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9FRONT FREQUENTLY QUESTIONED ANSWERS

ACHTUNG! 9front dash1 manual is written by and for 9front users.

Those who can do, those who can’t write and those who can’t write make ezines.
� Sape Mullender

ACHTUNG! Information provided by this document is UNOFFICIAL and may be outdated
or just plain WRONG. Use your brain. NO REFUNDS.

_sl’s info is incorrect.
� anth_x

ACHTUNG! 9front is absolutely and unalterably opposed to racism, sexism, homopho
bia, transphobia, nationalism, ethnocentrism, religious fundamentalism, and oppressive
and coercive power structures of all kinds.

Nobody wants 2 take the weight − The responsibility
� Prince,
Avalanche

ACHTUNG! Don�t read too much into what you find here.

Unless this publication states otherwise, masculine nouns and pronouns do not
refer exclusively to men.
� FM34-60 COUNTERINTELLIGENCE
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0.1 - What is Plan 9?

0.1.1 - Plan 9 is not UNIX
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1.1 - What is 9front?

1.1.1 - Cirno

1.2 - On what systems does 9front run?

1.3 - Why might I want to use 9front?

1.3.0 - Why might I not want to use 9front?

1.3.0.1 - Why did 9front stop making fun of Nazis?

1.3.1 - New Features
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1.6 - Who maintains 9front?
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FQA 0 − Introduction to Plan 9

0.1 − What is Plan 9?

Plan 9 is a research operating system from the same group who created UNIX at Bell
Labs Computing Sciences Research Center (CSRC). It emerged in the late 1980s, and its
early development coincided with continuing development of the later versions of
Research UNIX. Plan 9 can be seen as an attempt to push some of the same ideas that
informed UNIX even further into the era of networking and graphics. Rob Pike has
described Plan 9 as "an argument" for simplicity and clarity, while others have described
it as "UNIX, only moreso."

From The Use of Name Spaces in Plan 9:
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Plan 9 argues that given a few carefully implemented abstractions it is possi
ble to produce a small operating system that provides support for the largest
systems on a variety of architectures and networks.

From the intro(1) man page:

Plan 9 is a distributed computing environment assembled from separate
machines acting as terminals, CPU servers, and file servers. A user works at a
terminal, running a window system on a raster display. Some windows are
connected to CPU servers; the intent is that heavy computing should be done
in those windows but it is also possible to compute on the terminal. A sepa
rate file server provides file storage for terminals and CPU servers alike.

The two most important ideas in Plan 9 are:

" private namespaces (each process constructs a unique view of the hierarchical file
system)

" file interfaces (familiar from UNIX, but taken to the extreme: all resources in Plan
9 look like file systems)

Most everything else in the system falls out of these two basic ideas.

Plan 9 really pushes hard on some ideas that Unix has that haven’t really been
fully developed, in particular, the notion that just about everything in the system is
accessible through a file. In other words, things look like an ordinary disk file. So
all the devices are controlled this way by means of ASCII strings, not complicated
data structures. For example, you make network calls by writing an ASCII string,
not the files. This notion is something that’s actually leaking quite fast.

The second thing is sort of more subtle and sort of hard to appreciate until you’ve
actually played with it. That is that the set of files an individual program can see
depends on that program itself. In a standard kind of system, either with Unix
remote file systems or Windows attached file systems, all the programs running in
the machine see the same thing. In Plan 9, that’s adjustable per program. You
can set up specialized name stations that are unique to a particular program. I
mean, it’s not associated with the program itself but with the process, with the
execution of the process.

� Dennis Ritchie

Read: intro(1); Plan 9 from Bell Labs; Designing Plan 9, originally delivered at the
UKUUG Conference in London, July 1990; and FQA 7 − System Management; for a more
detailed overview of Plan 9�s design.

23 



Today, Plan 9 continues in its original form, as well as in several derivatives and forks.

The United States of Plan 9

Plan 9 from Bell Labs � The original Plan 9. Effectively dead, all the developers have
been run out of the Labs and/or are on display at Google.

