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Abstract: Forest structure, as measured by the physical arrangement of trees and their crowns, is a fundamental attribute
of forest ecosystems that changes as forests progress through suc;cessional stages. We examined whether LiDAR data
could be used to directly assess the successional stage of forests by determining the degree to which the LiDAR data
would show the same relative ranking of structural development among sites as would traditional field measurements. We
sampled 94 primary and secondary sites (19–93, 223–350, and 600 years old) from three conifer forest zones in western
Washington state, USA, in the field and with small-footprint, discrete return LiDAR. Seven sets of LiDAR metrics were
tested to measure canopy structure. Ordinations using the of LiDAR 95th percentile height, rumple, and canopy density
metrics had the strongest correlations with ordinations using two sets of field metrics (Procrustes R = 0.72 and 0.78) and a
combined set of LiDAR and field metrics (Procrustes R = 0.95). These results suggest that LiDAR can accurately charac-
terize forest successional stage where field measurements are not available. This has important implications for enabling
basic and applied studies of forest structure at stand to landscape scales.

Résumé : La structure de la forêt, telle qu’elle est mesurée par la disposition physique des arbres et de leur cime, est un
attribut fondamental des écosystèmes forestiers qui change à mesure que les forêts passent à travers les stades de succes-
sion. Nous avons examiné si les données obtenus avec le LiDAR pouvaient être utilisées pour évaluer directement le stade
de succession en déterminant dans quelle mesure les données LiDAR produisent le même classement relatif du développe-
ment structural de différentes stations que les mesures traditionnelles prises sur le terrain. Nous avons échantillonné 94 sta-
tions dans des forêts vierges et de seconde venue (âgées de 19 à 93, 223 à 350 et 600 ans) sur le terrain et avec un
LiDAR à impulsions discrètes et petite empreinte. L’étude a été réalisée dans trois régions couvertes de forêt résineuse
dans l’ouest de l’État de Washington, aux États-Unis. Sept séries de mesures obtenues avec le LiDAR ont été testées pour
mesurer la structure du couvert. Les ordinations utilisant les mesures du 95ième percentile de la hauteur, du plissement et
de la densité du couvert provenant du LiDAR avaient les plus fortes corrélations avec les ordinations utilisant deux séries
de mesures prises sur le terrain (Procrustes R = 0,72 et 0,78) et une série de mesures provenant du LiDAR et de mesures
prises sur le terrain combinées (Procrustes R = 0,95). Ces résultats indiquent que le LiDAR peut caractériser avec exacti-
tude le stade de succession de la forêt lorsque les données terrain ne sont pas disponibles. Cela a d’importantes répercus-
sions pour permettre la réalisation de travaux de recherche fondamentale et appliquée sur la structure de la forêt en allant
de l’échelle du peuplement à l’échelle du paysage.

[Traduit par la Rédaction]

Introduction

The three-dimensional arrangement of trees and their
crowns is a fundamental attribute of forest ecosystems that
correlates strongly with many ecological processes and serv-
ices, including biological diversity (McElhinny et al. 2005).
Forest structure has many components but is often described
by the size and spatial distribution of trees and by the hori-
zontal and vertical distribution of their foliage (Spies 1998;
Van Pelt and Nadkarni 2004; McElhinny et al. 2005). These
components often change as stands mature as do other as-
pects of forest structure and diversity that are directly or in-

directly related to the size and spatial distribution of trees
such as coarse woody debris, dead trees, abundance and di-
versity of the understory, and seral tree regeneration and bi-
odiversity (Franklin and Spies 1991; Lindenmayer and
Franklin 2002).

Because of the strong allometric relationships between
canopies and other aspects of stand structure, LiDAR meas-
urements have been shown to produce more accurate esti-
mates of parameters such as mean tree diameter, basal area,
biomass, and height than other remote sensing options
(Lefsky et al. 2001). Researchers have used LiDAR data to
measure crown height and length (Næsset and Okland 2002)
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and to estimate variation in tree diameter, tree density, and
basal area (Lefsky et al. 1999), aboveground biomass
(Lefsky et al. 2002), and fuel loads (Skowronski et al.
2007).

The ability to map the structural stage of forests across
landscapes using LiDAR data would be useful to researchers
studying forest structure and function, biologists mapping
potential habitat, and managers seeking to inventory their
properties. Several researchers have found that canopies rep-
resenting different stages within a successional trajectory
have distinct characteristics when measured with LiDAR, in-
cluding tulip popular deciduous forests (Harding et al. 2001;
Parker and Russ 2004) and Pacific Northwest conifer forests
(Lefsky et al. 1999). Hill and Thomson (2005) used LiDAR
and hyperspectral data to map different stages of forest suc-
cession in England. Falkowski et al. (2009) used LiDAR
data to successfully predict forest successional stage using
six categorical stages previously defined from field data for
Rocky Mountain forests with a 95.5% accuracy rate. This
latter work demonstrates the potential of LiDAR to provide
forest classifications that would be immediately interpretable
and usable by a wide variety of forest professionals.

