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Abstract

We develop new techniques for deriving strong computational lower bounds for a
class of well-known NP-hard problems. This class includes weighted satisfia-
bility, dominating set, hitting set, set cover, clique, and independent
set. For example, although a trivial enumeration can easily test in time O(nk) if
a given graph of n vertices has a clique of size k, we prove that unless an unlikely
collapse occurs in parameterized complexity theory, the problem is not solvable in
time f(k)no(k) for any function f , even if we restrict the parameter values to be
bounded by an arbitrarily small function of n. Under the same assumption, we
prove that even if we restrict the parameter values k to be of the order Θ(µ(n)) for
any reasonable function µ, no algorithm of running time no(k) can test if a graph of
n vertices has a clique of size k. Similar strong lower bounds on the computational
complexity are also derived for other NP-hard problems in the above class. Our tech-
niques can be further extended to derive computational lower bounds on polynomial
time approximation schemes for NP-hard optimization problems. For example, we
prove that the NP-hard distinguishing substring selection problem, for which
a polynomial time approximation scheme has been recently developed, has no poly-
nomial time approximation schemes of running time f(1/ε)no(1/ε) for any function
f unless an unlikely collapse occurs in parameterized complexity theory.
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1 Introduction

Parameterized computation is a recently proposed approach dealing with in-
tractable computational problems. By taking the advantages of the small or
moderate values of a parameter k, fixed-parameter tractable algorithms, whose
running time takes the form f(k)nO(1) for a function f , have been used to solve
a variety of difficult computational problems in practice. For example, the pa-
rameterized algorithm of running time O(1.286k + kn) for vertex cover [9]
has been quite practical in its applications in the research of multiple sequence
alignments [7].

The rich positive toolkit of novel techniques for designing efficient and practi-
cal parameterized algorithms is accompanied in the theory by a corresponding
negative toolkit that supports a theory of parameter intractability. The con-
cept of W [1]-hardness has been introduced, and a large number of W [1]-hard
parameterized problems have been identified [16]. Now it has become com-
monly accepted in parameterized complexity theory that no W [1]-hard prob-
lem can be solved in time f(k)nO(1) for any function f (i.e., W [1] 6= FPT)
[16]. Examples include a recent result by Papadimitriou and Yannakakis [27],
proving that the database query evaluation problem is W [1]-hard. This
hints that it is unlikely that the problem can be solved by an algorithm whose
running time is of the form f(k)nO(1), thus excluding the possibility of a prac-
tical algorithm for the problem even if the parameter k (the size of the query)
is small as in most practical cases.

Thus, the W [1]-hardness of a parameterized problem implies that any algo-
rithm of running time O(nh) solving the problem must have h a function of the
parameter k. However, this does not completely exclude the possibility that
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the problem may become feasible for small values of the parameter k. For in-
stance, if the problem is solvable by an algorithm running in time O(nlog log k),
then such an algorithm is still feasible for moderately small values of k. 4

The above problem was recently tackled in [10], where, by setting k =
√
n/ log n,

it was proven that any no(k) time algorithms for a class of W [1]-hard pa-
rameterized problems, such as clique, would induce unlikely collapses in
parameterized complexity theory. Thus, algorithms of uniform running time
no(k) for these problems are unlikely because of the special parameter value

k =
√
n/ log n. This result, however, does not answer the following question:

can the problems be solvable in time no(k) for parameter values k 6=
√
n/ log n

such as k = log log n or k = n4/5? Note that one would anticipate that for
an extreme range of the parameter values, better algorithms might be pos-
sible by taking the advantage of the parameter values. Moreover, the results
in [10] does not exclude the possibility that the problems may be solvable in
time f(k)no(k) for a function f . Note that the complexity of computational

problems with parameter values other than
√
n/ log n has been an interest-

ing topic in research. We mention Papadimitriou and Yannakakis’s work [26]
that introduces the classes lognp and logsnp to study the complexity of
a class of problems whose parameter values are, either implicitly or explic-
itly, bounded by O(log n). Constructing a clique of size log n in a graph of
n vertices is one of the main problems studied in [26]. Feige and Kilian [18]
studied the complexity of finding a clique of size log n, and showed that if this
problem can be solved in polynomial time then nondeterministic computation
can be simulated by deterministic computation in subexponential time. They
also showed that if a clique of size logc n can be constructed in time O(nh),
where c is a constant and h = logc−ε n for some ε > 0, then nondeterministic
circuits can be simulated by randomized or non-uniform deterministic circuits
of subexponential size.

In this paper, based on the framework of parameterized complexity theory, we
develop new techniques and derive stronger computational lower bounds for
a class of well-known NP-hard problems. In particular, we answer the above
mentioned questions completely. We start by proving computational lower
bounds for a class of satisfiability problems, and then extend the lower
bound results to other well-known NP-hard problems by introducing the con-
cept of linear fpt-reductions. In particular, we consider two classes of parame-
terized problems: Class A which includes weighted cnf sat, dominating
set, hitting set, and set cover, and Class B which includes weighted
cnf q-sat for any constant q ≥ 2, clique, and independent set. We prove

4 A question that might come to mind is whether such a W [1]-hard problem exists.
The answer is affirmative: by re-scaling the parameter, it is not difficult to construct
W [1]-hard problems that are solvable in time O(nlog log k).
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that (1) unless W [1] = FPT, no problem in Class A can be solved in time
f(k)no(k)mO(1) for any function f , where n is the size of the search space from
which the k elements are selected and m is the input length; and (2) unless
all search problems in the syntactic class SNP introduced by Papadimitriou
and Yannakakis [25] are solvable in subexponential time, no problem in Class
B can be solved in time f(k)mo(k) for any function f , where m is the input
length. These results remain true even if we bound the parameter values by an
arbitrarily small nondecreasing and unbounded function. Moreover, under the
same assumptions, we prove that even if we restrict the parameter values k
to be of the order Θ(µ(n)) for any reasonable function µ, no problem in Class
A can be solved in time no(k)mO(1) and no problem in Class B can be solved
in time mo(k). These results improve the results in [10] from two aspects: (a)
the lower bounds of forms nΩ(k)mO(1) and mΩ(k) in [10] have been improved
to f(k)nΩ(k)mO(1) and f(k)mΩ(k), respectively, for any function f under the
same assumptions; and (b) the lower bounds of forms nΩ(k)mO(1) and mΩ(k) in
[10] were established only for a particular value of the parameter k, while the
same lower bounds are established in the current paper for essentially every
value of the parameter k under the same assumptions.

Note that each of the problems in Class A (resp. Class B) can be solved by a
trivial algorithm of running time cnkm (resp. cmk), where c is an absolute con-
stant, which simply enumerates all possible subsets of k elements in the search
space. Much research has tended to seek new approaches to improve this triv-
ial upper bound. One of the common approaches is to apply a more careful
branch-and-bound search process trying to optimize the manipulation of local
structures before each branch [1,2,9,12,23]. Continuously improved algorithms
for these problems have been developed based on improved local structure
manipulations (for example, see [30,21,28,4] on the progress for the indepen-
dent set problem). It has even been proposed to automate the manipulation
of local structures [24,29] in order to further improve the computational time.

Our results above, however, show that the power of this approach is quite
limited in principle. The lower bounds f(k)nΩ(k)p(m) and f(k)mΩ(k) for any
function f and any polynomial p mentioned above indicate that no local struc-
ture manipulation running in polynomial time or in time depending only on
the value k will obviate the need for exhaustive enumerations.

Our techniques have also enabled us to derive lower bounds on the com-
putational time of polynomial time approximation schemes (PTAS) for cer-
tain NP-hard problems. We pick the distinguishing substring selection
problem (dssp) as an example, for which a PTAS was recently developed
[13,14]. Gramm et al. [19] showed that the parameterized dssp problem is
W [1]-hard, thus excluding the possibility that dssp has a PTAS of running
time f(1/ε)nO(1) for any function f . We prove a stronger result. We first
show that the dominating set problem can be linearly fpt-reduced to the
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dssp problem, thus proving that the parameterized dssp problem is W [2]-
hard (improving the result in [19]). We then show how this lower bound on
parameterized complexity can be transformed into a lower bound on the com-
putational complexity for any PTAS for the problem. More specifically, we
prove that unless all search problems in SNP are solvable in subexponential
time, the dssp problem has no PTAS of running time f(1/ε)no(1/ε) for any
function f . This essentially excludes the possibility that the dssp problem
has a practically efficient PTAS even for moderate values of the error bound
ε. To the authors’ knowledge, this is the first time a specific lower bound has
been derived on the running time of a PTAS for an NP-hard problem.

We give a brief review on parameterized complexity theory. A parameterized
problem Q is a subset of Ω∗×N , where Ω is a finite alphabet set and N is the
set of all non-negative integers. Therefore, each instance of Q is a pair (x, k),
where the non-negative integer k is called the parameter. The parameterized
problem Q is fixed-parameter tractable [16] if there is an algorithm that decides
if an input (x, k) is a yes-instance of Q in time f(k)|x|c, where c is a fixed
constant and f(k) is an arbitrary function. Denote by FPT the class of all
fixed-parameter tractable problems.

The inherent computational difficulty for solving certain problems practically
has led to the common belief that certain parameterized problems are not
fixed-parameter tractable. A hierarchy of fixed-parameter intractability, the
W -hierarchy

⋃
t≥0 W [t], where W [t] ⊆ W [t + 1] for all t ≥ 0, has been in-

troduced, in which the 0-th level W [0] is the class FPT. The hardness and
completeness have been defined for each level W [i] of the W -hierarchy for
i ≥ 1 [16]. It is commonly believed that W [1] 6= FPT (see [16]). Thus, W [1]-
hardness has served as the hypothesis for fixed-parameter intractability.

In this paper, we always assume that the complexity functions in our dis-
cussions are “nice” with both domain and range being non-negative integers
and the values of the functions and their inverses can be easily computed.
For two functions f and g, we write f(n) = o(g(n)) if there is a nondecreas-
ing and unbounded function λ such that f(n) ≤ g(n)/λ(n). A function f is
subexponential if f(n) = 2o(n).

2 Satisfiability and weighted satisfiability

In this section, we present two lemmas that show how a general satisfiability
problem is transformed into a weighted satisfiability problem. One lemma is
on circuits of bounded depth and the other lemma is on CNF formulas.

A circuit C of n input variables is a directed acyclic graph. The nodes of in-
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degree 0 are the input gates, each labelled uniquely either by a positive literal
xi or by a negative literal xi, 1 ≤ i ≤ n. All other gates are either and or
or gates. A special gate of out-degree 0 is designated as the output gate. The
size of C is the number of gates in C, and the depth of C is the length of the
longest path in C from an input gate to the output gate. A circuit is monotone
(resp. antimonotone) if all its input gates are labelled by positive literals (resp.
negative literals). A circuit represents a Boolean function in a natural way. We
say that a truth assignment τ to the input variables of C satisfies a gate g in
C if τ makes the gate g have the value 1, and that τ satisfies the circuit C if
τ satisfies the output gate of C. The weight of an assignment τ is the number
of variables assigned the value 1 by τ .

A circuit C is a Πt-circuit if its output gate is an and gate and it has depth t.
Using the results in [8], a Πt-circuit C can be re-structured into an equivalent
Πt-circuit C ′ with size increased at most quadratically such that (1) C ′ has
t + 1 levels and each edge in C ′ only goes from a level to the next level; (2)
the circuit C ′ has the same monotonicity and the same set of input variables;
(3) level 0 of C ′ consists of all input gates and level t of C ′ consists of a single
output gate; and (4) and and or gates in C ′ are organized into t alternating
levels. Thus, without loss of generality, we will implicitly assume that Πt-
circuits are in this levelled form.