Plan 9 from User Space � Plan 9 userspace ported/imitated for UNIX (specifically OS X).

9legacy � David du Colombier�s cherry picked collection of patches from various
people/forks to Bell Labs Plan 9. (It is not a fork.)

9atom � Erik Quanstrom�s fork of Plan 9, maintained to Erik�s needs and occasionally
pilfered by 9front.

9front � (that�s us) (we rule (we�re the tunnel snakes))

NIX � High performance cloud computing is NIX � imploded in a cloud of political acri
mony and retarded bureaucratic infighting.

NxM � A kernel for manycore systems � never spotted in the wild.

Clive � A new operating system from Francisco J. Ballesteros, designed to generate
grantwriting practice material and research projects for otherwise indolent students.

Akaros � Akaros is an open source, GPL-licensed operating system for manycore archi
tectures. Has no bearing on anything but has attracted grant money.

Harvey � Harvey is an effort to get the Plan 9 code working with gcc and clang.

Inferno � Inferno is a distributed operating system started at Bell Labs, but is now
developed and maintained by Vita Nuova Holdings as free software. Just kidding it is not
developed or maintained.
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ANTS � Advanced Namespace Tools for Plan 9. ANTS is a collection of modifications
and additional software which adds new namespace manipulation capabilities to Plan 9.

Jehanne � Jehanne:Harvey::William King Harvey:J. Edgar Hoover

Plan 9 Foundation � Now offering downloads of historical Plan 9 releases.

0.1.1 − Plan 9 is not UNIX

In the words of the Bell Labs Plan 9 wiki:

Plan 9 is not Unix. If you think of it as Unix, you may become frustrated when
something doesn�t exist or when it works differently than you expected. If
you think of it as Plan 9, however, you�ll find that most of it works very smo
othly, and that there are some truly neat ideas that make things much cleaner
than you have seen before.

Confusion is compounded by the fact that many UNIX commands exist on Plan 9 and
behave in similar ways. In fact, some of Plan 9�s userland (such as the upas mail
interface, the sam text editor, and the rc shell) are carried over directly from
Research UNIX 10th Edition. Further investigation reveals that many ideas found in Plan
9 were explored in more primitive form in the later editions of Research UNIX.

However, Plan 9 is a completely new operating system that makes no attempt to
conform to past prejudices. The point of the exercise (circa the late 1980s) was to avoid
past problems and explore new territory. Plan 9 is not UNIX for a reason.

Read: UNIX to Plan 9 translation (wiki.9front.org), UNIX to Plan 9 command translation
(9p.io), UNIX Style, or cat −v Considered Harmful
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0.1.1.1 − Plan 9 is not plan9port

Plan 9 from User Space (also known as plan9port or p9p) is a port of many Plan 9 from
Bell Labs libraries and applications to UNIX-like operating systems. Currently it has been
tested on a variety of operating systems including: Linux, Mac OS X, FreeBSD, NetBSD,
OpenBSD, Solaris and SunOS.

Plan9port consists of a combination of mostly unaltered Plan 9 userland utilities pack
aged alongside various attempts to imitate Plan 9�s kernel intefaces using miscellaneous
available UNIX programs and commands. Some of the imitations are more successful
than others. In all, plan9port does not accurately represent the experience of using
actual Plan 9, but does provide enough functionality to make some users content with
running acme on their Macbooks.

It is now being slowly ported to the Go programming language.

0.1.1.2 − Plan 9 is not Inferno

Inferno is a distributed operating system also created at Bell Labs, but which is now
developed and maintained by Vita Nuova Holdings as free software. It employs many
ideas from Plan 9 (Inferno does share some compatible interfaces with Plan 9, including
the 9P/Styx protocol), but is a completely different OS. Many users new to Plan 9 find
out about Inferno and immediately decide to abandon Plan 9 and its opaque user inter
face for this obviously "more advanced" sibling, but usually abandon that, too, upon first
contact with Inferno�s Tk GUI. Notable exceptions duly noted.