These previous studies examined the ability of LiDAR
data to distinguish between distinct successional stages.
However, forest succession can be thought of as a continu-
ous process that produces gradients of structural characteris-
tics rather than distinct classes of structure. Our study
examines the ability of LiDAR data to measure succession
along gradients of multiple structural characteristics. Dem-
onstrating this ability would provide the theoretical basis for
classifying succession with LiDAR data. It would also pro-
vide an alternative method for measuring succession to the
imputation method used by Falkowski et al. (2009). This
would be useful either where adequate successional classifi-
cation schemes do not exist or when researchers want to test
the comprehensiveness of existing classification schemes
(e.g., Kane et al. 2010).

No single field or LiDAR measurement captures the state
of a stand’s structural development. Instead, studying pat-
terns of development requires examining relative changes in
suites of metrics, often using multivariate analyses such as
ordinations (Spies and Franklin 1991; Larson et al. 2008).
For example, four field variables (mean diameter at breast
height (DBH), standard deviation of DBH, tree density, and
density of trees with DBH > 100 cm) are strongly correlated
with the structural stage in Pacific Northwest forests (Spies
and Franklin 1991) and can be used to estimate the degree
to which a stand has progressed toward old-growth charac-
teristics (Acker et al. 1998). Subsequent work has empha-
sized the importance of the number and size of canopy gaps
as a measure of structural state (Spies 1998; Van Pelt and
Franklin 2000). Lefsky et al. (2005) found that a combina-
tion of three LiDAR metrics (mean height of LiDAR re-
turns, standard deviation of LiDAR returns, and canopy
closure) closely correlate with field measurements of struc-
tural attributes.

Our goal in this study was to examine whether LiDAR
data could be used to directly assess the relative succes-
sional stage of forests using plots spanning a range of ages
and forest zones in the conifer forests of the Pacific North-

west, USA We pursued this goal through three specific ob-
jectives.

The first objective was to determine the degree to which
LiDAR metrics would show the same relative ranking of
structural development among sites as would traditional
field measurements. Previous work had established that can-
opy structural complexity increases during forest structural
development as measured by increased crown height, crown
surface roughness (rumple), and canopy gaps (Van Pelt and
Franklin 2000; Ishii and McDowell 2002; Van Pelt and Nad-
karni 2004; Ogunjemiyo et al. 2005; Kane et al. 2008;
Van Pelt and Sillett 2008). These characteristics can be
easily measured with LiDAR. We assessed correlation be-
tween field and LiDAR assessments of structural develop-
ment by quantitatively comparing ordinations using both
types of data. If the ordinations were highly correlated, this
would provide a basis for mapping the successional stages
directly from LiDAR data alone.

The second objective was to determine whether a small
set of easily interpreted LiDAR metrics could be used to dif-
ferentiate sites based on their relative structural complexity.
This objective paralleled the work of Lefsky et al. (2005),
who examined this question using LiDAR data from an ex-
perimental large-footprint, waveform instrument. Because
most LiDAR acquisitions use small-footprint, discrete return
instruments, their results should be validated using this more
common data type. The identification of such a subset could
make maps of forest structure easier to interpret by a variety
of forest professionals.

A third objective was to determine the effect of using a
fixed-sized LiDAR sample area when our field data were
collected over variable plot sizes. While variable-sized field
plots are common in many studies, fixed-grid cells are used
to create maps from remote sensing data sets. We calculated
our LiDAR metrics using both fixed-sized areas and varia-
ble-sized areas that matched the variable field plot areas. It
was presumed that LiDAR data calculated from areas the
same size as the underlying plots would be more strongly
correlated with field measurements than would those from
the fixed grid size.

Methods

Structural characteristics measured
We selected five field and six LiDAR metrics that had

been identified in other studies as key for distinguishing for-
est structural condition (Table 1). Data for example plots are
presented in Fig. 1 and Table 2.

Four field metrics were based on key live tree structural
attributes identified by Spies and Franklin (1991): mean
DBH, standard deviation (SD) of DBH, density of trees per
hectare, and density of trees with DBH > 100 cm. Canopy
cover was selected as a fifth field metric because of its im-
portance as an indicator of disturbance and availability of
light to lower canopy layers and the understory (Spies
1998; Van Pelt and Franklin 2000).

