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Multistate Systems:
The Behavior of Simple Chains

Making simple ‘chain’ models more elaborate by adding more states,
allowing greater connectivity among the states, and building ‘smarter’
rules governing flows allows us to model theories of quite complicated
social processes. In the current chapter we will develop models of three
commonly studied processes that illustrate some of the possibilities for
models of this type: a model of population movements, a model of
promotions in a hierarchical organization, and a model of movements
among the social statuses in a “mobility” matrix.! The applicability of
these models, however, goes well beyond the particular substantive
contexts in which we will develop them. The kinds of processes that can
be uséfully conceptualized as simple chains are extremely numerous and
central to all of the social science disciplines.

Population-age structures are generated by a very obvious process.
Individuals are born and move in one direction through a series of states
(age categories) with fixed “delays” or “waiting times” until they reach
an “absorbing state.” Such a system has many states, but relatively low
connectivity, and relatively simple rules governing most transition rates.
Many social processes have similar structures. Individual’s changes in
status within groups, tribes, formal organizations, and professions, for
example, display such unidirectional change and more or less fixed
waiting times. And virtually all models of any complexity in any of the
social sciences must contain one or more “demographic” subsystems to
account for the movements of people, data, or things over time.

Promotion regimes in hierarchical organizations (at least as idealized
in most formal models) are similar to population-age structures but
involve more complex rules governing transition rates. Generally,
promotion rates are thought to depend on vacancies—so that such
models are characterized by control by *“goal oriented” (i.e. the
elimination of vacancies) feedback. “Demand-driven” changes—such as
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vacancy chains of occupational positions—are important parts of the
dynamics of most social structures. The “queuing” and delay of
information, material goods, and people in all sorts of systems with

fixed numbers of positions are found in applications in all of the social
sciences.
Transition processes with multiple origins and multiple destinations,

such as those analyzed with the “mobility matrix,” are another variation
on the theme. Such processes tend to be represented as governed by -
rather simple rules (e.g. Markov or semi-Markov processes), but involve

movements among many closely connected states. Less restrictive
models, like the “mobility matrix,” that model movements between

multiple-origin states and multiple destinations are extremely generalin -
their applications: Individuals change religious affiliations, nations

become parts of (or disengage from) alliances, and firms move across
market niches, to suggest some of the possible applications of such
models.

The three models considered here by no means exhaust the possible

variations on simple chains. They do serve as useful starting points for :,
further elaboration for the development of similar models for other
such social processes, and to illustrate the behavioral possibilities of

what are still relatively simple systems.

Population Age Structures

Among the most important social processes are those that generate
age structures within populations. The distribution of populations by
age is an important conditioning factor that limits other forms of social
action as well as directly affecting the reproduction of the population

itself. Age structures are often studied in and of themselves, as in
demography, or as “subsystems” of other models, as in studies of

economic development. Not only are age structures studied at the level
of nation-states, but they are also very important in understanding the
behavior of large-scale and small-scale social organizations such as

bureaucracies or families.
There is broad consensus about the most useful ways to represent age

structures and on the basic naturz of the processes that govern their

dynamics. Though by no means are all of the factors that affect the

relevant rates (for example, “birth” and “death”) fully understood.?
Since our purpose here is largely to illustrate the general dynamic
behavioral characteristics of systems composed of long but simple -
chains, we will focus on a highly idealized but familiar type of ,.
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demographic process: the age structure of the general population.
. Models with finer descriptive character (e.g., differentiating gender
- groups, or narrow age categories) or for differing contexts (e.g., the age

structure or distribution of “time in grade” of employees within an

. organization) can be seen as slight variations on the same theme.

Developing the Baseline Model

For simplicity, we will divide the population into six age categories:

ages 0-1, 1-4, 5-14, 15-44, 45-64, and 65+. This particular classification is
- used because it corresponds to convention and best reflects some of the

major nonlinearities in fertility and mortality rates. The particular
groupings chosen are for convenience in capturing particular effects
(and for reducing the tedium and computer cost of treating each year of

. age as a separate level). For example, the rather fine distinctions at the
 earlier ages are necessary to reflect the dramatic differences of mortality
. rates between infants (ages 0-1) and young children (ages 1-4); the age

group 15-44 is convenient for use in modeling the birth rate. As always,

- thelevels or states of a system are defined pragmatically and with an eye

to the causal connections of the model.

The connectivity among these states is rather obvious, and is shown
in Figure 9.1. The model is driven from a “source” by transitions that
occur at a rate (the birth rate, BR), and by two kinds of transitions that
occur for each of the levels in the model (save the last): Individuals make
transitions from their current age category to the next one in the
sequence (R12, R23, R34, R45), or to the “sink” (DR1, DR2, DR3,
DR4, DRS). The basic structure of this chain is a quite common one of a
single “normal” sequence of moves originating at the same status for all
individuals, and having multiple exit points.

The control structures, or “rates” in this model are likewise quite
straightforward. Each transition in the process (except the very first one
of birth) is governed by a self-referencing “feed forward” at constant
rates. For example, the number of persons moving from the “state” of
infancy to the “state” of early childhood (R 12) depends on the number
of infants “at risk™ (SS1) and a probability of such a transition (P3). In
our baseline model we assume that this probability of survival is
constant across all persons in the category. The probability that an
infant makes a transition to the sink rather than to early childhood is
also a function of the number at risk and a constant probability. Since a
transition of one or the other sort must occur within one year, these two
“transition probabilities” (PARM2 and PARM3) must sum to unity.
There is a single (positive) “feedback” loop in the model that connects
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Figure 9.1: Population age structure.

the birth rate (BR) to the size of the population in the age category
between 15 and 44 (SS3) and a “risk” probability (PARM1) of a birth
that applies to this age group. This part of the process can be represented
in DYNAMO code as:

L  PO0LK =P0LJ+DT(BR.JK-ISR.JK-IDR.JK)
R ISR.KL = POLLK*PARMI
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R IDR.KL = POl.K*PARM?2
R BR.KL = PI5S44*FERT
C  FERT=PARM3

- whert PARM1 and PARM2 sum to unity and represent the probability
B of survival and death, respectively, among persons ages 0-1. The birth
" rate(BR)is represented as a constant function (FERT, for “fertility”) of
& the number of persons in the age category of 15 to 44.

- Each of the other levels in the model is similarly defined, having as a
¢ source the transitions out of the preceding level in the sequence, and
' having as outflows either “survivals” or “deaths.” Because we have
i aggregated the age categories to save space and time, it has been
. necessary to impose the assumption that the age-specific mortality rates
¢ arehomogeneous within each category and that there are equal numbers
. of persons in each of the specific ages within categories (the baseline
. model is provided as Appendix 9.1). These assumptions do introduce
some inaccuracy into the model, particularly in studying responses to
transient shocks. They do not, however, distort the general behavioral
tendencies of the chain that are our major concern.?

. Behavior of the Baseline Model

Because the connections in the simple demographic chain are so

¢ straightforward, the general dynamic tendencies of the model are well

. understood. Nonetheless, the first step toward understanding more
complex problems is to get a firm grasp on the baseline condition. Let us
then conduct a set of experiments to get comfortable with the dynamic
implications of the rather simple theory we have specified so far. To do
this, we need to provide starting values for the age structure of the
population, for the fertility rate, and for age specific mortalities. To
make things interesting, we have selected values that represent the
situation of the United States in about 1980.4

While any number of useful baselines might be thought of for
answering various “what if” questions about population age structure in
the United States, let us focus first on the long-term or “equilibrium”
tendencies of the situation prevailing at about 1980. If we substitute the
observed fertility rates, age specific mortality rates, and sizes of
population groups into our model and allow it to run for along time (in
our example, 200 years), we can observe the equilibrium tendencies of
the basic model. The time traces of this simulation are shown in Figure
9.2 and the numeric results are given in Table 9.1.

The scenario that we have modeled in Figure 9.2 and Table 9.1 is
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Figure 9.2: Age structure baseline model.

clearly “unrealistic” in a number of ways. We have made no attempt to
deal with the effects of immigration or emigration here for simplicity's
sake (though such effects are likely to be very important in reality).
More immediately relevant, our “baseline” assumes that fertility and
mortality rates remain fixed over the entire period. Clearly this will not
be the case, but we need to first grasp the behavioral tendencies of the
model when as many factors are “held constant,” before we can really
understand the consequences of change.

