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Abstract. Aggregate signature is public-key signature that allows any-
one to aggregate different signatures generated by different signers on
different messages into a short (called aggregate) signature. The notion
has many applications where compressing the signature space is impor-
tant: in infrastructure: secure routing protocols, in security: compressed
certificate chain signature, in signing incrementally changed data: such
as software module authentications, and in transaction systems: like in
secure high-scale repositories and logs, typical in financial transactions.
In spite of its importance, the state of the art of the primitive is such
that it has not been easy to devise a suitable aggregate signature scheme
that satisfies the conditions of real applications, with reasonable param-
eters: short public key size, short aggregate signatures size, and efficient
aggregate signing/verification. In this paper, we propose two aggregate
signature schemes based on the Camenisch-Lysyanskaya (CL) signature
scheme whose security is reduced to that of CL signature (i.e., secure un-
der the LRSW assumption) which substantially improve efficiency con-
ditions for real applications. The first scheme is an “efficient sequential
aggregate signature” scheme with the shortest size public key, to date,
and very efficient aggregate verification. The second scheme is an “effi-
cient synchronized aggregate signature” scheme with a very short pub-
lic key size, and with the shortest (to date) size of aggregate signatures
among synchronized aggregate signature schemes. Signing and aggregate
verification are very efficient. The security of the schemes is proved by re-
ducing from the CL signature without random oracles (first scheme) and
in the random oracle model (second scheme). Furthermore, our schemes
are compatible: a signer of our aggregate signature schemes can dynam-
ically use two modes of aggregation “sequential” and “synchronized,”
employing the same private/public key.
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1 Introduction

Public-key signature (PKS) is a central cryptographic primitive with numerous
applications. However, constructing a PKS scheme that is efficient, secure, and
flexible enough for a range of possible applications is not easy. Among such
schemes, CL signature, proposed by Camenisch and Lysyanskaya [12], is one of
the pairing-based signature schemes [10, 8, 12, 23] that satisfies these conditions.
It was widely used as a basic component in various cryptosystems such as anony-
mous credential systems, group signature, RFID encryption, batch verification
signature, ring signature [12, 3, 2, 11, 5], as well as in aggregate signature [21].

Pubic-key aggregate signature (PKAS), introduced by Boneh, Gentry, Lynn,
and Shacham [9], is a special type of PKS that enables anyone to aggregate
different signatures generated by different signers on different messages into a
short aggregate signature. Boneh et al. proposed the first full aggregate signature
scheme in bilinear groups and proved its security in the random oracle model
under the CDH assumption. After the introduction of aggregate signatures, var-
ious types of aggregate signatures such as sequential aggregate signatures [18,
17, 6, 15, 16] and synchronized aggregate signatures [14, 1] were proposed. PKAS
has numerous applications. In network and infrastructure: secure routing pro-
tocols, public-key infrastructure systems (signing certificate chains), sensor net-
work systems, proxy signatures, as well as in applications: dynamically changing
document composition (in particular, secure updating of software modules), se-
cure transaction signing, secure work flow, and secure logs and repositories [9, 6,
1, 7]. In all these applications, compressing the space consumed by signatures is
the major advantage. Note that in the area of financial transactions, in partic-
ular, logs and repositories are very large due to regulatory requirements to hold
records for long time periods. The effect of compressing signatures by aggrega-
tion increases with the number of data items; thus it is quite plausible that the
financial sector may find variations of aggregate signature most useful.

Though PKAS can reduce the size of signers’ signatures by using the ag-
gregation technique, it cannot reduce the size of signers’ public keys since the
public keys are not aggregated. Thus, the total information the verifier needs to
access is still proportional to the number of signers in the aggregate signature,
since the verifier should retrieve all public keys of signers from a certificate stor-
age. Therefore, it is very important to reduce the size of public keys. An ideal
solution for this problem is to use identity-based aggregate signature (IBAS)
that represents the public key of a signer as an identity string. However, IBAS
requires a trust structure different from public key infrastructure, namely, the
existence of an additional trusted authority, (the current IBAS schemes are in
[14, 6, 15] and are all secure in the random oracle model.) To construct a PKAS
scheme with short public keys, Schröder proposed a sequential aggregate signa-
ture scheme with short public keys based on the CL signature scheme [21]. In
the scheme of Schröder, the public key consists of two group elements and the
aggregate signature consists of four group elements, but the aggregate verifica-
tion algorithm requires l pairing operations and l exponentiations where l is the
number of signers in the aggregate signature. Therefore, this work, while nicely



pointing at the CL signature as a source of efficiency for the context of aggre-
gate signatures, still leaves out desired properties to build upon while exploiting
the flexibility of the CL signature: can we make the public key shorter? can we
require substantially less work in verification? and, can we build other modes
of aggregate signatures? While asking such questions, we revisit the subject of
aggregate signature based on CL signatures.

1.1 Our Contributions

In this paper, we indeed solve the problem of constructing a PKAS scheme that
has short public keys, short aggregate signatures, and an efficient aggregate ver-
ification algorithm. We first propose an efficient sequential aggregate signature
scheme based on the CL signature scheme and prove its security based on that of
CL signature (i.e., the LRSW assumption) without random oracles. A sequential
aggregate signature assumes that the aggregation mode is done in linear order:
signed message after signed message. In this scheme, the public key consists of
just one group element and the aggregate signature consists of just three group
element. The size of the public key is the shortest among all sequential aggregate
schemes to date (except IBAS schemes). The aggregate verification algorithm of
our scheme is quite efficient since it just requires five pairing operations and
l exponentiations (or multi-exponentiations). Therefore our scheme simultane-
ously satisfies the conditions of short public keys, short aggregate signatures,
and efficient aggregate verification.