See: http://www.xs4all.nl/~mechiel/inferno/
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0.1.2 − Plan 9 is not a product

Path: utzoo!utgpu!water!watmath!clyde!bellcore!faline!thumper!ulysses!smb
From: s...@ulysses.homer.nj.att.com (Steven Bellovin)
Newsgroups: comp.unix.wizards
Subject: Re: Plan 9? (+ others)
Message-ID: <10533@ulysses.homer.nj.att.com>
Date: 23 Aug 88 16:19:40 GMT
References: <846@yunexus.UUCP> <282@umbio.MIAMI.EDU> <848@yunexus.UUCP>
Organization: AT&T Bell Laboratories, Murray Hill
Lines: 33

��Plan 9�� is not a product, and is not intended to be. It is research --
an experimental investigation into a different way of computing. The
developers started from several basic assumptions: that CPUs are very
cheap but that we don�t really know how to combine them effectively; that
*good* networking is very important; that an intelligent user interface
(complete with dot-mapped display and mouse) is a Right Decision; that
existing systems with networks, mice, etc., are not the correct way to
do things, and in particular that today�s workstations are not the way to
go. (No, I won�t bother to explain all their reasoning; that�s a long
and separate article.) Finally, the UNIX system per se is dead as a
vehicle for serious research into operating system structure; it has grown
too large, and is too constrained by 15+ years of history.

Now -- given those assumptions, they decided to throw away what we have
today and design a new system. Compatibility isn�t an issue -- they are
not in the product-building business. (Nor are they in the ��let�s make
another clever hack�� business.) Of course aspects of Plan 9 resemble
the UNIX system quite strongly -- is it any surprise that Pike, Thompson,
et al., think that that�s a decent model to follow? But Plan 9 isn�t,
and is not meant to be, a re-implementation of the UNIX system. If you
want, call it a UNIX-like system.

Will Plan 9 ever be released? I have no idea. Will it remain buried?
I hope not. Large companies do not sponsor large research organizations
just for the prestige; they hope for an (eventual) concrete return in the
form of concepts that can be made into (or incorporated into) products.

--Steve Bellovin

Disclaimer: this article is not, of course, an official statement from AT&T.
Nor is it an official statement of the reasoning behind Plan 9. I do think
it�s accurate, though, and I�m sure I�ll be told if I�m wrong...

0.1.3 − Is Plan 9 a cult run by scam artists?
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From: kalona.ayeliski@fastmail.us
To: 9fans <9fans@9fans.net>
Subject: Re: [9fans] Where can I find active Plan 9 communities for support
and collaboration?

Date: Sun, 4 Aug 2024 14:27:58 -0400
Reply-To: 9fans <9fans@9fans.net>

From a newcomer�s perspective, it feels like dealing with a cult run
by scam artists. It seems someone wants to profit from me by selling
books on Amazon, like a multi-level marketing group. People say
others here are on a spectrum, but it feels more like psychosis, with
a loss of contact with reality. I really feel like I�m being
gaslighted. I might seem like a troll, but you don�t understand how
you appear to others.

I am looking for a Plan 9 group that doesn�t behave this way. If
anyone is interested, let�s form a group that isn�t cult-like, that
just wants to help newcomers and not prey on them.

0.1.4 − Plan 9 is not for you

Let’s be perfectly honest. Many features that today�s "computer experts" consider to
be essential to computing (JavaScript, CSS, HTML5, etc.) either did not exist when Plan 9
was abandoned by its creators, or were purposely left out of the operating system. You
might find this to be an unacceptable obstacle to adopting Plan 9 into your daily
workflow. If you cannot imagine a use for a computer that does not involve a web
browser, Plan 9 may not be for you.

See: http://harmful.cat-v.org/software/

On the other hand, the roaring 2020s have seen Plan 9 sprout a substantial presence on
social media, so if you�re here for that, YMMV.
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0.2 − Why Plan 9?

You may ask yourself, well, how did I get here? In the words of Plan 9 contributor Russ
Cox:

Why Plan 9 indeed. Isn�t Plan 9 just another Unix clone? Who cares?

