
EverTutor: Automatically Creating Interactive
Guided Tutorials on Smartphones by User Demonstration

Cheng-Yao Wang, Wei-Chen Chu, Hou-Ren Chen, Chun-Yen Hsu, Mike Y. Chen
Mobile and HCI Research Lab, National Taiwan University

{r00944052,r01922013,r01922002,b99204007,mikechen}@csie.ntu.edu.tw

Figure 1. Common types of smartphone tutorials: (a) Static text and images, (b) Video, (c) EverTutor’s interactive, step-by-step guided tutorial.
Compared to EverTutor which overlays each step on top of the corresponding screen, static and video tutorials require users to constantly switch
between the tutorial and the primary task, as shown in (d).

ABSTRACT
We present EverTutor, a system that automatically generates
interactive tutorials on smartphone from user demonstration.
For tutorial authors, it simplifies the tutorial creation. For
tutorial users, it provides contextual step-by-step guidance
and avoids the frequent context switching between tutorials
and users’ primary tasks. In order to generate the tutorials
automatically, EverTutor records low-level touch events to
detect gestures and identify on-screen targets. When a tu-
torial is browsed, the system uses vision-based techniques
to locate the target regions and overlays the corresponding
input prompt contextually. It also identifies the correctness
of users’ interaction to guide the users step by step. We
conducted a 6-person user study for creating tutorials and
a 12-person user study for browsing tutorials, and we com-
pared EverTutor’s interactive tutorials to static and video
ones. Study results show that creating tutorials by EverTu-
tor is simpler and faster than producing static and video tu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI’14, April 26–May 1, 2014, Toronto, Canada.
Copyright c� 2014 ACM 978-1-4503-2473-1/14/04..$15.00.
http://dx.doi.org/10.1145/2556288.2557407

torials. Also, when using the tutorials, the task completion
time for interactive tutorials were 3-6 times faster than static
and video tutorials regardless of age group. In terms of user
preference, 83% of the users chose interactive type as the pre-
ferred tutorial type and rated it easiest to follow and easiest to
understand.

Author Keywords
Tutorials; Contextual help; Touchscreen gesture;
Smartphone.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
Graphical User Interfaces.

INTRODUCTION
Smartphones have become ubiquitous in our daily lives. For
the times when users need help, they currently resort to find-
ing tutorials that are static or video, and by asking friends to
demonstrate how it is done. For static tutorials, text and im-
ages are arranged to describe the steps of operations required
to accomplish a task. Video tutorials are screen recordings
that show the process of performing a task (see Figure 1).
Both of static and video tutorials frequently require users to
switch between the tutorials and user contexts. In addition,

Session: Tutorials CHI 2014, One of a CHInd, Toronto, ON, Canada

4027

users often repeatedly pause and replay the videos. This out-
of-context process indicates two usability problems: split at-
tention and delayed practice [18].

Contextual interactive tutorials, such as the ones when an An-
droid device is used for the very first time, address these us-
abilities problems, but they require significant programming
skills and privileged access to system source code. Recent
research on tutorial content have included contextual asso-
ciations, such as Stencils-based tutorials [14], Graphstracts
[13] and “Photo Manipulation Tutorials” [8]. However, these
contextual tutorials are limited to particular applications and
tasks and can’t be viewed on smartphones. Vision-based anal-
ysis are applicable to any GUI regardless whether the source
code and accessibility APIs are available [26]. However,
users need to write Sikuli scripts [25] and take screenshots
for each step; in addition, touchscreen gestures are not sup-
ported.

We present EverTutor, a system that automatically gener-
ates interactive step-by-step tutorials from user demonstra-
tion. EverTutor records low-level touch events, distinguishes
different touchscreen gestures and extracts regional screen-
shot around event location to generate tutorials automatically.
When a tutorial is browsed, the system uses vision-based
techniques to locate the target interactive region in a given
tutorial step. Besides, EverTutor identifies the correctness of
the user’s interaction and gives response, making the contex-
tual help more interactive. Moreover, EverTutor even auto-
matically injects scroll or swipe event to find the unseen in-
teractive region for users.

We compare the interactive step-by step tutorials generated
by EverTutor with static and video tutorials. To evaluate user
experience, user preferences, the overall time of creating tuto-
rials, and the task completion time, we conducted a 6-person
user study for creating tutorials, and another 12-person user
study for browsing tutorials. In the first study, we demon-
strated that creating tutorials by EverTutor is simpler and
faster than producing static and video tutorials. According
to the second study, interactive tutorial is 3-6 times as fast
as static and video tutorials. In addition, with interactive tu-
torials, older users can complete a task as fast or faster than
younger users. When participants were asked to rate all the
methods in terms of 1) easy to follow, 2) easy to understand,
and 3) easy to remember, interactive tutorial is rated highest
in easy to follow and easy to understand. In addition, 83% of
the users chose interactive type as the preferred tutorial type.