The satisfiability problem on Πt-circuits, abbreviated sat[t], is to deter-
mine if a given Πt-circuit C has a satisfying assignment. The parameterized
problem weighted satisfiability on Πt-circuits, abbreviated wcs[t], is to
determine for a given pair (C, k), where C is a Πt-circuit and k is an integer, if
C has a satisfying assignment of weight k. The weighted monotone sat-
isfiability (resp. weighted antimonotone satisfiability) problem on
Πt-circuits, abbreviated wcs+[t] (resp. wcs−[t]) is defined similarly to wcs[t]
with the exception that the circuit C is required to be monotone (resp. an-
timonotone). It is known that for each even integer t ≥ 2, wcs+[t] is W [t]-
complete, and for each odd integer t ≥ 2, wcs−[t] isW [t]-complete. To simplify
our statements, we will denote by wcs∗[t] the problem wcs+[t] if t is even and
the problem wcs−[t] if t is odd.

Lemma 2.1 Let t ≥ 2 be an integer. There is an algorithm A1 that, for a
given integer r > 0, transforms each Πt-circuit C1 of n1 input variables and
size m1 into an instance (C2, k) of wcs∗[t], where k = dn1/re and the Πt-
circuit C2 has n2 = 2rk input variables and size m2 ≤ 2m1 + 22r+1k, such that
C1 is satisfiable if and only if (C2, k) is a yes-instance of wcs∗[t]. The running
time of the algorithm A1 is bounded by O(m2

2).

Proof. Let k = dn1/re. Divide the n1 input variables x1, . . . , xn1 of the Πt-
circuit C1 into k blocks B1, . . . , Bk, where block Bi consists of input variables
x(i−1)r+1, . . . , xir, for i = 1, . . . , k− 1, and block Bk consists of input variables
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x(k−1)r+1, . . . , xn1 . Denote by |Bi| the number of variables in block Bi. Then
|Bi| = r, for 1 ≤ i ≤ k − 1, and |Bk| ≤ r. For an integer j, 0 ≤ j ≤ 2|Bi| − 1,
denote by bini(j) the length-|Bi| binary representation of j, which can also be
interpreted as an assignment to the variables in block Bi.

We construct a new set of input variables in k blocks B′1, . . . , B
′
k. Each block B′i

consists of s = 2r variables zi,0, zi,1, . . ., zi,s−1. The Πt-circuit C2 is constructed
from the Πt-circuit C1 by replacing the input gates in C1 by the new input
variables in B′1, . . . , B

′
k. We consider two cases.

Case 1. t is even. Then all level-1 gates in the Πt-circuit C1 are or gates. We
connect the new variables zi,j to these level-1 gates to construct the circuit C2

as follows. Let xq be an input variable in C1 such that xq is the h-th variable
in block Bi. If the positive literal xq is an input to a level-1 or gate g1 in
C1, then all positive literals zi,j in block B′i such that 0 ≤ j ≤ 2|Bi| − 1 and
the h-th bit in bini(j) is 1 are connected to gate g1 in the circuit C2. If the
negative literal xq is an input to a level-1 or gate g2 in C1, then all positive
literals zi,j in block B′i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit in bini(j)
is 0 are connected to gate g2 in the circuit C2.

Note that if the size |Bk| of the last block Bk in C1 is smaller than r, then
the above construction for block B′k is only on the first 2|Bk| variables in B′k,
and the last s− 2|Bk| variables in B′k have no output edges, and hence become
“dummy variables”.

We also add an “enforcement” circuitry to the circuit C2 to ensure that every
satisfying assignment to C2 assigns the value 1 to at least one variable in each
block B′i. This can be achieved by having an or gate for each block B′i, whose
inputs are connected to all positive literals in block B′i and whose output is an
input to the output gate of the circuit C2 (for block B′k, the inputs of the or
gate are from the first 2|Bk| variables in B′k). This completes the construction
of the circuit C2. It is easy to see that the circuit C2 is a monotone Πt-circuit
(note that t ≥ 2 and hence the enforcement circuitry does not increase the
depth of C2). Thus, (C2, k) is an instance of the problem wcs+[t].

We verify that the circuit C1 is satisfiable if and only if the circuit C2 has a
satisfying assignment of weight k. Suppose that the circuit C1 is satisfied by
an assignment τ . Let τi be the restriction of τ to block Bi, 1 ≤ i ≤ k. Let ji
be the integer such that bini(ji) = τi. Then according to the construction of
the circuit C2, by setting zi,ji = 1 and all other variables in B′i to 0, we can
satisfy all level-1 or gates in C2 whose corresponding level-1 or gates in C1

are satisfied by the assignment τi. Doing this for all blocks Bi, 1 ≤ i ≤ k, gives
a weight-k assignment τ ′ to the circuit C2 that satisfies all level-1 or gates
in C2 whose corresponding level-1 or gates in C1 are satisfied by τ . Since τ
satisfies the circuit C1, the weight-k assignment τ ′ satisfies the circuit C2.

7



Conversely, suppose that the circuit C2 is satisfied by a weight-k assignment
τ ′. Because of the enforcement circuitry in C2, τ ′ assigns the value 1 to exactly
one variable in each block B′i (in particular, in block B′k, this variable must
be one of the first 2|Bk| variables in B′k). Now suppose that in block B′i, τ

′

assigns the value 1 to the variable zi,ji . Then we set an assignment τi to the
block Bi in C1 such that τi = bini(ji). By the construction of the circuit C2,
the level-1 or gates satisfied by the variable zi,ji = 1 are all satisfied by the
assignment τi. Therefore, if we make an assignment τ to the circuit C1 such
that the restriction of τ to block Bi is τi for all i, then the assignment τ will
satisfy all level-1 or gates in C1 whose corresponding level-1 or gates in C2

are satisfied by τ ′. Since τ ′ satisfies the circuit C2, we conclude that the circuit
C1 is satisfiable.

This completes the proof that when t is even, the circuit C1 is satisfiable if
and only if the constructed pair (C2, k) is a yes-instance of wcs+[t].

Case 2. t is odd. Then all level-1 gates in the Πt-circuit C1 are and gates. We
connect the new variables zi,j to these level-1 gates to construct the circuit C2

as follows. Let xq be an input variable in C1 and be the h-th variable in block
Bi. If the positive literal xq is an input to a level-1 and gate g1 in C1, then
all negative literals zi,j in block B′i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th
bit in bini(j) is 0 are inputs to gate g1 in C2. If the negative literal xq is an
input to a level-1 and gate g2 in C1, then all negative literals zi,j in block B′i
such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit in bini(j) is 1 are inputs to gate
g2 in C2.

For the last s − 2|Bk| variables in the last block B′k in C2, we connect the
negative literals zk,j, 2|Bk| ≤ j ≤ s − 1, to the output gate of the circuit C2

(thus, the variables zk,j, 2|Bk| ≤ j ≤ s − 1, are forced to have the value 0 in
any satisfying assignment to C2).

An enforcement circuitry is added to C2 to ensure that every satisfying as-
signment to C2 assigns the value 1 to at most one variable in each block B′i.
This can be achieved as follows. For every two distinct negative literals zi,j
and zi,h in B′i, 0 ≤ j, h ≤ 2|Bi| − 1, add an or gate gj,h. Connect zi,j and
zi,h to gi,h and connect gi,h to the output and gate of C2. This completes the
construction of the circuit C2. The circuit C2 is an antimonotone Πt-circuit
(again the enforcement circuitry does not increase the depth of C2). Thus,
(C2, k) is an instance of the problem wcs−[t].

We verify that the circuit C1 is satisfiable if and only if the circuit C2 has a
satisfying assignment of weight k. Suppose that the circuit C1 is satisfied by
an assignment τ . Let τi be the restriction of τ to block Bi, 1 ≤ i ≤ k. Let
ji be the integer such that bini(ji) = τi. Consider the weight-k assignment τ ′

to C2 that for each i assigns zi,ji = 1 and all other variables in B′i to 0. We
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show that τ ′ satisfies the circuit C2. Let g1 be a level-1 and gate in C1 that
is satisfied by the assignment τ . Since C2 is antimonotone, all inputs to g1 in
C2 are negative literals. Since all negative literals except zi,ji in block B′i have
the value 1, we only have to prove that no zi,ji from any block B′i is an input
to g1. Assume to the contrary that zi,ji in block B′i is an input to g1. Then
by the construction of the circuit C2, there is a variable xq that is the h-th
variable in block Bi such that either xq is an input to g1 in C1 and the h-th
bit of bini(ji) is 0, or xq is an input to g1 in C1 and the h-th bit of bini(ji) is
1. However, by our construction of the index ji from the assignment τ , if the
h-th bit of bini(ji) is 0 then τ assigns xq = 0, and if the h-th bit of bini(ji)
is 1 then τ assigns xq = 1. In either case, τ would not satisfy the gate g1,
contradicting our assumption. Thus, for all i, no zi,ji is an input to the gate
g1, and the assignment τ ′ satisfies the gate g1. Since g1 is an arbitrary level-1
and gate in C2, we conclude that the assignment τ ′ satisfies all level-1 and
gates in C2 whose corresponding gates in C1 are satisfied by the assignment τ .
Since τ satisfies the circuit C1, the weight-k assignment τ ′ satisfies the circuit
C2.

Conversely, suppose that the circuit C2 is satisfied by a weight-k assignment
τ ′. Because of the enforcement circuitry in C2, the assignment τ ′ assigns the
value 1 to exactly one variable in each block B′i (in particular, this variable in
block B′k must be one of the first 2|Bk| variables in B′k since the last s− 2|Bk|

variables in B′k are forced to have the value 0 in the satisfying assignment τ ′).
Suppose that in block B′i, τ

′ assigns the value 1 to the variable zi,ji . Then we
set an assignment τi = bini(ji) to block Bi in C1. Let τ be the assignment
whose restriction on block Bi is τi. We prove that τ satisfies the circuit C1.
In effect, if a level-1 and gate g2 in C2 is satisfied by the assignment τ ′, then
no negative literal zi,ji is an input to g2. Suppose that g2 is not satisfied by τ
in C1, then either a positive literal xq is an input to g2 and τ assigns xq = 0,
or a negative literal xq is an input to g2 and τ assigns xq = 1. Let xq be the
h-th variable in block Bi. If τ assigns xq = 0 then the h-th bit in bini(ji) is 0.
Thus, xq cannot be an input to g2 in C1 because otherwise by our construction
the negative literal zi,ji would be an input to g2 in C2. On the other hand,
if τ assigns xq = 1 then the h-th bit in bini(ji) is 1, thus, xq cannot be an
input to g2 in C1 because otherwise the negative literal zi,ji would be an input
to g2 in C2. This contradiction shows that the gate g2 must be satisfied by
the assignment τ . Since g2 is an arbitrary level-1 and gate in C2, we conclude
that the assignment τ satisfies all level-1 and gates in C1 whose corresponding
level-1 and gates in C2 are satisfied by the assignment τ ′. Since τ ′ satisfies
the circuit C2, the assignment τ satisfies the circuit C1 and hence the circuit
C1 is satisfiable.

