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M-TEST: A Test Chip for MEMS
Material Property Measurement Using

Electrostatically Actuated Test Structures
Peter M. Osterberg and Stephen D. Senturia,Fellow, IEEE

Abstract—A set of electrostatically actuated microelectrome-
chanical test structures is presented that meets the emerging
need for microelectromechanical systems (MEMS) process mon-
itoring and material property measurement at the wafer level
during both process development and manufacturing. When
implemented as a test chip or drop-in pattern for MEMS pro-
cesses, M-Test becomes analogous to the electrical MOSFET test
structures (often called E-Test) used for extraction of MOS device
parameters. The principle of M-Test is the electrostatic pull-in of
three sets of test structures [cantilever beams (CB’s), fixed–fixed
beams (FB’s), and clamped circular diaphragms (CD’s)] followed
by the extraction of two intermediate quantities (the S and B
parameters) that depend on the product of material properties
and test structure geometry. TheS and B parameters give a
direct measure of the process uniformity across an individual
wafer and process repeatability between wafers and lots. The
extraction of material properties (e.g., Young’s modulus, plate
modulus, and residual stress) from theseS and B parameters is
then accomplished using geometric metrology data. Experimental
demonstration of M-Test is presented using results from MIT’s
dielectrically isolated wafer-bonded silicon process. This yielded
silicon plate modulus results which agreed with literature values
to within �4%. Guidelines for adapting the method to other
MEMS process technologies are presented. [204]

Index Terms—Computer-aided design for microelectromechan-
ical systems, material properties, MEMCAD, MEMS, MEMS
modeling, microactuators, microelectromechanical systems, mi-
crofabrication, micromachining, microsensors, microstructures,
plate modulus, Poisson ratio, pull-in voltage, residual stress, wafer
bonding, Young’s modulus.

I. INTRODUCTION

W ITH THE growth of micromachining process tech-
nologies for microelectromechanical systems (MEMS),

there has developed a need for simple, accurate, and stan-
dardized process monitoring and material property extraction
capability (e.g., Young’s modulus, plate modulus, and residual
stress) at the wafer level during process development and
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manufacturing [1]. A broad array of material property ex-
traction methods has been proposed in the literature. These
methods include a resonant frequency measurement technique
on cantilever beam (CB) test structures [2], [3], a direct
tensile stress measurement technique [4], a capacitance/voltage
(C/V) measurement technique on fixed–fixed beam (FB) bridge
structures [5], the direct mechanical bending of CB test
structures by a known force and measurement of the resulting
deflection [6], a load/deflection technique on suspended thin-
film membranes under tensile stress and known pressure load
[1], [4], [7], and an electrostatic pull-in approach using tethered
rigid parallel-plate structures [8]. Most of the techniques re-
quire special micromachined structures or special test fixtures,
which makes them difficult to use in routine wafer-level
measurements, for example, in a manufacturing environment.
Furthermore, the extracted material property values have not
yet been demonstrated to have the accuracy required for
routine use. For example, a survey by Schweitz [6] of material
property measurement methods noted that the various reported
Young’s Modulus mean values obtained for [011] single-
crystal silicon fell between 120–220 GPa with uncertainties
of 20% or higher. A reasonable goal for uncertainty should
be a few percent in the extracted material property. The 20%
or larger uncertainties summarized by Schweitz, together with
the wide scatter of reported results, suggests that improved
measurement methods are needed.

The philosophy adopted in this work is that a viable test
method must be usable at the wafer level in a manufacturing
environment (and, thus, must be nondestructive), require only
readily available test equipment, and be supported with doc-
umented structure-design, data-acquisition and data-analysis
methods, and calibrated models for quantitative interpretation
of results. Out of the known methods, the best candidate
for meeting these requirements was judged to be the use of
electrostatic pull-in of microfabricated test structures, a method
pioneered by Petersen [2] and later extended by Najafi and
Suzuki [8].

Electrostatic pull-in is a well-known sharp instability in
the behavior of an elastically supported structure subjected
to parallel-plate electrostatic actuation. Because the event is
sharp, accurate measurements of the actuation voltage required
to reach pull-in can be easily made at the wafer level using
standard electrical test equipment plus a microscope. However,
in the work to date, the models used for data interpretation
have not been sufficiently detailed to achieve the required
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accuracy in extracted material properties. Further, guidelines
for structure design to match a given process and robust data-
reduction methods to achieve the maximum possible precision
have not been previously reported. The goal of the present
paper is to place the electrostatic pull-in method on a sound
experimental footing so that it can be widely used in MEMS
process testing and material property extraction. Accordingly,
when implemented as a MEMS test chip or drop-in pattern,
the method is given the name “M-Test,” in analogy to the
electrical MOSFET test structures (often called E-Test) used
for extraction of MOS device parameters.