Next, we propose an efficient synchronized aggregate signature scheme based
on the CL signature scheme and prove its security based on the CL signature
security in the random oracle model (the random oracle can be removed if the
number of messages is restricted to be polynomial). Synchronized aggregate sig-
nature is a mode where the signers of messages to be aggregated are synchro-
nized, but aggregation can take any order. In this scheme, the public key consists
of just one group element and the aggregate signature consists of one group ele-
ment and one integer. The size of the aggregate signature is the shortest among
all synchronized aggregate signature schemes to date. The aggregate verification
algorithm of this scheme is also quite efficient since it just requires three pairing
operations and l exponentiations (or multi-exponentiations).

Additionally, our two aggregate signature schemes can be combined to give
a new notion of aggregate “multi-modal” signature scheme: A scheme which
supports, both, sequential aggregation or synchronized aggregation, since the
public key and the private key of two schemes are the same. This property can
increase the utility and flexibility of the suggested scheme(s).

1.2 Related Work

Given the importance of aggregation to saving signature space, much work has
been invested in the various notions allowing aggregation.

Full Aggregation. The notion of public-key aggregate signature (PKAS) was
introduced by Boneh, Gentry, Lynn, and Shacham [9]. They proposed the first



PKAS scheme in bilinear groups that supports full aggregation such that anyone
can freely aggregate different signatures signed by different signers on different
messages into a short aggregate signature [9]. The PKAS scheme of Boneh et al.
requires l number of pairing operations in the aggregate verification algorithm
where l is the number of signers in the aggregate signature. Bellare et al. modified
the PKAS scheme of Boneh et al. to remove the restriction such that the message
should be different by hashing a message with the public key of a signer [4].

Sequential Aggregation. The concept of sequential aggregate signature was
introduced by Lysyanskaya, Micali, Reyzin, and Shacham [18]. In sequential ag-
gregate signature, a signer can generate an aggregate signature by adding his
signature to the previous aggregate signature that was received from a previous
signer. Lysyanskaya et al. proposed a sequential PKAS scheme using certified
trapdoor permutations, and they proved its security in random oracle models
[18]. Boldyreva et al. proposed an identity-based sequential aggregate signature
(IBSAS) scheme (in the trust model of identity-based schemes with a trusted
private keys authority), in bilinear groups and proved its security in the ran-
dom oracle model under an interactive assumption [6]. Recently, Gerbush et al.
showed that a modified IBSAS scheme of Boldyreva et al. in composite order bi-
linear groups can be secure in the random oracle model under static assumptions
[15].

The first sequential PKAS scheme without random oracles was proposed by
Lu et al. [17]. They constructed a sequential PKAS scheme based on the PKS
scheme of Waters and proved its security without random oracles under the
CDH assumption. However, this sequential PKAS scheme has a disadvantage
such that the size of public keys is very long. To reduce the size of pubic keys
in PKAS schemes, Schröder proposed the CL signature based scheme discussed
above [21]. Recently, Lee et al. proposed an efficient sequential PKAS scheme
with short public keys and proved its security without random oracles under
static assumptions [16].

Synchronized Aggregation. The concept of synchronized aggregate signature
was introduced by Gentry and Ramzan [14]. In synchronized aggregate signa-
ture, all signers have synchronized time information and individual signatures
generated by different signers within the same time period can be aggregated
into a short aggregate signature. They proposed an identity-based synchronized
aggregate signature scheme in bilinear groups and proved its security in the
random oracle model under the CDH assumption [14]. Ahn et al. proposed an
efficient synchronized PKAS scheme based on the PKS scheme of Hohenberger
and Waters and proved its security without random oracles under the CDH
assumption [1].

2 Preliminaries

In this section, we define bilinear groups, and introduce the LRSW assumption
which is associated with the security of the CL signature scheme, which is, then,
presented as well.



2.1 Bilinear Groups

Let G and GT be multiplicative cyclic groups of prime order p. Let g be a
generator of G. The bilinear map e : G×G→ GT has the following properties:

1. Bilinearity: ∀u, v ∈ G and ∀a, b ∈ Zp, e(u
a, vb) = e(u, v)ab.

2. Non-degeneracy: ∃g such that e(g, g) has order p, that is, e(g, g) is a generator
of GT .

We say that G,GT are bilinear groups if the group operations in G and GT as
well as the bilinear map e are all efficiently computable.

2.2 Complexity Assumption

The security of our aggregate signature schemes is based on the following LRSW
assumption. The LRSW assumption was introduced by Lysyanskaya et al. [19]
and it is secure under the generic group model defined by Shoup [22] (and
adapted to bilinear groups in [12]).

Assumption 1 (LRSW) Let G be an algorithm that on input the security pa-
rameter 1λ, outputs the parameters for a bilinear group as (p,G,GT , e, g). Let
X,Y ∈ G such that X = gx, Y = gy for some x, y ∈ Zp. Let OX,Y (·) be an oracle
that on input a value M ∈ Zp outputs a triple (a, ay, ax+Mxy) for a randomly
chosen a ∈ G. Then for all probabilistic polynomial time adversaries A,

Pr[(p,G,GT , e, g)← G(1λ), x← Zp, y ← Zp, X = gx, Y = gy,

(M,a, b, c)← AOX,Y (·)(p,G,GT , e, g,X, Y ) :

M /∈ Q ∧M ∈ Z∗
p ∧ a ∈ G ∧ b = ay ∧ c = ax+Mxy] < 1/poly(λ)

where Q is the set of queries that A made to OX,Y (·).