There are several things of interest in these results. First and foremost
is that the “normal” or “long-run” or “equilibrium” tendency of the

conditions prevailing in 1980 is to produce continued growth of the
population, but at quite slow rates. Second, as must be the case when no A
change in fertility or mortality rates is allowed, the age structure of the
population eventually reaches stability. It is important to note, however,

that this “eventually”is quite a long time. Changes in the relative sizes of

the younger population groups occur relatively quickly, taking about 50

years to complete most of their change. The adjustment of the size of the

population over age 65, however, takes a bit longer to stabilize (as it is
the receiver of all changes in other groups, with a lag). Third, the
“equilibrium” age structure of the population implied by the conditions
(age, specific mortality, and fertility) that existed at 1980 is quite
different from the age structure of the population that existed at 1980.

‘
{



Multistate Systems: The Behavior of Simple Chains 193

TABLE 9.1
Population Age Structure Baseline (U.S., 1980)
_— —
Population in Millions and Percentage of Population
Year 0-1 1-4 5-14 15-44 45-64 65+ Total
1980 33 13.1 34.9 105.2 44.5 25.6 226.6
(1.4) (5.8) (15.4) (46.4) (19.6) (11.3)
2030 3.6 14.2 35.5 105.3 67.8 54.6 280.9
(1.3) (5.1) (12.6) (37.5) (24.1) (19.49)
2080 3.6 14.4 35.9 106.7 70.5 60.8 291.9
(1.3) 4.9) (12.3) (36.5) (24.1) (20.8)
2180 3.7 14.7 36.9 109.5 72.5 63.1 300.5

(1.3) (4.9) (12.3) (36.4) (24.1) (21.0)

Most striking is the projected increase in the proportion of the
population over age 65, which nearly doubles from 11 to 21%.

So long as mortality and fertility rates are fixed at 1980 levels (and
. ignoring immigration and emigration), there is a tendency for the
;f_‘_' American population to continue to increase in size at a slow rate. This
* isanatural consequence of the “positive feedback” loop between the size
¢ of the fertile population and the number of births. This tendency is
. actually toward exponential growth in population size, though the slope
L 18 50 slight that our plots look essentially linear with respect to time.
. More critically, there is a very strong tendency inherent in the model at
i 1980 toward rapid and extensive change in the age structure of the
~ population. The total size of the population is projected to increase by
¢ roughly a third over the next 200 years; the number of persons over age
© 65is projected to increase by 150%.

A Delicate Balance:
© Sensitivity to Fertility Change

i Inour baseline example, we assumed that the fertility rate remained
. constant at its 1980 level of 3.42 births per 100 persons ages 15-44 per

. year. With existing age specific mortality rates, we saw that this birth

| rate was above “zero population growth.” The next step in assessing the
* behavior of this model might be to explore the sensitivity of the results to
- our assumption about the fertility rate.’ We can casily do so by
. conducting two experiments: First we will decrease the fertility rate
. from 3.42 t0 3.00 and observe the long-run effects on the trend in total
_ population and in the age structure; then we will increase the fertility
- ratefrom 3.42t0 3.8. These are relatively mild manipulations, involving
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Figure 9.3: Age structure fertility experiment.

increases or decreases of about 10% in fertility. The results of these two a
experiments are shown in Figure 9.3 and Table 9.2. .

The results of these experiments are rather dramatic, and suggest the
delicate balances that are necessary to maintain stability in population
structures. A roughly ten percent decrease in the fertility rate is sufficient &
to lead to a long-term pattern of decline in total population size (after
the consequences of current disequilibria are fully realized), coupled &
with steady increases in the average age of the population. A rough ten
percent increase in fertility, in contrast, is sufficient to lead to rapid
growth in total population and a marked shift toward a younger age
structure.

The Consequences of Differential Mortality 3

In addition to fertility, the other forces shaping the age structure of
the population are the age-specific mortality rates. To gain a sensitivity
to the impact of these factors, let us conduct another set of experiments.

Suppose, on one hand, that we focused all of our research and
treatment efforts on the reduction of mortality among infants, and
succeeded in reducing the rate of deaths in the first year by 25% from its
1980 level. Or, alternatively, suppose that we focused all of our resources
and energies on the prolongation of life, and succeeded in reducing the
mortality rate among persons of sixty-five or more by a similar
proportion. What would the consequences be for the total size of the
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TABLE 9.2
Population Age Structures
Under Alternative Fertility Rates

| ———————
] Year 0-1 1-4 S-14 15-44 45-64 65+ Total
. Scenario [: Baseline (U.S., 1980)
. 1980 3.3 13.1 34.9 105.2 44.5 25.6 226.6

(1.4) (5.8) (15.4) (46.4) (19.6) (11.3) (100)

- 2030 3.6 14.2 35.5 105.3 67.8 54.6 280.9

(1.3) (5.1) (12.6) (37.5) (24.1) (19.4) (100)

. 2080 3.6 14.4 35.9 106.7 70.5 60.8  291.9

(1.3) (4.9) (12.3) (36.5) (24.1) (20.8) (100)

. Scenario II: Decreased Fertility
- 1980 33 13.1 349 105.2 44.5 25.6 226.6

(1.4) (5.8) (15.4) (46.4) (19.6) (11.3) (100)

- 2030 2.8 11.3 29.1 94.4 63.7 52.7 254.1

(1.1) (4.5) (11.5) (37.1) (25.1) (20.7)  (100)

- 2080 2.5 10.0 25.6 83.0 58.0 52.4 231.5

(1.1) (4.3) (11.1) (35.9) (25.1) (22.6) (100)
8cenario I1I: Increased Fertility

1980 33 13.1 34.9 105.2 44.5 25.6 226.6
(1.4) (5.8) (15.4) (46.4) (19.6) (11.3)  (100)

2030 44 17.1 . 41.8 115.7 71.7 56.3 307.0

(1.4) (5.6) (13.6) (37.7) (23.3) (18.3) (100)
2080 5.0 19.6 47.8 132.3 83.5 69.2 357.4
(1.4) (5.5) (13.4) (37.0) (23.4) (19.4) (100)

population and its age structure? In Figure 9.4 and Table 9.3 the results

-~ of these experiments are displayed.

The results may seem, at first, a bit surprising. A substantial increase
in the survival rate in the first year of life has little effect on either the
total size of the population or on its age structure (compare the middle
panel of Table 9.3 to the top panel). On the other hand, a substantial
increase in the survival chances of the aged population leads to both
rather rapid increases in total population and to a dramatic shift toward
an older population.

This result is surprising because, in the abstract, changes in infant
mortality might be expected to have greater long run effects—because
they “multiply” through the system by increasing the size of the fertile
population sometime later. Increasing the survival rates of the aged, in
contrast, has only its first-round impacts, and is not multiplied by
feedback. There is, however, no mystery here. The multiplicative impact
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Figure 9.4: Age structure mortality experiment

of changes in the infant mortality rate are, in fact, present in these
results; in a population with such a low birth rate, however, the
numerical impact of even a quite dramatic change in infant survival
chances is small. Because the aged population is much larger than the
infant population, and because the reduction in mortality simulated
applies continuously across many years of age (from age 65 onward, as
opposed to the single year in the first scenario), the numerical impact is
much larger.

There is an object lesson in this example. It is that changes that are
more structurally important do not necessarily have observable results -

that are more dramatic than changes that are less structurally important
in all realizations of a model. In systems terms, a modification of infant
mortality is much more significant than a modification of mortality
among the aged because it precedes the feedback loop from the size of
the fertile population to the birth rate, and hence is multiplied by the
feedback. Changing mortality among the aged has only its direct first-
order effects that merely accumulate. Because of the sizes of the
populations to which these effects apply in any realistic model, however,
the latter change is of much greater numerical consequence.