In summary, the main contributions of this paper include:

• a tutorial system that simplifies the generation process
of contextual tutorials across apps and supports general
touchscreen gestures on Android smartphones.

• a general approach to automatically generating interactive
step-by-step tutorials from demonstrations.

• presenting interactive step-by-step tutorials that help older
users complete a task as fast as youngsters

• an evaluation of interactive step-by-step tutorials compar-
ing with static and video tutorials on smartphone.

RELATED WORK

Capturing touchscreen events
Gomez et al. described RERAN that permits record-and- re-
play for the Android smartphone platform by capturing and
replaying the low-level events triggered on the phone [6].
Henze et al. derived a compensation function that shifts the
users’ touches to reduce errors from the large amounts of
touch events, which were collected from a published smart-
phone game in the Android Market [12]. Daryl et al. recorded
user touch inputs and improved touch accuracy on mobile de-
vices by learning user-specific touch input models [23]. In
EverTutor, the system analyzes the recorded low-level touch
events and regional screenshot around touch event location to
generate interactive contextual tutorials automatically.

Generation of tutorials by user demonstrations
Most existing tutorial generation approaches trace user inter-
actions by analyzing screencast video of the demonstration
or the application. Grabler et al. presented a system that
automatically creates tutorials from recorded demonstrations
of application usage [8], and Berthouzoz et al. developed a
framework, which learned the parameters for image editing
operations and generated macros that take into account the
context of the current image [3]. Chronicle captures video
and history of graphical documents to create an interactive
learning tool that offers video playback and visualization of
user actions [10]. The MixT tutorial system [4] uses a com-
mand log, an input device log and screencapture video to
generate mixed media tutorials that combine the strengths of
static with video tutorial types. However, tutorials generated
by above creation tools must be viewed outside the actual user
interface.

Contextual Assistance
Contextual help has been proved effective for learning graph-
ical user interfaces [14, 9, 2]. Unlike traditional help based
on screenshots or screencasts, contextual help allows users
to receive assistance in the actual interface they are interact-
ing with. Researchers have explored a range of tutorial sys-
tems that are presented in the context of the application [14,
9, 5]. Stencils-based tutorials overlay step- by-step instruc-
tions on the interface and limit interaction to UI elements re-
lated to the current step [14]. Sketch-Sketch Revolution of-
fers in-application tutorials that assist the user in completing
drawing tasks, enabling the user to experience success while
learning [5]. ToolClips provides users with short video clips
and other rich help content next to toolbar buttons contextu-
ally [9]. However, these contextual tutorials are limited to
specific applications or suited only for a single, specific task.

Yeh et al. developed a tool [26] that allows help design-
ers to create contextual help across applications by taking
screenshots and writing Sikuli script language [25]. When
the help is presented to a user, the system uses computer vi-
sion method to locate the component on user’s screen that
matches the screenshot. Though we also use vision-based
techniques to locate the target interactive region in a given
tutorial step, with the recorded low-level touch events, Ever-
Tutor distinguishes different touchscreen gestures during the

Session: Tutorials CHI 2014, One of a CHInd, Toronto, ON, Canada

4028

automatic generation process of tutorials. Also, when a tu-
torial is presented, EverTutor identifies the correctness of the
user’s interaction and gives response, making the contextual
help more interactive. In addition, EverTutor even automat-
ically injects scroll or swipe event to help the user find the
interactive area which is unseen in current screen.

Evaluation of different tutorial types
Different findings on the effectiveness of media formats of
software tutorials are shown. The work in the early 90’s by
Palmiter, Elkerton [19, 20], and Harrison [11] studied the
effect of animated demonstrations on learning and instruc-
tion recall. More recently, Grabler et al. showed that au-
tomatically generated text and image tutorials outperformed
video or book instructions on time and errors [13]. Tool-
Clips short (1025 sec.) video demonstrations of features
displayed as tooltips has been shown to result in signifi-
cantly improved task-completion rates as compared to static
text+image tooltips [9]. The MixT multimedia tutorial sys-
tem reported that short, step-specific video demonstrations
are useful for performing dynamic actions that are difficult
to express via text or static images alone [4]. Pause-and-Play
[21] improves a user’s ability to follow video demonstrations
by automatically pausing and resuming video to stay in sync
with the user’s progress. Lafreniere et al. designed FollowUs
[16] that brought enhanced community features to the tuto-
rial experience, including additional demonstrations of each
tutorial step, and noted that the presence of multiple demon-
strations helps users complete tasks with less frustration. Dif-
ferently, we perform an evaluation of EverTutor to understand
the user experience of browsing three tutorial types on smart-
phone and users’ preferred type.