The LiDAR metrics were selected from three categories
of metrics found by Lefsky et al. (2005) to be highly corre-
lated with field measurements of stand structure: height, var-
iation of height, and canopy density (which is a LiDAR
measure of canopy closure). We tested their suggested Li-
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DAR metrics (mean height, SD of height, and canopy den-
sity) along with the 95th percentile of height, coefficient of
variation (CV) of height, and rumple. Rumple is the ratio of
canopy outer surface area to ground surface area (Parker et
al. 2004) as measured by the LiDAR-derived canopy surface
model and digital terrain model (see ‘‘LiDAR data’’ below).
It is therefore a three-dimensional measure of canopy struc-
tural heterogeneity, whereas SD and CV of height are one-
dimensional measures (Fig. 2).

There are fundamental differences between field- and Li-
DAR-derived measurements of height. For example, field-
measured ‘‘mean height’’ typically refers to the mean of the
maxima for individual treetops in field measurements. Li-
DAR-measured ‘‘mean height’’ refers to the mean of all re-
turns along the exposed crown surfaces and understory and
ground, where visible to the instrument. The 95th percentile
LiDAR height measurement used in this study is the height
at which 95% of LiDAR returns fall below. This measure-
ment is likely closely aligned with field-measured mean
height of canopy maxima.

Since we used only first return LiDAR data (see below),
it is likely that most of our measurements represent the
upper canopy. The number of returns from the subcanopy
was insufficient to draw any conclusions regarding structure
at this level.

Study area
The 36 679 ha Cedar River Municipal Watershed is lo-

cated on the western slope of Cascade Range in Washington
State, USA (Fig. 3). Elevations range from 165 to 1655 m.
Forests at elevations below ~800 m lie in the Western Hem-
lock Zone (Henderson et al. 1992; Franklin and Dyrness
1988). Elevations from ~800 to 1200 m lie in the Pacific
Silver Fir Zone. Forests above ~1200 m lie in the Mountain
Hemlock Zone.

It is believed that the three forest zones follow similar se-
quences of structural development following stand-replacing
disturbance (Franklin and Spies 1991; Larson and Franklin
2006; Parish and Antos 2006). Early seral stands in the
Western Hemlock Zone typically are dominated by Pseudot-

Table 1. Field- and LiDAR-based metrics used in the study.

Notes

Field-based metrics
Mean DBH
SD DBH
Density of canopy trees per hectare (log)
Density of trees >100 cm DBH per hec-

tare
Canopy cover Canopy closure (proportion). Averaged from 16 measurements with a spherical densiometer

LiDAR-based metrics
95th percentile height of first returns (m) Similar to maximum height but less sensitive to anomalously high points
Mean height of first returns (m) Sensitive to tree height and to changes in distribution of foliage along the stem
SD first return heights Sensitive only to vertical variation in canopy structure
CV first return heights Sensitive only to vertical variation in canopy structure
Rumple index Ratio of three-dimensional canopy surface model area to ground area. Calculated by sum-

ming the three-dimensional area of triangles formed by canopy surface model grid points
divided by the two-dimensional area of the grid cell surface. Sensitive to vertical and hor-
izontal variation in canopy structure

Canopy density Proportion of first returns greater than a lower height limit of 3 m above ground in the digital
terrain model. Height limit was used eliminate returns from herbaceous and shrub cover

Note: See Methods for details on metrics and basis for selection.

Fig. 1. Examples of the range of canopies for plots used in this study. Each canopy surface shown was created for one of the plots from the
LiDAR data (30 m � 30 m areas). Canopies were considered to be more structurally complex as crown heights and rumple values increase
and as canopy densities (proportion of canopy with foliage blocking view of the ground from the LiDAR instrument) decrease through the
formation of gaps. Table 2 provides measured field and LiDAR metric values for these example plots.
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suga menziesii ((Mirb.) Franco var. menziesii (Douglas-fir)),
especially following harvest. Thuja plicata Donn ex D. Don
(western redcedar) and Tsuga heterophylla (Raf.) Sarg.
(western hemlock) are often early or later seral components.
Forests in the Pacific Silver Fir Zone are primarily com-
posed of shade-tolerant species Abies amabilis (Dougl. ex
Loud.) Dougl. ex J. Forbes (Pacific silver fir) and T. hetero-
phylla (Lertzman and Krebs 1991), with some early seral
stands dominated by Abies procera Rehd. (noble fir). Stands
in the Mountain Hemlock are often dominated by A. amabi-
lis mixed with Tsuga mertensiana (Bong.) Carrière (moun-
tain hemlock). Mature trees in the Pacific Silver Fir and
Mountain Hemlock Zones generally do not reach the same
heights and crown dimensions as comparable species in the
Weatern Hemlock Zone.

The time scales for structural development differ in the
three zones, with development slowing with increasing ele-
vation. Competitive exclusion in the Western Hemlock
Zone, for example, commonly lasts for 50 years (Franklin
et al. 2002), for 100–300 years in the Pacific Silver Fir
Zone (Packee et al. 1982), and for centuries in the Mountain
Hemlock Zone (Parish and Antos 2006).