This completes the proof that when t is odd, the Πt-circuit C1 is satisfiable if
and only if the pair (C2, k) is a yes-instance of wcs−[t].
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Summarizing the above discussion, we conclude that for any t ≥ 2, from a
Πt-circuit C1 of n1 input variables and size m1, we can construct an instance
(C2, k) of the problem wcs∗[t] such that C1 is satisfiable if and only if (C2, k)
is a yes-instance of wcs∗[t]. Here k = dn1/re, and C2 has n2 = 2rk input
variables and size m2 ≤ m1 + n2 + k + k22r ≤ 2m1 + k22r+1 (where the term
k + k22r is an upper bound on the size of the enforcement circuitry). Finally,
it is straightforward to verify that the pair (C2, k) can be constructed from
the circuit C1 in time O(m2

2). 2

Lemma 2.1 will serve as a basis for proving computational lower bounds for
W [2]-hard problems. In order to derive similar computational lower bounds for
certain W [1]-hard problems, we need another lemma that converts weighted
satisfiability problems on monotone CNF formulas into weighted satisfiability
problems on antimonotone CNF formulas.

The parameterized problem weighted monotone cnf 2-sat, abbreviated
wcnf 2-sat+ (resp. weighted antimonotone cnf 2-sat, abbreviated
wcnf 2-sat−) is: given an integer k and a CNF formula F , in which all
literals are positive (resp. negative) and each clause contains at most 2 literals,
determine whether there is a satisfying assignment of weight k to F .

Lemma 2.2 There is an algorithm A2 that, for a given integer r > 0, trans-
forms each instance (F1, k1) of wcnf 2-sat+, where the formula F1 has n1

variables, into a group G of at most (r + 1)k2 instances (Fπ, k2) of wcnf 2-
sat−, where k2 = dn1/re, and each formula Fπ has n2 = k22r variables, such
that (F1, k1) is a yes-instance of wcnf 2-sat+ if and only if there is a yes-
instance for wcnf 2-sat− in the group G. The running time of the algorithm
A2 is bounded by O(n2

2(r + 1)k2).

Proof. For the given instance (F1, k1) of wcnf 2-sat+, divide the n1

variables in F1 into k2 = dn1/re pairwise disjoint subsets B1, . . ., Bk2 , each
containing at most r variables. Let π be a partition of the parameter k1 into
k2 integers h1, . . ., hk2 , where 0 ≤ hi ≤ |Bi| and k1 = h1 + · · · + hk2 . We say
that an assignment τ of weight k1 for F1 is under the partition π if τ assigns
the value 1 to exactly hi variables in the set Bi for every i.

Fix a partition π of the parameter k1: k1 = h1 + · · · + hk2 . We construct
an instance (Fπ, k2) for wcnf 2-sat− as follows. For each subset Bi,j of hi
variables in the set Bi, if for each clause (xs, xt) in F1 where both xs and xt
are in Bi, at least one of xs and xt is in Bi,j, then make Bi,j a Boolean variable
in Fπ. Call such a Bi,j an “essential variable” in Fπ. In particular, if no clause
(xs, xt) in F1 has both xs and xt in the set Bi, then every subset of hi variables
in Bi makes an essential variable in Fπ. For each pair of essential variables Bi,j

and Bi,q in Fπ from the same set Bi in F1, add a clause (Bi,j, Bi,q) to Fπ. For
each pair of essential variables Bi,j and Bh,q in Fπ from two different sets Bi
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and Bh in F1, if there exist a variable xs ∈ Bi and a variable xt ∈ Bh such
that xs 6∈ Bi,j, xt 6∈ Bh,q but (xs, xt) is a clause in F1, add a clause (Bi,j, Bh,q)
to Fπ. This completes the main part of the CNF formula Fπ, which thus far
has no more than k22r variables. To make the number n2 of variables in Fπ
to be exactly k22r, we add a proper number of “surplus” variables to Fπ and
for each surplus variable B′ we add a unit clause (B′) to Fπ (so that these
surplus variables are forced to have the value 0 in a satisfying assignment of
Fπ). Obviously, (Fπ, k2) is an instance of the wcnf 2-sat− problem.

We verify that the CNF formula F1 has a satisfying assignment of weight
k1 under the partition π if and only if the CNF formula Fπ has a satisfying
assignment of weight k2. Let τ1 be a satisfying assignment of weight k1 under
the partition π for F1. Let C be the set of variables in F1 that are assigned
the value 1 by τ1, and Ci = C ∩ Bi. Then Ci has hi variables. Note that for
any clause (xs, xt) in F1 such that both xs and xt are in Bi, at least one of
xs and xt must be in Ci – otherwise the clause (xs, xt) would not be satisfied
by the assignment τ1. Thus, each subset Ci is an essential variable in Fπ. Now
in the CNF formula Fπ, by assigning the value 1 to all Ci, 1 ≤ i ≤ k2, and
the value 0 to all other variables (in particular, all surplus variables in Fπ are
assigned the value 0), we get an assignment τπ of weight k2 for Fπ. For each
clause of the form (Bi,j, Bi,q) in Fπ, where Bi,j and Bi,q are from the same set
Bi, since only one variable in Fπ from the set Bi (i.e., Ci) is assigned the value
1 by τπ, the clause is satisfied by the assignment τπ. For two variables Ci and
Ch in Fπ, i 6= h, which both get assigned the value 1 by the assignment τπ,
each clause (xs, xt) in F1 such that xs ∈ Bi and xt ∈ Bh must have either
xs ∈ Ci or xt ∈ Ch (otherwise the clause (xs, xt) would not be satisfied by τ1).
Thus, (Ci, Ch) is not a clause in Fπ. In consequence, the clauses of the form
(Bi,j, Bh,q) in Fπ, i 6= h, where Bi,j and Bh,q are from different sets Bi and Bh,
are also all satisfied by τπ. This shows that Fπ is satisfied by the assignment
τπ of weight k2.

Conversely, let τπ be a satisfying assignment of weight k2 for Fπ. Because
(Bi,j, Bi,q) is a clause in Fπ for each pair of essential variables Bi,j and Bi,q

from the same set Bi, at most one essential variable in Fπ from each set Bi

can be assigned the value 1 by the assignment τπ. Since the weight of τπ is
k2, we conclude that exactly one essential variable Bi,ji in Fπ from each set
Bi is assigned the value 1 by τπ (note that all surplus variables in Fπ must be
assigned the value 0 by τπ). Each Bi,ji of these subsets in F1 contains exactly
hi variables in Bi. Let C = ∪k2

i=1Bi,ji , then C has exactly k1 variables in F1. If
in F1 we assign all variables in C the value 1 and all other variables the value
0, we get an assignment τ1 of weight k1 for the formula F1. We show that τ1

is a satisfying assignment for F1. For each clause (xs, xt) in F1 where both xs
and xt are in the same set Bi, by the construction of the essential variables
in Fπ, at least one of xs and xt is in Bi,ji , and hence in C. Thus, all clauses
(xs, xt) in F1 where both xs and xt are in Bi are satisfied by the assignment
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τ1. For each clause (xs, xt) in F1 where xs ∈ Bi and xt ∈ Bh, i 6= h, because
(Bi,ji , Bh,jh) is not a clause in Fπ (otherwise, τπ would not satisfy Fπ), we must
have either xs ∈ Bi,ji or xt ∈ Bh,jh , i.e., at least one of xs and xt must be in
C. It follows that the clause (xs, xt) is again satisfied by τ1. This proves that
τ1 is a satisfying assignment of weight k1 for the formula F1.

For each partition π of the parameter k1, we have a corresponding instance
(Fπ, k2) such that the CNF formula F1 has a satisfying assignment of weight
k1 under the partition π if and only if (Fπ, k2) is a yes-instance of wcnf 2-
sat−. Let G be the collection of the instances (Fπ, k2) over all partitions π
of the parameter k1. Since (F1, k1) is a yes-instance of wcnf 2-sat+ if and
only if there is a partition π of k1 such that F1 has a satisfying assignment
of weight k1 under the partition π, we conclude that (F1, k1) is a yes-instance
of wcnf 2-sat+ if and only if the group G contains a yes-instance of wcnf
2-sat−. The number of instances in the group G is bounded by the number of
partitions of k1, which is bounded by (r + 1)k2 . Finally, the instance (Fπ, k2)
for a partition π of k1 can be constructed in time O(n2

2). Therefore, the group
G of the instances of wcnf 2-sat− can be constructed in time O(n2

2(r+1)k2).
This completes the proof of the lemma. 2

3 Lower bounds on weighted satisfiability problems

From Lemma 2.1, we can get a number of interesting results on the relation-
ship between the circuit satisfiability problem sat[t] and the weighted circuit
satisfiability problem wcs∗[t]. In the following theorems, we will denote by n
the number of input variables and m the size of a circuit.

Our first result is an improvement of Theorem 3.1 in [10], where the bound
no(k)mO(1) in [10] is improved to f(k)no(k)mO(1) for any function f .

Theorem 3.1 Let t ≥ 2 be an integer. For any function f , if the problem
wcs∗[t] is solvable in time f(k)no(k)mO(1), then the problem sat[t] can be
solved in time 2o(n)mO(1).

Proof. Suppose that there is an algorithm Mwcs of running time bounded
by f(k)nk/λ(k)p(m) that solves the problem wcs∗[t], where λ(k) is a non-
decreasing and unbounded function and p is a polynomial. Without loss of
generality, we can assume that the function f is nondecreasing, unbounded,
and that f(k) ≥ 2k. Define f−1 by f−1(h) = max{q | f(q) ≤ h}. Since the
function f is nondecreasing and unbounded, the function f−1 is also nonde-
creasing and unbounded, and satisfies f(f−1(h)) ≤ h. From f(k) ≥ 2k, we
have f−1(h) ≤ log h.
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Now we solve the problem sat[t] as follows. For an instance C1 of sat[t],
where C1 is a Πt-circuit of n1 input variables and size m1, we set the integer
r = b3n1/f

−1(n1)c, and call the algorithm A1 in Lemma 2.1 to convert C1 into
an instance (C2, k) of the problem wcs∗[t]. Here k = dn1/re, C2 is a Πt-circuit
of n2 = 2rk input variables and size m2 ≤ 2m1 + 22r+1k, and the algorithm A1

takes time O(m2
2). According to Lemma 2.1, we can determine if C1 is a yes-

instance of sat[t] by calling the algorithm Mwcs to determine if (C2, k) is a
yes-instance of wcs∗[t]. The running time of the algorithm Mwcs on (C2, k) is

bounded by f(k)n
k/λ(k)
2 p(m2). Combining all above we get an algorithm Msat

of running time f(k)n
k/λ(k)
2 p(m2) +O(m2

2) for the problem sat[t]. We analyze
the running time of the algorithm Msat in terms of the values n1 and m1.

Since k = dn1/re ≤ f−1(n1) ≤ log n1, 5 we have f(k) ≤ f(f−1(n1)) ≤ n1.
Moreover,

k = dn1/re ≥ n1/r ≥ n1/(3n1/f
−1(n1)) = f−1(n1)/3.

Therefore if we set λ′(n1) = λ(f−1(n1)/3), then λ(k) ≥ λ′(n1). Since both
λ and f−1 are nondecreasing and unbounded, λ′(n1) is a nondecreasing and
unbounded function of n1. We have (note that k ≤ f−1(n1) ≤ log n1),

n
k/λ(k)
2 = (k2r)k/λ(k) ≤ kk2kr/λ(k) ≤ kk23kn1/(λ(k)f−1(n1)) ≤ kk23n1/λ(k)

≤ kk23n1/λ′(n1) = 2o(n1).

Finally, consider the factor m2. Since f−1 is nondecreasing and unbounded,

m2 ≤ 2m1 + k22r+1 ≤ 2m1 + 2 log n126n1/f−1(n1) = 2o(n1)m1.