Summary

The age-structure model is a very sim'ple and straightforward

b
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elaboration of the simple chain system. The dynamic behavior of the
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TABLE 9.3
Population Age Structures
Under Alternative Mortality Rates

_—_—

Year 0-1 1-4 S5-14 15-44 45-64 65+ Total

Scenario I: Baseline (U.S., 1980)

1980 33 13.1 349 105.2 44.5 25.6 226.6
(1.4) (5.8) (15.4) (46.4) (19.6) (11.3)  (100)

2030 3.6 14.2 35.5 105.3 67.8 54.6 280.9
(1.3 s.1n (12.6) (37.5) (24.1) (19.4) (100)

2080 3.6 14.4 359 106.7 70.5 60.8 291.9

(1.3) (4.9) (12.3) (36.5) (24.1) (20.8) (100)

Scenario II: Decreased Infant Mortality

1980 3.3 13.1 34.9 105.2 44.5 25.6 226.6
(1.4) (5.8) (15.4) (46.4) (19.6) (11.3)  (100)
2030 3.6 14.3 35.7 105.6 67.9 54.6 281.7
(1.3) 5.7 (12.7) (37.5) (24.1) (19.4) (100)
2080 3.7 14.5 36.3 107.4 70.8 61.0 293.7

(1.2) 4.9) (12.3) (36.6) (24.1) (20.8) (100)
Scenario III: Decreased Aged Mortality

1980 3.3 13.1 34.9 105.2 44.5 25.6 226.6
(1.4) (5.8) (15.4) (46.4) (19.6) (11.3) (100)

2030 3.6 14.2 - 35.5 105.3 67.8 68.5 294.8
(1.2) (4.8) (12.0) (35.7) (23.0) (23.2) (100)

2080 3.6 14.4 35.9 106.7 70.5 79.9 311.0

(1.2) (4.6) (11.6) (34.3) (22.7) (25.7) (100)

system is, in the abstract, quite easy to understand from its structure as a
simple chain with primarily “feed forward” linkages creating delay, and
a single positive feedback loop. The forward linkages produce simple
linear trends that occur at rates dependent upon the relative sizes of the
transition probabilities (age-specific mortality rates). The model, how-
ever, also displays a good deal of sensitivity to changes in the birth rate
that produces long-run tendencies away from stable equilibrium. This
sensitivity and “instability” of population is a natural consequence of
the simplicity of the system structure. While the model has many levels
and rates, it has only one feedback loop, and this loop is a positive one
(for example, the larger the size of the fertile population, the larger the
number of births). Just as in the very simplest of positive feedback
systems, population is inherently unstable and seeks either to collapse or
explode. The speed and shape of the realization of this tendency is much
more complex than the simple feedback systems we considered in earlier
chapters, owing to the delays and differential rates of transitions among
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the many states. The basic dynamic tendencies of the system, however,
are determined by the nature of the control structure, and not by the
elaboration of the model into a more complex chain.

Vacancy Chains

The control structures governing the dynamics of population age
structures are, in the terms that we have been using, a combination of
“dumb” and self-referencing feedback. That is, the rates of change in age
groups depend only on their current size and on constants (transition
probabilities). The system is also quite simple in its connectivity in that
only “one-way” transitions occur, and each state is connected only to
one origin and two destinations.

In recent years economists, sociologists, and human resource man-
agers have focused a good deal of attention on another demographic
phenomenon that appears to be analyzable as a system with a very
similar structure to general population movements: rates of promotion
within hierarchies.® The primary tool used for analysis is a slightly
smarter feedback system called the “vacancy chain.” These models are
not only of considerable interest in themselves as representation of
dynamics of personnel movements; they also provide a useful contrast
to our age structure models. And as with the simple demographic model,
vacancy chains can be widely applied in other contexts. .

In the population age-structure system, dynamics are governed
primarily by “feed-forward.” That is, the rates of transition of individuals
from origins to destinations depend on the numbers in the origin state
and transition probabilities. In a sense, this is a model in which “push”
or “supply”is central. In contrast, most models of mobility processes in
organizations are based on “pull” or “demand” factors; the number of
persons who are promoted from one level to the next higher one is seen
as a consequence of number of persons in the destination status (or,
more correctly, the number of vacancies at the destination status). As
the number of persons in the destination status departs from some goal,
vacancies are created which pull individuals from lower to higher levels.
When a vacancy occurs in a high levcl, demand is created at all lower
levels; hence overall mobility rates depend on where vacancies occur and
the relative sizes of the strata in the hierarchy.

Developing the Baseline Model

The levels and the degree and forms of connectivity in a model of a
vacancy chain are very similar to those of the age-structure model. In
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our simple hierarchical or sequential system, we will imagine that there
are three ranked subpopulations (we will call them “entry level,” “mid
level” and “executive”). All individuals enter the organization at the
lowest level, and cannot be promoted to executive status without
passing through the middle levels. In our simplest model, all individuals
are seen as remaining in the organization until they attain executive
status, from which they ultimately retire. While these assumptions are
obviously far too simple, they will serve for the moment. A diagram of
the basic model is shown as Figure 9.5.

The primary and important difference between the system shown in
Figure 9.5 and the earlier age-structure model (see Figure 9.1) is the
nature of the control system. In the current model, rates of transition—
the hiring rate(HR), the promotion rate from entry to mid level (PR1),
and the promotion rate from mid level to executive (PR2)—are
governed by a comparison of the number of persons at the destination
level to some goal state (the desired level). This comparison results in the
perception of a vacancy (ELVAC, MLVAC, and EXVAC), which, in
turn drives promotion rates. The DYNAMO program for this model is
similar to the population model, and is provided in Appendix 9.2.

Behavior of the Baseline Model

The behavioral tendencies of the vacancy chain model should be
quite easy to anticipate. The system is governed by goal-directed
feedback, and hence tends toward a stable equilibrium in the number of
persons at each level and in the rates of transitions among levels. Since
we have not provided for misperception or delay in the baseline
specification of the model, adjustment of the executive level to
retirements occurs completely within one time period; adjustment of the
middle level to a retirement at the executive level takes two time periods;
and adjustment of the entry level to an executive retirement takes three
periods as the vacancy “trickles down.” The overall rates of mobility,
then, depend entirely on retirements from the executive level. The
probability that an executive retirement results in promotion for an
individual at a lower level depends on the number of persons in the lower
level—that is, on the shape of the pyramid. Where the numbers of
persons in the levels are similar, a retirement improves everyone’s
chances of promotion equally. Where there are many more people at
lower levels than at higher ones, retirements at the top improve the
prospects of middle-level persons more than those of entry-level
persons.
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Figure 9.5: Vacancy chain.

The basic vacancy chain, then, has a structure much like that of the
population age-structure model we examined above. But because its
dynamics are governed by goal-oriented feedback rather than by self-
referencing and dumb feedforward its behavioral tendencies are quite
different. Where the population model has a tendency toward uncon-
strained growth or decline, the vacancy chain has a strong tendency
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toward stability. In the population model, dynamics are driven by
supply (births); in the vacancy chain, dynamics are driven by demand
(retirements). Let’s explore some of the implications of these dynamics.

Growth, Structural Change, and Mobility

Research on structure of mobility in organizations has focused on the
effects of size and technology (or, more properly, the division of labor
resulting from a given technology). From our baseline model it is easy to
understand why these two factors are critical in understanding mobility
rates and patterns in demand-driven simple sequence models. Increases
in the size of an organization (if the new vacancies are filled by hiring
into entry-level positions and the relative sizes of the strata are
preserved) improve the prospects of all organizational members and
result in higher general rates of mobility. Reductions in size, if they are
accomplished by increasing the rate of executive retirement (which they
seldom are, in real world cases) also improve mobility chances.

Changes in the division of labor within an organization are also
important in determining the structure of opportunity, but do not have
exactly the same kinds of effects as changes in organizational size.
Whereas general increases or decreases in size affect people in each
strata proportionately, changes in the relative numbers of persons in
levels of the hierarchy have disproportionate effects on mobility
chances. Shifts in the shape of the pyramid toward a taller and thinner
hierarchy (that is, one in which the “grade ratios” are closer to unity)
result in a period of rapid promotion but limited hiring as new vacancies
are filled at the top. Shifts in the opposite direction, toward an
organization with larger numbers of persons at lower levels, conversely,
improves hiring chances, but slows rates of mobility within the
organization.

By'way of illustration of these principles we can perform simulation
experiments on our simple hierarchy. In our first experiment we will
explore the implications of changes in organizational size. After setting
the system in equilibrium (with 600 entry-level persons, 300 middle-level
persons, and 100 executives), we will increase the goal states for total
size of the organization by 100 persons per time period for 10 time
periods, then decrease it for 10 time periods. In keeping with the
assumption of constant grade ratios, these changes will be distributed
proportionately across the grades. For our second experiment, we will
alter the shape of the pyramid, first increasing the relative sizes of the
higher levels at the expense of the lower level for 10 time periods, then
reversing the process.
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Experiment: Growth and Decline

The basic results of the simulation experiment with growth (from
time 1 to time 10) and decline (from time 10 to time 20), are shown in
Figure 9.6. In the first panel the number of personnel at each of the three
levels is shown; in the second, the rates of transition (hiring, promotion,
retirement) are presented.

The number of personnel at each level of the hierarchy, quite
predictably, increases and decreases with changes in demand. The
responses also show a certain degree of smoothing because of the delay
inherent in positions “trickling down.” And responses to decline are less
than responses to growth because of the constraint that all “reductions
in force” be accomplished by retirements at the senior level in this
model. Since the senior level is relatively small (10% of the population)
and since personnel retire at fixed rates, there is a limitation on the
responsiveness of this model to decline.