2.3 The CL Signature Scheme

The CL signature scheme is a public-key signature scheme that was proposed by
Camenisch and Lysyanskaya [12] and the security was proven without random
oracles under the LRSW assumption. Although the security of the CL signature
scheme is based on this interactive assumption, it is flexible and widely used for
the constructions of various cryptosystems [19, 12, 5, 11, 21] (this is so, perhaps
due to its relatively elegant and simple algebraic structure).

PKS.KeyGen(1λ): The key generation algorithm first generates the bilinear
groups G,GT of prime order p of bit size Θ(λ). Let g be the generator of G. It
selects two random exponents x, y ∈ Zp and sets X = gx, Y = gy. It outputs
a private key as SK = (x, y) and a public key as PK = (p,G,GT , e, g,X, Y ).

PKS.Sign(M,SK): The signing algorithm takes as input a message M ∈ Z∗
p

and a private key SK = (x, y). It selects a random element A ∈ G and
computes B = Ay, C = AxBxM . It outputs a signature as σ = (A,B,C).



PKS.Verify(σ,M,PK): The verification algorithm takes as input a signature
σ = (A,B,C) on a message M ∈ Z∗

p under a public key PK = (p,G,GT , e,

g,X, Y ). It verifies that e(A, Y )
?
= e(B, g) and e(C, g)

?
= e(A,X) · e(B,X)M .

If these equations hold, then it outputs 1. Otherwise, it outputs 0.

Theorem 2 ([12]). The CL signature scheme is existentially unforgeable under
a chosen message attack if the LRSW assumption holds.

3 Sequential Aggregate Signature

In this section, we propose an efficient sequential aggregate signature (SeqAS)
scheme based on the CL signature scheme, and prove its security without random
oracles.

3.1 Definitions

Sequential aggregate signature (SeqAS) is a special type of public-key aggregate
signature (PKAS) that allows each signer to sequentially add his signature on
a different message to the aggregate signature [18]. That is, a signer with an
index i receives an aggregate signature σ′

Σ from the signer of an index i − 1,
and he generates a new aggregate signature σΣ by aggregating his signature
on a message M to the received aggregate signature. The resulting aggregate
signature has the same size of the previous aggregate signature.

Formally, a SeqAS scheme consists of four PPT algorithms Setup, KeyGen,
AggSign, and AggVerify, which are defined as follows:

– Setup(1λ). The setup algorithm takes as input a security parameter 1λ and
outputs public parameters PP .

– KeyGen(PP ). The key generation algorithm takes as input the public pa-
rameters PP , and outputs a public key PK and a private key SK.

– AggSign(σ′
Σ ,M,PK,M, SK,PP ). The aggregate signing algorithm takes

as input an aggregate-so-far σ′
Σ on messagesM = (M1, . . . ,Mk) under public

keys PK = (PK1, . . . , PKk), a message M , and a private key SK with PP ,
and outputs a new aggregate signature σΣ .

– AggVerify(σΣ ,M,PK, PP ). The aggregate verification algorithm takes as
input an aggregate signature σΣ on messages M = (M1, . . . ,Ml) under pub-
lic keys PK = (PK1, . . . , PKl) and the public parameters PP , and outputs
either 1 or 0 depending on the validity of the aggregate signature.

The correctness requirement is that for each PP output by Setup, for all
(PK,SK) output byKeyGen, anyM , we have thatAggVerify(AggSign(σ′

Σ ,
M′,PK′,M, SK,PK,PP ),M′||M,PK′||PK,PP ) = 1 where σ′

Σ is a valid aggregate-
so-far signature on messages M′ under public keys PK′.

The security model of SeqAS was introduced by Lysyanskaya et al. [18]. In
this paper, we follow the security model that was proposed by Lu et al. [17].
The security model of Lu et al. is a more restricted model that requires the



adversary to correctly generate other signers’ public keys and private keys except
the challenge signer’s key. To ensure the correct generation of public keys and
private keys, the adversary should submit the corresponding private keys of the
public keys to the challenger before using the public keys. A realistic solution of
this is for the signer to prove that he knows the corresponding private key of the
public key by using zero-knowledge proofs when he requests the certification of
his public key.

Formally, the security notion of existential unforgeability under a chosen mes-
sage attack is defined in terms of the following experiment between a challenger
C and a PPT adversary A:

Setup: C first initializes a key-pair list KeyList as empty. Next, it runs Setup
to obtain public parameters PP andKeyGen to obtain a key pair (PK,SK),
and gives PK to A.

Certification Query: A adaptively requests the certification of a public key
by providing a key pair (PK,SK). Then C adds the key pair (PK,SK) to
KeyList if the key pair is a valid one.

Signature Query: A adaptively requests a sequential aggregate signature (by
providing an aggregate-so-far σ′

Σ on messages M′ under public keys PK′),
on a message M to sign under the challenge public key PK, and receives a
sequential aggregate signature σΣ .

Output: Finally (after a sequence of the above queries), A outputs a forged
sequential aggregate signature σ∗

Σ on messages M∗ under public keys PK∗.
C outputs 1 if the forged signature satisfies the following three conditions,
or outputs 0 otherwise: 1) AggVerify(σ∗

Σ ,M
∗,PK∗, PP ) = 1, 2) The chal-

lenge public key PK must exist in PK∗ and each public key in PK∗ except
the challenge public key must be in KeyList, and 3) The corresponding mes-
sage M in M∗ of the challenge public key PK must not have been queried
by A to the sequential aggregate signing oracle.