The majority of the watershed’s forests (84%) are second
growth (<100 years old) that established naturally (pre-
1920s) or were planted following harvest (starting in the
1920s) (Erckmann et al. 2000). Timber harvests began in
the western lowlands of the watershed in the early 20th cen-
tury and moved eastward to higher elevations until harvest
ceased in the 1990s. As a result, the ages of second-growth
stands are correlated with elevation and forest zone. Less
than 1% of the watershed was 100–200 years old; no stands
in that age range were included in this study. A portion of
the watershed (16%), primarily at mid- to high elevations,
consists of primary forests 200–350 years old that appear toT
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Fig. 2. Comparison of rumple index (ratio of canopy outer surface
area to ground surface area) and standard deviation of height as
measures of canopy structural complexity. Higher rumple values
result from more heterogeneous three-dimensional vertical and hor-
izontal heterogeneity, while standard deviation of height measures
one-dimensional vertical heterogeneity. In both artificial canopy
surface models, half of the points are at a height of 50 m and half
are at 100 m. Of the LiDAR metrics used in this study, only rumple
would distinguish between these two surfaces.
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have regenerated following widespread stand-replacing dis-
turbances, presumably fires (Hemstrom and Franklin 1982;
J.A. Henderson (personal communication, 2009)). Forests in
one basin survived the disturbances of 200–350 years ago
and have a cohort of trees ~600 years old.

Field data
The watershed contains a network of 115 permanent sam-

ple plots laid out in an approximate grid designed to sample
the range of forest types and environmental conditions
within the watershed. Field data were collected between
2003 and 2005, with most sampling done in the summer
and early fall. Twenty-one plots were eliminated from this
study because of missing data or because deciduous trees
comprised >5% of the basal area. Of the 94 plots that were
used in this study, 59 were second-growth and 35 were pri-
mary forests (Fig. 4).

The stand age for each plot site was estimated by coring
dominant trees within the plot and assigning the age of the
oldest trees to the site. All secondary forest sites were aged,
and 17 of the 35 primary forest plots were aged. Forest ages
were further verified with historic harvest and regeneration
maps maintained by the Watershed’s management.

Field plot radius was chosen to include >25 live trees

with DBH > 12.7 cm. Plots ranged from 0.04 to 0.16 ha
with a mean of 0.10 ha and a mode of 0.08 ha (59% of
plots). The location of each plot center was determined us-
ing a Trimble Pathfinder Pro XRS GPS System and re-
corded on a TSC1 Asset Surveyor. The data were
postprocessed using Trimble Pathfinder software to remove
satellite position distortion.

Each tree was classified as dominant, codominant, inter-
mediate, or overtopped (Smith et al. 1997). Only data from
dominant, codominant, and intermediate trees were included
in this study because these trees had crowns that would have
been measured by the LiDAR instrument. Canopy cover was
measured as the mean of 16 canopy closure measurements
taken using a spherical densiometer at four points along
each of four lines radiating from the plot center in each car-
dinal direction.

LiDAR data
LiDAR data were collected by Spectrum Mapping, LLC

using their DATIS II system over the winter of 2002–2003.
The nominal flying height above ground for the LiDAR ac-
quisition was 2000 m. The LiDAR data were collected using
a laser pulse repetition rate of 35 kHz and a scan rate of
25 Hz while being confined to a scan angle of ±13.58. These

Fig. 3. Shaded relief map of the Cedar River Municipal Watershed in Washington State, USA (47.48N, 121.98W), showing dominant forest
zones and plots. Plots shown by age classes based on development stages from Franklin et al. (2002) based on typical ages for the Western
Hemlock Zone. Biomass accumulation/competitive exclusion class is shown as two age classes because of the large number of plots sites in
this developmental stage. Insert shows Watershed location within Washington State.
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specifications resulted in a ground footprint diameter of
0.46 m, with an average spacing of laser pulses of 1.0 m
across track and 2.0 m along track. Up to five returns were
recorded from each pulse. Swath centerline spacing was
400 m with an approximate overlap of 50% between adja-
cent flightlines.

Pulse (first return) point density for study plots ranged
from 0.4 to 2.7 m–2 (mean = 0.97 m–2) among study plots
(Fig. 4). The proportion of pulses without multiple returns
ranged from 0.59 to 1.00 (mean = 0.85). To ensure that var-
iation in the multiple return proportions did not affect re-
sults, only the three-dimensional positions of the first return
LiDAR data were used for calculating canopy structure met-
rics. As a result, only trees with exposed crown surfaces
were likely included in the LiDAR data.