DESIGN GOALS
In this section, based on previous research and smartphone
characteristics, we outline the design goals of our tutorial sys-
tem, EverTutor.

Contextual
Although users can long press the home button or use other
app-switching apps to switch back and forth between user
context and tutorials, this process could cause delayed, dis-
ruptive, inconsistent, and obtrusive user experience [1, 15].
Therefore, our first goal is to make our tutorials contextual.

Touchscreen gestures support
Touchscreen is the factor that has changed the way people use
mobile phones and tablets. When using smartphones, users
perform many touchscreen gestures, such as scrolling through
a web page, pinching to zoom in a photo, and dragging an
app icon to home screen. As a result, one of our goals is to
enable the 7 touchscreen gestures supported by Android to be
contained in the tutorial [22].

Interactive
Inspired by Stencils-based tutorial [14] and Google SketchUp
Training [7], we intend to design the tutorials that are aware
of a user’s interactions and able to respond. In addition, since
the smartphone screen is too small to show directly the un-
seen targets in several situations, we expect EverTutor to au-
tomatically find the unseen target area for users, making our
contextual help more interactive and improving users’ learn-
ing experience.

Automatic generation from user demonstration
In order to simplify the generation process of contextual tuto-
rials, we intend to allow users to create tutorials during their
demonstration. Considering smartphones having so many
apps and features, automatic generation could possibly meet
smartphone users’ increasing demand for tutorials.

Across apps and platforms
We expect our tutorial system to be suited for any task or
any app on smartphone and hope our approach to be easily
applied to any other touchscreen-based devices.

Figure 2. The overlays for touchscreen gestures in EverTutor. (a) Touch (b) Long press (c, d) Pinch open/close (e) Double touch (f) Swipe (g) Drag.

Session: Tutorials CHI 2014, One of a CHInd, Toronto, ON, Canada

4029

Figure 3. Series of events representing a swipe; Xi, Yi are the initial
coordinates, Xm, Ym are the coordinates during moving (still holding
down), and Xf , Yf are the final coordinates.

SYSTEM IMPLEMENTATION
We developed EverTutor on a Samsung Note 2 smartphone
with root access running Android 4.1.2.

Gesture Recognizer
The Android software stack consists of a custom Linux ker-
nel and libraries, the Dalvik Virtual Machine (VM) and apps
running on top of the VM. When a user interact with an An-
droid app, the Android device’s sensors generate and send
events to the kernel via the /dev/input/event* device files. The
standard, five-field format of every event is as follows: times-
tamp:, device:, type, code, value, and touchscreen gestures
are encoded as a stream of touchscreen events in the same
format, which could be displayed as the following example:

40-719451: /dev/input/event2: 0003 0035 0000011f.

The timestamp indicates that the event was generated 40
seconds and 719,451 microseconds since the system restart;
“event2” is the input device which refers to the touchscreen
on our device. The next three columns provide position in-
formation: 0035 represents the x position of the event and
0000011f (hex) corresponds to coordinate 287 (decimal) of
the screen. However, this single event is not enough for
reconstituting the high-level gesture. For instance, a single
press usually involves roughly 18 touchscreen events, while
a swipe usually involves roughly 50 touchscreen events. In
Figure 3, we show a subset of events involved in a single typ-
ical gesture, swipe. We implemented a gesture recognizer to
distinguish different gestures based on the default properties
of a gesture defined by Android, for example, standard long
press time is 500 ms.

Template Matching
We implemented template matching based on image pyramid
(3 levels), where the results of each layer is used to define

the region of interest for the next layer. To improve perfor-
mance, we implemented it in C++ using the OpenCV library
and used Android’s Native Development Kit (NDK) to access
the function via Java Native Interface (JNI).

Client-server Architecture
EverTutor is constructed under a client-server architecture.
When a tutorial is created by EverTutor, all images are up-
loaded to Amazon S3 and a tutorial data is newed in the
Database of Rails Server. When a user browses a tutorial,
EverTutor downloads all necessary images from Amazon and
accesses the step-by- step tutorial data from Rails Database,
such as event type, touchscreen position, etc..

EVERTUTOR

Tutorial Format
In order to free users from switching back and forth between
a tutorial and user context, we design the interactive and con-
textual guide that shows step-by-step instructions on the ac-
tual interface rather than in a separate viewer. Inspired by
the “Cling” view from Launcher on Android Jelly Bean and
Stencils-Based Tutorials [14], we put full-screen and trans-
parent overlays containing cling holes upon the active appli-
cation interface. In every step, the cling holes in the overlay
layer draw the user’s attention to the region they should in-
teract with; Also, we add a finger image beside the cling hole
to present the 7 core gestures supported by Android as shown
in Figure 2. Hoping to direct users correctly, users can pro-
ceed to the next step only after interacting with the intended
position by the expected gesture.