The advantage of A is defined as AdvSeqAS
A = Pr[C = 1] where the probability

is taken over all the randomness of the experiment. A SeqAS scheme is existen-
tially unforgeable under a chosen message attack if all PPT adversaries have at
most a negligible advantage (for large enough security parameter) in the above
experiment.

3.2 Construction

We first describe the design idea of our SeqAS scheme. To construct a SeqAS
scheme, we use the “public key sharing” technique such that the element Y in
the public key of the original CL signature scheme can be shared with all signers.
The modified CL signature scheme that shares the element Y of the public key
is described as follows: The setup algorithm publishes the public parameters
that contain the description of bilinear groups and an element Y . Each signer
generates a private key x ∈ Zp and a public key X = gx. A signer who has
the private key x of the public key X can generate an original CL signature



σ = (A,B,C) on a message M just using the private key x and a random r as
A = gr, B = Y r, and C = AxBxM since the element Y is given in the public
parameters.

We construct a SeqAS scheme based on the modified CL signature scheme
that supports “public key sharing” by using the “randomness re-use” technique
of Lu et al. [17]. It is easy to sequentially aggregate signatures if the element
Y is shared with all signers since we only need to consider the aggregation of
the {Xi} values of signers instead of the {Xi, Yi} values of signers. For instance,
the first signer who has a private key x1 generates a signature σ1 = (A1, B1, C1)
on a message M1 as A1 = gr1 , B1 = Y r1 , and C1 = (gr1)x1(Y r1)x1M1 . The
second signer with a private key x2 generates a sequential aggregate signa-
ture σ2 = (A2, B2, C2) on a message M2 as A2 = A1, B2 = B1, and C2 =
C1(A1)

x2(B1)
x2M2 by using the “randomness re-use” technique. Therefore a se-

quential aggregate signature of signers is formed as σΣ = (A = gr, B = Y r, C =
A

∑
xiB

∑
xiMi). Additionally, each signer should re-randomize the aggregate sig-

nature to prevent a simple attack.
Our SeqAS scheme is described as follows:

SeqAS.Setup(1λ): This algorithm first generates the bilinear groups G,GT of
prime order p of bit size Θ(λ). Let g be the generator of G. It chooses a ran-
dom element Y ∈ G and outputs public parameters as PP = (p,G,GT , e, g, Y ).

SeqAS.KeyGen(PP ): This algorithm takes as input the public parameters
PP . It selects a random exponent x ∈ Zp and sets X = gx. Then it outputs
a private key as SK = x and a public key as PK = X.

SeqAS.AggSign(σ′
Σ ,M

′,PK′,M, SK,PP ): This algorithm takes as input an
aggregate-so-far σ′

Σ = (A′, B′, C ′) on messages M′ = (M1, . . . ,Mk) under
public keys PK′ = (PK1, . . . , PKk) where PKi = Xi, a message M ∈ Z∗

p,
and a private key SK = x with PP . It first checks the validity of σ′

Σ by
calling AggVerify(σ′

Σ ,M
′,PK′, PP ). If σ′

Σ is not valid, then it halts. It
checks that the public key PK of SK does not already exist in PK′. If
the public key already exists, then it halts. Note that if k = 0, then σ′

Σ =
(g, Y, 1). It selects a random exponent r ∈ Zp and computes

A = (A′)r, B = (B′)r, C =
(
C ′ · (A′)x · (B′)xM

)r
.

It outputs an aggregate signature as σΣ = (A,B,C).
SeqAS.AggVerify(σΣ ,M,PK, PP ): This algorithm takes as input an aggre-

gate signature σΣ = (A,B,C) on messages M = (M1, . . . ,Ml) under public
keys PK = (PK1, . . . , PKl) where PKi = Xi. It first checks that any Mi is
in Z∗

p, any public key does not appear twice in PK, and any public key in
PK has been certified. If these checks fail, then it outputs 0. If l = 0, then
it outputs 1 if σΣ = (1, Y, 1), 0 otherwise. Next, it verifies that

e(A, Y )
?
= e(B, g) and e(C, g)

?
= e(A,

l∏
i=1

Xi) · e(B,
l∏

i=1

XMi
i ).

If these equations hold, then it outputs 1. Otherwise, it outputs 0.



A sequential aggregate signature σΣ = (A,B,C) on messagesM = (M1, . . . ,Ml)
under public keys PK = (PK1, . . . , PKl) has the following form

A = gr, B = Y r, C =
(
gr
)∑l

i=1 xi
(
Y r

)∑l
i=1 xiMi

where PKi = Xi = gxi .

3.3 Security Analysis

We prove the security of our SeqAS scheme based on the security of the CL
signature scheme without random oracles.

Theorem 3. The above SeqAS scheme is existentially unforgeable under a cho-
sen message attack if the CL signature scheme is existentially unforgeable under
a chosen message attack.

Proof. The main idea of the security proof is that the aggregated signature of
our SeqAS scheme is independent of the order of aggregation, and the simulator
of the SeqAS scheme possesses the private keys of all signers except the private
key of the challenge public key. That is, if the adversary requests a sequential
aggregate signature, then the simulator first obtains a CL signature from the
target scheme’s signing oracle and runs the aggregate signing algorithm to gen-
erate a sequential aggregate signature. If the adversary finally outputs a forged
sequential aggregate signature that is non-trivial, then the simulator extracts
the CL signature of the challenge public key from the forged aggregate signature
by using the private keys of other signers.