Therefore, both terms p(m2) and O(m2
2) in the running time of the algorithm

Msat are bounded by 2o(n1)p′(m1) for a polynomial p′. Combining all these, we

conclude that the running time f(k)n
k/λ(k)
2 p(m2) +O(m2

2) of Msat is bounded
by 2o(n1)p′(m1) for a polynomial p′. Hence, the problem sat[t] can be solved
in time 2o(n)mO(1). This completes the proof of the theorem. 2

In fact, Theorem 3.1 remains valid even if we restrict the parameter values
to be bounded by an arbitrarily small function, as shown in the following
corollary.

Corollary 3.2 Let t ≥ 2 be an integer, and µ(n) a nondecreasing and un-
bounded function. If for a function f , the problem wcs∗[t] is solvable in time

5 Without loss of generality, we assume that in our discussions, all values under
the ceiling function “d·e” and the floor function “b·c” are greater than or equal to
1. Therefore, we will always assume the inequalities dβe ≤ 2β and bβc ≥ β/2 for
any value β.
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f(k)no(k)mO(1) for parameter values k ≤ µ(n), then the problem sat[t] can be
solved in time 2o(n)mO(1).

Proof. Suppose that there is an algorithm M solving the wcs∗[t] problem
in time f(k)no(k)p(m) for parameter values k ≤ µ(n), where p is a polynomial.
Define µ−1(h) = max{q | µ(q) ≤ h}. Since the function µ is nondecreasing
and unbounded, the function µ−1 is also nondecreasing, unbounded, and such
that k > µ(n) implies n ≤ µ−1(k).

Now we develop an algorithm that solves the wcs∗[t] problem for general
parameter values. For a given instance (C, k) of wcs∗[t], if k > µ(n) then
we enumerate all weight-k assignments to the circuit C and check if any of
them satisfies the circuit, and if k ≤ µ(n), we call the algorithm M to de-
cide if (C, k) is a yes-instance for wcs∗[t]. This algorithm obviously solves
the problem wcs∗[t]. Moreover, in case k > µ(n), the algorithm runs in time
O(2nm2) = O(f1(k)m2), where f1(k) = 2µ

−1(k), while in case k ≤ µ(n), the al-
gorithm runs in time f(k)no(k)p(m). Therefore, the algorithm solves the prob-
lem wcs∗[t] for general parameter values in time O(f2(k)no(k)mO(1)), where
f2(k) = max{f(k), f1(k)}. Now the corollary follows from Theorem 3.1. 2

Further extension of the above techniques shows that similar lower bounds
can be derived essentially for every parameter value.

Theorem 3.3 Let t ≥ 2 be an integer and ε be a fixed constant, 0 < ε < 1.
For any nondecreasing and unbounded function µ satisfying µ(n) ≤ nε and
µ(2n) ≤ 2µ(n), if wcs∗[t] is solvable in time no(k)mO(1) for parameter values
µ(n)/8 ≤ k ≤ 16µ(n), then sat[t] is solvable in time 2o(n)mO(1).

Proof. We first show that by properly choosing the number r in
Lemma 2.1, we can make the parameter value k = dn1/re satisfy the con-
dition µ(n2)/8 ≤ k ≤ 16µ(n2), where n2 = k2r. To show this, we extend the
function µ to a continuous function by connecting µ(i) and µ(i+1) by a linear
function for each integer i.

Fix the value n1, and consider the function

F (z) = µ

(
n12z logn1

z log n1

)
− n1

z log n1

= µ

(
nz+1

1

z log n1

)
− n1

z log n1

.

Pick a real number z0, 0 < z0 < 1, such that (z0 log n1)1−ε ≤ n
1−(z0+1)ε
1

(for example, z0 = 1 − ε). For this value z0, since µ(nz0+1
1 /(z0 log n1)) ≤

(nz0+1
1 /(z0 log n1))ε ≤ n1/(z0 log n1), we have F (z0) ≤ 0. Moreover, it is easy

to check that F (n1/ log n1) ≥ 0. Therefore, there is a real number z∗ between
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z0 and n1/ log n1 such that

µ

(
n12z

∗ logn1

z∗ log n1

)
≤ n1

z∗ log n1

and µ

(
n12z

∗ logn1+1

z∗ log n1 + 1

)
≥ n1

z∗ log n1 + 1
. (1)

We explain how to find such a real number z∗ efficiently. Starting from the
value z0, then the integer values z1 = 1, z2 = 2, . . ., dn1/ log n1e, we find the
smallest zi such that

µ

(
n12zi logn1

zi log n1

)
≤ n1

zi log n1

and µ

(
n12zi+1 logn1

zi+1 log n1

)
≥ n1

zi+1 log n1

.

Now check the values zi,j = zi + j/ log n1 for j = 0, 1, . . ., dlog n1e to find a j
such that

µ

(
n12zi,j logn1

zi,j log n1

)
≤ n1

zi,j log n1

and µ

(
n12zi,j+1 logn1

zi,j+1 log n1

)
≥ n1

zi,j+1 log n1

.

Note that zi,j+1 = zi,j + 1/ log n1 so zi,j+1 log n1 = zi,j log n1 + 1. Thus, we can
set z∗ = zi,j.

Now we have

2µ

(
n12z

∗ logn1

z∗ log n1

)
≥ 2µ

(
n12z

∗ logn1

z∗ log n1 + 1

)
≥ µ

(
n12z

∗ logn1+1

z∗ log n1 + 1

)

≥ n1

z∗ log n1 + 1
≥ n1

2z∗ log n1

, (2)

where the second inequality uses the fact 2µ(n) ≥ µ(2n). From (1) and (2),
we get

4µ

(
n12z

∗ logn1

z∗ log n1

)
≥ n1

z∗ log n1

≥ µ

(
n12z

∗ logn1

z∗ log n1

)
. (3)

Therefore, if we set r = dz∗ log n1e, then from k = dn1/re, n2 = 2rk, and (3),
we have

µ(n2) =µ(2rk) = µ(2rdn1/re) ≥ µ(2rn1/r) ≥ µ

(
2z
∗ logn1n1

2z∗ log n1

)

≥ 1

2
µ

(
2z
∗ logn1n1

z∗ log n1

)
≥ 1

8
· n1

z∗ log n1

≥ 1

8
· n1

dz∗ log n1e
=

1

8
· n1

r
≥ 1

16
· dn1/re =

k

16
.
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On the other hand,

µ(n2) =µ(2rk) ≤ µ(2z
∗ logn1+1k) ≤ 2µ(2z

∗ logn1dn1/re)
≤ 2µ(2z

∗ logn1+1n1/r) ≤ 4µ

(
2z
∗ logn1n1

z∗ log n1

)
≤ 4n1

z∗ log n1

≤ 8n1

dz∗ log n1e =
8n1

r
≤ 8dn1/re = 8k.

This proves that the values k and n2 satisfy the relation µ(n2)/8 ≤ k ≤
16µ(n2).

Now we are ready to prove our theorem. Suppose that there is an algorithm
Mwcs of running time nk/λ(k)p(m) for the wcs∗[t] problem when the parameter
values k are in the range µ(n)/8 ≤ k ≤ 16µ(n), where λ(k) is a nondecreasing
and unbounded function and p is a polynomial. We solve the problem sat[t]
as follows:

For an instance C1 of sat[t], where C1 is a Πt-circuit of n1 input variables
and size m1,
(1) Let r = dz∗ log n1e, where z∗ is the real number satisfying (1). As we

explained above, the value z∗ can be computed in time polynomial in
n1;

(2) Call the algorithm A1 in Lemma 2.1 on r and C1 to construct an instance
(C2, k) of the problem wcs∗[t], where k = dn1/re, and C2 is a Πt-circuit
of n2 = k2r input variables and size m2 ≤ 2m1 + 22r+1k. By the above
discussion, we have µ(n2)/8 ≤ k ≤ 16µ(n2);

(3) Call the algorithm Mwcs on (C2, k) to determine whether (C2, k) is a
yes-instance of wcs∗[t], which, by Lemma 2.1, is equivalent to whether
C1 is a yes-instance of sat[t].

The running time of steps (1) and (2) of the above algorithm is bounded by

a polynomial p1(m2) of m2. Step (3) takes time n
k/λ(k)
2 p(m2). Therefore, the

total running time of this algorithm solving the sat[t] problem is bounded by

n
k/λ(k)
2 p2(m2), where p2 is a polynomial. We have (for simplicity and without

affecting the correctness, we omit the floor and ceiling functions),

n
k/λ(k)
2 = (2rn1/r)

(n1/r)/λ(n1/r) ≤ 2n1/λ(n1/r)n
(n1/r)/λ(n1/r)
1 .

Now it is easy to verify that n
k/λ(k)
2 = 2o(n1) (observe that k = n1/r ≥ µ(n2)/8

hence λ(n1/r) is unbounded, and that r = z∗ log n1 = Ω(log n1)). Also,

since m2 ≤ 2m1 + 2(n2)2, m2 = 2o(n1)m
O(1)
1 , thus, the polynomial p2(m2)

is bounded by 2o(n1)m
O(1)
1 . This concludes that the above algorithm of run-

ning time n
k/λ(k)
2 p2(m2) for the problem sat[t] has its running time bounded

by 2o(n1)m
O(1)
1 . This completes the proof of the theorem. 2
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Now we derive similar results for the weighted satisfiability problem wcnf
2-sat−, based on Lemma 2.2. In the following discussion, for an instance
(F, k) of the problems wcnf 2-sat− or wcnf 2-sat+, we denote by n and
m, respectively, the number of variables and the instance size of the CNF
formula F . Note that m = O(n2).

Theorem 3.4 If the problem wcnf 2-sat− is solvable in time f(k)mo(k) (or
in time f(k)no(k)) for a function f , then the problem wcnf 2-sat+ is solvable
in time 2o(n).

Proof. Since m ≥ n and m = O(n2) for any instance of wcnf 2-sat−,
we only need to prove that if the problem wcnf 2-sat− is solvable in time
f(k)no(k) for a function f , then the problem wcnf 2-sat+ is solvable in time
2o(n).

Suppose that the problem wcnf 2-sat− is solvable in time f(k)nk/λ(k) for
a nondecreasing and unbounded function λ. Without loss of generality, we
can assume that the function f is nondecreasing, unbounded, and satisfies
f(k) > 2k. Define f−1(h) = max{q | f(q) ≤ h}. Then f−1 is a nondecreasing
and unbounded function satisfying f−1(h) ≤ log h and f(f−1(h)) ≤ h.

For a given instance (F1, k1) of wcnf 2-sat+, where the CNF formula F1

has n1 variables, we let r = b3n1/f
−1(n1)c and k2 = dn1/re, then we use

the algorithm A2 in Lemma 2.2 to construct a group G of at most (r + 1)k2

instances (Fπ, k2) of wcnf 2-sat−, where each formula Fπ has n2 = k22r

variables, and such that (F1, k1) is a yes-instance of wcnf 2-sat+ if and only
if the group G contains a yes-instance of wcnf 2-sat−. By our assumption, it
takes time f(k2)n

k2/λ(k2)
2 to test if each (Fπ, k2) in the group G is a yes-instance

of wcnf 2-sat−. Therefore, in time of order

(r + 1)k2f(k2)n
k2/λ(k2)
2 + n2

2(r + 1)k2 .

we can decide if (F1, k1) is a yes-instance of wcnf 2-sat+, where the term
n2

2(r + 1)k2 is for the running time of the algorithm A2. As we verified in

Theorem 3.1, f(k2) ≤ n1, and n
k2/λ(k2)
2 = 2o(n1) (in particular, n2 = 2o(n1)).