Generating tutorial with EverTutor
Record and distinguish touchscreen gesture
When creating tutorials with EverTutor, the user starts record-
ing by performing a swipe gesture to select the start item in
pie menu. System keeps reading the /dev/input/event* files,
detecting the timestamp, position and event types to distin-
guish the used gesture. Meanwhile, system opens the frame-
buffer (/dev/graphics/fb0) to capture bitmap data represent-
ing the screenshot and extract the regional image around the
touch event location (Figure 4). An Android toast message
pops up when a tutorial step data is saved completely. Be-
sides tutorial authors can perform mode switching by using a
bezel swipe gesture to open a pie menu containing the mode
choices.

Record Options
During the recording process, gestures other than scroll and
swipe (e.g. tap, pinch) are regarded as separate steps, and we
exclude scroll and swipe because the two gestures are possi-
bly applied by the users for many times to find a specific tar-
get. On the other hand, when a tutorial is browsed, gestures
of swipe and scroll recorded can be analyzed by EverTutor to
find the interactive area unseen in the current screen for users.

Scroll/swipe mode
Some swipe and scroll gestures are used to extend the hidden
interface; for instance, in Google Maps, place details, such as
business information, can be accessed by swiping up on the

Session: Tutorials CHI 2014, One of a CHInd, Toronto, ON, Canada

4030

Figure 4. The workflow of generating tutorial with EverTutor.

Figure 5. (Left) Switch to typing mode and set the prompt instructional
text in dialog. (Right) The user inputs the texts by following the prompt
instruction.

info sheet header. In the above situations, the tutorial author
can switch to “scroll/swipe” mode to include the two gestures
into dependent steps.

Typing mode
For steps containing typing, the user can select “typing” mode
to stop capturing the sensitive information, such as username
and password, and after finishing typing, the user can set the
prompt text in pop up dialog for users browsing the tutorial
afterward as shown in Figure 5(left).

Set title and review tutorial
After completing all steps, the tutorial author swipes to open
the pie menu selecting “finish” icon, titles the tutorial and
checks the screenshots for every step, and then the tutorial
is finally inserted into database with all images uploaded to
Amazon S3.

Browsing tutorials with EverTutor
EverTutor firstly downloads interactive region images of ev-
ery tutorial step from Amazon S3 and the tutorial information
from database, such as event type and event location of every
step.

Finding the interactive region
When a user browses a tutorial, EverTutor continuously reads
the screen framebuffer (/dev/graphics/fb0) and scans for re-
gions that match the templates. Currently, it takes 0.1 0.3s
to match a 240x240 pixel template image within a 1280x720
pixel image on a Samsung Note 2. If the matching is failed
and the recorded operation consists of swipe or scroll gesture,

Figure 6. The workflow of browsing tutorials with EverTutor.

system would inject swipe or scroll events to find the interac-
tive area (Figure 6). For example, in the tutorial of “changing
system font size to large,” the system automatically scrolled
up the list in “Settings” to find “Accessibility.” If no tem-
plates are matched after auto-scrolling, the system will show
the template image and prompt users to find the target.

Showing the interactive step-by-step tutorial
After locating the interactive region, based on the type of
touchscreen gestures in the given step, the system puts a full-
screen and transparent overlay containing cling holes and a
finger image upon the active application interface. When a
typing action is asked in the step, the user can input the texts
following the prompt hint as shown in Figure 5(right).

Identifying the correctness of the user’s interaction
Aiming to direct users correctly, the system reads files in
/dev/input/event* to obtain touch locations and identify the
performed touchscreen gestures. Therefore, users can pro-
ceed to the next step only after interacting with the intended
position by the expected gesture.

EVALUATION

Task and Tutorial Materials
We selected 9 smartphone tutorials of different tasks from
courses held by Samsung and HTC as well as common ques-
tions on the telecommunications company websites. The tu-
torials were classified into three levels by the number of steps
required to finish the task, including easy (4 steps), normal
(8 steps) and hard (16 steps) as shown in Table 1. Because
the original tutorials may not consist of the exact steps of the
three predefined levels, we slightly modified them by adding
or deleting a few steps. “Typing” steps were included in
the hard level with typing characters limited to exactly 13 in
each tutorial, and all characters were on the default keyboard.
Touchscreen gestures contained by the 9 tutorials were as fol-
lows: touch, pinch, swipe, scroll and long press. We didn’t
present “drag” and “double touch” in our tutorials because
drag (consisting of long press, move and lift) is more difficult
and double touch is seldom used in smartphone operations.