Suppose there exists an adversary A that forges the above SeqAS scheme
with non-negligible advantage ϵ. A simulator B that forges the CL signature
scheme is first given: a challenge public key PKCL = (p,G,GT , e, g,X, Y ). Then
B that interacts with A is described as follows:

Setup: B first constructs PP = (p,G,GT , e, g, Y ) and PK∗ = X from PKCL.
Next, it initializes a key-pair list KeyList as an empty one and gives PP
and PK∗ to A.

Certification Query: A adaptively requests the certification of a public key
by providing a public key PKi = Xi and its private key SKi = xi. B checks
the private key and adds the key pair (PKi, SKi) to KeyList.

Signature Query: A adaptively requests a sequential aggregate signature by
providing an aggregate-so-far σ′

Σ on messages M′ = (M1, . . . ,Mk) under
public keys PK′ = (PK1, . . . , PKk), and a message M to sign under the
challenge private key of PK∗. B proceeds the aggregate signature query as
follows:

1. It first checks that the signature σ′
Σ is valid by calling SeqAS.AggVerify

and that each public key in PK′ exits in KeyList.
2. It queries its signing oracle that simulates PKS.Sign on the message M

for the challenge public key PK∗ and obtains a signature σ.



3. For each 1 ≤ i ≤ k, it constructs an aggregate signature on message Mi

using SeqAS.AggSign since it knows the private key that corresponds
to PKi. The resulting signature is an aggregate signature for messages
M′||M under public keys PK′||PK∗ since this scheme does not check
the order of aggregation. It gives the result signature σΣ to A.

Output: A outputs a forged aggregate signature σ∗
Σ = (A∗, B∗, C∗) on mes-

sages M∗ = (M1, . . . ,Ml) under public keys PK∗ = (PK1, . . . , PKl) for
some l. Without loss of generality, we assume that PK1 = PK∗. B proceeds
as follows:
1. B first checks the validity of σ∗

Σ by calling SeqAS.AggVerify. Addi-
tionally, the forged signature should not be trivial: the challenge public
key PK∗ must be in PK∗, and the message M1 must not be queried by
A to the signature query oracle.

2. For each 2 ≤ i ≤ l, it parses PKi = Xi from PK∗, and it retrieves the
private key SKi = xi of PKi from KeyList. It then computes

A = A∗, B = B∗, C = C∗ ·
((

A∗)∑l
i=2 xi

(
B∗)∑l

i=2 xiMi
)−1

.

3. It outputs σ∗ = (A,B,C) on a messageM∗ = M1 as a non-trivial forgery
of the CL signature scheme since it did not make a signing query on M1.

To finish the proof, we first show that the distribution of the simulation is
correct. It is obvious that the public parameters and the public key are correctly
distributed. The distribution of the sequential aggregate signatures is correct
since this scheme does not check the order of aggregation. Finally, we can show
that the resulting signature σ∗ = (A,B,C) of the simulator is a valid signature
for the CL signature scheme on the message M1 under the public key PK∗ since
it satisfies the following equation:

e(C, g) = e(C∗ ·
(
(A∗)

∑l
i=2 xi(B∗)

∑l
i=2 xiMi

)−1
, g)

= e((A∗)
∑l

i=1 xi(B∗)
∑l

i=1 xiMi · (A∗)−
∑l

i=2 xi(B∗)−
∑l

i=2 xiMi , g)

= e((A∗)x1(B∗)x1M1 , g) = e(A∗, gx1) · e(B∗, gx1M1)

= e(A,X) · e(B,XM∗
).

This completes our proof. ⊓⊔

3.4 Discussions

Efficiency. The public key of our SeqAS scheme consists of just one group el-
ement and the aggregate signature consists of three group elements, since the
public key element Y of the CL signature scheme is moved to the public pa-
rameters of our scheme. The aggregate signing algorithm requires one aggregate
verification and five exponentiations, and the aggregate verification algorithm
requires five pairing operations and l exponentiations where l is the number of
signers in the aggregate signature. In the SeqAS scheme of Schröder [21], the



public key consists of two group elements, the aggregate signature consists of
four group elements, and the aggregate verification algorithm requires l pairing
operations and l exponentiations.

4 Synchronized Aggregate Signature

In this section, we propose an efficient synchronized aggregate signature (Syn-
cAS) scheme based on the CL signature scheme, and prove its security in the
random oracle model.

4.1 Definitions

Synchronized aggregate signature (SyncAS) is a special type of public-key ag-
gregate signature (PKAS) that allows anyone to aggregate signer’s signatures
on different messages with a same time period into a short aggregate signature
if all signers have the synchronized time period information like a clock [14, 1].
In SyncAS scheme, each signer has a synchronized time period or has an access
to public time information. Each signer can generate an individual signature
on a message M and a time period w. Note that the signer can generate just
one signature per one time period. After that, anyone can aggregate individual
signatures of other signers into a short aggregate signature σΣ if the individual
signatures are generated on the same time period w. The resulting aggregate
signature has the same size of the individual signature.

Formally, a SyncAS scheme consists of six PPT algorithms Setup, KeyGen,
Sign, Verify, Aggregate, and AggVerify, which are defined as follows:

– Setup(1λ). The setup algorithm takes as input a security parameter 1λ and
outputs public parameters PP .

– KeyGen(PP ). The key generation algorithm takes as input the public pa-
rameters PP , and outputs a public key PK and a private key SK.