The M-Test concept is based on an array of microelectrome-
chanical test structures of varying dimensions. Three specific
structures are studied here (and the concept can be readily
extended to a broader class of structures): CB’s, FB’s, and
clamped circular diaphragms (CD’s), all suspended above a
fixed ground plane by a gap (see Fig. 1). In each case, a
voltage is applied to the upper movable conductor, causing
it to deflect downward toward the underlying fixed ground
plane due to the electrostatic attraction. At a critical “pull-
in” voltage , the upper conductor becomes unstable and
spontaneously collapses (or pulls in) to the ground plane.
The pull-in voltage is related to the test structure’s geometry
and intrinsic material properties. Therefore, the pull-in data
provides a direct indication of the uniformity and repeatability
of a given process, and when supplemented with models and
geometric metrology data, the variation of pull-in voltage with
device geometry can also be used to extract material properties.

This work presents: 1) the development of closed-form
quantitative models for the pull-in of M-Test structures derived
from two-dimensional (2-D) and three-dimensional (3-D) nu-
merical simulations using the Massachusetts Institute of Tech-
nology’s software package for the computer-aided design of
microelectromechanical systems (MIT MEMCAD) [10], [11];
2) an experimental procedure and associated data-reduction
method, which removes geometrically correlated statistical
variation in order to improve the precision of the results and
uses geometric data on the test-structure dimensions (such as
beam thickness and undeformed gap) to extract material prop-
erties from the pull-in data; and 3) experimental verification
of the M-Test method using data from MIT’s dielectrically
isolated single-crystal silicon wafer-bonded process [12].

II. M ODEL DEVELOPMENT

This section presents the development of a quantitative
closed-form model for the dependence of the pull-in voltage of
a structure on its dimensions and material properties. “Closed-
form” in this context means an empirical fit to simulated
data using a theoretically derived functional form, as will
be explained later. In order for the model to be accurate,
the structure must be fabricated to meet standards of ideality
discussed below. It is then shown that the variation of pull-
in voltage with in-plane structural dimensions (beamlength or
diaphragm diameter) can be efficiently expressed in terms of
two intermediate quantities called and parameters. is
the “stress” parameter and is equal to , where is the
effective residual stress, is the structure thickness, and

Fig. 1. Three M-Test pull-in test structures: CB, FB, and CD.

is the undeformed gap. is the “bending” parameter and is
equal to , where is the effective stiffness for the test
structure. Because bothand are functions of a product of
material properties and test structure geometry, they provide
a direct quantitative measure of overall process uniformity
and repeatability (by analogy, the threshold voltage of a
MOSFET depends on a combination of material properties and
geometry and is routinely used for testing process uniformity
and repeatability), and with independently measured data on

and , the material properties and can be extracted
from and .

A. Ideal Test Structure

This section defines the ideal test structure for which the M-
Test models are developed. Extensions to various nonidealities
are discussed in Section VI. An ideal M-Test structure meets
the following requirements (see Fig. 2).

1) Two conductors: one conductor is initially flat, parallel,
and movable with respect to the second conductor. The
second conductor is a fixed infinite ground plane.

2) The movable conductor operates in the small-deflection
regime up until pull-in (linear elastic mechanics).
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Fig. 2. Schematic cross section of the ideal generic M-Test electrostatic
pull-in test structure with a suspended parallel movable structure over a fixed
ground plane. An FB example is shown here. Note the position-dependent
gap and electrostatic pressure,g(x) andPe(x), respectively.

3) The movable conductor has perfect fixed boundary con-
ditions (all six degrees of freedom at each boundary are
clamped).

4) The movable conductor has a prismatic cross section, no
undercutting, and no overetching.

5) The movable conductor has a negligible stress gradient
(hence, no curl in the cantilevers and no buckling or
bending of the beams and diaphragms).

The fixed boundary condition is created by the rigid sup-
port formed by the interface between the upper conductor
and dielectric spacer (see Fig. 2). An external voltageis
applied between the upper and lower conductors, which causes
the upper conductor to electrostatically deflect downwards.
Deflection increases with voltage until pull-in is reached.

It is assumed that FB’s are fabricated by etching a film,
which had an initial uniform biaxial stress . It is also
assumed that all beams are in the Bernoulli–Euler limit, which
requires that and , where is the beamwidth
[3]. This allows us to neglect the shear stresses near the
supports and approximate the stress in the beams as purely
uniaxial along the beamlength. Thus, when an FB is etched
from the biaxally stressed film, the resulting residual stress is
approximated as uniaxial with a uniform value of ,
where is the Poisson ratio. When a CB is etched, the stress
is fully released, except for shear stresses near the support,
also assumed to be negligible. Thus, stress in the cantilevers
is approximated as zero everywhere.