Finally, since r = O(n1) and k2 = O(f−1(n1)) = O(log n1), we get (r+ 1)k2 =
2o(n1). In summary, in time 2o(n1) we can decide if (F1, k1) is a yes-instance
of wcnf 2-sat+, and hence, the problem wcnf 2-sat+ is solvable in time
2o(n). 2

Based on Theorem 3.4, and using a proof completely similar to that of Corol-
lary 3.2, we can prove that Theorem 3.4 remains valid even if we restrict the
parameter values to be bounded by an arbitrarily small function of n.

Corollary 3.5 Let µ(n) be any nondecreasing and unbounded function. If
there is a function f such that the problem wcnf 2-sat− is solvable in time
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f(k)mo(k) for parameter values k ≤ µ(n), then the problem wcnf 2-sat+ is
solvable in time 2o(n).

Theorem 3.6 For any nondecreasing and unbounded function µ satisfying
µ(n) ≤ nε and µ(2n) ≤ 2µ(n), where ε is a fixed constant, 0 < ε < 1, if
wcnf 2-sat− is solvable in time mo(k) (or in time no(k)) for parameter values
µ(n)/8 ≤ k ≤ 16µ(n), then the problem wcnf 2-sat+ is solvable in time
2o(n).

Proof. Again since m = O(n2), the given hypothesis implies that wcnf
2-sat− is solvable in time no(k) for parameter values µ(n)/8 ≤ k ≤ 16µ(n).

Let (F1, k1) be an instance of wcnf 2-sat+, where the CNF formula F1 has
n1 variables. As in Theorem 3.3, we first compute in polynomial time a real
number z∗ satisfying

4µ

(
n12z

∗ logn1

z∗ log n1

)
≥ n1

z∗ log n1

≥ µ

(
n12z

∗ logn1

z∗ log n1

)
.

Now we let r = dz∗ log n1e and k2 = dn1/re, and use the algorithm A2 in
Lemma 2.2 to construct a group G of at most (r + 1)k2 instances (Fπ, k2)
of wcnf 2-sat−, where each formula Fπ has n2 = k22r variables, such that
(F1, k1) is a yes-instance of wcnf 2-sat+ if and only if the group G contains
a yes-instance of wcnf 2-sat−.

As proved in Theorem 3.3, the values k2 and n2 satisfy the relation µ(n2)/8 ≤
k2 ≤ 16µ(n2), and n

k2/λ(k2)
2 = 2o(n1) for any nondecreasing and unbounded

function λ. Therefore, by the hypothesis of the current theorem, we can deter-
mine in time 2o(n1) for each (Fπ, k2) in G if (Fπ, k2) is a yes-instance of wcnf
2-sat−. It is also easy to verify that the total number (r + 1)k2 of instances
in the group G and the running time O(n2

2(r + 1)k2) of the algorithm A2 are
all bounded by 2o(n1). Therefore, using this transformation, we can determine
in time 2o(n1) whether (F1, k1) is a yes-instance of wcnf 2-sat+, and hence
the problem wcnf 2-sat+ is solvable in time 2o(n1). 2

Remark. It is interesting to note, as pointed out by a anonymous referee,
that the bound no(k)mO(1) in Theorem 3.3 and the bound mo(k) in Theo-
rem 3.6, respectively, cannot be extended to f(k)no(k)mO(1) and f(k)mo(k)

for an arbitrary function f . For example, consider µ(n) = 8 log n. The range
µ(n)/8 ≤ k ≤ 16µ(n) gives log n ≤ k ≤ 128 log n. If we let f(k) = 2128k2

, then
the brute force algorithms solve the problems wcs∗[t] and wcnf 2-sat− in
time O(nkm2) = O(f(k)m2).
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4 Satisfiability problems and the W -hierarchy

The following theorem was proved in [10] (Theorem 3.2 in [10]).

Theorem 4.1 For any integer t ≥ 2, if sat[t] is solvable in time 2o(n)mO(1),
then W [t− 1] = FPT.

Combining Theorem 4.1 with Theorem 3.1, Corollary 3.2, and Theorem 3.3,
we get significant improvements over the results in [10].

Theorem 4.2 For any integer t ≥ 2, if the problem wcs∗[t] is solvable in
time f(k)no(k)mO(1) for a function f , then W [t − 1] = FPT. This theorem
remains true even if we restrict the parameter values k by k ≤ µ(n) for any
nondecreasing and unbounded function µ.

Theorem 4.3 Let t ≥ 2 be an integer and ε be a fixed constant, 0 < ε < 1.
For any nondecreasing and unbounded function µ satisfying µ(n) ≤ nε and
µ(2n) ≤ 2µ(n), if the problem wcs∗[t] is solvable in time no(k)mO(1) for the
parameter values µ(n)/8 ≤ k ≤ 16µ(n), then W [t− 1] = FPT.

Now we consider the satisfiability problems wcnf 2-sat− and wcnf 2-
sat+on CNF formulas. In the following discussion, for an instance (F, k) of
the problems wcnf 2-sat− or wcnf 2-sat+, we denote by n and m, respec-
tively, the number of variables and the instance size of the formula F . Note
that m = O(n2).

The class SNP introduced by Papadimitriou and Yannakakis [25] contains
many well-known NP-hard problems including, for any fixed integer q ≥ 3,
cnf q-sat, q-colorability, q-set cover, and vertex cover, clique,
and independent set [20]. It is commonly believed that it is unlikely that
all problems in SNP are solvable in subexponential time 6 . Impagliazzo and
Paturi [20] studied the class SNP and identified a group of SNP-complete
problems under the serf-reduction, in the sense that if any of these SNP-
complete problems is solvable in subexponential time, then all problems in
SNP are solvable in subexponential time.

Lemma 4.4 If the problem wcnf 2-sat+ is solvable in time 2o(n), then all
problems in SNP are solvable in subexponential time.

Proof. It is easy to see that the problem vertex cover can be
reduced to the problem wcnf 2-sat+ in a straightforward way: given an

6 A recent result showed the equivalence between the statement that all SNP prob-
lems are solvable in subexponential time, and the collapse of a parameterized class
called Mini[1] to FPT [15].
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instance (G, k) of vertex cover, where G is a graph of n vertices, we can
construct an instance (FG, k) of wcnf 2-sat+, where the CNF formula FG
has n variables, as follows: each vertex vi of G makes a positive literal xi in
FG, and each edge [vi, vj] in G makes a clause (xi, xj) in FG. It is easy to
see that the graph G has a vertex cover of k vertices if and only if the CNF
formula FG has a satisfying assignment of weight k. Therefore, if the problem
wcnf 2-sat+ is solvable in time 2o(n), then the problem vertex cover is
solvable in subexponential time. Since vertex cover is SNP-complete under
the serf-reduction [20], this in consequence implies that all problems in SNP
are solvable in subexponential time. 2

Combining Lemma 4.4 with Theorem 3.4, Corollary 3.5, and Theorem 3.6, we
get the following results.

Theorem 4.5 If the problem wcnf 2-sat− is solvable in time f(k)mo(k) for a
function f , then all problems in SNP are solvable in subexponential time. This
theorem remains true even if we restrict the parameter values k by k ≤ µ(n)
for any nondecreasing and unbounded function µ.

Theorem 4.6 For any nondecreasing and unbounded function µ satisfying
µ(n) ≤ nε and µ(2n) ≤ 2µ(n), where ε is a fixed constant, 0 < ε < 1, if wcnf
2-sat− is solvable in time mo(k) for parameter values µ(n)/8 ≤ k ≤ 16µ(n),
then all problems in SNP are solvable in subexponential time.

5 Linear fpt-reductions and lower bounds

In the discussion of the problems wcs∗[t], we observed that besides the param-
eter k and the circuit size m, the number n of input variables has played an im-
portant role in the computational complexity of the problems. Unless unlikely
collapses occur in parameterized complexity theory, the problems wcs∗[t] re-
quire computational time f(k)nΩ(k)p(m), for any polynomial p and any func-
tion f . The dominating term in the time bound depends on the number n
of input variables in the circuits, instead of the circuit size m. Note that the
circuit size m can be of the order 2n.

Each instance (C, k) of a weighted circuit satisfiability problem such as wcs∗[t]
can be regarded as a search problem, in which we need to select k elements
from a search space consisting of a set of n input variables, and assign them the
value 1 so that the circuit C is satisfied. Many well-known NP-hard problems
have similar formulations. We list some of them next:

weighted cnf sat (abbreviated wcnf-sat): given a CNF formula F , and
an integer k, decide if there is an assignment of weight k that satisfies all
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clauses in F . Here the search space is the set of Boolean variables in F .

set cover: given a collection F of subsets in a universal set U , and an
integer k, decide whether there is a subcollection of k subsets in F whose
union is equal to U . Here the search space is F .

hitting set: given a collection F of subsets in a universal set U , and an
integer k, decide if there is a subset S of k elements in U such that S
intersects every subset in F . Here the search space is U .

Many graph problems seek a subset of vertices that meet certain given con-
ditions. For these graph problems, the natural search space is the set of all
vertices. For certain problems, a polynomial time preprocessing on the input
instance can significantly reduce the size of the search space. For example, for
finding a vertex cover of k vertices in a graph G of n vertices, a polynomial
time preprocessing can reduce the search space size to 2k (see [9]), based on
the classical Nemhauser-Trotter theorem [22]. In the following, we present a
simple algorithm for reducing the search space size for the dominating set
problem (given a graph G and an integer k, decide whether there is a domi-
nating set of k vertices, i.e., a subset D of k vertices such that every vertex
not in D is adjacent to at least one vertex in D).

Suppose we are looking for a dominating set of k vertices in a graphG. Without
loss of generality, we assume that G contains no isolated vertices (otherwise,
we simply include the isolated vertices in the dominating set and modify the
graph G and the parameter k accordingly). We say that the graph G has an
IS-Clique partition (V1, V2) if the vertices of G can be partitioned into two
disjoint subsets V1 and V2 such that V1 makes an independent set while V2

induces a clique. If |V2| ≤ k, then the vertices in V2 plus any k − |V2| vertices
in V1 make a dominating set of k vertices in G. Thus, we assume that |V2| > k.
We claim that the graph G has a dominating set of k vertices if and only if
there are k vertices in V2 that make a dominating set for G. In fact, suppose
that G has a dominating set D of k vertices, in which k1 are in V1 and k2

are in V2, where k1 + k2 = k. Now for each vertex v in D ∩ V1 that has no
neighbor in D, we replace in D the vertex v by a neighbor u of v such that
u is in V2 (such a neighbor u must exist since V1 is an independent set and
v is not an isolated vertex). This process gives us a dominating set D′ of at
most k vertices in G, where D′ is a subset of V2. Adding a proper number of
vertices in V2 to D′ then gives a dominating set of exact k vertices in G.

Therefore, if we are looking for a dominating set of k vertices in a graph G with
an IS-Clique partition (V1, V2), we can restrict our search to the set of vertices
in V2, which thus makes a search space for the problem. Now we explain how
to test if a given graph G has an IS-Clique partition.

Lemma 5.1 Let the vertices of G be ordered as {v1, v2, . . . , vn} such that
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deg(v1) ≤ deg(v2) ≤ · · · ≤ deg(vn) (where deg(vi) denotes the degree of the
vertex vi). If G = (V,E) has an IS-Clique partition, then either there is a ver-
tex vi in G where vi and its neighbors make a clique V2 such that (V − V2, V2)
makes an IS-Clique partition for G, or there is an index h, 1 ≤ h ≤ n−1, such
that deg(vh) < deg(vh+1) and ({v1, . . . , vh}, {vh+1, . . . , vn}) is an IS-Clique
partition for G.