At each level, 3 different tasks were designed; for each task,
we created 3 types of tutorials, static, video, and interactive
type (EverTutor), and made these 3 types present as equiv-
alent the information as possible. Our video tutorials were

Session: Tutorials CHI 2014, One of a CHInd, Toronto, ON, Canada

4031

Easy (4 steps) Normal (8 steps)
Hard (16 steps containing entering 13

characters)

T1
Change system font size to

large.

Check the battery level and adjust

the screen brightness.

Create a new contact (name: Amy, phone

number: 0923456789) and practice long

press gesture to share.

T2
Enable WiFi hotspot to share

the internet.

Set a repeating alarm on Tuesday

and Thursday.

Use Evernote to add a note (enter

“Evertutor hi.”) including an image and a

time reminder.

T3
Install Facebook app from

Google play.

View photos with pinch and swipe

gesture and add a photo to favorite.

Send an email to a@a.a (subject:hi,

content:hihihi)
Table 1. The nine tasks users were asked to perform in user study, arranged by level.

recorded by Screencast Recorder app, with subtitles and red
circles added to direct users. Though the default delay be-
tween each step was 2 seconds, participants were asked to
view a video tutorial and optional adjust the playback speed
during the practice session prior to the study tasks. Only
2 (older) participants slowed the speed down to 0.8x. Be-
sides, we provided no vocal explanation in video tutorials to
avoid situations when users only relied on auditory instruc-
tions rather than screen content. To generate our static tutori-
als, we extracted the frame of each step in the video tutorial
and added texts for explanation. For interactive tutorials, we
selected the tutorials that were created by users using Ever-
Tutor in user study 1.

User Study 1: Creating Tutorials
The goal of the study is to explore if the 3 tutorials of the
same level have equivalent difficulty and understand the user
experience of generating interactive tutorials by EverTutor as
well as users’ preferred types to create tutorials.

Participants
We recruited 6 app developers (4 male, 2 female), ranging in
age from 20 to 26.

Procedure
We firstly familiarized participants with EverTutor operation,
and then asked them to use EverTutor to create 9 designated
interactive tutorials ordered by the level from easy to hard.
Before making each tutorial, participants must understand ev-
ery step of the task, and after performing it once, participants
used EverTutor to complete the task and generate interactive
tutorial simultaneously. After 9 tutorials were all created, we
showed participants the generated tutorials and conducted a
15-minute interview. During the study, we used a camera to
record user performance.

Quantitative Result
We calculated the difference in operation time for the 3 tuto-
rials of the same level: the difference is less than 3s in 4-step
level, 5s in 8-step and 7s in 16-step. The 3 tutorials not only
consist of the same number of steps but also cost similar op-
eration time, which proves that they can be grouped into the
same difficulty level.

According to Figure 7, the average processing time of each
step cost by EverTutor is 2.4s, and plus the time spent on typ-
ing the tutorial title and checking for correctness, the overall
time is respectively 41.1s, 60.47s, and 128.87s for easy-level,
normal-level, and hard-level task.

In Participants’ estimate (see Figure 9), they would spend
about 20 minutes on making a normal-level tutorial in static
type and 40 minutes on a video tutorial of the same level,
which obviously shows that creating tutorials by EverTutor is
simpler and faster.

Qualitative Result
According to the questionnaire result as shown in Figure 9,
all the participants preferred EverTutor to make interactive
tutorials. Participant D6 commented, “As I demonstrate a
smartphone feature to my parents, the tutorial is generated
automatically by EverTutor, and they can browse the tutorial
whenever they wants.” However, four participants would like
to make static or video tutorials as well. “Static tutorial could
have more detailed instructions for each step and is suitable

Figure 7. Operation time and overall time for creating tutorials with
EverTutor.

Session: Tutorials CHI 2014, One of a CHInd, Toronto, ON, Canada

4032

Figure 8. Overall time for creating tutorials.

Figure 9. The tutorial types that tutorial authors prefer to create
(multiple-selection question).

for the browse on the computer,” said D1. D2 said that addi-
tional static and video tutorials could offer users more access
to the tutorial.

User Study 2: Browsing Tutorials
The goal of this study is to understand the user experience of
three types of tutorials (static, video, interactive) and users’
preferred types.

Participants
12 Android Smartphone Beginners were recruited, including
6 older participants (3 female, 3 male) ranging in age from
48 to 58 (median 54.3) and 6 young participants (4 female, 2
male) ranging in age from 21 to 29 (median 24.2).