B. Closed-Form Pull-in Models

This section derives closed-form models for the pull-in
voltage of the three ideal test structures (see Fig. 1)
as functions of their geometry and material properties. The
method used to develop these models is extendable to other
test-structure geometries. Each model is ultimately based on
detailed 3-D numerical quasi-static self-consistent simulation
of the deformation of the test structure under the combined
effect of linear elastic forces and nonlinear electrostatic forces,
using the MIT MEMCAD system [10], [11]. However, be-
cause the M-Test structures are highly symmetric, indeed,
nearly 2-D, it was determined that a much simpler 2-D
finite-difference model, initially reported in [13] (with some
important typographical errors, which are corrected here), was

sufficiently precise in comparison with 3-D simulation to per-
mit its use over a wide design space. Therefore, while a general
test structure might require extensive 3-D numerical simulation
to develop the pull-in model, in this case, we were able to
use the 2-D simulation as a computational shortcut. Then,
with a large virtual database of simulated pull-in voltages,
we selected a functional form having the previously defined

and parameters and the in-plane size (beamlength or
diaphragm diameter) as the independent variables and three
dimensionless adjustable parameters as fitting parameters. The
resulting closed-form analytical expressions proved to be
an excellent representation of the simulated data and, thus,
constitute the required models.

The strategy for selecting the functional form is of interest
because it guides the extension of this model to other test
structures. We introduce a simplified one-dimensional (1-D)
pull-in model in which the pull-in voltage depends on the
undeformed gap and on the linear elastic response to an
applied uniform load. While not numerically accurate, this
model has the virtue of providing a functional form, which, for
many structures, can be approximated analytically by solving
a suitable linear differential equation. Dimensional analysis of
the solution to the differential equation guides the definition
of key parameters ( and in this case) and the assignment
of numerical fitting parameters, which can be adjusted to take
account of the nonlinearity of the electrostatic actuation and
other effects, such as fringing fields. Full details of the method
can be found in [13]–[15]; the key points are presented below.

1) 2-D and 3-D Simulations:The 2-D numerical simula-
tion was based on well-known beam and plate theory [16],
enhanced with a first-order fringing-field correction [14], [15].
Table I shows the governing differential equations for the 2-D
simulations. The factor in parentheses on the right of the can-
tilever and beam equations is the fringing-field correction. For
diaphragms, the effective modulusin Table I is ,
where is Young’s modulus. For cantilever and FB’s, is
dependent on the beamwidth [17]. A beam is considered wide
when . Wide beams exhibit plane-strain conditions,
and, therefore, becomes the plate modulus .
A beam is considered narrow when . In this case,

simply becomes the Young’s modulus. The effective
residual stress is the original biaxial residual stress for
diaphragms, while for CB’s and FB’s, is zero and ,
respectively, as explained earlier. The correctness of the use of
the above ranges in effective modulusand effective residual
stress was confirmed with finite-element simulation. This
model assumes only small-angle bending and neglects any
nonuniformity in the electric field due to curvature. These will
prove to be very reasonable approximations for the structures
examined here, which are constructed with initially parallel
components and have gaps that are small compared to their
lateral dimensions.

A finite-difference iterative relaxation method solver was
implemented in MATLAB [15], [18] to solve for the pull-
in voltage by observing the onset of numerical instability (the
incremental stiffness of the beam goes to zero at pull-in, so the
solution becomes unstable). Discretizations of 100 points were
used along the axial direction for beams and along the radial
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TABLE I
GOVERNING DIFFERENTIAL EQUATIONS FOR THETHREE M-TEST PULL-IN TEST

STRUCTURES. I = (1=12)wt3, w IS BEAMWIDTH, g = g(x) IS GAP,
Tb = ~�wt, Td = ~�t, "0 IS PERMITTIVITY OF VACUUM, AND V IS VOLTAGE

Fig. 3. Virtual database of pull-in simulation results for an FB example for
three different residual stress cases. The data points are simulation results
from the 2-D-distributed model. The solid lines are the closed-form model fit.
In each case, beamwidth= 50 �m, beam thickness= 14:4 �m, gap= 1
�m, E = 169 GPa, and� = 0:3. The two models agree to within 1%.

direction for diaphragms. A mesh refinement study showed
that pull-in voltage converged to about 1% with meshes finer
than 50 points.