Proof. Suppose that the graph G has an IS-Clique partition (V1, V2).
We consider three different cases. (1) If there is a vertex vi in V2 such that vi
has no neighbor in V1, then vi and its neighbors make exactly the set V2 and
(V1, V2) is an IS-Clique partition for G; (2) If there is a vertex vj in V1 that is
adjacent to all vertices in V2, then vj and its neighbors make the set V2∪{vj},
and (V1 − {vj}, V2 ∪ {vj}) is an IS-Clique partition for G; (3) If neither of (1)
and (2) is the case, then each vertex in V2 has degree at least |V2| and each
vertex in V1 has degree at most |V2| − 1. 2

Using Lemma 5.1, we can develop a simple algorithm of running time O(n3)
that tests if a given graph has an IS-Clique partition. Summarizing the above
we obtain the following preprocessing algorithm on an instance (G, k) of the
dominating set problem:

DS-Core(G, k)
(1) if the graph G has no IS-Clique partition,

then let U be the entire set of vertices in G;
(2) else construct an IS-Clique partition (V1, V2) for G;

if |V2| < k, Then let U be V2 plus any k − |V2| vertices in V1;
else let U = V2;

(3) return U as the search space.

The parameterized problems discussed in the current paper all share the prop-
erty that they seek a subset in a search space satisfying certain properties. In
most of the problems that we consider, the search space can be easily identi-
fied. For example, the search space for each of the problems wcnf-sat, set
cover, and hitting set is given as we described. For some other problems,
such as dominating set, the search space can be identified by a polynomial
time preprocessing algorithm (such as the DS-core algorithm). If no polyno-
mial time preprocessing algorithm is known, then we simply pick the entire
input instance as the search space. For example, for the problems indepen-
dent set and clique, we will take the search space to be the entire vertex
set. Thus, each instance of our parameterized problems is associated with a
triple (k, n,m), where k is the parameter, n is the size of the search space, and
m is the size of the instance. We will call such an instance a (k, n,m)-instance.

Theorems 4.2 and 4.5 suggest that the problem wcs∗[t] in the class W [t] for
t ≥ 2 and the problem wcnf 2-sat− in the class W [1] seem to have very high
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parameterized complexity. In the following, we introduce a new reduction to
identify problems in the corresponding classes that are at least as difficult as
these problems.

Definition A parameterized problem Q is linearly fpt-reducible (shortly
fptl-reducible) to a parameterized problem Q′ if there exist a function f and
an algorithm A of running time f(k)no(k)mO(1), such that on each (k, n,m)-
instance x of Q, the algorithm A produces a (k′, n′,m′)-instance x′ of Q′, where
k′ = O(k), n′ = nO(1), m′ = mO(1), and that x is a yes-instance of Q if and
only if x′ is a yes-instance of Q′.

Definition A parameterized problem Q1 is W [1]-hard under the linear fpt-
reduction, shortly Wl[1]-hard, if the problem wcnf 2-sat− is fptl-reducible to
Q1. A parameterized problem Qt is W [t]-hard under the linear fpt-reduction,
shortly Wl[t]-hard, for t ≥ 2 if the problem wcs∗[t] is fptl-reducible to Qt.

Based on the above definitions and using Theorem 4.2 and Theorem 4.5, we
immediately derive:

Theorem 5.2 For t ≥ 2, no Wl[t]-hard parameterized problem can be solved
in time f(k)no(k)mO(1) for a function f , unless W [t − 1] = FPT. This re-
mains true even if we restrict the parameter values k by k ≤ µ(n) for any
nondecreasing and unbounded function µ.

Theorem 5.3 No Wl[1]-hard parameterized problem can be solved in time
f(k)mo(k) for a function f , unless all problems in SNP are solvable in subex-
ponential time. This remains true even if we restrict the parameter values k
by k ≤ µ(n) for any nondecreasing and unbounded function µ.

Using the fptl-reduction, we can immediately derive computational lower bounds
for a large number of NP-hard parameterized problems.

Theorem 5.4 The following parameterized problems are Wl[2]-hard: wcnf-
sat, set cover, hitting set, and dominating set. Thus, unless W [1] =
FPT, none of them can be solved in time f(k)no(k)mO(1) for any function
f . This theorem remains true even if we restrict the parameter values k by
k ≤ µ(n) for any nondecreasing and unbounded function µ.

Proof. We highlight the fptl-reductions from wcs∗[2] = wcs+[2] to
these problems, which are all we need. In fact, the reductions from wcs+[2]
to the problems wcnf-sat, hitting set, and set cover are standard and
straightforward, and hence we leave them to the interested readers.

We present the fptl-reduction from wcs+[2] to dominating set here. Let
(C, k) be an instance of wcs+[2], where C is a monotone Π2-circuit. We con-
struct a graph GC associated with the circuit C as follows. First we remove
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any or gate in C if it receives inputs from all input gates (this kind of or gates
will be satisfied by any assignment of weight larger than 0 anyway). Then we
remove the output gate of C and add an edge to each pair of input gates
in C. This gives the graph GC . We claim that the circuit C has a satisfying
assignment of weight k if and only if the graph GC has a dominating set of
k vertices. First observe that the graph GC has a unique IS-Clique partition
(V1, V2), where V1 is the set of all or gates and V2 is the set of all input gates.
Therefore, by the discussion before Lemma 5.1, if GC has a dominating set
D of k vertices, then we can assume that D is a subset of V2. Now assigning
the value 1 to the k input variables corresponding to the vertices in D clearly
gives a satisfying assignment of weight k for the circuit C. For the other di-
rection, from a satisfying assignment π of weight k for the circuit C, we can
easily verify that the k vertices in GC corresponding to the k input gates in
C assigned the value 1 by π make a dominating set for the graph GC . Finally,
we point out that this reduction keeps the parameter value k, the search space
size n (assuming that we apply the algorithm DS-Core to the dominating
set problem), and the instance size m all unchanged. 2

We remark that the reduction from wcs+[2] to dominating set presented in
the proof of Theorem 5.4 also provides a new proof for the W [2]-hardness for
the problem dominating set, which seems to be significantly simpler than
the original proof given in [16].

Now we consider certain Wl[1]-hard problems. Define wcnf q-sat, where
q > 0 is a fixed integer, to be the parameterized problem consisting of the
pairs (F, k), where F is a CNF formula in which each clause contains at most
q literals and F has a satisfying assignment of weight k.

Theorem 5.5 The following problems are Wl[1]-hard: wcnf q-sat for any
integer q ≥ 2, clique, and independent set. Thus, unless all problems in
SNP are solvable in subexponential time, none of them can be solved in time
f(k)mo(k) for any function f . This theorem remains true even if we restrict
the parameter values k by k ≤ µ(m) for any nondecreasing and unbounded
function µ.

Proof. The fptl-reductions from the problem wcnf 2sat− to these
problems are all straightforward, and hence we leave the detailed verifications
to the interested readers. 2

Each of the problems in Theorem 5.4 and Theorem 5.5 can be solved by
a trivial algorithm of running time cnkm2, where c is an absolute constant,
which simply enumerates all possible subsets of k elements in the search space.
Much research has tended to seek new approaches to improve this trivial upper
bound. One of the common approaches is to apply a more careful branch-and-
bound search process trying to optimize the manipulation of local structures
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before each branch [1,2,9,12,23]. Continuously improved algorithms for these
problems have been developed based on improved local structure manipu-
lations. It has even been proposed to automate the manipulation of local
structures [24,29] in order to further improve the computational time.

Theorem 5.4 and Theorem 5.5, however, provide strong evidence that the
power of this approach is quite limited in principle. The lower bound f(k)nΩ(k)p(m)
for the problems in Theorem 5.4 and the lower bound f(k)mΩ(k) for the prob-
lems in Theorem 5.5, where f can be any function and p can be any poly-
nomial, indicate that no local structure manipulation running in polynomial
time or in time depending only on the target value k will obviate the need for
exhaustive enumerations.

Weaker lower bounds, under the same assumptions in parameterized com-
plexity theory, have been established previously [10] for the parameterized
problems in Theorem 5.4 and Theorem 5.5. The main results in [10] proved

that, for the case k =
√
n/ log n, an algorithm of running time no(k)mO(1) for

the problems in Theorem 5.4 would imply W [1] = FPT, and an algorithm
of running time mo(k) for the problems in Theorem 5.5 would imply that all
problems in SNP are subexponential time solvable. However, the results in [10]
do not exclude the possibility of algorithms of running time f(k)no(k)mO(1) for
the problems in Theorem 5.4, and algorithms of running time f(k)mo(k) for
the problems in Theorem 5.5, where f can be possibly a very large func-
tion. Moreover, the results in [10] do not claim lower bounds for the problems

when the parameter value k is not equal to
√
n/ log n. Note that studying the

complexity of NP-hard problems for parameter values other than
√
n/ log n,

in particular for small parameter values, has been an interesting topic in re-
search [18,26]. Moreover, after all, most research in parameterized complexity
theory assumes that the parameter values are small. Therefore, Theorem 5.4
and Theorem 5.5 are very significant improvements over the results in [10].

One might suspect that a particular parameter value (e.g., a very small param-
eter value or a very large parameter value) would help solving the problems
in Theorem 5.4 and Theorem 5.5 more efficiently. This possibility is, unfortu-
nately, denied by the following theorems, which indicate that, essentially, the
problems are actually difficult for every parameter value.

Theorem 5.6 For any constant ε, 0 < ε < 1, and any nondecreasing and
unbounded function µ satisfying µ(n) ≤ nε, and µ(2n) ≤ 2µ(n), none of the
problems in Theorem 5.4 can be solved in time no(k)mO(1) even if we restrict
the parameter values k to µ(n)/8 ≤ k ≤ 16µ(n), unless W [1] = FPT.

Proof. As described in the proof of Theorem 5.4, each fptl-reduction
from wcs+[2] to a problem in Theorem 5.4 runs in time mO(1) and keeps the
parameter value k and the search space size n unchanged. The theorem now
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follows directly from this fact and Theorem 4.3. 2

Note that the conditions on the function µ in Theorem 5.6 are satisfied by most
complexity functions, such as µ(n) = log log n and µ(n) = n4/5. Therefore,
for example, unless the unlikely collapse W [1] = FPT occurs, constructing a
hitting set of log log n elements requires time nΩ(log logn)mO(1), and constructing
a hitting set of

√
n elements requires time nΩ(

√
n)mO(1), where n is the size of

the universal set U .

Similar results hold for the problems in Theorem 5.5, by similar proofs based
on Theorem 4.6.

Theorem 5.7 For any constant ε, 0 < ε < 1, and any nondecreasing and
unbounded function µ satisfying µ(n) ≤ nε, and µ(2n) ≤ 2µ(n), none of the
problems in Theorem 5.5 can be solved in time mo(k) even if we restrict the
parameter values k to µ(n)/8 ≤ k ≤ 16µ(n), unless all problems in SNP are
subexponential time solvable.

We observe that all problems in Theorem 5.4 are also Wl[1]-hard. Thus, we
can actually claim stronger lower bounds for these problems in terms of the
parameter value k and the instance size m, based on a stronger assumption
7 . This result will be used in the next section.

Theorem 5.8 All problems in Theorem 5.4 are Wl[1]-hard. Hence, none of
them can be solved in time f(k)mo(k) for any function f , unless all SNP prob-
lems are subexponential time solvable.