LiDAR data were processed using the FUSION software
package (beta version derived from version 2.64; http://
forsys.cfr.washington.edu/fusion.html). A digital terrain
model was calculated for the entire watershed. All returns
in the LiDAR point cloud were filtered to identify ground
returns using an iterative algorithm (Kraus and Pfeifer
1998; Andersen et al. 2006) that computed an initial surface
using the weighted average of all LiDAR returns. A cell size
of 8 m � 8 m was chosen for the initial and intermediate

surfaces to provide a sufficient number of ground points
within each cell given the moderate density of the LiDAR
data and the dense canopy present at many plot sites. For
each iteration, weights were computed by comparing the re-
turn elevation with the elevation interpolated from the sur-
face derived in the previous iteration or the initial surface
for the first iteration. Points below the surface were given
large weights and points above the surface were given a
weight of zero. At the conclusion of each iteration, a new
surface, presumably closer to the ‘‘true’’ ground surface,
was computed. After the desired number of iterations, points
on or below the final intermediate surface were identified as
ground points. The algorithm requires that the user specify
the number of iterations. For this study, five iterations were
used to remove nonground returns.

Once a set of ground returns was identified, a digital ter-
rain model covering the entire watershed was created using
3 m � 3 m grid cells. If identified ground points were
present in a cell, the cell was assigned the minimum value
of those points. If no ground points were present in a cell,
the ground elevation was interpolated using a ‘‘hole-filling’’
algorithm to search in eight adjacent directions for valid ele-
vations and then compute the distance-weighted average of
the valid elevations from surrounding cells. All canopy

Fig. 4. Histograms showing study site characteristics for site age, plot size, LiDAR pulse density, and proportion of first returns out of all
returns. Unaged sites are all primary forests believed to be 220–350 years old.
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structural metrics were based on heights above the digital
terrain model.

For each plot, LiDAR metrics were calculated for a sam-
ple of the LiDAR data the same size as the field plot and for
a fixed 30 m � 30 m (0.09 ha) area centered on the plot’s
GPS location. The 30 m � 30 m size approximated the
most common plot size and is characteristic of a grid cell
size that might be used in a mapping effort. Canopy surface
models were created for each study site from first returns
using a 1.5 m grid cell and a 3 � 3 smoothing algorithm.
These parameters were compromises that provided realistic
canopies over the range of canopy types and pulse densities
in the study. The 1.5 m cell size was chosen to ensure that
most sites averaged at least one point per grid cell defining
the canopy surface model height. Smoothing eliminated the
jagged, unnatural canopy surface that is common when mod-
erate-density LiDAR data are used without smoothing, such
as ‘‘pits’’ within tree crowns due to small gaps that permit a
first return from the ground surface.

Statistical analysis
Correlations between field and LiDAR metrics were com-

pared both for individual metrics using Pearson coefficients
and for multivariate sets of metrics using principal compo-
nents analysis (PCA). PCA was appropriate for these data,
as most variables had approximately linear relationships
with each other (McCune and Grace 2002). Correlations
were computed for both the fixed- and the variable-sized Li-
DAR samples. Plots were identified by age classes in ordi-
nations.

We selected 10 combinations of field and LiDAR metrics
for PCA and comparison. Three ‘‘base’’ combinations were
used: one that included all 11 field and LiDAR metrics, one
that used only the five field metrics, and one that used only
the six LiDAR metrics. The remaining seven combinations
were subsets of three metrics following the same pattern as
Lefsky et al. (2005): a size measurement, a size variation
measurement, and a cover measurement. One of these seven
sets of three metrics used field metrics and the others used
different combinations of LiDAR metrics.

Within the ordinations, PCA was conducted with the
prcomp function of the R statistical package (release 2.6.1)
(R Development Core Team 2007). All variables were nor-
malized prior to analysis to eliminate differences in scale
and units of measurement among variables. Separate ordina-
tions were done for the LiDAR data that matched the size of
each study site and for the fixed 30 m � 30 m areas.

Procrustes analysis (Digby and Kempton 1987) was used
to determine the correlation between pairs of ordinations.
We were particularly interested in how well the information
contained in ordinations of the base combinations could be
represented by the subsets of LiDAR metrics. The Pro-
crustes test rotates and rescales the axes of two ordinations
and then computes the sum of squares error (m2) between
the locations of corresponding points in the two ordinations
(Fig. 5). A correlation-like coefficient (r) was computed as r
= sqrt(1 – m2) and significance (p) was computed through
permutations of the data. Statistical significance of the Pro-
crustes tests was determined with the protest function in the
vegan package (release 1.8-8) (Oksanen et al. 2008) of R
with 1000 permutations.

Results

Correlation between field- and LiDAR-based measures of
structural complexity

Individual metrics
Most field and LiDAR metrics were correlated (Table 3).

Canopy cover (a field measurement) and canopy density (a
LiDAR measurement) were strongly correlated. Mean DBH,
SD of DBH, SD of height, and rumple were correlated.
Mean and 95th percentile height formed another set of cor-
related metrics. On the other hand, tree density, large-tree
(>100 cm DBH) density, and CV of height had no signifi-
cant correlations with many metrics and only weak correla-
tions with others metrics.