The costs and benefits of growth and decline are not equally
distributed across the hierarchical levels in the simple vacancy chain. In
the period of rapid growth, hiring and promotion expand, increasing the
mobility chances at all levels (see the second panel of Figure 9.6). As the
size of the executive stratum expands, the chances that a middle-level
manager will be promoted in a given period of time increase from about
6% to slightly over 8% by the fifth time period. Chances for promotion
into the executive, however, stagnate and begin to decline as early as the
fifth time period, despite continuing increases in the numbers promoted.
Similarly, the chances that a given entry level person will be promoted to
middle-level status roughly doubl: in the first several time periods of
growth (from about 4% to about 8%), but then decline toward their new
equilibrium level, despite continuing increases in the numbers of
personnel being promoted.

The consequences of decline in the simple hierarchy are even more
dramatically unequal than responses to growth (time points 10 to 20 in
Figure 9.6). Because some vacancies continue to occur at the executive
level due to retirements, the impact of shrinking demand on the mobility
chances of middle-level personnel is somewhat buffered. The number of
retirements, however, does not create enough demand to absorb all of
the surplus middle-level personnel. Consequently, while the chance of
promotion from middle level to executive status declines very rapidly,
promotion to the middle level and hiring cease altogether.

Changes in size, then, have differential impacts on mobility chances
of personnel in the several strata under the constraint that vacancies are
created only by retirement and proportional increases in stratum size.’
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Figure 9.6: Growth and decline experiment.

While rapid growth improves the mobility chances of individuals at
both the entry and middle levels in the current model, the negative
consequences of rapid decline fall more heavily on the lower strata.

Experiments: The Shape of the Hierarchy

In a second experiment we manipulate the structure of the pyramid,
while holding constant the total number of personnel. In the first 10
periods we induce a shift toward a “narrow and tall” hierarchy, that is,
one with more equally sized strata. Over the second 10 periods we shift
the shape of the organization’s pyramid back to its original shape. The
results of this manipulation are shown in Figure 9.7, with the numbers in
cach strata shown in the first panel and the rates of transition in the
second panel.

The changes in strata size are accomplished rather smoothly, with
slight delays due to the time taken in positions “trickling down.” Unlike
the previous example, however, the system is able to absorb the changes
induced without stress. That is, at no time are there substantial gaps
between the goal state of the system and the actual levels, as witnessed by
the trace lines in the first panel of Figure 9.7 returning to their original
levels by the twentieth time period. This result is in contrast to the size
experiment, where substantial gaps exist, and the system does not reach
its goal by the end of the experiment. This result is, of course, a
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Figure 9.7: Structural change experiment.

consequence of the way that the experiment was designed. During the
first 10 time periods increases in the size of the middle and upper strata
were induced—creating little stress, as such vacancies are rapidly filled
by promotion and hiring. In the second half of the experiment, where
the sizes of the two upper strata are being reduced, retirements (which
are proportional to the number of persons in the upper stratum in this
experiment) occur at rates sufficient to accomplish the reductions in
force at the upper levels without large departures from organizational
goals. Had the rates of retirement been less, the rate of decline in the size
goals for the upper strata higher, some stress would have been created.
Had we run the experiment in the opposite direction, first decreasing the
desired size of the upper strata and then increasing it, some stress would
also have been induced.

Changes in the structure of the pyramid have differential impacts on
the mobility chances of personnel at different levels (see panel b of
Figure 9.7). As in the previous experiment, the consequences of change
for the mobility chances of individuals at the middle levels are somewhat
buffered by the presence of continuing vacancies above (due to
retirement), while hiring and promotion to middle levels are more
affected by structural changes. The number of upper-level personnel
increases over the first half of the time period, and this buffers the
impacts of later structural change because the retirement rates depend
on the numbers in the upper strata. The shapes of the curves of numbers
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of transitions in the second half of the experiment clearly show these
buffering effects. While the declines in all of the transition rates are
exponential in the face of routinizing change, the declines are steeper the
further down the hierarchy that one goes.

Summary

While our vacancy chain models are obviously unrealistic in many
regards, they are suggestive of the complexity of behavior that can be
produced by quite simple structures. Perhaps most important, the
vacancy chain models suggest that changes induced by size and the
division of labor can be complex and unequal—depending on the shape
of the hierarchy and the rules governing the creation of vacancies. The
experiments suggest that, in systems of this type, the consequences of
growth and decline are not mirror images of one another: The
consequences of increasing the number of upper-level positions and
decreasing the number of upper-level positions are not mirror images of
one another, and the degrees of organizational stress and the expansion
or constriction of individual mobility chances induced by changes in size
and structure can be quite complex even in quite simple systems.

Some Directions for Extensions

The vacancy chain model developed and briefly examined here is the
simplest possible version. It is quite adequate for understanding the
much greater complexity of possible behavior of simple chains governed
by feedback, relative to those governed by simple feedforward. The
model, however, is rather too simple to be a good representation of
mobility processes in real hierarchies (though some very restricted cases,
such as movements of lawyers in law firms or professors in academic
departments can be captured to a degree).

There are a number of simple changes that might make it more useful
as a research tool. We will mention only a few of the more important
possibilities in passing,

First, the number of levels in the hierarchy might be modified—and
even made a function of other variables. Organizations with different
numbers of levels (say GS1 to GS18, for example) can be captured by
simple extensions of the current three levels. If we wished to examine
mobility processes over time in real organizations, it might be necessary
to provide some external or internal mechanism that causes the numbers
of levels to increase or decrease dynamically.
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Second, individual’s chances of promotion are dependent upon their
duration in their current state. The elaboration of the simple hierarchy
to include cohort groups within each hierarchical level would make it
possible to capture this aspect of individual mobility more accurately
than in the current model. It would be possible in this way to include
both organizational factors (for example, the total number of vacancies)
and individual factors (for example, the effect of time in state on the
probability that an individual is selected to fill a vacancy) in the model of
the mobility structure.

A third line of development of the current model would modify the
connectivity among states rather than simply the number of states. We
presently provide that the only way that individuals leave the organiza-
tion is by way of retirement from the most senior level. Clearly this is
unrealistic for most organizations. More commonly, individuals may
leave the organization from any level, and some may never achieve the
highest level prior to leaving—even if they remain in the organization
for a very long time. The vacancies created, and hence mobility patterns,
would be dramatically modified from the current model if individuals
could be fired from each level, or perhaps left the organization at
increasing rates voluntarily if they remained too long in a level without
promotion.

Fourth, we have also supposed that an organization can be represented
as a single hierarchy, that promotions occur only one step at a time, and
that all vacancies are filled from within. Clearly the connectedness of
states in most real organizations is far more complex. Organizations
differ, through opportunity or policy, in the extent to which they are
likely to fill vacancies at various levels from within or without.
Obviously, such differences can have dramatic impacts on the distribu-
tion of opportunity. Most organizations are better characterized as a
series of parallel “ladders” of opportunity (with the ladders being of
different heights) rather than a single hierarchy. Some ladders, say
within the sales department, never lead to the executive boardroom;
other ladders, say within the finance department, do provide the
possibility. And organizations differ in the degree to which it is possible
for an individual to change from one ladder to another. These kinds of
internal segments and differential closedness to outsiders are all
relatively simple elaborations of the current model. While the modifica-
tions are logically simple, our current results suggest that the modifica-
tion might have quite complicated and substantial consequences for
both organization and individual.

A fifth major direction for making the current model more realistic
would be to relax the assumption of population homogeneity. We have,
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in the current case, treated all individuals at a given level in the hierarchy
as having the same probabilities of promotion. The notion that
promotion possibilities for individuals differ according to “time in
grade,” and according to internal ladders and segments may go a long
way toward more realistic representation of individual’s chances. In
addition, however, one might well suppose that channels of opportunity
are differentially open, depending on characteristics of individuals
(race, gender, education, language, presentational style, etc.). While full
exploration of such effects would be more effectively accomplished with
a mixed continuous and discrete state language, we could represent
multiple subpopulations by race, age, gender, etc. in the same fashion as
time-in-grade or ladder differences.

Sixth and finally, we might suppose that the processes of mobility are
a good deal less “rational” than our model represents. Organizations
may be slow to perceive the existence of vacancies, may perceive
vacancies where none exist, or may create vacancies prospectively
(rather than as delayed responses). Once a vacancy exists there may be
substantial delay in filling it and there may be considerable error and
noise in the process of selecting individuals. As we have suggested on
numerous occasions, the dynamic behavior of many systems can be
dramatically altered by the presence of noise, delay, and bias. “Intendedly
rational” systems often become unwieldy and irrational in the presence
of such informational problems.? There is little reason to expect that
patterns of mobility within organizations are immune to such effects.