– Sign(M,w, SK,PP ). The signing algorithm takes as input a message M , a
time period w, and a private key SK with PP , and outputs an individual
signature σ.

– Verify(σ,M,PK,PP ). The verification algorithm takes as input a signa-
ture σ on a message M under a public key PK, and outputs either 1 or 0
depending on the validity of the signature.

– Aggregate(S,M,PK). The aggregation algorithm takes as input individual
signatures S = (σ1, . . . , σl) on messagesM = (M1, . . . ,Ml) under public keys
PK = (PK1, . . . , PKl), and outputs an aggregate signature σΣ .

– AggVerify(σΣ ,M,PK, PP ). The aggregate verification algorithm takes as
input an aggregate signature σΣ on messages M = (M1, . . . ,Ml) under pub-
lic keys PK = (PK1, . . . , PKl), and outputs either 1 or 0 depending on the
validity of the aggregate signature.

The correctness requirement is that for each PP output by Setup, for all
(PK,SK) output byKeyGen, anyM , we have thatAggVerify(Aggregate(S,



M,PK),M,PK, PP ) = 1 where S is individual signatures on messages M un-
der public keys PK.

The security model of SyncAS was introduced by Gentry and Ramzan [14].
In this paper, we follow the security model that was proposed by Ahn et al.
[1]. The security model of Ahn et al. is a more restricted model that requires
the adversary to correctly generate other signers’ public keys and private keys
except the challenge signer’s key. To ensure the correct generation of public keys
and private keys, the adversary should submit the private key of the public
key, or he should prove that he knows the corresponding private key by using
zero-knowledge proofs.

Formally, the security notion of existential unforgeability under a chosen mes-
sage attack is defined in terms of the following experiment between a challenger
C and a PPT adversary A:

Setup: C first initializes a key-pair list KeyList as empty. Next, it runs Setup
to obtain public parameters PP andKeyGen to obtain a key pair (PK,SK),
and gives PK to A.

Certification Query: A adaptively requests the certification of a public key
by providing a key pair (PK,SK). Then C adds the key pair (PK,SK) to
KeyList if the key pair is a valid one.

Hash Query: A adaptively requests a hash on a string for various hash func-
tions, and receives a hash value.

Signature Query: A adaptively requests a signature on a message M and a
time period w that was not used before to sign under the challenge public
key PK, and receives an individual signature σ.

Output: Finally (after a sequence of the above queries), A outputs a forged
synchronized aggregate signature σ∗

Σ on messages M∗ under public keys
PK∗. C outputs 1 if the forged signature satisfies the following three condi-
tions, or outputs 0 otherwise: 1) AggVerify(σ∗

Σ ,M
∗,PK∗, PP ) = 1, 2) The

challenge public key PK must exist in PK∗ and each public key in PK∗

except the challenge public key must be in KeyList, and 3) The correspond-
ing message M in M∗ of the challenge public key PK must not have been
queried by A to the signing oracle.

The advantage of A is defined as AdvSyncAS
A = Pr[C = 1] where the probability

is taken over all the randomness of the experiment. A SyncAS scheme is existen-
tially unforgeable under a chosen message attack if all PPT adversaries have at
most a negligible advantage (for large enough security parameter) in the above
experiment.

4.2 Construction

We first describe the design idea of our SyncAS scheme. In the previous section,
we proposed a modified CL signature scheme that shares the element Y in the
public parameters. The signature of this modified CL signature scheme is formed
as σ = (A = gr, B = Y r, C = AxBxM ). If we can force signers to use the same



A = gr and B = Y r in signatures, then we easily obtain an aggregate signature
as σΣ = (A = gr, B = Y r, C = A

∑
xiB

∑
xiMi) by just multiplying individual

signatures of signers. In synchronized aggregate signatures, it is possible to force
signers to use the same A and B since all signers have the same time period w.
Therefore, each signer first sets A = H(0||w) and B = H(1||w) using the hash
function H and the time period w, and then he generates an individual signature
σ = (C = AxBxM , w). We need to hash a message for the proof of security.

Let W be a set of time periods where |W| is fixed polynomial in the security
parameter4. Our SyncAS scheme is described as follows:

SyncAS.Setup(1λ): This algorithm first generates the bilinear groups G,GT

of prime order p of bit size Θ(λ). Let g be the generator of G. It chooses two
hash functions H1 : {0, 1} ×W → G and H2 : {0, 1}∗ ×W → Z∗

p. It outputs
public parameters as PP = (p,G,GT , e, g,H1,H2).

SyncAS.KeyGen(PP ): This algorithm takes as input the public parameters
PP . It selects a random exponent x ∈ Zp and sets X = gx. Then it outputs
a private key as SK = x and a public key as PK = X.

SyncAS.Sign(M,w, SK,PP ): This algorithm takes as input a message M ∈
{0, 1}∗, a time period w ∈ W, and a private key SK = x with PP . It first
sets A = H1(0||w), B = H1(1||w), h = H2(M ||w) and computes C = AxBxh.
It outputs a signature as σ = (C,w).

SyncAS.Verify(σ,M,PK,PP ): This algorithm takes as input a signature σ =
(C,w) on a message M under a public key PK = X. It first checks that
the public key has been certified. If these checks fail, then it outputs 0.
Next, it sets A = H1(0||w), B = H1(1||w), h = H2(M ||w) and verifies that

e(C, g)
?
= e(ABh, X). If this equation holds, then it outputs 1. Otherwise, it

outputs 0.