Procedure
We first familiarized participants with basic smartphone ges-
tures and demonstrated three types of tutorials. In static type,
using “Chrom” app as the browser, we informed users about
the pinch gesture to zoom in the tutorial website and scroll
gesture to roam the steps. For video type, we provided “Di-
cePlayer” app, which can adjust the speed of video and taught
them the essential operations to manipulate the movie player,
including pausing, playing, resuming, forwarding, rewinding,
and replaying. Also, participants learned how to switch be-
tween user context and the tutorial with home button. In inter-
active type, they ran through a completely interactive tutorial
and got familiar with the indicated gestures. In the experi-
ment, we prepared 3 home screens in launcher to display 41
app icons, referring to the average number of apps per smart-
phone [17]. In each task of static and video types, user must
swipe across home screens to find the target app, but with
EverTutor, the target was automatically pointed out.

Figure 10. Task completion time with static, video and interactive tuto-
rial.

Afterward, participants were asked to complete nine tasks
with tutorials in the order of the difficulty level from easy
to hard, and the sequence of tutorial types in each difficulty
is counterbalanced. After the 9 tasks, participants filled out
a questionnaire and had a 15-minute interview. During the
experiment, we used a camera to record user performance.

Quantitative Result
Figure 10 shows the average completion time of 3 tutorial
types in each level. There is a significant difference across
three tutorial types in each level (F

easy

(2, 33) = 10.09,
P
easy

< .001, F
normal

(2, 33) = 11.31, P
normal

< .001
and F

hard

(2, 33) = 16.76, P
hard

< .001). Interactive tuto-
rial is fastest and 3 times as fast as static and video tutorials
in all levels .(p < 0.05). On the other hands, static tutorial
is slightly faster than video tutorial in “easy” and “hard” lev-
els, yet there is no significant difference (p > 0.05). Besides,
it tooks twice the time for older participants to complete the
task with static and video tutorials than young participants.
Surprisingly, with interactive tutorial, the completion time of
older participants is equal to or even less than young partici-
pants’ as shown in Figure 11.

Qualitative Result
Figure 12 shows the subjective ratings for all tutorial types
regarding 1) Easy to Follow, 2) Easy to Understand, and 3)
Easy to Remember. Participants rated interactive tutorial the
highest in all categories, and a significant difference is shown
in Easy to Follow and Easy to Understand (F

follow

(2, 33) =
20.23, P

follow

< .001 and F
understand

(2, 33) = 3.78,
P
uderstand

< .05). One participant stated, “The interactive
tutorial is intuitive and easily understood. I don’t need a fre-
quent switch between actual interface and the tutorial.” An-
other participant reported, “Interactive tutorial is like a real
person who teaches me step by step, and it can find the app
for me automatically. It is really cool.”

When asked about most preferred tutorial type, 83% of the
users chose interactive type over the other types, as shown in
Figure 13. The reason why the two users preferred static type

Session: Tutorials CHI 2014, One of a CHInd, Toronto, ON, Canada

4033

Figure 11. Task completion time of older and young participants with
all tutorial types.

Figure 12. Subjective results comparing the interactive tutorials with
static and video tutorials (7-Likert scale).

is that they could realize the relations among steps and jump
to the critical step directly. Besides, the step-by-step inter-
active type is too intuitive for users to remember the whole
tutorial.

DISCUSSION

Significant gain in performance
EverTutor’s gain in performance is significantly greater than
observed in Stencils[14] (3x faster vs 26% faster completion
time compared to static tutorials). It’s not only because con-
text switching is much more difficult on smartphones, but also
because EverTutor’s interactive tutorial is significantly easier
for users to understand and follow.

Differences between older and younger participants
Older participants had equal or faster completion time us-
ing interactive tutorials compared to younger participants, but
spent at least 2 times longer than young participants when us-
ing static and video tutorials, which indicates that contextual
tutorials are particularly well-suited for older users. One of
our initial concerns with the interactive step-by-step tutorials

Figure 13. Users’ preferred tutorial types.

was that users might follow tutorials quickly without remem-
bering what they were learning. According to our question-
naire result in Figure 14, older participants rated interactive
tutorials easiest to remember (6.0 vs 4.2 vs 3.8 on a 7-point
scale) whereas younger participants rated static tutorial easi-
est to remember (5.5 vs 4.8 vs 4.5).

An older participant said, “Despite the detailed explanation of
static tutorial, it’s hard for me to remember the whole steps.
In contrast, by using interactive tutorials, I can just memo-
rize the interactive regions.” According to another older user,
though he couldn’t memorize all the steps after following the
interactive tutorial by one time, he could learn fast by repeat-
ing the tutorial for some more times, which was much easier
than watching static or video types for several times. How-
ever, two younger participants preferred static type. A young
user considered, “the relation among steps is clear in static
tutorial, and I can understand the tutorial more; but I tend to
forget what I’ve done after following interactive tutorials.”

Automatic scrolling feature
10 of the 12 participants regarded the function of finding
the unseen target region automatically very useful especially
when users hoped to find an app icon on Launcher, but oth-
ers commented that they wanted the system to just show the
regional screenshot of target region and found the target by
themselves.