The Mobility Matrix

One of the most commonly used analytic tools in the study of patterns
of social stratification s a cross-tabulation that describes the frequencies
of movements between a set of origin statuses and a set of destination
statuses. The densities of cases in regions of such a “mobility matrix” can
be seen to represent a map of the degree and form of mobility chances in
a population, and hence are a telling summary of the overall rates of
upward and downward movement, short and long distance movement,
propensity to “status inheritance,” and permeability and impermeability
of the several strata.?

The notion of a process with multiple origin statuses, multiple
destination statuses, and reciprocal movements back and forth among
origins and destinations, of course, is far more general than its
application to “social mobility.” Voters may move back and forth
among the states of being Democrats, Republicans, and Independents;
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nation states may move from “peripheral”to “semiperipheral”to “core”
positions in the world political economy; workers may move back and
forth between employed and unemployed status; families may move
from one geographical location to another and (sometimes) back again.
All of these problems (and, of course, many others) can be thought of as
involving the movements of individuals back and forth between
“origins” and “destinations.”

The process that the mobility matrix summarizes is a relatively
straightforward extension of the the simple chains that we have been
considering in this chapter. The “origin” and “destination” statuses in a
mobility matrix can be thought of as a single set of system states,
observed at two points in time. In our dynamic formulation of the same
process, we see the number of persons at each status level as varying
continuously over time. The frequencies of movements between each
origin and each destination in the mobility matrix are interpretable as
transition probabilities. In our dynamic formulation, these transition
probabilities become rates of “flow” of individuals among statuses. The
basic structure of such a system is shown as Figure 9.8.

The main difference between the type of mobility process captured in
the mobility matrix and those that we have discussed so far in this
chapter is in the connectivity among the states. In both of our previous
examples, transitions occurred in a single direction—age increased but
never decreased, persons were promoted but not demoted. In the
mobility matrix, movements are possible in both directions between
each pair of statuses. As a result of this increased connectivity, the range
of possible careers is much greater in mobility matrix than in the other
simple chains. Nonetheless, the basic structure of the system of
multistate origin to destination mobility is an easy extension of the
models that we have considered previously.

Developing the Baseline Model

A basic dynamic model for the kinds of multistate transitions
described by mobility matrices is quite easy to construct. The system has
as many states as there are origins and destinations, the quantities in
each state are “conserved,” and changes in system levels are the simple
sum of movements into the state from other states and movements out
of the focal state to other states. If we were describing a system of two
strata (say “white collar” and “blue collar™), we could write the basic
equations as follows:

L WCK=WCJ+DT)(BCWC.JK-WCBC.JK)
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Figure 9.8: Mobility matrix,

L BC.K = BC.J#DT)(WCBC.JK-BCWC.JK)

These two statements are straightforward accounting: The number of
white-collar persons at time K (WC.K) is equal to the number of such
persons at the previous time point plus the number moving from blue
collar to white collar over the time period JK (BCWC.JK), less the
number moving from white collar to blue collar over the same period
(WCBC.JK). The same two flows also describe the changes in the
blue-collar population, but take the opposite signs.

Change in the number of white-collar persons between the two time
points depends on the rates of movement from blue collar into white
collar and rates of movement from white collar to blue collar. In the
most basic of mobility models, these rates are governed by “transition
probabilities” that express the odds that an individual in a given origin
status will move out of that status to a given destination in a fixed time
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period. The number of actual movements from an origin to a
destination, then, depends on the transition probability of such a
movement, the number of persons “at risk” (i.e., the number in the
origin status), and the length of time that the people are exposed to the
risk. For our two-state model, we could specify these rates with the
following statements:

R WCBCKL = PWCBC*WC.K
R BCWC.KL = PBCWC*BC.K

These statements say simply that the rate of movement from white
collar to blue collar over the period from K to L (WCBC.KL) is equal to
the constant probability of such a move (PWCBC) times the number at
risk (WC.K); the rate of movement from blue collar to white collar over
the period (BCWC.KL) is equal to the constant probability of such a
move (PBCWC) times the number at risk (BC.K). There is one
constraint to be noted here. The quantities PWCBC and PBCWC are
probabilities, and hence can logically vary only between 0 and 1. In a
model with larger numbers of origins and destinations, the persons in
any origin status are constantly “at risk” of making a transition to any of
the destination statuses. The sum of these “risks” or transition
probabilities is also constrained to be less than or equal to unity. These
constraints are perhaps more clearly seen in a model with more statuses,
such as the five-state model that we will use as our baseline here. The
DYNAMO code for such a five-state model is given in the Appendix.

Behavior of the Baseline Model

The dynamic behavior of first-order Markov processes such as the
one we have created here is well understood, and is the same whether
there are two, five, or any number of states.!® Such systems have stable
equilibria that are approached asymptotically; the values of the states of
the system at equilibrium depend only on the transition probabilities—
not on initial conditions, and the value of any state at any point in time is
a function of its value at the previous point in time times the relevant
transition probabilities (or, alternatively, is a function of the initial
value, the length of time that the process has been operating, and the
transition probabilities).

These properties can easily be deduced by simulation, as well as by
direct solution of the equations of the system (though the latter is more
elegant and general). If we simulate the five-state system as shown in the
Appendix (with 100 persons in each stratum initially, and all transition
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probabilities set constant at .2) the system remains in a stable
equilibrium. That is, the number of persons in each stratum does not
change from period to period, though they are not the same people, as
individuals are constantly changing statuses.

If we leave the transition probabilities constant, but change the initial
conditions, the system ultimately returns to the same state as in the
baseline, but does so after periods of time that vary with the difference
between the initial conditions and the equilibrium. This property is
illustrated by the results in the top panel of Table 9.4. In this panel we
report the number of persons in the fifth stratum after various elapsed
times for three scenarios: (a) the system has its equilibrium distribution
at the start, (b) there are 50 rather than 100 persons in the fifth stratum at
the start, and c) there is only a single person in the fifth stratum at the
start.

The first column of the top panel shows that the system remains in
equilibrium once equilibrium is established. This statistical equilibrium
exists despite the fact that 10% of the people in stratum five leave the
stratum each time period, because they are replaced by outflows from
other strata. The second and third columns of the top panel report
scenarios where numbers of persons smaller than the equilibrium
number are initially in stratum five. The behavior of these two series
demonstrates the tendency of the system to asymtopically approach its
equilibrium. The speed with which this approach occurs, of course,
depends on the magnitude of the transition rates—the more people are
moving around, the faster the system approaches its steady state.

The first experiment suggests that this system has a a stable
equilibrium, and that this equilibrium condition does not depend on the
numbers of persons in each status initially. The second panel of Figure
9.4 shows the results of another series of experiments that explore the
consequences of varying transition rates rather than system levels. In the
first series we define stratum one as an “absorbing state.” That is,
persons flow into this stratum, but do not leave it. In the second column
we set the outflow rate for the first stratum to 5%, or one-half of the
outflow rates of the other strata; the third column sets the outflow rates
of stratum one equal to those of the other strata (that is, 10%); the last
column shows outflow rates from stratum one that are twice the outflow
rates of the other strata.

This second series of experiments demonstrates the other basic
property of first-order Markov processes—that the equilibrium distri-
bution of cases across statuses does depend on the transition rates.
Where the first stratum is an absorbing state (column one), eventually
all of the 500 individuals end up in it. This occurs rather slowly because
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TABLE 9.4
Baseline Mobility Matrix Experiments

N Numbers of Persons in Stratum Five

Differing Initial Conditions Initial
Elapsed Time 100 50 1
2 100 82 65
4 100 94 87
6 100 98 95
8 100 99 98
10 100 100 99
Numbers of Persons in Stratum One
Differing Transition Rates Outflow Rate
Elapsed Time 0% 5% 10% 20%
0 100 100 100 100
2 173 130 100 62
4 232 147 100 57
6 281 156 100 56
8 321 161 100 56
10 354 164 100 56
15 411 166 100 56
20 446 167 100 56

of the large number of sequences of moves that are possible in each point
in time. Where the outflow rates of a stratum are less than those of
another, the stratum will asymptotically approach a level that is larger
than the other. Where the rates are equal, equilibrium numbers are
equal, where rates are less, final numbers are less. In all cases, the paths
that levels follow toward their equilibrium levels are exponential.

These results are hardly original, but they are important. Formally,
systems of this type have stable equilibria, these equilibria depend upon
the transition rates and not on the initial conditions, and the levels tend
to approach their equilibrium conditions by smooth exponential
time-paths.