The accuracy of the 2-D simulation was verified by compar-
ing six beam test cases with full 3-D MEMCAD self-consistent
electromechanical simulation (see Table II). Agreement be-
tween the 2-D and 3-D MEMCAD simulations to better than
1.5% was achieved, justifying the use of the 2-D model for the
extensive computations required to create the virtual database
of pull-in voltage simulations. Next, to create this virtual
database for CB’s, FB’s, and CD’s, hundreds of 2-D pull-
in simulations were run on a large set of representative test
structures with FB lengths varying from 100 to 1000m, CB
lengths varying from 100 to 500m, and CD radii varying
from 100 to 500 m. In each case, the thickness was held at
14 m and the FB and CB widths were held at 50m. In
addition, in each case, the Young’s modulus was varied from
50 to 200 GPa, and the residual stress range was varied from 0
to 250 MPa. An example of simulated results from this virtual
database for an FB case is shown as the datapoints in Fig. 3.

2) Identification of Functional Form:Fig. 4 shows a
lumped 1-D pull-in model, which provides some guidance in

TABLE II
FB PULL-IN SIMULATION COMPARISON. PULL-IN SIMULATIONS USING BOTH THE

2-D-DISTRIBUTED MODEL AND MIT MEMCAD W ERE PERFORMED ONSIX FB
TESTCASES, WHERE THEBEAMLENGTH AND RESIDUAL STRESSWERE VARIED. IN

EACH CASE, E = 169GPa,v = 0:06,w = 50 �m, t = 3 �m, andg = 1 �m

how the functional form is developed. The 3-D-distributed
problem is approximated by a rigid body suspended by
a lumped linear spring with spring constant . The
electrostatic pressure load equals , where
is the deformed test structure’s minimum gap spacing (based
on the cantilever tip deflection or beam or diaphragm center
deflection) and is the undeformed gap spacing. The spring
constant has units of N/m and is defined as ,
where is the maximum displacement of the structure with
no electrostatic load, but with auniform-distributed pressure
load . The critical point is that for many structures, can
be approximatedanalytically.For example, the analytical 2-D
solution of the uniformly loaded beam or diaphragm using
the differential equations in Table I (no electrostatic load, no
fringing, and only a uniform pressure load) yields

(1)

where

and is beamlength or diaphragm radius.
The expression is then inserted into the classical pull-

in expression (corrected to first order for fringing in the case
of cantilevers and beams, with the term proportional to
[13], 15], where the index refers to cantilevers,
to FB’s, and to diaphragms) to yield the following
analytical form for :

(2)

3) Final Closed-Form Models:To create the final closed-
form models, the analytical expression in (2) is modified with
two additional fitting parameters and , leading to the
general closed-form expression in Table III. The additional
fitting parameters capture the corrections needed to allow for
the fact that when the structure deflects under electrostatic ac-
tuation, the load is no longer uniform. Note that the ratio
appears in the factor, which is a measure of the relative im-
portance of stress versus bending. The stress-dominated limit is
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TABLE III
GENERAL CLOSED-FORM VPI EXPRESSION AND CORRESPONDINGBENDING- AND STRESS-DOMINATED LIMITS

TABLE IV
FINAL CALCULTED FITTING PARAMETERS FOR THE

CLOSED-FORM VPI EXPRESSIONS INTABLE III

, and the bending dominated limit is . Asymp-
totic forms for these two limits are also shown in Table III.

The final step was to solve for the fitting parameters
( and ) using nonlinear least-squares analysis on
the FB, CB, and CD virtual database created above, resulting in
the parameters shown in Table IV. To illustrate the accuracy
of the closed-form model compared to the simulated virtual
database, Fig. 3 shows the closed-form model (solid curves)
compared to simulated results for FB’s with varying residual
stress (0, 100, and 250 MPa). Agreement is within 1%.

III. SELECTION OF M-TEST STRUCTURE SIZES

This section describes the procedure for determining the M-
Test structure length and radius dimensions in order to properly
characterize a particular MEMS process. (It is assumed that the
thickness and gap dimensions are already set by the MEMS
process in question.) M-Test structure sizing is based on an
approximate analysis using the lumped pull-in model of (2).
It is useful to choose CB and FB drawn mask lengths and a
CD drawn mask radii so that the expected experimental pull-in
voltages of all the M-Test structures, after processing, will fall
in the 5–100-V range, since this is the voltage range dictated
by a typical M-Test experimental setup. To insure enough
pull-in data, we recommend a range of at least eight different
uniformly spaced length or radius dimensions of each of the
three test structures with expected pull-in voltages between
5–100 V. Furthermore, it is desirable to choose a range of
test structure sizes which will bracket the expected extracted
bending and stress values for the process under test (referred
to as a “centered” test-structure design). A centered design
will optimize the accuracy and dynamic range for extraction of

both the bending and stress parameters. An “off-center” design,
however, will sacrifice accuracy and dynamic range of one of
either the bending or stress value in exchange for improved
accuracy of the other. A centered design may or may not be
possible in a given process, depending on the relative sizes
of the bending and stress terms. Problems such as stiction or
residual compressive stress and/or stress gradients may make
the larger-dimensioned structures unfeasible.

