is occurring are
quite apparent. As we suggested in the previous chapter, models with
these more complex forms of control structures have more complicated
characteristic dynamics and are capable of far more varied behavior.
Such more complex control structures are quite common in social
phenomena, and the theorist should search for them when thinking
about problems of this type.

Two additional lessons should be taken from the examples in this
chapter: (1) the same phenomenon can be usefully conceptualized and
analyzed in a variety of ways depending on the purpose of the
investigation, and (2) quite different theories can produce outcomes that
as so similar that they are very difficult to distinguish.

As an illustration of the first point, consider the discussions of how to
deal with population heterogeneity in diffusion models. For some
purposes such heterogeneity can be simply ignored or treated as noise,
as in trying to understand the effects of exogenous factors on differences

R
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among similar (but each heterogeneous) populations. For other purposes,
it may be preferable to deal with heterogeneity by means of assumptions
about population distributions and by introducing independent vari-
ables into the model to deal with the most important forms. In still other
cases a completely different form of modeling using discrete language
might be called for to best represent theories in which the differences
among actors, rather than their average similarities, are critical,

As an illustration of the second point, that different theories can
produce similar results, recall our basic models and extensions. S-
shaped “diffusion” curves can be produced by a variety of quite different
processes. They may be the result of relatively complicated positive and
negative feedback operating simultaneously on a homogeneous popula-
tion, as we have developed in our models here. S-shaped curves, though,
could also be produced by nonhomogeneous distributions of propen-
sities of knowers to become tellers, or for actors to resist conversion. In
the absence of an otherwise plausible theory, it is often impossible to
distinguish such alternatives from looking at the time-traces that they
produce. That quite different causal processes can produce very similar-
looking outcomes should be a cause of concern to the theorist concerned
with dynamics. It is not enough to be able to reproduce plausible
behavior using models from one’s theory; and, it is often very dangerous
to place great weight in building a theory on reasoning backward from
the realizations of dynamic processes to hypotheses about the processes
themselves.

Notes

1. For some examples of the use of diffusion models in vaious social science applications, see Brown
and Philliber (1977), Boulding (1956), Burmeister and Dobell (1970), Bush and Mosteller (1955), Chow
(1967), Coleman et al. (1966), Davies (1969), Dixon (1980), Dodson and Muller (1978), Dunn (1971),
Eyestone (1977), Gray (1973), Griliches (1957) (a classic), Hummon (1971), Katz and Hamilton (1 963),
Kelly and Kranzberg (eds., 1978), Oster (1982), Pitcher et al. (1978), Rapoport (1978), Rogers (1983),
and Teece (1980).

2. Mathematical and statistical approaches to unidirectional transition models are very highly
developed. Among the many excellent introductions to this literature are Bailey (1957), Bartholomew
(1973), Coleman (1964a, 1968, 1981), Doreian and Hummon (1976), Hamblin et al. (1973), Kemeny
and Snell (1962), Leik and Meeker (1975), Nielsen and Rosenfeld (1981), Mahajan and Peterson (1985),
Meade (1984), and Monin et al. (1976).

3. Survival distribution analysis and event history analysis are variations on the same kinds of
models that we are considering in this chapter, though such models can also deal with many more
complex dynamics as well. See particularly Tuma and Hannan (1984) and Allison (1984).

4. On the partitioning of the population into those “at risk” and those “not at risk” (“movers and
stayers™) in social mobility analysis, see particularly Hout (1983), Leik and Meeker (1975), Spilerman
(1972a, 1972b), Singer and Spilerman (1974), and White (1965).

5. Alternative assumptions about the distribution of mobilizability give rise to the various
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parametric survival models. Arbitrary heterogenity with respect to time but proportional effects for
individuals can also be assumed in statistical models by use of partial likelihood methods, See
particularly Allison (1984) and Tuma and Hannan (1984).

6. If our observations were subject to sampling or measurement error (as they usually are), the
problem of “inducing” the proper form for the underlying process from its realization becomes even
more troublesome.

7. Indeed, an alternative formulation of this model could treat the number who have recovered asa
simple “boxcar” delay of the number infected.

APPENDIX 7.1. Basic Diffusion Curve Models

* DIFFUSION, GROWTH, DECLINE PROCESSES

NOTE

NOTE FOUR MODELS ARE SHOWN WITH DIFFERING CONTROL
NOTE STRUCTURES

NOTE

NOTE ##40#088 0008000008008 0 000008000 sntastssssssssssniss

NOTE MODEL ONE: LINEAR GROWTH TO A CEILING
NOTE LET “K" BE THE NUMBER OF PERSONS KNOWING,
NOTE LET “DK” BE THE NUMBER NOT KNOWING. POP =K + DK

L K1LK = KL.J+(DT)(RIIL.JK)
N Kl =5
R RI1.KL = CLIP(EXOG.K,0,DK1.K,0)