SyncAS.Aggregate(S,M,PK, PP ): This algorithm takes as input signatures
S = (σ1, . . . , σl) on messages M = (M1, . . . ,Ml) under public keys PK =
(PK1, . . . , PKl) where σi = (C ′

i, w
′
i) and PKi = Xi. It first checks that that

w′
1 is equal to w′

i for i = 2 to l. If it fails, it halts. Next, it sets w = w′
1 and

computes C =
∏l

i=1 C
′
i. It outputs an aggregate signature as σΣ = (C,w).

SyncAS.AggVerify(σΣ ,M,PK, PP ): This algorithm takes as input an ag-
gregate signature σΣ = (C,w) on messages M = (M1, . . . ,Ml) under pub-
lic keys PK = (PK1, . . . , PKl) where PKi = Xi. It first checks that
any public key does not appear twice in PK and any public key in PK
has been certified. If these checks fail, then it outputs 0. Next, it sets
A = H1(0||w), B = H1(1||w), hi = H2(Mi||w) for all 1 ≤ i ≤ l and ver-

4 The set W does not need to be included in PP since an integer w in the range [1, T ]
can be used where T is fixed polynomial in the security parameter. In practice, we
can set T = 232 if the maximum time period of certificates is 10 years and a signer
generates a signature per each second. The previous SyncAS schemes [14, 1] support
exponential size of time periods while our SyncAS scheme supports polynomial size
of time periods.



ifies that

e(C, g)
?
= e(A,

l∏
i=1

Xi) · e(B,
l∏

i=1

Xhi
i ).

If this equation holds, then it outputs 1. Otherwise, it outputs 0.

A synchronized aggregate signature σΣ = (C,w) on messagesM = (M1, . . . ,Ml)
under public keys PK = (PK1, . . . , PKl) has the following form

C = H1(0||w)
∑l

i=1 xiH1(1||w)
∑l

i=1 xiH2(Mi||w)

where PKi = Xi = gxi .

4.3 Security Analysis

We prove the security of our SyncAS scheme based on the security of the CL
signature scheme in the random oracle model.

Theorem 4. The above SyncAS scheme is existentially unforgeable under a cho-
sen message attack if the CL signature scheme is existentially unforgeable under
a chosen message attack.

Proof. The main idea of the security proof is that the random oracle model sup-
ports the programmability of hash functions, the adversary can request just one
signature per one time period in this security model, and the simulator possesses
the private keys of all signers except the private key of the challenge public key.
In the proof, the simulator first guesses the time period w′ of the forged syn-
chronized aggregate signature and selects a random query index k of the hash
function H2. After that, if the adversary requests a signature on a message M
and a time period w such that w ̸= w′, then he can easily generate the signature
by using the programmability of the random oracle model. If the adversary re-
quests a signature for the time period w = w′, then he can generate the signature
if the query index i is equal to the index k. Otherwise, the simulator should abort
the simulation. Finally, if the adversary outputs a forged synchronized aggregate
signature that is non-trivial on the time period w′, then the simulator extracts
the CL signature of the challenge public key from the forged aggregate signature
by using the private keys of other signers.

Suppose there exists an adversary A that forges the above SyncAS scheme
with non-negligible advantage ϵ. A simulator B that forges the CL signature
scheme is first given: a challenge public key PKCL = (p,G,GT , e, g,X, Y ). Then
B that interacts with A is described as follows:

Setup: B first constructs PP = (p,G,GT , e, g,H1,H2) and PK∗ = X from
PKCL. It chooses a random value h′ ∈ Z∗

p and queries its signing oracle
PKS.Sign to obtain σ′ = (A′, B′, C ′). Let qH1 and qH2 be the maximum
number of H1 and H2 hash queries respectively. It chooses a random index
k such that 1 ≤ k ≤ qH2 and guesses a random time period w′ ∈ W of
the forged signature. Next, it initializes a key-pair list KeyList, hash lists
H1-List,H2-List as an empty one and gives PP and PK∗ to A.



Certification Query: A adaptively requests the certification of a public key
by providing a public key PKi = Xi and its private key SKi = xi. B checks
the private key and adds the key-pair (PKi, SKi) to KeyList.

Hash Query: A adaptively requests a hash value for H1 and H2 respectively.
If this is a H1 hash query on a bit b and a time period wi, then B treats the
query as follows:

– If b = 0 and wi ̸= w′, then it selects a random exponent ri ∈ Zp and sets
H1(0||wi) = gri .

– If b = 0 and wi = w′, then it sets H1(0||wi) = A′.
– If b = 1 and wi ̸= w′, then it selects a random exponent si ∈ Zp and sets

H1(1||wi) = gsi .
– If b = 1 and wi = w′, then it sets H1(1||wi) = B′.

If this is a H2 hash query on a message Mi and a time period wj , then B
treats the query as follows:

– If i ̸= k or wj ̸= w′, then it selects a random value hi,j ∈ Zp and sets
H2(Mi||wj) = hi,j .

– If i = k and wj = w′, then it sets H2(Mi||wj) = h′.

Note that the simulator keeps the tuple (bi, wi, ri,H1(bi||wi)) in H1-List and
the tuple (Mi, wj , hi,j) in H2-List.

Signature Query: A adaptively requests a signature by providing a message
Mi and a time period wj to sign under the challenge private key of PK∗. B
proceeds the signature query as follows:

– If wi ̸= w′, then it responds σi,j = (XriXsihi,j , wj) where ri, si, and hi,j

are retrieved from the H1-List and H2-List.
– If wi = w′ and i = k, then it responds σi,j = (C ′, wj).
– If wi = w′ and i ̸= k, it aborts the simulation.