Choosing the test structure beamlengths and diaphragm radii
can be done by combining the appropriate lumped model (2)
with estimates for the expected Young’s modulus or plate
modulus and residual stress. The first step is to use the material
property estimates and solve (2) for the CB and FB lengths
and the CD radii , which would yield a uniform spacing of
test structure dimensions with resulting ’s in the 5–100-V
range. The results are shown in Table V, with the fringing
term omitted, which is an acceptable approximation in this
design phase.

Next, we determine the design center, and ,
for the FB’s and CD’s, respectively, which are the values when
the magnitude of both the bending- and stress-effective spring-
force components (i.e., bending and stress) are equal.
For example, using an approximate analysis based on the 1-D
lumped model [15], in the FB case, this occurs when

(3)

Using this approach for both FB and CD, we get the values of
and in Table VI. An optimal centered design

would have both and fall right in the center
of the chosen range of the FB and CD dimensions. But, in
general, and may have to be offset, which will
cause the test structure set to be shifted toward the bending-
dominated or stress-dominated regime, thereby reducing the
sensitivity to the other parameter. Based on experience to
date, the minimum resolvable bending value occurs when

or are about equal to the minimum chosen FB
length or CD radius , and the minimum resolvable
stress value occurs when or are about
equal to the maximum FB length or CD radius .
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TABLE V
M-TEST LENGTH AND RADIUS SIZING EQUATIONS FOR CB’S, FB’S, AND CD’S

TABLE VI
EXPRESSIONS FOR THE“CENTER-DESIGN” DIMENSION AND

MINIMUM RESOLVABLE EFFECTIVE YOUNG’S MODULUS AND

RESIDUAL STRESS FOR BOTH THEFB AND CD TEST STRUCTURES

Therefore, using the “center design” expressions from Table
VI and substituting (or ) and (or )
for and , respectively, we get the resulting
expressions for the minimum resolvable bending and stress,

and , shown in Table VI.
As an example, we calculate the minimum resolvable bend-

ing and stress values and for the FB’s and CD’s
in the particular M-Test design to be presented in Section
V. In this case, the expected effective Young’s modulus is
approximately 170 GPa, and the expected residual stress is
in the range of 1 to 10 MPa. The expected thickness and
gap dimensions, after processing, are approximately 3 and 1

m, respectively. First, using the equations in Table V, we
were able to solve for the desired mask lengths and radii for
all the test beams and diaphragms. Next, using the equations
in Table VI, we can solve for the resulting and .
For FB’s, we get GPa and MPa.
For CD’s, we get GPa and MPa. In
both cases, the minimum resolvable bending value is well
below the expected value (170 GPa), indicating that this value
can be extracted with high accuracy. However, the minimum
resolvable stress value is on the same order as our expected
value (1–10 MPa), indicating that this parameter is right at
the threshold of resolution, and, therefore, its accuracy will
be low. This is a bending-dominated design for the expected
material properties, which was appropriate in this case because
the expected residual stress was quite small.

IV. EXPERIMENTAL PROCEDURE

The two-part M-Test experimental test procedure is outlined
in Fig. 5. The first part is the measurement of pull-in and the
extraction of and parameters, which are the fundamental
quantitative measures of process uniformity. The second part
is the extraction of material properties from theseand
parameters using metrology data.

A. and Parameter Measurement

1) In-Plane and Flatness Metrology:Two on-wafer mea-
surements are required to begin the procedure: 1) average
process offsets and between drawn and as-fabricated
beamlengths and diaphragm radii and 2) verification of flatness
of the structures to 0.1 m.

The and measurements are necessary to eliminate
systematic errors in the extracted and parameters. In
our work, this measurement is made using a microscope
(Nikon X-Y Measurescope UM-2) with a calibrated– stage,
yielding an in-plane length measurement accuracy of about

1 m. This accuracy would not be sufficient for electronic
device offset measurements, but is quite sufficient for typical
mechanical structures, which tend to be large.

The flatness measurement is necessary since both the
and parameters depend on the cube of the gap dimension
and, therefore, variations in this original gap due to buckling
or deflection (i.e., relative flatness) will be very important.
The flatness measurement can be performed optically using
an interference objective on the same microscope. A low-
pass optical filter at 500 nm or smaller is used with a 20
objective. Fringe curvature is used to estimate flatness. If only
the cantilevers are found insufficiently flat, this indicates the
existence of a stress gradient, and, therefore, the CB pull-in
models in this paper do not apply, but the FB’s and CD’s
may still be used. If either the FB’s or CD’s are found
insufficiently flat, then, this indicates the existence of either
excessive compressive stress (e.g., near or at the onset of
buckling) or plastic deformation, in which case one would
expect large errors from the models presented here. Extension
of the methods to cases with compressive stress is discussed
in Section VI.