NOTE RATE OF INCREASE IS EQUAL TO EXOG IF DK1 IS GT ZERO
NOTE RATE OF INCREASE IS EQUAL TO ZERO IF DK1 IS ZERO
A DK1.K = POP-K1.K '

C POP = 100
A EXOG = CONST
C CONST=10

NOTE THE STIMULUS IS A CONSTANT 10 UNITS PER UNIT TIME
NOTE

‘NOTE (L LTl L L L1 ] L LI LT LA AP PRI LI LI L] ]
NOTE MODEL TWO: SELF-REFERENCING GROWTH TO A LIMIT
NOTE

NOTE One person knows initially, and all knowers become

NOTE tellers with an intensity of three-quarters tellings

NOTE to non-knowers per unit time,

NOTE

L K2.K = K2.J+DT)(RI2.JK)

N K2=1

A TELLLK = (K2.K*.75)

R RI2.KL = CLIP(TELL1.K,0,DF.2.K,0)
A DK2.K = POP-K2.K

NOTE

NOTE LA L LA LI L LI LI LI LTI Y]

NOTE MODEL THREE: CONSTANT STIMULUS, PROPORTIONAL RESPONSE
NOTE

NOTE In this model, telling occurs at a constant rate of 10

NOTE tellings per unit time. Success in telling (PS)
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:

F NOTE is proportional to the population not knowing.
; L K3.K = K3.J+DT)XRI3.JK)

E N K3=5

g A TELL3.K = EXOG.K

. A PS3.K = DK3.K/POP

. R RI3.KL = (PS3.K)(TELL3.K)

E A DK3.K = POP-K3.K

"~ NOTE

: NO‘TE tlt‘ttt‘tttt.“."tt“‘t't‘tttttt!‘tltttttttl.t“ttttt.
§

NOTE MODEL FOUR: PROPORTIONAL STIMULUS AND PROPORTIONAL
NOTE RESPONSE (I.E., MODEL 2 AND 3 COMBINED)

E; NOTE

¢ L K4.K = K4.J+(DT)(RI4.KL)

. N Kd=1

C A DK4.K = POP-K4.K

£ A TELLA.K = K4.K*.75

A PS4.K = DK4.K/POP

. R RI4.KL = (PS4.K)(TELLA.K)
. NOTE

NOTE LA L L L L LI L L AL LI L L L T T T T L L L L L LIty

NOTE OUTPUT SPECIFICATIONS

NOTE

SPEC DT =.25/LENGTH = I5/PLTPER = |
PLOT Kl =1,K2=2,K3=3, K4=4(0,100)
RUN

APPENDIX 7.2. Self-Referencing Growth Variations

* SELF-REFERENCING GROWTH VARIATIONS

NOTE

NOTE PROGRAMS USED TO GENERATE FIGURE 7.3

NOTE

NOTE ..t.“lt.‘“-l‘!‘.!.“tt.‘.tttttt!.“itt‘il.“t‘tﬁt*“-
NOTE MODEL ONE: Knowers become tellers at a rate of
NOTE one-half telling per unit time, but do so
NOTE with a first-order delay of average length
NOTE of three time units. All tellings are
NOTE successful if there are any DKs available
L . KIL.K = K1.J#DT)RII.JK)

N Kl=1

A TELLLK = (.5)(DELAY1(K1.K,3))

A PS1.K = CLIP(1,0,DK1.K,0)

C POP = 100

A DKI.K = POP-K1.K

R RILLKL = TELL1.K*PS1.K

NOTE

NOTE AL LI L LT T P L LT T Y L I I

NOTE MODEL TWO: As in model one, but now knowers become
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NOTE tellers with a third-order delay instead
NOTE of a first-order delay.

L K2.K = K2 J+HDT)(RI2.JK)

N K2=1

A TELL2.K = (.5)(DELAY3(K2.K,3))

A PS2.K = CLIP(1,0,DK2.K,0)

A DK2.K = POP-K2.K

R RI2.KL = TELL2.K*PS2.K

NOTE

NOTE (J I T T 111 l2 ] LL L LLLLLLLLLL ] L Ll L (2 L1]
NOTE MODEL THREE: As a baseline, the same model is created,
NOTE but with no delays in knowers becoming
NOTE tellers. ‘
L K3.K = K3.J+(DT)(RI3.JK)

N K3i=1

A TELL3.K = (.5)(K3.K)

A PS3.K = CLIP(1,0,DK3.K,0)

A DK3 = POP-K3.K

R RI3.KL = TELL3.K*PS3.K

NOTE

NOTE OUTPUT SPECIFICATIONS

SPEC DT =.1/LENGTH = 20/PLTPER = |

PLOT Kl=* K2=+, K3 =#0,140)