Plan 9 presents a consistent and easy to use interface. Once you�ve settled in,
there are very few surprises here. After I switched to Linux from Windows
3.1, I noticed all manner of inconsistent behavior in Windows 3.1 that Linux
did not have. Switching to Plan 9 from Linux highlighted just as much in
Linux.

One reason Plan 9 can do this is that the Plan 9 group has had the luxury of
having an entire system, so problems can be fixed and features added where
they belong, rather than where they can be. For example, there is no tty
driver in the kernel. The window system handles the nuances of terminal
input.

If Plan 9 was just a really clean Unix clone, it might be worth using, or it might
not. The neat things start happening with user-level file servers and per-
process namespace. In Unix, /dev/tty refers to the current window�s output
device, and means different things to different processes. This is a special
hack enabled by the kernel for a single file. Plan 9 provides full-blown per-
process namespaces. In Plan 9 /dev/cons also refers to the current window�s
output device, and means different things to different processes, but the win
dow system (or telnet daemon, or ssh daemon, or whatever) arranges this,
and does the same for /dev/mouse, /dev/text (the contents of the current
window), etc.

Since pieces of file tree can be provided by user-level servers, the kernel need
not know about things like DOS�s FAT file system or GNU/Linux�s EXT2 file
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system or NFS, etc. Instead, user-level servers provide this functionality when
desired. In Plan 9, even FTP is provided as a file server: you run ftpfs and the
files on the server appear in /n/ftp.

We need not stop at physical file systems, though. Other file servers synthe
size files that represent other resources. For example, upas/fs presents your
mail box as a file tree at /mail/fs/mbox. This models the recursive structure
of MIME messages especially well.

As another example, cdfs presents an audio or data CD as a file system, one
file per track. If it�s a writable CD, copying new files into the /mnt/cd/wa or
/mnt/cd/wd directories does create new audio or data tracks. Want to fixate
the CD as audio or data? Remove one of the directories.

Plan 9 fits well with a networked environment, files and directory trees can be
imported from other machines, and all resources are files or directory trees,
it�s easy to share resources. Want to use a different machine�s sound card?
Import its /dev/audio. Want to debug processes that run on another
machine? Import its /proc. Want to use a network interface on another
machine? Import its /net. And so on.

Russ Cox

0.2.1 − What do people like about Plan 9?

Descriptive testimony by long time Plan 9 users Charles Forsyth, Anthony Sorace and
Geoff Collyer:

https://9p.io/wiki/plan9/what_do_people_like_about_plan_9/index.html

0.2.1.1 − What do you use Plan 9 for?

Computing.

Read: How I Switched To Plan 9

See: FQA 8 − Using 9front

0.2.2 − What do people hate about Plan 9?

John Floren provides a humorous(?) overview of a typical new user�s reactions to Plan 9:

Hi! I�m new to Plan 9. I�m really excited to work with this new Linux system.

I hit some questions.
1 How do I run X11?
2 Where is Emacs?
3 The code is weird. It doesn�t look like GNU C at all. Did the people who
wrote Plan 9 know about C?
4 I tried to run mozilla but it did not work. How come?
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Is this guy you?

Related: http://9front.org/buds.html

0.2.2.1 − What is not in Plan 9

A summary of common features you may have been expecting that are missing from
Plan 9:

http://c2.com/cgi/wiki?WhatIsNotInPlanNine

0.2.3 − Why did Plan 9’s creators give up on Plan 9?

All of the people who worked on Plan 9 have moved on from Bell Labs and/or no longer
work on Plan 9. Various reasons have been articulated by various people.