We can also state these conclusions somewhat less formally. There
are many systems that approximate the ideal type of movements
occurring back and forth among many states, where the chances
individuals making transitions from their current status to another
status is constant over time and the same for all individuals in the status.
Systems of this type tend toward stable numbers of cases being in each
status (even though lots of cases may be making transitions), and the
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relative numbers of cases in the various statuses depend solely on the
odds of the various changes occurring.

Extensions of the “Mobility Matrix”

The baseline mobility matrix model is relatively simple in the number
of levels, their connectivity, and the control structures governing rates of
flow among the states. There are, however, several ways in which the
baseline model could easily be modified to make it more useful for
analyzing social mobility processes and for other systems of bidirectional
flows among multiple origins and destinations.

As a model of processes of status mobility, the baseline is probably
most seriously deficient in that it assumes that all of the people
composing the flows are homogeneous. This follows from the specifica-
tion that the chances of a given individual’s undergoing mobility are the
same as those of every other individual with the same origin status.
There are many cases in which we might want to distinguish among the
persons in the various statuses according to other characteristics, both
because we can presume that they are not really homogeneous with
regard to mobility chances, and because our interest may focus on the
composition of the population of persons occupying statuses.

We might suppose that the mobility chances of males and females in
entry-level positions are not identical in a large organization; our
interest might well be in the ratio of males and females in executive
positions that are the outcome of the dynamics of mobility. Similarly,
we might suppose that people in a given status are at decreasing (or,
more rarely) or increasing risk of undergoing transition the longer that
they have been in the status—that is, the “population”is “heterogeneous”
with respect to duration in the state. There is considerable theory and
evidence suggesting, for example, that, after a time, the chances of
further promotion decline with tenure in a position in many large
organizations (that is, those who are going to be promoted are promoted
carly, those who remain behind are less likely to ever be promoted).

The baseline mobility model can be extended to deal with heterogene-
ity of transition probabilities by both traits and duration rather easily—
though we will not do so here. The method for doing so is tedious, but
relatively straightforward. If one is interested in taking into account
gender differences in mobility in a three-state “matrix,” six rather than
three system states are created. Some of the logically possible flows, of
course, cannot exist: Low-status female persons have zero probability of
undergoing a transition to become middle-status males; their chances of
attaining middle-level status, however, may now be modeled as different
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from those of low-status males. Duration dependence of transition rates
can similarly be captured by creating chains of transitions within each
status that represent heterogeneity by duration (for example, new low-
status persons, low-status persons of average tenure, low-status persons
of longer than mean duration). In some cases the first- and third-order
delay functions provided by DYNAMO (or others designed by the
theorist using macros) can capture this form of heterogeneity quite
compactly. -

As a model for theorizing about social mobility, the baseline
developed above is deficient in a second way. In the current model we
follow the spirit of Markov models in assuming that transition
probabilities for individuals are fixed functions with respect to time
(though, as we have just seen, they may differ across individuals). In real
systems, the number of positions (or vacancies) at various levels may
well change over time—increasing or decreasing all rates of movement
into or out of statuses. Indeed, most studies of social mobility at the
societal level suggest that the largest part of all status changes can be
accounted for by changes in the “structure” of opportunity. Again, there
would be little difficulty in adapting the baseline-mobility matrix model
to take into account such structural change, though we will not do so
here. In the current model, rates are modeled as dependent upon
constant transition probabilities and the numbers of persons in the
origin statuses. To take into account opportunity structures, more
complex rules could be written that take into account the number of
vacancies as well as the number of candidates.

Chains as Building Blocks

The models that we have examined in this chapter are extremely
general and important. We have developed our examples, perhaps
somewhat self-indulgently, from the fields of stratification and demo-
graphy in sociology. Simple chains coupled by differing kinds of control
systems, however, are central in the concerns of all of the social sciences.
Indeed, from the abstract systems perspective that we have taken, many
of the problems about which very diverse social scientists theorize have
much the same structure.

“Chain” models involve the rates of movements of conserved
quantities among networks of states. A moment’s reflection suggests
that many central social science problems can be (and, in fact, have
been) usefully thought of in this way.
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The dynamics of economic relations involve the flows of human and
physical capital, money, and natural resources among “statuses.” The
“circulation of capital,” the production “process,” and exchanges
between buyers and sellers can all be readily conceived as flows of
quantities (be these quantities money, people, capital, or resources)
among states (where the states may reflect qualitative characteristics or
ownership or both). Indeed, the starting point for both macro and micro
economic theory is with these basic “accounting systems” of flows of
money, people, and things: Raw materials are extracted, transported,
transformed, sold, and eventually discarded; human resources are
employed, endowed with training and experience, and retired; money is
acquired through exchange with customers, and transferred to workers
and suppliers. The chains needed to usefully capture the dynamics of
economic systems can be considerably more complicated (in terms of
numbers of states, connectivity among them, and in control systems)
than the basic models that we have examined in this chapter. These more
complicated systems, however, are built up from the same kinds of
simple chains that we have considered here.!!

Many of the central theoretical concerns of political science are also
built upon “accounting” of conserved flows. Most obviously, the shifts
of voters and legislators from support to opposition for policies and
candidates can be usefully thought of as a “chain” of states. Political
phenomena are often thought of as systems composed of flows of
information, influence, and resources among individuals, parties, and
governments. Again, the mobility models developed in this chapter are
probably a bit too simple to capture the dynamics of most political
systems without substantial modification. Simple chains of conserved
flows of persons, votes, and resources, however, lie at the core of
theorizing about political behavior.!?

While it may at first seem more natural to think of the application of
simple chain models to “macro” phenomena such as population
movements, economic production, or voter support; phenomena at the
“micro” level can also be usefully conceived of as composed of “chains”
of states. One very obvious and important application is in studying the
microstructure of social relations. Many social structures can be
thought of as networks of individuals (or firms, families, nations, etc.)
connected by “relations” involving conserved flows (individuals exchange
emotional support, firms exchange personnel and money, and so on).
The dynamics of such networks can be captured rather nicely using
relatively simple models.

With relatively little modification, then, “simple” chain models of
various numbers of states, forms and degrees of connectivity, and
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complexity of control can be widely applied to basic and important
problems across the social sciences. As we have seen throughout the
chapters in this section, a wide array of important forms of social
dynamics can be modeled with these “simple” models. Simple chains are
of great importance for another reason as well. All models of greater
complexity are built up out of simple chains. It is a necessary, but not a
sufficient condition for understanding the dynamics of the more
complex systems that we understand the dynamics of simple chains.
Models composed of single chains, regardless of their complexity,
however, are not sufficient to capture the dynamics of many systems. In
the next section we will consider how theories of greater complexity are
built up out of coupling together “simple” chains with more complex
control structures; just as the current chain models are composed of
single states coupled with increasing complex control structures. The
behavior of “chains” requires the understanding of single states and
rates, but is not wholly reducible to the component parts; the behavior
of more complex systems requires an understanding of each of the
chains of which they are composed, but they also have unique
possibilities that are not wholly predictable from their parts.

Notes

1. The three kinds of systems that we will examine here are well known and widely studied by
statistical and mathematical approaches, as well as by simulation methods. Our treatment of these
systems is not intended to make original contributions to the substantial bodies of theory and analysis
that exist with regard to each; rather, the intent is to see these important dynamic processes as the
outcomes of relatively simple chain models.

2. Basic demographic processes are presented in any number of excellent texts, including Keyfitz
(1977), Shryock, Siegel, and Associates (1976), Bogue (1969), Cox (1959), and Hauser and Duncan
(1959). )

3. For purposes of accurate projections over lengthy periods of time, such simplifying
assumptions and the accuracy of the integration algorithms are of great consequence. The population
predictions presented in this chapter should be taken only as illustrative of gencral patterns and
dynamics. They should not be taken as serious population projections.

4. Data are calculated from tables presented in United States Bureau of the Census (1985).

5. For some interesting and more sophisticated modeling of fertility dynamics and their
consequences, see Keyfitz (1971, 1975).

6. Theclassic work on vacancy chains is that of Harrison White (1970). Recent elaborations have
extended the model in interesting ways; see particularly Stewman (1975), Rosenbaum (1979), and
Stewman and Konda (1983).

7. Explorations into the effects of changes in system size and shape have been extensively
explored by many analysts, among them Anderson and Warkov (1961), Blau (1970), Hummon (1971),
Kassarda (1974), Kennedy (1962), and Land (1970, 1975).