2) Pull-In Measurements:The next step is the measure-
ment of . An experimental setup for structures, which
make Ohmic contact at pull-in, is shown in Fig. 6. If the
structures have an insulating film between the two electrodes,
Ohmic contact cannot be used, and either direct visual ob-
servation orC/V measurements are needed to detect pull-in.
For the devices studied here, is measured on a Went-
worth Labs probe station with a Hewlett-Packard HP4145B
Semiconductor Parametric Analyzer configured in a “force-
voltage/measure-current” mode. The HP4145B is programmed
to slowly ramp the voltage on each test structure at 1 V/s
over a specified voltage range until pull-in is detected on the
HP4145B I/V screen output interface as a sudden step in the
current (see typical data in Fig. 7). For the particular beam
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Fig. 5. M-Test experimental test procedure block diagram (two parts), wheren = # of die tested per wafer andm = # of pull-in measurements per die.

Fig. 6. M-Test pull-in measurement experimental setup. The polarity of the applied voltage in these experiments is reversed from Fig. 2 to achieve
accumulation of both semiconductor surfaces. Since forces depend on the square of the applied voltage, the pull-in voltage is independent of the polarity
of applied voltage, provided there are no complications from the depletion layers.

and diaphragm test structures used in this work (described in
Section V), the upper movable conductor is-type material,
while the underlying fixed ground plane is-type. The mea-
surement must be made with the moving conductor negative so
that accumulation layers form on the semiconductor surfaces.
If depletion of either conductor occurs, then a correction to
the measured would be needed to account for the field
penetration into the semiconductor. Because the onset of pull-
in is very sharp, the accuracy of the measurement is determined
by the voltage-ramp step increment, which was 100 mV in our
experiments. The ramp speed of 1 V/s is slow enough to insure
no dynamic effects during the bending of the test structures.

3) and Parameter Extraction:The next step is to vary
and to fit the versus (or ) data for each test

structure type on each die to the closed-form model (Tables III
and IV) using the and drawn mask dimensions modified
by the previously measured offsets (but, of course,is zero
for a CB). We have used the nonlinear least squares curve fit
in Kaleidagraph [19] for this purpose. An example versus

plot and corresponding curve fit is shown in Fig. 8 for two
sets of FB’s, one oriented along the [011] direction in a
plane of single-crystal silicon, the other oriented along the
[010] direction.

The die-to-die variation of and parameters across a
wafer provides an immediate test of process uniformity, and
the statistical ensemble ofand data from a wafer provides
a test of wafer-to-wafer and lot-to-lot repeatabilitywithout the
necessity of any further data reduction. However, typically, one



114 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 6, NO. 2, JUNE 1997

Fig. 7. Example M-Test pull-in measurement using I/V output on HP4145B.
This example shows the pull-in measurement for a 500-�m-long, 50-�m-wide
FB from MTEST-03. The forward-bias contact current is sensed when the
n-type Si beam comes in contact with thep-type substrate at the moment of
pull-in. The current compliance on the HP4145B is set to 10 nA.

is also interested in material property extraction. The suggested
procedure follows.

B. Material Property Extraction

To extract material properties from theand parameters,
additional metrology is required: 1) beam and diaphragm
thicknesses, preferably measured on each die and 2) spacer
thickness or undeformed gap , also preferably measured
on each die. These quantities are needed; first, to remove
systematic errors from the and parameters and second,
for extracting the final material properties from these error-
corrected values.

1) Thickness and Gap Metrology:In this work, thickness
measurements were made on each die using a Dektak II
Surface Profilometer, providing accuracy of0.01 m. The
oxide spacer thickness was measured ellipsometrically and
should correspond to the gap dimension for an oxide-isolated
silicon-wafer-bonded process. Unfortunately, die-by-die test
sites for oxide thickness were not available in the mask design
(but should be in future designs), so the value used was
a sample average provided by the sample supplier, with an
estimated accuracy of 0.01 m.

2) Remove Correlated Errors in and : Because and
depend on thickness and gap, some of the observed variation

in these quantities can be attributed directly to die-to-die
variations in geometry. To eliminate these correlated errors, we
plot the individual and parameter values versus thickness
for each die (and versus gap, if available for each die) and
determine if any correlation exists. We then scale the raw
and values to new values, and , which are the values
they would have if their thickness (and gap) was exactly the
global mean thickness (and the global mean gap ). We
then compute averages of these scaled parameters, referred to
as and , respectively. This is illustrated in Fig. 9 for the
data corresponding to the structures of Fig. 8.