Russ Cox:

I ran Plan 9 from Bell Labs as my day to day work environment until around
2002. By then two facts were painfully clear. First, the Internet was here to
stay; and second, Plan 9 had no hope of keeping up with web browsers. Port
ing Mozilla to Plan 9 was far too much work, so instead I ported almost all the
Plan 9 user level software to FreeBSD, Linux, and OS X.
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Russ Cox (again):

The standard set up for a Plan 9 aficionado here seems to be a Mac or Linux
machine running Plan 9 from User Space to get at sam, acme, and the other
tools. Rob, Ken, Dave, and I use Macs as our desktop machines, but we�re a
bit of an exception. Most Google engineers use Linux machines, and I know
of quite a few ex-Bell Labs people who are happy to be using sam or acme on
those machines. My own setup is two screens. The first is a standard Mac
desktop with non-Plan 9 apps and a handful of 9terms, and the second is a
full-screen acme for getting work done. On Linux I do the same but the first
screen is a Linux desktop running rio (formerly dhog�s 8½).

More broadly, every few months I tend to get an email from someone who is
happy to have just discovered that sam is still maintained and available for
modern systems. A lot of the time these are people who only used sam on
Unix, never on Plan 9. The plan9port.tgz file was downloaded from 2,522
unique IP addresses in 2009, which I suspect is many more than Plan 9 itself.
In that sense, it�s really nice to see the tools getting a much wider exposure
than they used to.

I haven�t logged into a real Plan 9 system in many years, but I use 9vx occa
sionally when I want to remind myself how a real Plan 9 tool worked. It�s
always nice to be back, however briefly.

Russ

Russ Cox continues:

> Can you briefly tell us why you (Russ, Rob, Ken and Dave)
> no longer use Plan9 ?
> Because of missing apps or because of missing driver for your hardware ?
> And do you still use venti ?

Operating systems and programming languages have strong network effects:
it helps to use the same system that everyone around you is using. In my
group at MIT, that meant FreeBSD and C++. I ran Plan 9 for the first few
years I was at MIT but gave up, because the lack of a shared system made it
too hard to collaborate. When I switched to FreeBSD, I ported all the Plan 9
libraries and tools so I could keep the rest of the user experience.

I still use venti, in that I still maintain the venti server that takes care of back
ups for my old group at MIT. It uses the plan9port venti, vbackup, and vnfs,
all running on FreeBSD. The venti server itself was my last real Plan 9 installa
tion. It�s Coraid hardware, but I stripped the software and had installed my
own Plan 9 kernel to run venti on it directly. But before I left MIT, the last
thing I did was reinstall the machine using FreeBSD so that others could help
keep it up to date.

If I wasn�t interacting with anyone else it�d be nice to keep using Plan 9. But
it�s also nice to be able to use off the shelf software instead of reinventing
wheels (9fans runs on Linux) and to have good hardware support done by
other people (I can shut my laptop and it goes to sleep, and even better, when
I open it again, it wakes up!). Being able to get those things and still keep
most of the Plan 9 user experience by running Plan 9 from User Space is a
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compromise, but one that works well for me.

Russ

Rob Pike:

What Russ says is true but for me it was simpler. I used Plan 9 as my local
operating system for a year or so after joining Google, but it was just too
inconvenient to live on a machine without a C++ compiler, without good NFS
and SSH support, and especially without a web browser. I switched to Linux
but found it very buggy (the main problem was most likely a bad graphics
board and/or driver, but still) and my main collaborator (Robert Griesemer)
had done the ground work to get a Mac working as a primary machine inside
Google, and Russ had plan9port up, so I pushed plan9port onto the Mac and
have been there ever since, quite happily. Nowadays Apples are officially sup
ported so it�s become easy, workwise.

I miss a lot of what Plan 9 did for me, but the concerns at work override that.

-rob

0.2.3.1 − Why did Plan 9’s users give up on Plan 9?

They probably have their reasons.

0.2.3.2 − Why did CIA give up on Plan 9?

Someone tried to find out:

https://www.muckrock.com/foi/united-states-of-america-10/foia-cia-plan-9-from-
bell-labs-82547/

33 



0.2.3.3 − Why did Rob give up on releasing tracks by The Residents, Wire, Lou Reed,
and Debby Harry on the Plan 9 CD−ROM?