Automation macro
During the interview, users suggested that EverTutor could
generate a shortcut that automatically completed the task for
users. However, since hands-on practice and exploration at
the same time have been shown to be key ingredients of
successful learning of an interface [24], the shortcut feature
would be suited only for the simple functions that users had
already learned.

LIMITATION AND FUTURE WORK
The current implementation of EverTutor has some limita-
tions that should be discussed. EverTutor can’t generate

Session: Tutorials CHI 2014, One of a CHInd, Toronto, ON, Canada

4034

Figure 14. Subjective results in easy to remember catagory of older and
younger participants.

tutorials containing motion gestures like throwing and con-
tinuous, complex operation, such as drawing and playing a
game. A possible solution worth pursuing in the future is to
record the whole low-level events and replay them when user
browses the step. With the record-and-replay approach, Ever-
Tutor can also automatically make the user jump to a partic-
ular step by replaying the recorded events of previous steps.

Besides, our system, like any other vision-based techniques,
suffers from the limitations like scale changes and theme vari-
ations. To alleviate the problem, EverTutor can record the
information of system version, device name, and some de-
tails about the apps, such as package and activity names in
each tutorial step, to assist users in finding tutorials generated
from similar system environments. Users also mentioned that
they preferred to add some instructional texts when making
tutorial steps, which will be addressed in our future work.

CONCLUSION
In this paper, we present EverTutor that automatically
generate interactive step-by-step tutorials on smartphone.
EverTutor analyzes the recorded low-level touch events,
distinguishes different touchscreen gestures and extracts
regional screenshot around touch event location to generate
step-by-step tutorials automatically. The system locates the
target interactive regions of each step to overlay tutorial con-
textually. To make the tutorial more interactive, EverTutor is
aware of the user’s interaction and gives response. Besides,
EverTutor automatically scrolls or swipes to help users find
the unseen interactive region.

To compare interactive step-by step tutorials with static
and video tutorials, we firstly conducted a 6-person user
study for creating tutorials. The result shows that creating
tutorials by EverTutor is simpler and faster than producing
static and video ones. In the second 12-person user study for
browsing tutorials, we demonstrated that interactive tutorial
is fastest in task completion time and 3 times faster than
static and video tutorials. Moreover, interactive tutorials even
enable older users to complete a task faster than youngsters.
To rate all the methods in terms of 1) easy to follow, 2) easy
to understand and 3) easy to remember, interactive tutorial

was highest rated in easy to follow and easy to understand.
In addition, 83% of the users chose interactive type as the
most preferred tutorial type.

ACKNOWLEDGMENTS
We gratefully acknowledge the helpful comments of the As-
sociate Chairs and the anonymous reviewers. This paper was
partially supported by National Science Council of Taiwan
under 101-2628-E-002-030-MY2.

REFERENCES
1. Ames, A. L. Just what they need, just when they need it:

An introduction to embedded assistance. In Proc. ACM
SIGDOC’01 (2001), 111–115.

2. Bergman, L., Castelli, V., Lau, T., and Oblinger, D.
Docwizards: A system for authoring follow-me
documentation wizards. In Proc. ACM UIST’05 (2005),
191–200.

3. Berthouzoz, F., Li, W., Dontcheva, M., and Agrawala,
M. A framework for content-adaptive photo
manipulation macros: Application to face, landscape,
and global manipulations. ACM Trans. Graph (2011),
120:1–120:14.

4. Chi, P.-Y., Ahn, S., Ren, A., Dontcheva, M., Li, W., and
Hartmann, B. Mixt: Automatic generation of
step-by-step mixed media tutorials. In Proc. ACM
UIST’12 (2012), 93–102.

5. Fernquist, J., Grossman, T., and Fitzmaurice, G.
Sketch-sketch revolution: An engaging tutorial system
for guided sketching and application learning. In Proc.
ACM UIST’11 (2011), 373–382.

6. Gomez, L., Neamtiu, I., Azim, T., and Millstein, T.
Reran: Timing- and touch-sensitive record and replay
for android. In Proc. ACM ICSE’13 (2013), 72–81.

7. Google SketchUp Training. http://sketchup.google.
com/intl/en/training/index.html.

8. Grabler, F., Agrawala, M., Li, W., Dontcheva, M., and
Igarashi, T. Generating photo manipulation tutorials by
demonstration. In Proc. ACM SIGGRAPH’09 (2009),
66:1–66:9.

9. Grossman, T., and Fitzmaurice, G. Toolclips: An
investigation of contextual video assistance for
functionality understanding. In Proc. ACM CHI’10
(2010), 1515–1524.