8. Problems of informationdelay, distribution, and distortion have been a major topic of interest
to theorists of organizations. See, for some particularly interesting examples, Ackoff (1959), Bavelas
(1950), Bonini (1963), Cohen and Cyert (1965), Cyert et al. (1971), Cyert and March (1963), Emery and
Trist (1960), Katz and Kahn (1966), Kochen and Deutsch (1980), Marshall (1967), and Simon (1947).
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9. There is a large literature on such processes in sociology, particularly with regard to the
intra-and intergenerational changes in individual's occupational prestige. A flavor of some of the
mathematical and statistical approaches to problem can be found in Blumen (1966), Boudon (1975),
Ginsberg (1971), Mayer (1972), McFarland (1970), McGinnis (1968), Singer and Spilerman (1974,
1976), and Spilerman (1972a, 1972b),

10. See, for detailed discussions of Markov processes, Bartholomew (1983) (for a mathematical
treatment) or Leik and Meeker (1975) (for an applied treatment),

I1. See particularly Forrester's (1961) model of the firm, and Meadows and Robinson’s (1985)
discussion of macroeconomic models.

12. Two very useful macropolitical models are offered by Brunner and Brewer (1971) and lichman
and Uphoff (1969).

APPENDIX 9.1. Population Age Structure Model

* SIMPLIFIED DEMOGRAPHIC MODEL
NOTE BASELINE DATA ARE USA 1980

s
;

NOTE THE NUMBER AGES ZERO TO ONE IS

NOTE DETERMINED BY THE BIRTH RATE, WHICH IS A
NOTE FUNCTION OF THE NUMBER AGES 15-44,

L POLK = POLJ*DT)(BR.JK-ISR.JK-IDR.JK)

R BR.KL = FERT*P1544 K

FERT = .0342
ISR.KL = PO1.K*.98711
IDR.KL = P01.K*.01289

OTE ISR IS INFANT SURVIVAL, IDR IS INFANT DEATHS
Pl4.K = P14.JHDT)(ISR.JK-CSR.JK-CDR.JK)
CSR.KL = (P14.K/4)(.99936)
CDR.KL = (P14.K/4)(.00064)

NOTE CSR IS CHILD SURVIVAL, CDR IS CHILD DEATH RATE

ARICOCrZ™m™mN

~ NOTE LEAVING RATE IS SIMPLIFIED TO BE 1/4 OF
" NOTE NUMBER IN THE LEVEL AT EACH POINT IN
~ NOTE TIME.
L P514.K = P514.J4DT)(CSR.JK-ASR.JK-ADR.JK)
f R ASR.KL = (P514.K/10)(.9969)
F R ADR.KL = (P514.K/10)(.00031)
. NOTE ADOLESCENT SURVIVAL AND DEATH RATES ASR, ADR
E L P1544.K = P1544.J+(DT)(ASR.JK-PSR.JK-PDR.JK)
. R PSR.KL = (P1544.K /30)(.99854)
. R PDR.KL = (P1544.K /30)(.00146)
NOTE PRIME-AGE SURVIVAL AND DEATH RATES PSR, PDR
L P4564.K = P4564.J+(DT)(PSR.JK-MSR.JK-MDR.JK)
R MSR KL = (P4564.K /20)(.99044)
R MDR.KL = (P4564.K /20)(.00956)
NOTE MIDDLE-AGED SURVIVAL AND DEATH RATES MSR, MDR
L P65.K = P65.J+DT)(MSR.JK-AGDR.JK)
R AGDR KL = P65.K*.05668
NOTE DEATH RATES FOR AGE 65+, AGDR
S TPOP.K = POI1.K+P14.K+P514.K+P1544.K+P4564. K+P65.K

i NOTE TOTAL POPULATION IS COMPUTED
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N P01 = 3269600

N P14 = 13078400

N P514 = 34942000

N P1544 = 105203000

N P4564 = 44503000

N P65 = 25550000

NOTE INITIALS ARE SET AT USA 1980 VALUES

SPEC DT = .25/LENGTH = 100/PRTPER = 5/PLTPER = |

PRINT P01,P14,P514,P1544,P4564,P65, TPOP

PLOT PO1/P14/P514/P1544

PLOT P4564/ P65/ TPOP

RUN )

APPENDIX 9.2. Vacancy Chain Model

. SIMPLE VACANCY CHAIN MODEL

NOTE This model is an example of a simple vacancy chain
NOTE with three levels: “Entry” level (EL), “Middle”

NOTE level (ML) and “Senior” level (SL).

L EL.K = ELJ+DT)(HIRE.JK-PREM.JK)

NOTE HIRE IS THE NUMBER HIRED INTO ENTRY
NOTE POSITIONS

NOTE PREM IS THE NUMBER PROMOTED TO MIDDLE
NOTE LEVEL

R HIRE.KL = MAX(DISCI1.K,0)

NOTE DISCI IS THE DISCREPANCY BETWEEN THE NUMBER OF

NOTE ENTRY LEVEL PERSONS AND THE “GOAL"” OR
NOTE DESIRED NUMBER.

A DISC1.K = EGOAL-EL.K

NOTE THE GOAL FOR ENTRY LEVEL NUMBERS IS 600
NOTE PERSONS

C EGOAL = 600

R PREM.KL = MAX(DISC2.K,0)

NOTE THE RATE OF PROMOTION FROM ENTRY TO
NOTE MIDLEVELIS SETEQUALTO THE DISCREPANCY
NOTE BETWEEN THE NUMBER OF PERSONS AT THE
NOTE MIDDLE LEVEL, AND THE GOAL FOR THAT
NOTE LEVEL.

A DISC2.K = MGOAL-ML.K

NOTE THE GOAL FOR MID LEVEL IS SET TO 300.

C MGOAL = 300

NOTE THE MIDDLE LEVEL IS NOW DEFINED.

L ML.K = ML.J#DT)(PREM.JK-PRES.JK)

NOTE THE NUMBER OF PERSONS AT THE MID
NOTE LEVEL IS AUGMENTED BY PROMOTIONS FROM
NOTE BELOW (PREM) AND DECREMENTED BY

NOTE PROMOTIONS TO THE SENIOR LEVEL (PRES).

R PRES.KL = MAX(DISC3.K,0)

W LT T M N ST R

.

et Sl o L Al SR s S

T s = . Lo iy M Nl gt S e BT
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A DISC3.K = SGOAL-SL.K

NOTE PROMOTIONS FROM MID TO SENIOR LEVEL
NOTE DEPEND ON THE DISCREPANCY (DISC3)

NOTE BETWEEN THENUMBER AT THE SENIOR LEVEL
NOTE (SL) AND THE GOAL FOR THAT LEVEL (SGOAL).
C SGOAL = 100

NOTE THE SENIOR LEVEL IS NOW DEFINED

L SL.K = SL.J+(DT)(PRES.JK-RR.JK)

NOTE SENIORS ARE AUGMENTED BY PROMOTIONS
NOTE FROM MID LEVEL (PRES), AND DECREMENTED
NOTE BY THE RETIREMENT RATE (RR).

R RR.KL=SL.K/5

NOTE RETIREMENTS ARE A CONSTANT 20% OF THE
NOTE SENIORS INITIALIZATION OF LEVELS

N EL = ELI :

C . ELI = 600

N ML = MLI

C MLI = 300

N SL=SLI

C SLI1=100

NOTE SUPPLEMENTAL INFO: PROMOTION CHANCES.
) PROMOI.K = PREM.KL/EL.K

S PROMO2K = PRES.KL/ML.K

NOTE OUTPUT SPECIFICATION

SPEC DT =.1/LENGTH = 25/PRTPER = 1/PLTPER = |

PRINT EL,ML,SL,RR,PROMO1,PROMO2

PLOT EL/ML/SL

PLOT PROMO1/PROMO2/RR

RUN

APPENDIX 9.3. Five-State Mobility Matrix

v FIVE-STATE MOBILITY MATRIX WITH BIDIRECTIONAL FLOWS
NOTE THENUMBERSINTHE FIVESTATES ARE DEFINED
L SLK = SLJ#(DT)(R21.JK+R31.JK+R41.JK+R51.JK-R12.JK-R13.JK

X -R14.JK-R15.JK)

L S2.K = 82.J4(DT)(R12.JK+R32.JK+R42.JK+R52.JK-R21.JK-R23.JK

X -R24.JK-R25.JK)

L $3.K = S3.J4DT)(R13.JK+R23.JK+R43.JK+R53.JK-R31.JK-R32.JK

X -R34.JK-R35.JK)

L S4.K = S4.J+DT)(R14.JK+R24.JK+R34. JK+R54. JK-R41 JK-R42.JK

X -R43.JK-R45.JK)

L S$5.K = 85.J+(DT)(R15.JK+R25.JK+R25.JK+R45.JK-R51.JK-R52.JK

X ~R53.JK-R54.JK)