From: Rob Pike <robpike@gmail.com>
Date: Wed, 22 Jun 2022 12:58:15 +1000
Subject: [TUHS] Re: forgotten versions

The Plan 9 CD-ROM needed about 100MB for the full distribution, if that. We
hatched a plan to fill up the rest with encoded music and include the
software to decode it. (We wanted to get the encoder out too, but lawyers
stood in the way. Keep reading.) Using connections I had with folks in the
area, and some very helpful friends in the music business, I got permission
to distribute several hours of existing recorded stuff from groups like the
Residents and Wire. Lou Reed gave a couple of pieces too - he was very
interested in Ken and Sean�s work (which, it should be noted, was built on
groundbreaking work done in the acoustics center at Bell Labs) and visited
us to check it out. Debby Harry even recorded an original song for us in
the studio.

We had permission for all this of course, and releases from everyone
involved. It was very exciting.

So naturally, just before release, an asshole (I am being kind) lawyer at
AT&T headquarters in Manhattan stopped the project cold. In a phone call
that treated me as shabbily as I have ever been, he said he didn�t know who
these "assholes" (again, but this time his term) were and therefore the
releases were meaningless because anyone could have written them.

And that, my friends, is why MP-3 took off instead of the far better
follow-on system we were on the cusp of getting out the door.

-rob

P.S. No, I don�t have the music any more. Too sad to keep.
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0.2.4 − What is the deal with Plan 9’s weird license?

Over the years Plan 9 has been released under various licenses, to the consternation of
many.

The first edition, released in 1992, was made available only to universities. The process
for acquiring the software was convoluted and prone to clerical error. Many potential
users had trouble obtaining it within a reasonable time frame and many complaints were
voiced on the eventual Plan 9 Internet mailing list.

The second edition, released in 1995 in book-and-CD form under a relatively standard
commercial license, was available via mailorder as well as through a special telephone
number for a price of approximately $350 USD. It was certainly easier to acquire than
the first edition, but many potential users still complained that the price was too high
and that the license was too restrictive.

0.2.4.1 − Richard Stallman hates the Plan Nine license (circa 2000)

In the year 2000, the third edition of Plan 9 was finally released under a custom "open
source" license, the Plan 9 License. Richard Stallman was not impressed:

When I saw the announcement that the Plan Nine software had been released
as "open source", I wondered whether it might be free software as well. After
studying the license, my conclusion was that it is not free; the license contains
several restrictions that are totally unacceptable for the Free Software Move
ment. (See http://www.gnu.org/philosophy/free-sw.html

Read more here:

http://www.linuxtoday.com/developer/2000070200704OPLFSW
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0.2.4.2 − Theo de Raadt hates the Plan 9 license (circa 2003)

In the year 2002, the fourth edition of Plan 9 was released under the Lucent Public
License. This time, Theo de Raadt was not impressed:

The new license is utterly unacceptable for use in a BSD project.

Actually, I am astounded that the OSI would declare such a license acceptable.

That is not a license which makes it free. It is a *contract* with consequences;
let me be clear -- it is a contract with consequences that I am unwilling to
accept.

Read more here:

http://9fans.net/archive/2003/06/270

0.2.4.3 − Everyone hates the Plan 9 license (circa 2014)

In 2014, portions of the Plan 9 source code were again re-licensed, this time under the
GPLv2, for distribution with the University of California, Berkeley�s Akaros operating sys
tem. Predictably, various parties were not impressed.

Russ Cox tried to make sense of the situation by commenting in a Hacker News thread:

When you ask "why did big company X make strange choice Y regarding
licensing or IP", 99 times out of 100 the answer is "lawyers". If the Plan 9
group had had its way, Plan 9 would have been released for free under a triv
ial MIT-like license (the one used for other pieces of code, like the one true
awk) in 2003 instead of creating the Lucent Public License. Or in 2000 instead
of creating the "Plan 9 License". Or in 1995 instead of as a $350 book+CD
that came with a license for use by an entire "organization". Or in 1992
instead of being a limited academic release.