V. EXPERIMENTAL RESULTS

A specific M-Test mask set (MTEST) was designed for use
with MIT’s dielectrically isolated wafer-bonded process [12],
[15]. Fabrication details are presented, followed by complete
experimental results from one test wafer (MTEST-03) out of
a lot of three wafers fabricated for this purpose.

A. Test-Wafer Description

The test structures described earlier were incorporated into
a mask set called MTEST, designed for the MIT dielectrically
isolated wafer-bonded process [12] by Charles Hsu of MIT.
MTEST is an array of three test chips alternating across a full
wafer, one each for CB’s, FB’s, and CD’s [15]. The mask
layout for the FB chip is shown in Fig. 10. The CB and CD
chips are not shown, but are similar to FB’s in terms of a
range of sizes of otherwise identical devices. Notice that the
beamlengths, widths, and crystal orientations are varied. When
built in a oriented wafer-bonded process, the two sets
of beams are oriented along [011] and [010]. The full 4-in
wafer contains 20 die, each from CB, FB, and CD for a total
of 60 die.

The cross section of the typical MTEST test structure can be
described by referring to Fig. 2. The upper conductor is made
of -type single-crystal silicon. The underlying fixed ground
conductor is made of-type silicon. An intermediate silicon
dioxide spacer layer forms the gap. In this process, the silicon
material is wafer-bonded on top of the patterned oxide, then,
thinned to a specified thickness, and, finally, patterned and
etched to create the final movable structures. This process is
particularly well-suited for the construction of idealized pull-
in test structures for three reasons. First, the gap dimension is
well controlled, since it is formed by etching a thermal oxide
with good selectivity. Second, the fixed boundary condition
at the ends of the structures approximates an ideal fixed
boundary condition due to the rigidity of the oxide support.
Third, there is no extraneous insulating dielectric coating on
either the upper movable electrode or the underlying ground
plane allowing for Ohmic contact at the moment of pull-in.
This allows for a simple accurate low-noise electrical pull-in
voltage measurement.

In the results presented below, only data from the wider
FB and CB beams ( m) from the MTEST-03 wafer
are reported. The narrow beams ( m) were found
to be significantly altered due to a plasma overetch, which
perturbed the surface of the test structure’s upper movable
beam and underlying fixed ground plane, requiring the use of
corrections to the formulas presented here. The results from
the narrow beams, including the necessary adjustments to the
model, have already been presented in [20].

B. FB Results

The procedures follow those specified in Section IV, step
by step.

1) Metrology: A beam-length mask bias offset measure-
ment ( ) was made on one MTEST-03 die inside the sweet
spot. The mask had been originally designed to anticipate a

2- m offset due to overetching of the oxide gap during
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Fig. 8. VPI versusL pull-in data for both [011] and [010] FB’s from each of the seven FB die from MTEST-03. For simplicity, only the composite
mean and standard deviationVPI data for each beamlength from the seven die are shown.

Fig. 9. Plots ofB parameter versus thickness (t–t0) for both the [011] and [010] FB’s from the seven FB die locations on MTEST-03. The good correlation is
clearly evident. The squares are the updatedB values, which have been shifted tot0, based on the correlation. Error bars were calculated from�B = (�B=�t)�t.

processing; hence, the as-drawn dimensions for all but the
[010] beams were intentionally preoffset from the nominal
design dimensions by 2 m. The measurement results
showed no additional offsets between the nominal and on-chip
dimension for any of the [011] FB lengths, indicating that the
anticipated 2- m offset did occur during the process, and a

2- m offset was found for the [010] FB lengths, which had
not been preoffset during mask layout. These adjustments to
nominal lengths were used for subsequent data analysis.

Dektak II surface profilometry thickness measurements were
made on a sample of FB’s from each of the seven FB die
positions inside the sweet spot of MTEST-03. The thickness
mean and standard error, which includes both die-to-die vari-
ation and random measurement error, were determined to be

m. The undeformed gap measurement
was supplied by the manufacturer of the bonded wafers, based
on ellipsometric measurements at five standard die locations
(center, top, bottom, left, and right). The undeformed gap mean
and standard error were determined to be m.
Interferometric measurements were made on a small sample

of beams from the MTEST-03 wafer. Flatness was confirmed
to be better than 0.1 m as required.

2) Pull-In Measurement and Data Analysis:The ( )
pull-in data was taken on each of the wide [011] and [010]
crystal-oriented FB’s (ten data points per die using the ten FB
lengths shown in Fig. 8 and seven die inside the sweet spot).
Then, this pull-in data was fitted in Kaleidagraph to the closed-
form model using the corrected beamlengths (
[011] and [010]) in Kaleidagraph (see Fig. 8).
The extracted and parameters from each of seven die were
then plotted against the thickness value from each die, and
the and values were then scaled to the nominaland
values (see Fig. 9), yielding a scaled set of seven parameters,

and ( and correction due to gap correlation was
not done, as stated earlier). Studies of the narrow beams,
which were done by Guptaet al. [20], revealed some nonideal
geometry because of an overetch during fabrication. Therefore,
the narrow beams were not included in this study.