NOTE

NOTE LEVELS ARE INITIALIZED WITH CONSTANTS

NOTE SIl ... SIS



OTE

NZOZOZOZOZZ

S1=8l
SI1 =100
S2=8I12
SI2 =100
S$3=8I3
SI3=100
S4 =SI14
SI14 = 100
S5 =SI5
SI15=100
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OUTFLOW TRANSITION RATES ARE DEFINED
AS CONSTANT PARAMETERS TIMES THE
NUMBERS IN THE ORIGIN STATES

R12.KL = PARMI2*S1.K
R13.KL = PARMI3*S1.K
R14.KL = PARMI14*S1 K
R15.KL = PARMI5*S1.K

R21.KL = PARM2]*S2.K
R23.KL = PARM23*S2.K
R24.KL = PARM24*S2 K
R25.KL = PARM25*S2.K

R31.KL = PARM31*S3.K
R32.KL = PARM32*S3.K
R34.KL = PARM34*S3.K
R35.KL = PARM35*S3.K

R41.KL = PARM41*S4.K
R42. KL = PARM42*S4.K
R43.KL = PARMA43*S4.K
R45.KL = PARM45*S4.K

R51.KL = PARMS51*S5.K
R52.KL = PARMS52*S5.K
R53.KL = PARMS53*S5.K
R54.KL = PARMS54*S5.K

THE PARAMETERS ARE NOW SET. NOTE THE
CONSTRAINTTHATTHESUM OF THEOUTFLOW
RATES FROM A GIVEN STATE MUST BE LESS
THAN OR EQUAL TO UNITY. FOR EXAMPLE
PARMI12+PARMI13+PARMI4+PARMI5 MUST BE
LESS THAN OR EQUAL TO UNITY.

PARMI2=2
PARMI3 =2
PARMI4 =2
PARMI5=.2



Multistate Systems: The Behavior of Simple Chains 221

C PARM2] = .2

C PARM23=.2

C PARM24 = 2

C PARM25 = 2

NOTE

C PARM3I = .2

C PARM32= .2

C PARM34 =2

C PARM35 = .2

NOTE

C PARMdI = 2

C PARM42= 2

C PARM43 =2

C PARM45 = .2

NOTE

C PARMSI = .2

C PARMS2= .2

C PARMS53 = .2

C PARMS4 = 2

NOTE

NOTE OUTPUT SPECIFICATION
NOTE

SPEC LENGTH = 18/DT = .10/PRTPER = |/PLTPER = |
PRINT $1,52,53,54,S5
PRINT RI2,R13,R14,R15
PRINT R21,R23,R24,R25
PRINT R31,R32,R34,R35
PRINT R41,R42,R43 R45
PRINT R51,R52,R53,R54
PLOT S1,52,53,54,55(0,100)

RUN



Part 111

Complex Action and Interaction

In the second part of this volume we considered processes that could be
represented by systems with a single state, or by systems of relatively
small numbers of states formed into “chains.” The range of dynamic
phenomena that can be represented by such “simple” systems is
surprisingly broad, and includes most of the kinds of processes normally
studied by mathematical and statistical means. Nonetheless, there are
many phenomena that are not representable by systems of the types that
we've discussed so far, and we must now turn to more complex models.

The systems that we’ve considered so far have been used to represent
the dynamics of single individuals or single populations. This is
obviously not good enough for many applications in the social sciences
that involve multiple actors: persons, business firms, clans, nations,
political parties, etc. The dynamics that we have considered have
represented actors (individuals, variables, or aggregates) responding to
“internal” stimuli, or to their environments. We have not, however,
considered dynamics of interaction among multiple “smart” actors.

The elements of systems thinking that we discussed in part one of this
volume are the building blocks of the single-state systems that we
discussed in the first portion of part two. These “single-state™ systems, in
turn, are the building blocks of the somewhat more complex “chain”
models that we've just considered. Not surprisingly, the more complex
models that we will discuss in this section use “chains” as their basic
building blocks, and achieve their greater complexity by coupling chains
together with control systems.

The kinds of systems that we will consider in this third section are
useful for representing patterns of social interaction among multiple
actors, or among the “parts” of differentiated systems. In Chapter 10 we
will examine two nations competing in an arms race; in Chapter 11 we
will examine the relationships between an individual and their network
of social support. Each of these dynamics call for systems of multiple
actors in dynamic interaction. In Chapter 12 we will examine two
alternative views of the political econcmy of capitalist nations. The
models developed to represent these systems describe a single actor (a
society) that is composed of multiple institutional subsystems in

222
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dynamic interaction (economy, state, and cultural sectors). These
models also serve as examples of the range of phenomena that can be
approached with increasingly complex dynamic systems models.

Social Action and Interaction

The models examined so far might be termed “closed-system”
models, in that they deal with the behavior of single aggregates or single
individuals (persons, organizations, societies, etc.). Social action does
often resemble such “closed-system” situations in which individuals act
independently, or simply respond to environmental stimuli. Where such
an assumption is reasonable, each individual is the same as every other
one, and we can understand the behavior of each actor and all actors by
modeling one. A good deal of social action, however, cannot be
represented in this fashion. In many cases individual’s actions are not
merely responsive to a stable environment and to their own states. In
many cases individual actors interact with the environment (which may
be composed of many other actors). The models we've examined so far
are concerned with social action (i.e., action that is based on learned
meanings and goals and takes others into account), but have not really
considered social interaction (i.e., where actors are mutually responsive
to each others acts through systems of shared meanings).

Each of the models discussed so far has a second limitation for
describing many forms of social behavior. In each of the cases we've
considered, only the simplest forms of “coupling” and “feedback-
control” have been considered. In trying to create useful theories of
human behavior, we must confront the fact that another part of what we
mean by “social” behavior is often based on extremely complex systems
of monitoring, calculation, and goal setting—that is, social interaction
is often quite “smart” in the sense that we have used the term in this
volume. Most of the models that we've examined so far have been quite
simple in this regard, involving either direct and straightforward
“dumb” control or relatively simple “goal seeking.” Many patterns of
social action cannot be adequately represented with such simple tools.

Models of “social” action, by definition, are based on actors’
responses to stimuli as they perceive them and attach meaning to them.
In the models we've examined so far, we have (implicitly) assumed that
actor’s perceptions, assigning of meanings, and choices among strategies
were identical and not problematic. For example, we ignored the
process by which individuals perceive messages (or fail to, or distort),
the calculations of costs and benefits that they may make according to
their own values and preferences in deciding to adopt an innovation or
not, and the problems and delays that they may encounter in imple-
menting change. For many purposes, of course, it is perfectly fine to
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make assumptions about these processes and treat them as “black
boxes” that generate an expected distribution of outcomes (the prob-
ability of adoption in a period of time). But sometimes we might prefer
to focus our attention on theorizing about variance in these processes of
social cognition and decision making at the individual level.

Systems Complexity

The limitations of the kinds of models that we have been considering.
so far can also be seen from a “general systems” perspective. The kinds
of processes that we have considered are, in the terms used here, not
highly complex. That is, they involve relatively few states, these states
are coupled in simple patterns (usually single chains), and the mecha-
nisms of control have been relatively simple—often being easily
describable by very simple linear equations.

The models that we have considered thus far are predominantly of
“closed” systems. That is, the models reflect the working out of the
consequences of the initial conditions where only the levels of the states
of the focal system have effects on the realizations of the processes. Of
course, as we have pointed out, such models could be made into “open”™
systems by allowing for exogenous changes of various sorts. However,
we have not attempted to model interaction between the focal system
and others—that is, processes in which the actions of each actor become
the environment to which the other actors respond.

The linkages among states in the models we have examined so far are
also relatively simple. For the most part, the states of the models that we
have been considering are governed by direct material flows (as in
people moving from one age group to another) and simple laws
describing information effects (e.g., the flow of people from one level of
a hierarchy to another is governed by the “information” of the number
of vacancies at the higher level). In most social interaction, we might
imagine that the linkages are more complex, more contingent, and more
filled with error, selective perception, and distortion than are the “flows
through chains” types of models.

The models that we will consider in the next several chapters are of
considerable complexity in that they couple multiple “chains” together
by means of (often quite complicated) flows of information. The range
of dynamic behaviors that such models can produce is virtually
unlimited. And the complexity of phenomena that can be modeled by
putting together simple chains is liraited only by, imagination and
resources. With the consideration of the “linked chain” models in this
section, we will have in hand all of the “templates” of system types that
one may need in order to undertake the building of theories about
phenomena of any degree of complexity.
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