Thankfully I am not at Lucent anymore and am not privy to the tortured nego
tiations that ended up at the obviously inelegant compromise of "The Univer
sity of California, Berkeley, has been authorised by Alcatel-Lucent to release
all Plan 9 software previously governed by the Lucent Public License, Version
1.02 under the GNU General Public License, Version 2." But the odds are over
whelming that the one-word answer is "lawyers".

Some have suggested that confusion about licensing may have contributed to Plan 9�s
failure to supplant UNIX in the wider computing world.

0.2.4.4 − PRAISE FOR 9FRONT’S BOLD ACTION, RE: LICENSING

Any additions or changes (as recorded in git history) made by 9front are provided under
the terms of the MIT License, reproduced in the file /lib/legal/mit, unless other
wise indicated.

Read: /lib/legal/NOTICE.
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0.2.4.5 − Everyone loves the Plan 9 license (circa 2021)

In 2021, the Plan 9 Foundation (aka P9F�no relation) convinced Nokia to re-license all
historical editions of the Plan9 source code under the MIT Public License.

As a consequence, all of 9front is now provided under the MIT License unless otherwise
indicated.

Re-read: /lib/legal/mit

0.2.4.6 − Plan 9 is a registered trademark of SouthSuite Inc.

−Plan 9 is a trademark of Lucent Technologies Inc.
+Plan 9 is a registered trademark of SouthSuite Inc.

https://github.com/plan9foundation/plan9/commit/9db62717612a49f78a83b26ff5a176971c6cdd18.diff

Brantley Coile noticed the Plan 9 trademark expired and bought it on November 25,
2020. It was before the transfer of the Plan 9 copyrights to the Plan 9 Foundation
(March 23, 2021). � 0intro, https://news.ycombinator.com/item?id=26946830

0.3 − Further Reading

0.3.1 − Plan 9 papers

Academic papers that describe the Plan 9 operating system are available here:

http://doc.cat-v.org/plan_9/

0.3.2 − Man pages

Section (1) for general publicly accessible commands.

Section (2) for library functions, including system calls.

Section (3) for kernel devices (accessed via bind(1)).

Section (4) for file services (accessed via mount).

Section (5) for the Plan 9 file protocol.

Section (6) for file formats.

Section (7) for databases and database access programs.

Section (8) for things related to administering Plan 9.
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0.3.3 − Web pages

The official website for the Plan 9 project is located at: https://9p.io/wiki/plan9

The official website for the Plan 9 Foundation is located at: http://p9f.org

The 9front fork of Plan 9 (that�s us): http://9front.org

A community wiki setup by 9front users: http://wiki.a-b.xyz

Much other valuable information can be found at http://cat-v.org regarding aspects of
UNIX, Plan 9, and software in general.

0.3.4 − Books

Introduction to OS Abstractions Using Plan 9 From Bell Labs, by Francisco J Ballesteros
(nemo)

Notes on the Plan 9 3rd Edition Kernel, by Francisco J Ballesteros (nemo)

The UNIX Programming Environment, by Brian W. Kernighan (bwk) and Rob Pike (rob)
(this book is the most clear, concise and eloquent expression of the Unix and �tool�
philosophies to date)

9FRONT DASH 1 (the document you are reading right now, but in book form)
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FQA 1 − Introduction to 9front

1.1 − What is 9front?

Plan9front (or 9front) is a fork of the Plan 9 from Bell Labs operating system. The project
was started to remedy a perceived lack of devoted development resources inside Bell
Labs,[citation needed] and has accumulated various fixes and improvements.

This FQA specifically covers only the most recent release of 9front.
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1.1.1 − Cirno

At some point, Cirno became associated with 9front. Details are sketchy, but this image
has been in the wiki since the Google Code days, so I�m leaving it in.

Pro

" girl

" has magical powers

" associated with 9

" upsets kfx

" she is known to be the strongest
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Alternatives

1.2 − On what systems does 9front run?

9front runs on the following platforms:

" 386

" amd64

" arm

" arm64
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" mips

Read: FQA 3.2 − Selecting Hardware

1.3 − Why might I want to use 9front?

It is very likely that you do not.