Output: A outputs a forged aggregate signature σ∗
Σ = (C∗, w∗) on messages

M∗ = (M1, . . . ,Ml) under public keys PK∗ = (PK1, . . . , PKl) for some
l. Without loss of generality, we assume that PK1 = PK∗. B proceeds as
follows:

1. It checks the validity of σ∗
Σ by calling SyncAS.AggVerify. Addition-

ally, the forged signature should not be trivial: the challenge public key
PK∗ must be in PK∗, and the message M1 must not be queried by A
to the signature query oracle.

2. If w∗ ̸= w′, then it aborts the simulation since it fails to guess the forged
time period.

3. For each 2 ≤ i ≤ l, it retrieves the private key SKi = xi of PKi from
KeyList and sets hi,∗ = H2(Mi||w∗). Next, it computes

A = A∗, B = B∗, C = C∗ ·
((

A∗)∑l
i=2 xi

(
B∗)∑l

i=2 xihi,∗
)−1

.

4. If H2(M1||w∗) = h′, then it also aborts the simulation.
5. It outputs σ∗ = (A,B,C) on a message h1,∗ as a non-trivial forgery of

the CL signature scheme since h1,∗ ̸= h′ where h1,∗ = H2(M1||w∗).



To finish the proof, we first show that the distribution of the simulation is
correct. It is obvious that the public parameters and the public key are correctly
distributed. The distribution of the signatures is also correct. Next, we show
that the resulting signature σ∗ = (A,B,C) of the simulator is a valid signature
for the CL signature scheme on the message h1,∗ ̸= h′ under the public key PK∗

since it satisfies the following equation:

e(C, g) = e(C∗ ·
(
(A∗)

∑l
i=2 xi(B∗)

∑l
i=2 xiH2(Mi||w∗)

)−1
, g)

= e((A∗)
∑l

i=1 xi(B∗)
∑l

i=1 xihi,∗ · (A∗)−
∑l

i=2 xi(B∗)−
∑l

i=2 xihi,∗ , g)

= e((A∗)x1(B∗)x1h1,∗ , g) = e(A∗, gx1) · e(B∗, gx1h1,∗)

= e(A′, X) · e(B′, Xh1,∗).

We now analyze the success probability of the simulator B. At first, B suc-
ceeds the simulation if he does not abort in the simulation of signature queries
and he correctly guesses the time period w∗ such that w∗ = w′ in the forged
aggregate signature from the adversary A. B aborts the simulation of signature
queries if the time period w′ is given from A and he incorrectly guessed the
index k since he cannot generate a signature. Thus B succeeds the simulation
of signature queries at least q−1

H2
probability since the outputs of H2 are inde-

pendently random. Next, B can correctly guess the time period w∗ of the forged
aggregate signature with at least |W|−1 probability since he randomly chooses a
random w′. Note that the probability H2(M2||w∗) = h′ is negligible. Therefore,

the success probability of B is at least |W|−1 ·q−1
H2
·AdvSyncAS

A where AdvSyncAS
A

is the success probability of A. This completes our proof. ⊓⊔

4.4 Discussions

Efficiency. The public key of our SyncAS scheme consists of just one group ele-
ment since our SyncAS scheme is derived from the SeqAS scheme of the previous
section, and the synchronized aggregate signature consists of one group element
and one integer since anyone can compute A,B using the hash functions. The
signing algorithm requires two group hash operations and two exponentiations,
and the aggregate verification algorithm requires two group hash operations,
three pairing operations, and l exponentiations where l is the number of signers
in the aggregate signature. Our SyncAS scheme provides the shortest aggregate
signature size compared to the previous SyncAS schemes [14, 1]

Combined (Multi-Modal) Aggregate Signature. We can construct a com-
bined aggregate signature scheme that supports sequential aggregation and syn-
chronized aggregation at the same time by combining our SeqAS scheme and our
SyncAS scheme since the private key and the public key of our two schemes are
the same. In the combined aggregate signature scheme, the public parameters is
PP = (p,G,GT , e, g, Y,H1,H2), the private key and the public key are SK = x
and PK = X respectively. The security model of the combined aggregate sig-
natures can be defined by combining the security models of SeqAS schemes and



SyncAS schemes. In this security model, the adversary is given sequential ag-
gregate signatures and synchronized aggregate signatures, and it finally outputs
a forged (sequential or synchronized) aggregate signature. The security proof of
the combined aggregate signature scheme easily follows from the security proof of
SeqAS schemes and the security proof of SyncAS schemes since the simulator’s
simulations of SeqAS signatures and SyncAS signatures can be done without
interference.

Removing Random Oracles. If the number of messages is restricted to be
polynomial, then we can use the universal one-way hash function [20, 13]. How-
ever, the SeqAS scheme using the universal one-way hash function of Canetti et
al. is inefficient since it requires large number of exponentiations.

5 Conclusion

In this paper we concentrated on the notion of aggregate signatures which appli-
cations are in reducing space of signatures for large repositories (such as in the
legal, financial, and infrastructure areas). We proposed a new sequential aggre-
gate signature scheme and a new synchronized aggregate signature scheme using
a newly devised “public key sharing” technique, and we proved their security
under the LRSW assumption. Our two aggregate signature schemes in this pa-
per sufficiently satisfy the efficiency properties of aggregate signatures such that
the size of public keys should be short, the size of aggregate signatures should
be short, and the aggregate verification should be efficient.
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