The extracted parameter results are summarized in Table
VII. and are the averages of the sevenand values
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Fig. 10. FB MTEST mask layout. There are a total of 80 FB test structures, including two beamwidth splits (10 and 50�m) and two crystal orientation
splits ([011] and [010]), as shown above. The beamlengths range from 150 to 1500�m.

TABLE VII
EXTRACTED S AND B PARAMETERS AND MATERIAL

PROPERTIES FORFB’S FROM MTEST-03 TEST WAFER

before scaling for thickness variation, while and are the
averages after scaling. Note the improvement in standard error,
which results from removal of thickness-correlated variation.

Finally, we extract material properties from the scaled mean
values, and , with results given in Table VII. The

literature values for the plate modulii, and , where
, of single-crystal silicon are 170 and 141

GPa, respectively [9], which are in excellent agreement (2%)
with the results in Table VII. Also, note that the statistical
uncertainties in the plate modulus means in Table VII are
less than 4%, which is consistent with the excellent agreement
found and provides a good indication of the overall validity
of the M-Test approach.

The effective residual stress, 10 MPa, was expected to be
small and turns out to be right at the edge of the minimum
resolvable stress for this design. Most of the test structures
had lengths or radii, which were within the bending-dominated
regime. This was an “off-center” M-Test design, shifted toward
the bending-dominated side.

C. MTEST-03 CB and CD Results Summary

1) CB Results:Similar to the FB results above, param-
eter results were obtained from eight wide CB test structures
from each of seven CB die from MTEST-03 for both the [011]
and [010] crystal orientation cases [15]. (Note, there is no
parameter data in the case of CB’s since a CB has no residual
stress.) Due to the aforementioned overetch that occurred on
MTEST-03, the tips of the CB’s and the substrate around the
edges of the beam were affected, making precise determination
of the effective gaps impossible. Therefore, precise material
property extraction of was impossible. However, it was
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noted that the ratio of the CB’s meanvalues, ,
should agree with that of the FB’s and the
ratio from the literature. For the MTEST-03 CB’s, we found

Pa m
Pa m

This compares very well to the values of 1.22 found for
FB’s and 1.21 from the literature [9].

2) CD Results: and parameter results were obtained
from 14 CD test structures from each of seven CD die from
MTEST-03 [15]. Correlation checking between or and
thickness or gap could not be done since no metrology data
was done on any of the CD die. Therefore, a less precise set
of material properties was extracted directly from the mean
and values as follows:

GPa

MPa.

The mean value of the extracted plate modulus (152 GPa)
agrees with theory (155 GPa) [15]. (Note that “theory” here
indicates that, at least for modeling displacements of this kind
of structure, 155 GPa serves well as an effective isotropic plate
modulus of silicon.) The residual stress value falls in the
expected range (1–10 Mpa) and is, effectively, at the limit of
detection for this design.

VI. CONCLUSION

Through quantitative modeling and improved experimental
procedures, this work has demonstrated a methodology based
on electrostatic pull-in of geometrically ideal electromechani-
cal test structures (including CB’s, FB’s, and clamped CD’s),
which is now sufficiently accurate and robust to be used in
both MEMS process development and manufacturing at the
wafer level.

An important question is how to adapt the method to
processes, which may not produce such ideal geometry or
which may have compressive stress and/or compliant sup-
ports for the structures. All of these cause problems, but
the problems are not necessarily insurmountable. Gupta [20]
has already demonstrated that the models presented here can
be readily modified to account for beams with a trapezoidal
cross section (instead of ideal prismatic) and for such process
artifacts as beam undercut during release etch, provided one
is willing to make the geometric measurements needed to
support the modeling. Furthermore, the method is now being
successfully applied to structures with high residual stress and
compliant supports [21], [22], at least for the purposes of
monitoring process uniformity and repeatability. Quantitative
extraction of residual stress and elastic moduli in the presence
of stress gradients and residual compressive stresses has not
yet been rigorously demonstrated, but there appears to be
no fundamental reason why it should not be possible with
sufficiently expanded models to account for such effects as
support compliance, substrate curvature, and built-in imposed
bending moments due to stress gradients.

Two major aspects of the work presented here are the design
guidelines for how to apply M-Test to new processes, which
generate approximately ideal structures, and a constructive
procedure for how to expand the method to new processes
and less ideal structures by showing how to build quantita-
tively reliable closed-form pull-in models based on meaningful
intermediate parameters (and in the case presented here)
from which material properties can ultimately be extracted.
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