Proof. The fptl-reduction from wcnf 2-sat− to wcnf-sat is straight-
forward. It is not difficult to verify that the fpt-reduction from wcnf-sat
to dominating set described in [16], which was originally used to prove the
W [2]-hardness for dominating set, is actually an fptl-reduction. Finally, the
fptl-reduction from dominating set to hitting set, and the fptl-reduction
from hitting set to set cover are simple and left to the interested readers.
The theorem now follows from the transitivity of the fptl-reduction, which can
be easily verified. 2

6 Lower bounds on approximation schemes

In this section, we discuss how the Wl[1]-hardness of a problem can be used to
derive computational lower bounds for approximation algorithms for NP-hard

7 It can be shown that if W [1] = FPT then all problems in SNP are solvable in
subexponential time.
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problems. We first give a brief review on the terminologies in approximation
algorithms.

An NP optimization problem Q is a 4-tuple (IQ, SQ, fQ, optQ), where

• IQ is the set of input instances. It is recognizable in polynomial time;
• For each instance x ∈ IQ, SQ(x) is the set of feasible solutions for x, which

is defined by a polynomial p and a polynomial time computable predicate
π (p and π only depend on Q) as SQ(x) = {y : |y| ≤ p(|x|) and π(x, y)};
• fQ(x, y) is the objective function mapping a pair x ∈ IQ and y ∈ SQ(x) to

a non-negative integer. The function fQ is computable in polynomial time;
• optQ ∈ {max,min}. Q is called a maximization problem if optQ = max, and

a minimization problem if optQ = min.

An optimal solution y0 for an instance x ∈ IQ is a feasible solution in SQ(x)
such that fQ(x, y0) = optQ{fQ(x, z) | z ∈ SQ(x)}. We will denote by optQ(x)
the value optQ{fQ(x, z) | z ∈ SQ(x)}.

An algorithm A is an approximation algorithm for an NP optimization prob-
lem Q if, for each input instance x in IQ, the algorithm A returns a feasible
solution yA(x) in SQ(x). The solution yA(x) has an approximation ratio r(n)
if it satisfies the following condition:

• optQ(x)/fQ(x, yA(x)) ≤ r(|x|) if Q is a maximization problem;
• fQ(x, yA(x))/optQ(x) ≤ r(|x|) if Q is a minimization problem.

The approximation algorithm A has an approximation ratio r(m) if for any
instance x in IQ, the solution yA(x) constructed by the algorithm A has an
approximation ratio bounded by r(|x|).

An NP optimization problem Q has a polynomial time approximation scheme
(PTAS) if there is an algorithm AQ that takes a pair (x, ε) as input, where x is
an instance of Q and ε > 0 is a real number, and returns a feasible solution y
for x such that the approximation ratio of the solution y is bounded by 1 + ε,
and for each fixed ε > 0, the running time of the algorithm AQ is bounded by
a polynomial of |x|.

We propose the following formal framework for parameterization of NP opti-
mization problems.

Definition Let Q = (IQ, SQ, fQ, optQ) be an NP optimization problem. The
parameterized version of Q is defined as follows:

• If Q is a maximization problem, then the parameterized version of Q is
defined as Q≥ = {(x, k) | x ∈ IQ and optQ(x) ≥ k};
• If Q is a minimization problem, then the parameterized version of Q is
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defined as Q≤ = {(x, k) | x ∈ IQ and optQ(x) ≤ k}.

The above definition offers the possibility to study the relationship between
the approximability and the parameterized complexity of NP optimization
problems.

Theorem 6.1 Let Q be an NP optimization problem. If the parameterized
version of Q is Wl[1]-hard, then Q has no PTAS of running time f(1/ε)mo(1/ε)

for any function f , unless all problems in SNP are solvable in subexponential
time.

Proof. We consider the case that Q = (IQ, SQ, fQ, optQ) is a maximization
problem such that the parameterized version Q≥ of Q is Wl[1]-hard.

Suppose to the contrary that Q has a PTAS AQ of running time f(1/ε)mo(1/ε)

for a function f . We show how to use the algorithm AQ to solve the parame-
terized problem Q≥. Consider the following algorithm A≥ for Q≥:

Algorithm A≥:
On an instance (x, k) of Q≥, call the PTAS algorithm AQ on x and ε =

1/(2k). Suppose that AQ returns a solution y in SQ(x). If fQ(x, y) ≥ k, then
return “yes”, otherwise return “no”.

We verify that the algorithm A≥ solves the parameterized problemQ≥. SinceQ
is a maximization problem, if fQ(x, y) ≥ k then obviously optQ(x) ≥ k. Thus,
the algorithm A≥ returns a correct decision in this case. On the other hand,
suppose fQ(x, y) < k. Since fQ(x, y) is an integer, we have fQ(x, y) ≤ k − 1.
Since AQ is a PTAS for Q and ε = 1/(2k), we must have

optQ(x)/fQ(x, y) ≤ 1 + 1/(2k).

From this we get (note that fQ(x, y) < k)

optQ(x) ≤ fQ(x, y) + fQ(x, y)/(2k) ≤ k − 1 + 1/2 = k − 1/2 < k.

Thus, in this case the algorithm A≥ also returns a correct decision. This proves
that the algorithm A≥ solves the parameterized version Q≥ of the problem Q.
The running time of the algorithm A≥ is dominated by that of the algorithm
AQ, which by our hypothesis is bounded by f(1/ε)mo(1/ε) = f(2k)mo(k). Thus,
the Wl[1]-hard problem Q≥ is solvable in time f(2k)mo(k). By Theorem 5.3,
all problems in SNP are solvable in subexponential time.

The proof is similar for the case when Q is a minimization problem, and hence
is omitted. 2

We demonstrate an application for Theorem 6.1. We pick the NP-complete
problem distinguishing substring selection as an example, which has
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drawn a lot of attention recently because of its applications in computational
biology such as in drug generic design [14].

Consider all strings over a fixed alphabet. Denote by |s| the length of the string
s. The distance D(s1, s2) between two strings s1 and s2, |s1| ≤ |s2|, is defined
as follows. If |s1| = |s2|, then D(s1, s2) is the Hamming distance between s1

and s2, and if |s1| ≤ |s2|, then D(s1, s2) is the minimum of D(s1, s
′
2) over all

substrings s′2 of length |s1| in s2.

distinguishing substring selection (dssp): given a tuple (n, Sb, Sg, db, dg),
where n, db, and dg are integers, db ≤ dg, Sb = {b1, . . . , bnb} is the set of
(bad) strings, |bi| ≥ n, and Sg = {g1, . . . , gng} is the set of (good) strings,
|gj| = n, either find a string s of length n such that D(s, bi) ≤ db for all
bi ∈ Sb, and D(s, gj) ≥ dg for all gj ∈ Sg, or report no such a string exists.

The dssp problem is NP-hard [19]. Recently, Deng et al. [13] (see also [14])
developed an approximation algorithm Ad for dssp in the following sense: for
a given instance x = (n, Sb, Sg, db, dg) for dssp and a real number ε > 0, in
case x is a yes-instance, the algorithm Ad constructs a string s of length n
such that D(s, bi) ≤ db(1 + ε) for all bi ∈ Sb, and D(s, gj) ≥ dg(1 − ε) for all
gj ∈ Sg. The running time of the algorithm Ad is O(m(nb + ng)

O(1/ε6)), where
m is the size of the instance. Obviously, such an algorithm is not practical
even for moderate values of the error bound ε.

The authors of [13] called their algorithm a “PTAS” for the dssp problem.
Strictly speaking, neither the problem dssp nor the algorithm in [13] conforms
to the standard definitions of an optimization problem and a PTAS. The dssp
problem as defined above is a decision problem with no objective function
specified, and it is also not clear what precise ratio the error bound ε measures.
We will call an algorithm in the style of the one in [13] a “PTAS-[13]” for dssp.

Since our lower bound techniques for PTAS given in Theorem 6.1 are based on
the standard framework that has been widely used in the literature, we first
propose an optimization version of the dssp problem, the dssp-opt problem,
using the standard definition of NP optimization problems. We then prove that
a PTAS in the standard definition for dssp-opt is equivalent to a PTAS-[13]
for dssp as given in [13]. Using the systematical methods described above, we
then prove that the parameterized version of dssp-opt is Wl[1]-hard, which,
by Theorem 6.1, gives a computational lower bound on PTAS for dssp-opt.
As a byproduct, this also shows that it is unlikely to have a practically efficient
PTAS-[13] algorithm for the dssp problem.

Definition The dssp-opt problem is a tuple (ID, SD, fD, optD), where

• ID is the set of all (yes- and no-) instances in the decision version of dssp;
• For an instance x = (n, Sb, Sg, db, dg) in ID, SD(x) is the set of all strings of
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length n;
• For an instance x = (n, Sb, Sg, db, dg) in ID and a string s ∈ SD(x), the

objective function value fD(x, s) is defined to be the largest non-negative
integer d such that (i) d ≤ dg; (ii) D(s, bi) ≤ db(2 − d/dg) for all bi ∈ Sb;
and (iii) D(s, gj) ≥ d for all gj ∈ Sg. If such an integer d does not exist,
then define fD(x, s) = 0;
• optD = max

Note that for x ∈ ID and s ∈ SD(x), the value fD(x, s) can be computed in
polynomial time by checking each number d = 0, 1, . . . , dg ≤ n.

We first show that a PTAS for dssp-opt is equivalent to a PTAS-[13] for dssp.
Since the PTAS-[13] for dssp is only for yes-instances of dssp, we will concen-
trate on the performance of the algorithms for yes-instances of the problem
dssp.

Lemma 6.2 The dssp-opt problem has a PTAS of running time φ(m, 1/ε) if
and only if there is an algorithm Ad of running time φ(m,O(1/ε)) for dssp that
for any yes-instance of dssp (n, Sb, Sg, db, dg) and ε > 0, constructs a string s
of length n such that D(s, bi) ≤ db(1+ε) for all bi ∈ Sb, and D(s, gj) ≥ dg(1−ε)
for all gj ∈ Sg.

Proof. Since x = (n, Sb, Sg, db, dg) is assumed to be a yes-instance of the
decision problem dssp, when x is regarded as an instance for the optimization
problem dssp-opt, we have optD(x) = dg.

Suppose the dssp-opt problem has a PTAS Ap of running time φ(m, 1/ε).
We show for a yes-instance x = (n, Sb, Sg, db, dg) and ε > 0 how to construct a
string s such that D(s, bi) ≤ db(1 + ε) for all bi ∈ Sb, and D(s, gj) ≥ dg(1− ε)
for all gj ∈ Sg. Let ε′ = ε/(1 − ε) (note that 1/ε′ = O(1/ε)). Apply the
PTAS Ap on x and ε′, we get a string sp of length n such that fD(x, sp) = dp,
optD(x)/dp = dg/dp ≤ 1 + ε′, and

D(sp, bi) ≤ db(2− dp/dg) for all bi ∈ Sb,

and
D(sp, gj) ≥ dp for all gj ∈ Sg.

Now from dp ≥ dg/(1 + ε′) = dg(1 − ε), we get D(sp, gj) ≥ dg(1 − ε) for all
gj ∈ Sg. From

2− dp/dg ≤ 2− 1/(1 + ε′) = 1 + ε,

we get D(sp, bi) ≤ db(1 + ε) for all bi ∈ Sb. The running time of the algorithm
Ap is φ(m, 1/ε′) = φ(m,O(1/ε)). This shows that a PTAS-[13] of running
time φ(m,O(1/ε)) for dssp can be constructed based on the PTAS Ap for the
dssp-opt problem.