Ordinations
Ordinations using different sets of metrics were found to

explain similar amounts of variation and show similar rela-
tionships between sites (Fig. 6 shows four of the 10 ordina-
tions performed). Because a substantial portion of the
variance in all ordinations was explained in the first two
axes, only these axes are presented and interpreted. The first
two axes explained 71.3% of variations for the ‘‘all field and
LiDAR’’ metrics ordination (Fig. 6a), 78.4% for the ‘‘all
field’’ ordination (Fig. 6b), and 83.0% for the ‘‘all LiDAR’’
ordination (not shown). In the first two of these ordinations,
the variation explained in the first two axes was reduced be-
cause the density of trees >100 cm DBH was loaded most
strongly onto the third axis. The first two axes explained
87.7%–96.5% of the variation in ordinations based on sub-

Fig. 5. Example of translation and rotation used in Procrustes ana-
lysis to calculate correlation between ordinations shown in Fig. 6c
and 6d. Segments connect the location of each site in ordination
space based on the LiDAR core metrics (shaded circles) and the
field core metrics (open circles). Rotation can be seen by compar-
ing the horizontal and vertical axes of the ordination based on Li-
DAR core metrics (solid axes) and subset of field metrics (broken
axes). The overall correlation between these ordinations was Pro-
crustes R = 0.87 (p < 0.01).
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sets of field (Fig. 6c) and LiDAR (Fig. 6d) metrics. In each
ordination, the first principal component was primarily cor-
related with measures of size (DBH or height) and size var-
iation. The second principal component was primarily
correlated with measures of canopy closure/density and (or)
tree density.

Each ordination showed a distinct V-shaped pattern. The
arms of the ‘‘V’’ were labeled based on the characteristics
of the sites present. In each ordination, one arm had sites
<50 years old predominating, a trend of increasing height
and canopy density, and was labeled ‘‘>Closure’’. The other
arm had sites >75 years old predominating, a trend of in-
creasing rumple and decreasing canopy density, and was la-
beled ‘‘>Complexity’’. Sites 50–75 years old were
predominant at the base of the ‘‘V’’.

Effect of using different subsets of LiDAR metrics
Ordinations using different sets of metrics generally were

correlated, and two subsets of LiDAR metrics were found
that were highly correlated with the full set of field and Li-
DAR metrics and the sets of field metrics. With the excep-
tion of ordinations that included CV of height, ordinations
had Procrustes correlations of 0.71–0.96 (Table 4). Ordina-
tions that included CV of height had correlations of 0.40–
0.87. Ordinations with subsets of three LiDAR metrics that
did not include CV of height had similar correlations with
the ‘‘‘all field and LiDAR’’, ‘‘all field’’, and ‘‘field subset’’
ordinations. The ordination produced with the LiDAR 95th
percentile of height, rumple, and canopy density had slightly
higher correlations with ‘‘all field and LiDAR’’ and ‘‘all
field’’ ordinations than other tested subsets of LiDAR met-
rics. An ordination that substituted SD of height for rumple
had a marginally higher correlation with the ‘‘field subset’’
ordination.

Effect of LiDAR sample area
In almost every case, Pearson correlations were higher for

the fixed-sized LiDAR sample than for the variable-sized
LiDAR sample that matched the plot size (Table 3). Corre-
lations between ordinations using subsets of LiDAR metrics

and field metrics were higher when the fixed 30 m � 30 m
LiDAR plots were used than when the variable-sized Li-
DAR samples were used that matched the size of the under-
lying field plot (Table 4). Variable-sized plot sites produced
higher correlations between subsets of LiDAR metrics and
the full set of LiDAR metrics.

Discussion

Correlation between field- and LiDAR-based measures of
structural complexity

The high correlation between field and LiDAR metrics
and ordinations in our study indicates that these two sets of
measurements captured similar patterns in stand structure.
Our findings, therefore, support the use of LiDAR measure-
ments to directly map forest structural complexity and infer
age-related successional stage (as was done in Kane et al.
2010).

The changes in the field and LiDAR ordinations appear to
correspond to key changes in structure for Pacific Northwest
forests (Spies and Franklin 1991; Franklin et al. 2002). In
the ordinations, the arm labeled ‘‘>Closure’’ appears to rep-
resent the processes of canopy closure and mortality typical
of the biomass accumulation/competitive exclusion stages.
The other arm labeled ‘‘>Complexity’’ appears to represent
the increase of structural heterogeneity, canopy layering,
and the creation of canopy gaps typical of the maturation
and vertical diversification stages. The strong pattern in the
ordinations suggests that the field and LiDAR metrics corre-
late well with dominant processes in forest structural devel-
opment.