10. Grossman, T., Matejka, J., and Fitzmaurice, G.
Chronicle: Capture, exploration, and playback of
document workflow histories. In Proc. ACM UIST’10
(2010), 143–152.

11. Harrison, S. M. A comparison of still, animated, or
nonillustrated on-line help with written or spoken
instructions in a graphical user interface. In Proc. ACM
CHI’95 (1995), 82–89.

12. Henze, N., Rukzio, E., and Boll, S. 100,000,000 taps:
Analysis and improvement of touch performance in the
large. In Proc. ACM MobileHCI’11 (2011), 133–142.

Session: Tutorials CHI 2014, One of a CHInd, Toronto, ON, Canada

4035

http://sketchup.google.com/intl/en/training/index.html
http://sketchup.google.com/intl/en/training/index.html

13. Huang, J., and Twidale, M. B. Graphstract: Minimal
graphical help for computers. In Proc. ACM UIST’07
(2007), 203–212.

14. Kelleher, C., and Pausch, R. Stencils-based tutorials:
Design and evaluation. In Proc. ACM CHI’05 (2005),
541–550.

15. Knabe, K. Apple guide: A case study in user-aided
design of online help. In Proc. ACM CHI’95 (1995),
286–287.

16. Lafreniere, B., Grossman, T., and Fitzmaurice, G.
Community enhanced tutorials: Improving tutorials with
multiple demonstrations. In Proc. ACM CHI’13 (2013),
1779–1788.

17. Nielsen: Average Number of Apps per Smartphone.
http://www.nielsen.com/us/en/newswire.html.

18. Palaigeorgiou, G., and Despotakis, T. Known and
unknown weaknesses in software animated
demonstrations (screen-casts): A study in self-paced
learning settings.

19. Palmiter, S., E. J., and Baggett, P. Animated
demonstrations vs written instructions for learning
procedural tasks: a preliminary investigation. 687701.

20. Palmiter, S., and Elkerton, J. Animated demonstrations
for learning procedural computer-based tasks. 193216.

21. Pongnumkul, S., Dontcheva, M., Li, W., Wang, J.,
Bourdev, L., Avidan, S., and Cohen, M. F.
Pause-and-play: Automatically linking screencast video
tutorials with applications. In Proc. ACM UIST’11
(2011), 135–144.

22. Android core gesture set. http://developer.android.
com/design/patterns/gestures.html.

23. Weir, D., Rogers, S., Murray-Smith, R., and Löchtefeld,
M. A user-specific machine learning approach for
improving touch accuracy on mobile devices. In Proc.
ACM UIST’12 (2012), 465–476.

24. Wiedenbeck, S., and Zila, P. L. Hands-on practice in
learning to use software: A comparison of exercise,
exploration, and combined formats. 169–196.

25. Yeh, T., Chang, T.-H., and Miller, R. C. Sikuli: Using
gui screenshots for search and automation. In Proc.
ACM UIST’09 (2009), 183–192.

26. Yeh, T., Chang, T.-H., Xie, B., Walsh, G., Watkins, I.,
Wongsuphasawat, K., Huang, M., Davis, L. S., and
Bederson, B. B. Creating contextual help for guis using
screenshots. In Proc. ACM UIST’11 (2011), 145–154.

Session: Tutorials CHI 2014, One of a CHInd, Toronto, ON, Canada

4036

http://www.nielsen.com/us/en/newswire.html
http://developer.android.com/design/patterns/gestures.html
http://developer.android.com/design/patterns/gestures.html

	Introduction
	RELATED WORK
	Capturing touchscreen events
	Generation of tutorials by user demonstrations
	Contextual Assistance
	Evaluation of different tutorial types

	DESIGN GOALS
	Contextual
	Touchscreen gestures support
	Interactive
	Automatic generation from user demonstration
	Across apps and platforms

	SYSTEM IMPLEMENTATION
	Gesture Recognizer
	Template Matching
	Client-server Architecture

	EVERTUTOR
	Tutorial Format
	Generating tutorial with EverTutor
	Record and distinguish touchscreen gesture
	Record Options
	Scroll/swipe mode
	Typing mode
	Set title and review tutorial

	Browsing tutorials with EverTutor
	Finding the interactive region
	Showing the interactive step-by-step tutorial
	Identifying the correctness of the user's interaction

	EVALUATION
	Task and Tutorial Materials
	User Study 1: Creating Tutorials
	Participants
	Procedure
	Quantitative Result
	Qualitative Result

	User Study 2: Browsing Tutorials
	Participants
	Procedure
	Quantitative Result
	Qualitative Result

	DISCUSSION
	Significant gain in performance
	Differences between older and younger participants
	Automatic scrolling feature
	Automation macro

	LIMITATION AND FUTURE WORK
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