Conversely, suppose that we have a PTAS-[13] Ad of running time φ(m, 1/ε)

30



for dssp. We show how to construct a PTAS for the dssp-opt problem. For
an instance x = (n, Sb, Sg, db, dg) of dssp-opt and ε > 0, we call the algorithm
Ad on x and ε′ = ε/(2+2ε). By our assumption, if x is a yes-instance, then the
algorithm Ad returns a string sd of length n such that D(sd, bi) ≤ db(1 + ε′)
for all bi ∈ Sb, and D(sd, gj) ≥ dg(1− ε′) for all gj ∈ Sg. We first consider the
value fD(x, sd) for dssp-opt. Let d = dg − dε′dge. Then for each good string
gj, we have

D(sd, gj) ≥ dg(1− ε′) = dg − ε′dg ≥ dg − dε′dge = d,

and since d = dg − dε′dge ≤ dg − ε′dg = dg(1− ε′), for each bad string bi,

D(sd, bi) ≤ db(1 + ε′) = db(2− (1− ε′)) ≤ db(2− d/dg).

By the definition of the function fD(x, sd), we have fD(x, sd) ≥ d = dg−dε′dge.

Now consider the ratio optD(x)/fD(x, sd) for the string sd. If ε′dg < 0.5, then
(note that db ≤ dg)

D(sd, bi) ≤ db(1 + ε′) < db + 0.5 and D(sd, gj) ≥ dg(1− ε′) > dg − 0.5.

Since all D(sd, bi), db, D(sd, gj), and dg are integers, we have D(sd, bi) ≤ db =
db(2− dg/dg) for all bi ∈ Sb, and D(sd, gj) ≥ dg for all gj ∈ Sg. Therefore, we
have fD(x, sd) = dg and opt(x)/fD(x, sd) = 1. On the other hand, if ε′dg ≥ 0.5,
then dg − dε′dge ≥ dg − 2ε′dg, and we have

opt(x)/fD(x, sd)≤ dg/(dg − dε′dge) ≤ dg/(dg − 2ε′dg)
= 1/(1− 2ε′) = 1 + ε.

Therefore, in all cases, the string sd produced by the algorithm Ad is a solu-
tion of approximation ratio 1 + ε for the instance x of dssp-opt. Again, the
running time of the algorithm is dominated by that of Ad, which is bounded
by φ(m, 1/ε′) = φ(m,O(1/ε)).

This completes the proof of the lemma. 2

Lemma 6.2 shows that a PTAS-[13] for the problem dssp is also a PTAS in
the standard definition for the optimization problem dssp-opt.

Now using the standard parameterization of optimization problems, we can
study the parameterized complexity of the problem dssp-opt≥.

Lemma 6.3 The parameterized problem dssp-opt≥ is Wl[1]-hard.

Proof. We prove the lemma by an fptl-reduction from the Wl[1]-hard
problem dominating set to the dssp-opt≥ problem (see Theorem 5.8).
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Let (G, k) be an instance of the dominating set problem. Suppose that
the graph G has n vertices v1, . . ., vn. Denote by vec(vi) the binary string
of length n in which all bits are 0 except the i-th bit is 1. The instance
xG = (n′, Sb, Sg, db, dg) for dssp-opt is constructed as follows: n′ = n+ 5, Sg
consists of a single string g0 = 0n+5, db = k − 1, and dg = k + 3.

The bad string set Sb = {b1, . . . , bn} consists of n strings, where bi corresponds
to the vertex vi in G. Suppose the neighbors of the vertex vi in G are vi1 , . . .,
vir , then the string bi takes the form

vec(vi) · 02220 · vec(vi) · 00000 · vec(vi1) · 02220 · vec(vi1) ·
·00000 · · · · · 00000 · vec(vir) · 02220 · vec(vir),

where the dots “·” stand for string concatenations. It is easy to see that the
size of xG is bounded by a polynomial of the size of the graph G. Finally,
we set the parameter k′ = k + 3. Thus, (xG, k

′) makes an instance for the
dssp-opt≥ problem.

We prove that (G, k) is a yes-instance for dominating set if and only if
(xG, k

′) is a yes-instance for dssp-opt≥. Suppose the graph G has a domi-
nating set H of k vertices. Let vec(H) be the binary string of length n whose
h-th bit is 1 if and only if vh ∈ H. Now consider the string s = vec(H) ·02220.
Clearly D(s, g0) = k+ 3 = dg. For each bad string bi, since H is a dominating
set, either vi ∈ H or a vertex vj ∈ H is a neighbor of vi. If vi ∈ H then the
substring b′i = vec(vi) · 02220 in bi satisfies D(s, b′i) = k − 1, and if a vertex
vj ∈ H is a neighbor of vi, then the substring b′i = vec(vj) ·02220 in bi satisfies
D(s, b′i) = k− 1. This verifies that D(s, bi) = k− 1 = db(2− dg/dg) for all 1 ≤
i ≤ n. Thus, for the string s, we have fD(xG, s) = optD(xG) = dg = k+3 ≥ k′.
In consequence, (xG, k

′) is a yes-instance of dssp-opt≥.

Conversely, suppose (xG, k
′) is a yes-instance for the dssp-opt≥ problem.

Then there is a string s of length n+ 5 such that fD(xG, s) = d ≥ k′ = k + 3.
By the definition, fD(xG, s) ≤ dg = k + 3. Thus, we must have d = k + 3.
From the definition of the integer d, we have D(s, g0) ≥ d = k + 3, and
D(s, bi) ≤ db(2−d/dg) = db = k− 1 for all bad strings bi. Since g0 = 0n+5 and
D(s, g0) ≥ k + 3, s has at least k + 3 “non-0” bits. On the other hand, it is
easy to see that each substring of length n + 5 in any bad string bi contains
at most 4 “non-0” bits. Since D(s, bi) ≤ k − 1 for each bad string bi, the
string s should not contain more than k + 3 “non-0” bits. Thus, the string
s has exactly k + 3 “non-0” bits. Now consider any substring b′i of length
n + 5 in a bad string bi such that D(s, b′i) ≤ k − 1. The substring b′i must
contain “222”: otherwise b′i has at most three “non-0” bits so D(s, b′i) ≤ k− 1
would not be possible. If the substring“222” in b′i does not match three “2”’s
in s, then s has at least k “non-0” bits in other places while b′i has only one
“non-0” bit in other place, so D(s, b′i) ≤ k − 1 would not be possible. Thus,
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the string s must contain the substring “222”, which matches the substring
“222” in b′i. Finally, observe that we can always assume that the string s ends
with “02220” – otherwise we simply cyclically shift the string s to move the
substring “02220” to the end. Note if D(s, b′i) ≤ k− 1 and b′i is a substring in
a segment “00000 · vec(vj) · 02220 · vec(vj) · 00000” in the bad string bi, then
after shifting s, we must have D(s, b′′i ) ≤ k − 1, where b′′i = vec(vj) · 02220.
Therefore, if s is a solution to the instance (xG, k

′), then so is the string after
the cyclic shifting.

Thus, the string s can be assumed to have the form s′·02220, where s′ is a string
of length n, with exactly k “non-0” bits. Suppose that the j1-th, j2-th, . . ., and
jk-th bits of s′ are “non-0”. We claim that the vertex set Hs = {vj1 , . . . , vjk}
makes a dominating set of k vertices for the graph G. In fact, for any bad
string bi, let b′i be a substring of length n+ 5 in bi such that D(s, b′i) ≤ k − 1.
According to the above discussion, b′i must be of the form vec(vj) · 02220,
where either vj = vi or vj is a neighbor of vi. The only “non-0” bit in vec(vj)
is the j-th bit, and j must be among {j1, . . . , jk} – otherwise D(vec(vj), s

′) is
at least k + 1. Therefore, if vi = vj then vi ∈ Hs, and if vj is a neighbor of vi,
then vi is adjacent to the vertex vj in Hs. This proves that Hs is a dominating
set of k vertices in G, and that (G, k) is a yes-instance for dominating set.

This completes the proof that the problem dominating set is fptl-reducible
to the problem dssp-opt≥. In consequence, dssp-opt≥ is Wl[1]-hard. 2

We remark that the problem dominating set is W [2]-hard under the regular
fpt-reduction [16]. Therefore, the proof of Lemma 6.3 actually shows that the
dssp-opt≥ problem is W [2]-hard. This improves the result in [19], which
proved that the problem is W [1]-hard.

From Lemma 6.3 and Theorem 6.1, we get immediately

Theorem 6.4 Unless all SNP problems are solvable in subexponential time,
the optimization problem dssp-opt has no PTAS of running time f(1/ε)mo(1/ε)

for any function f .

By Lemma 6.2, a PTAS-[13] of running time f(1/ε)mo(1/ε) for dssp would
imply a PTAS of running time f ′(1/ε)mo(1/ε) for dssp-opt for a function f ′.
Therefore, Theorem 6.4 also implies that any PTAS-[13] for dssp cannot run
in time f(1/ε)mo(1/ε) for any function f . Thus essentially, no PTAS-[13] for
dssp can be practically efficient even for moderate values of the error bound
ε. To the authors’ knowledge, this is the first time a specific lower bound is
derived on the running time of a PTAS for an NP-hard problem.

Theorem 6.4 also demonstrates the usefulness of our techniques. In most cases,
computational lower bounds and inapproximability of optimization problems
are derived based on approximation ratio-preserving reductions [3], by which
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if a problem Q1 is reduced to another problem Q2, then Q2 is at least as hard
as Q1. In particular, if Q1 is reduced to Q2 under an approximation ratio-
preserving reduction, then the approximability of Q2 is at least as difficult
as that of Q1. Therefore, the intractability of an “easier” problem in general
cannot be derived using such a reduction from a “harder” problem. On the
other hand, our computational lower bound on dssp-opt was obtained by a
linear fpt-reduction from dominating set. It is well-known that dominat-
ing set has no polynomial time approximation algorithms of constant ratio
[3], while dssp-opt has PTAS. Thus, from the viewpoint of approximability,
dominating set is much harder than dssp-opt, and our linear fpt-reduction
reduces a harder problem to an easier problem. This hints that our approach
for deriving computational lower bounds cannot be simply replaced by the
standard approaches based on approximation ratio-preserving reductions.

7 Conclusion

In this paper, based on parameterized complexity theory, we developed new
techniques for deriving computational lower bounds for well-known NP-hard
problems. We started by establishing the computational lower bounds for the
generic parameterized problems wcs∗[t] for t ≥ 2 and wcnf 2-sat−. We
showed that for any integer t ≥ 2, an f(k)no(k)mO(1)-time algorithm for wcs∗[t]
for any function f would collapse the (t− 1)-st level W [t− 1] to the bottom
level FPT in the fixed-parameter intractability hierarchy, the W-hierarchy,
and that an f(k)mo(k)-time algorithm for wcnf 2-sat− would imply subex-
ponential time algorithms for all problems in SNP. Based on these generic re-
sults, we introduced the concept of linear fpt-reductions, and used it to derive
tight computational lower bounds for many well-known NP-hard problems.
Obviously, the list of the problems we have given here is far from being ex-
haustive. This new technique should serve as a very powerful tool for deriving
strong computational lower bounds for other intractable problems. Moreover,
we demonstrated how our techniques can be used to derive strong computa-
tional lower bounds on polynomial time approximation schemes for NP-hard
problems. This seems to open a new direction for the study of computational
lower bounds on the approximability of NP-hard optimization problems.
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