Authors who have studied the development of forest
structure have emphasized that the process is highly varia-
ble, with some sites developing advanced structural charac-
teristics more quickly than others (Franklin et al. 2002;
Larson et al. 2008). This was evident in the arm of our ordi-
nations representing the accumulation of greater complexity
following canopy closure. Younger sites were more common
at the base of this arm and only primary sites were found at
its end, but considerable mixing of site ages occurred in be-

Table 3. Pearson correlations of LiDAR metrics with other LiDAR metrics and field metrics.

95th percentile
height Mean height Rumple SD height CV height

Canopy
density

Lidar metrics
95th percentile height 0.98
Mean height 0.94 (0.94) 0.96
Rumple 0.76 (0.63) 0.51 (0.38) 0.90
SD height 0.80 (0.68) 0.57 (0.43) 0.94 (0.88) 0.91
CV height –0.23 0.94
Canopy density 0.65 (0.62) 0.73 (0.69) 0.26 0.31 –0.24 0.93

Field metrics
Density of canopy trees –0.42 (–0.33) –0.38 (–0.37) 0.34 (0.31)
Density of trees >100 cm DBH 0.34 (0.28) 0.44 (0.40) 0.41 (0.33)
Mean DBH 0.83 (0.80) 0.67 (0.67) 0.76 (0.62) 0.83 (0.75) 0.39 (0.35)
SD DBH 0.74 (0.67) 0.53 (0.50) 0.80 (0.73) 0.78 (0.70) 0.35 (0.32)
Canopy cover 0.55 (0.53) 0.56 (0.53) 0.304 (0.271) 0.38 (0.31) 0.71 (0.64)

Note: Bolded values show the correlation between LiDAR metrics for fixed- and variable-sized plot site areas. Correlations in parentheses are for
variable-area plots; other correlations are for fixed-area plots. Only correlations significant at p £ 0.05 are shown. Height measurements in metres,
DBH measurements in centimetres, and canopy density and cover measurements in proportions.
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tween. Many second-growth sites had more structural com-
plexity (whether measured with field or LiDAR metrics)
than many primary sites, perhaps because of establishment

histories (Tappeiner et al. 1997; Winter et al. 2002) or a his-
tory of intermediate disturbance (Zenner 2005; Lutz and
Halpern 2006). The causes and implications of variations in

Fig. 6. Ordinations resulting from principal components analyses of different sets of field and LiDAR metrics using fixed-sized LiDAR
sample areas. LiDAR density is the canopy density computed from LiDAR data. Plots shown by age classes based on development stages
from Franklin et al. (2002) based on typical ages for the Western Hemlock Zone. The length of each arrow indicates the strength of the
correlation between that variable and the axes. Angles between arrows indicate the strength of the correlation between the metrics (smaller
angles <908 indicate higher positive correlations, 908 angles are uncorrelated, >908 angles are negatively correlated, and 1808 angles are
perfectly negatively correlated). The bottom and left axes (coordinate system 1) are the principal components (actual observations matrix
multiplied by loadings), while the top and right axes (coordinate system 2) are the loadings (‘‘weights’’ assigned to each variable after cen-
tering and scaling).
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stand development shown in these ordinations are more fully
explored in a companion paper (Kane et al. 2010).

Our study had limitations for studying structural develop-
ment of Pacific Northwest forests because of the lack of
sites in the 94- to 222-year-old and 351- to 599-year-old
age ranges. These data gaps may reduce the ability to ex-
trapolate our results to conifer forests of all age ranges.
However, the lack of gaps in the ordinations suggests that
our data set captured dominant processes that drive the de-
velopment of structural complexity. Future LiDAR acquisi-
tions that include larger wider ranges of stand ages can test
this assertion and extend our results. These results should
also be tested using other forest types.

The arch present in the PCA ordinations was not a mathe-
matical artifact as can occur with community data (Podani
and Miklos 2002). It was also present in nonmetric multidi-
mensional scaling ordinations (not shown), indicating that it
was an inherent characteristic of the data set. The arch struc-
ture was also seen in the ordinations of structural metrics
performed by Spies and Franklin (1991) and Lefsky et al.
(2005).

The arch itself corresponds to changing dominance of key
processes during stand development (Franklin et al. 2002).
Canopy closure increases early in stand development but
the canopy then partially reopens through gap formation.
Tree density decreases through competition mortality and
disturbance and then increases because of the emergence of
trees from the understory. Structural heterogeneity of the
canopy surface (rumple) remains relatively low early in
stand development but begins to increase as vertical and
horizontal diversification of the canopy surface develops.

Selection of a subset of metrics
Lefsky et al. (2005) found that stand structure can be

characterized using three categories of LiDAR metrics: one
to represent biomass (height measurement), one to measure
canopy structural complexity (variability of height), and one
to measure canopy gaps and leaf area index (canopy density)
(Lefsky et al. 2005). We found that subsets that included
one LiDAR metric from each of these categories correlated
with sets of metrics that included field data better than did
the full suite of LiDAR metrics. Hence, we may reduce re-
dundancy of these measures to an intuitive subset of LiDAR
metrics to describe stand structure.