RUN

APPENDIX 7.3. Diffusion and Population Heterogeneity

* DIFFUSION WITH POPULATION HETEROGENEITY

NOTE THREE MODELS OF DIFFUSION FOR FIGURE 7.4. MODELS ASSUME
NOTE FLAT (LINEAR) DISTRIBUTION OF RESPONSIVENESS TO STIMULI
NOTE POISSON-DISTRIBUTED RESPONSIVENESS, AND CUMULATIVE
NOTE NORMALLY DISTRIBUTED RESPONSIVENESS

NOTE

NOTE LA LT L P L LT LD L] L L] (AL LI LTI I Ll ] ]
NOTE MODEL I: Assumes that the population is homogeneous,
NOTE i.e., all members of the population have equal
NOTE probability of responding to a stimulus

L KLK = KLJXDT)(RILJK)

N Kl=1

A TELLLK = TPARM*K1.K

C TPARM=.5

A PS1.K = DK.K/POP

C POP = 100

A DK1.K = POP-K1.K

R RI1.KL = (TELL1.K)(PS1.K)

NOTE '
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NOTE MODEL 2: In this model, it is assumed that most of
NOTE the population has low resistance, with
NOTE smaller and smaller proportions having
NOTE greater resistance, leading to a ‘Poisson’
NOTE distribution of resistances.

L K2.K = K2.J+(DT)(RI2.JK)

N K2=1

A TELL2.K = (TPARM)(K2.K)

A DK2.K = POP-K2.K

A PS2.K = TABLE(POIS,DK2,K,0,100,10)

T POIS = 0/.25/.45/.575/.675/.75/.825/.875/.925/.975/1.0
R RI2.KL = (TELL2.K)XPS2.K)

NOTE

NOTE tt‘.t"l.l..‘.‘."“.'“.“'“l..!I.l!t“#..t!!.l“"..l‘
NOTE MODEL 3: In this model, we use the normal distribution
NOTE i.c., relatively few people have either very
NOTE low or very high resistance, most falling
NOTE around a mean.

L K3.K = K3.JHDT)(RI3.JK)

N K3=1

A TELL3.K = (TPARM)(K3.K)

A DK3.K = POP-K3.K

A PS3.K = TABLE(CNORM,DK3.K,0,100,10)

T CNORM =0/.25/.38/.45/.475/.50/.525/.55/.62/.75/ 1

R RI3.KL = (TELL3.K)(PS3.K)

NOTE

NOTE AL AL AL LI L L L LT L L L T e T T T T ALy

NOTE OUTPUT SPECIFICATIONS

NOTE

SPEC DT =.1/LENGTH = 20/PLTPER = |
PLOT Kl =* K2=+ K3 = #(0,100)

RUN

APPENDIX 7.4. Influenza Epidemic Model*

* INFLUENZA MODEL

NOTE From Pugh-Roberts associates (1982) with modification by the author
NOTE

NOTE Total Population

N TOTAL = SUSC+SICK+IMM

NOTE

NOTE Susceptible Population

L SUSC.K = SUSC.J#DT)(-INFEC.JK)
N SUSC = SUSCI

C SUSCI =999

NOTE

NOTE Sick Population
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L SICK.K = SICK.JHDT)(INFEC.JK-RECOV.JK)
N SICK = SICKI

C SICKI =1

NOTE

NOTE Immune Population

L IMMK = IMM.J+(DT)(RECOV.JK)

N IMM = IMMI

C IMMI =0

NOTE

NOTE Infection Rate

R INFEC.KL = PRCON*CONTACK

& PRCON = .2

A CONTACK = AVCON*(SUSC.K/TOTAL)*SICK.K
C AVCON=5 - -
NOTE

NOTE Recovery Rate

R RECOV.KL = SICK.K/RECOVT

C RECOVT =5

NOTE

NOTE LA L L A LIS LRI P I T L E T L L1 L
NOTE OUTPUT SPECIFICATIONS

SPEC DT = .25/PLTPER = |/LENGTH = 30

PLOT SUSC=X,SICK =S,IMM =Y, INFEC=1

PLOT INFEC =1, RECOV =R

RUN



	Chapter 7:  Simple Processes:  One-Way Transitions, Growth, and Diffusion
	The Problem:  Diffusion in Populations
	Developing the Baseline Model
	Figure 7.1:  Diffusion models
	Self-Referencing Control
	Goal-Referencing Control

	Dynamics of the Baseline Model
	Figure 7.2:  Basic models of diffusion.

	Variations:  Exhaustion and Heterogeneity
	Exhaustion
	Figure 7.3:  Exhaustion of telling.

	Heterogeneity
	Figure 7.4:  Heterogeneity


	An Elaboration:  Contagion
	Figure 7.5:  Contagion
	Figure 7.6:  Influenza model.

	Directions for Development
	Modeled heterogeneity
	Continuous States and Aggregates

	Conclusions
	Notes
	Appendix 7.1.  Basic Diffusion Curve Models
	Appendix 7.2.  Self-Referencing Growth Variations
	Appendix 7.3.  Diffusion and Population Heterogeneity
	Appendix 7.4.  Influenza Epidemic Model