We used 95th percentile height as our measure of stand
height (Lefsky et al. 2005). This metric was loaded most
strongly on the first principal component (Fig. 6d). Individ-
ual metrics to represent height were highly correlated, sug-
gesting that the choice of particular metrics probably made
little difference to the conclusions. Nonetheless, we suggest
that 95th percentile height is preferable to mean height be-
cause of the pattern of crown development for trees in our
region. While foliage distribution in young conifer stands is
generally concentrated in the top canopy layers and crowns
are relatively short, foliage is more evenly distributed
throughout the canopy space in older stands due to greater
light penetration (Ishii and McDowell 2002; Van Pelt and
Sillett 2008). Mean height of LiDAR returns, therefore,
would reflect the combination of tree height growth and fo-
liage redistribution, making interpretation of results prob-
lematic. In addition, the 95th percentile height metric is lessT
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sensitive to outliers than metrics such as maximum height,
which was not tested because it can be skewed by a small
portion of the area with abnormally high material or even
by returns from flying birds.

Rumple, our metric for canopy structural complexity, gen-
erally had higher values for older plots, consistent with the-
ories of canopy development for many forests (Ishii et al.
2004) but possibly not for forests with periodic large-scale
disturbances (Brokaw et al. 2004). This study tested two al-
ternatives to rumple, SD of height and CV, as a measure of
spatial heterogeneity. We found that CV produced weaker
correlations with field metric ordinations and that rumple
generally had slightly higher correlations than SD. Lefsky
et al. (2005) used SD of height but could not have calcu-
lated rumple from their large-footprint, waveform LiDAR
data. We prefer rumple because it is sensitive to the three-
dimensional arrangement of canopy material (Fig. 2). Rum-
ple is correlated with a number of measures of stand struc-
tural complexity (Kane et al. 2008) and increases with stand
age (Ogunjemiyo et al. 2005). Work by Zenner (2004) also
supports the selection of rumple. He demonstrated that
stands with similar measurements of tree diameter and count
could have very different spatial arrangements of trees due
to differences in disturbance histories. These stands would
presumably also have different spatial arrangements of can-
opy material. We suggest that a metric sensitive to the three-
dimensional arrangement of the canopy surface may be a
more sensitive detector of past disturbance than a one-di-
mensional metric such as SD. However, our field data did
not allow us to determine whether rumple was detecting
structural complexity that SD of height would not. A goal
for future research would be to determine how rumple meas-
urements are correlated with spatial patterns in tree and
crown distributions.

We used canopy density as our metric of gaps and canopy
continuity. Canopy density rapidly increased with age for
young plots, remained at high values for most secondary
sites >35 years, and declined modestly for primary sites;
these dynamics were consistent with both the field data for
canopy closure and the theories of canopy development
(Van Pelt and Franklin 2000; Van Pelt and Nadkarni 2004).

Effect of size of LiDAR sample area
A surprising result from our study was that correlations

between field- and LiDAR-based ordinations generally were
lower when based on variable-sized LiDAR study areas than
when based on fixed 0.09 ha study areas. The fixed-size
study areas were larger than most second-growth sites but
smaller than most primary forest sites. These differences
suggest that there may be an optimal sample area size for
characterizing forests from LiDAR canopy data. This is an
avenue for further study; researchers might explore differ-
ent-sized areas for measuring LiDAR data to determine if
there is an optimal size for their forest types.

Conclusions
The cost of traditional field measurements limits the

amount of forest structural data that can be collected. We
developed methods for measuring the structural complexity
of closed-canopy conifer forests using simple LiDAR met-
rics that were strongly correlated with structure as measured

through field metrics of live trees. Future studies that coor-
dinate field and LiDAR measurements might seek to better
understand the relationship between the processes acting on
tree stems and canopies.

The low cost of LiDAR acquisition (on a per hectare ba-
sis) opens up new opportunities to measure and study forest
structure at stand to landscape scales. These data would pro-
vide forest ecologists and managers with data from the
equivalent area of hundreds of thousands of field plots.
Data sets representing large spatial scales combined with
field data would permit in-depth explorations of forest de-
velopment across different age ranges, geomorphologies,
and spatial scales to explore variation in the paths along
which structural complexity develops.

This study supports Lefsky et al.’s (2005) conclusion that
forest structure can be characterized with a small set of core
LiDAR metrics with high correlation with field metrics. We
also found that LiDAR metrics retain their correlation when
the size of the LiDAR sample area differs from the size of the
field plot. The specific metrics and LiDAR samples that best
describe canopy structural complexity may differ among forest
biomes, but we believe that identifying core sets of easily in-
terpreted LiDAR metrics will make LiDAR data more usable
by a wide range of ecologists and forest professionals.
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