New users frequently want to know whether 9front is superior to some other free UNIX-
like operating system. Consider: The question is largely unanswerable. What are your
criteria? Why are you even using computers in the first place? Exploring these questions
and the implications that derive therefrom may help you sharpen your perceptions and
eventually come to some sort of conclusion about which operating system you prefer to
use for daily tasks.

Ultimately, whether or not 9front is for you is a question only you can answer.

Note: The above text is lightly plagiarized from the OpenBSD FAQ. Ironically, OpenBSD
may have more of the features you�re looking for.

1.3.0 − Why might I not want to use 9front?

Hold up. Before you get too excited, consider the following possibilities:

" You just realized you don�t want to use Plan 9 at all.

" You don�t like the people who use and/or work on 9front.

" You don�t like 9front�s propaganda.

" You prefer less functionality from your obscure OS, and/or you prefer to ignore
9front�s public commit history and complain later because nobody informed you
about its bug fixes and new programs.

" You have technical objections to specific changes 9front made to the original Bell
Labs code.

" You�re not sure right now, but you�ll know it when you see it.

Okay, carry on.
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1.3.0.1 − Why did 9front stop making fun of Nazis?

Because you asked us to.

" People complained it was done in poor taste.

" People reliably interpret any depiction of a thing as an endorsement of same.

" We�re tired of explaining this shit to people who just call us liars anyway. (To be
fair, look at the world around us today. Why cloud the issue?) I’m through
explainin the shit �Ice T

" Cognitive dissonance.

Read: Appendix L − Ruby

Possibly related: Der Anbräuner

Definitely relevant: They Live and the secret history of the Mozilla logo

This poor guy: Anselm Kiefer
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1.3.1 − New Features

The following list is probably not exhaustive:

" /shr, global mountpoint device shr(3)

" /mnt is provided by mntgen(4)

" #A, audio drivers for sb16, intel hd audio and ac97 (both playback and recording
supported!) audio(3)

" New BIOS based boot loader 9boot(8) featuring a console and support for
FAT/ISO/PXE and being small (<8K)

" New EFI based boot loader efi

" Made kernel compliant to multiboot specification so it can be booted by qemu or
grub directly.

" Interruptable kernel qlocks (eqlock)

" Deferred clunks (closeproc) for cached mounts

" New rc based boot(8) allows breaking into a shell at any time

" Default file system is an improved cwfs(4) (cwfs64x)

" New screen fonts: dejavu, germgoth, vga

" No central replica; source updates are done with git(1)

" Keyboard events with /dev/kbd. Read: kbdfs(8) and rio(4)
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" /lib/rob and other new corpuses, suitable as fodder for fortune(1) and
other rhetorical programs

" New listen(8) −p maxprocs option

" Always available network aan(8) support in cpu(1) and rcpu(1)

" MSI (message signalled interrupts), avoids problems with broken MP tables. Read:
icanhasmsi(8)

" Legacy free ACPI support (aml interpreter libaml, mp interrupt routing,
scram)

" Added rio(1) −b option (black window backgrounds) and look menu option

" USB CD-ROM boot/install

" USB drive boot

" Improved USB mouse support

" Support for USB ptp cameras

" Stable-across-machines USB device names

" VGA initialization done by interpreting the VESA BIOS with realemu(8),
working VESA screen blanking.

" /dev/kbd and clipboard charset support for vnc(1)

" New webfs(4) with HTTP1.1 and Keep-Alive support.

" Qemu/KVM virtio block device and ethernet drivers. Read: FQA 4.5.1.3 − Virtio

" Mouse wheel and chording support in sam(1)

" Elliptic curve cryptography ec(2)

" Working interrupt key (Del) in console

" WiFi support with wpa/wpa2

" SSE support

" System-wide support for internationalized domain names

" Unicode support in vt(1)

" pc64, kernel for amd64

" imx8, kernel for the NXP i.MX 8

" Numerous ciphers added and improvements made to libsec
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" New dpi9k authentication protocol

" Support for mounting Linux ext2, ext3, and ext4 file systems

1.3.1.1 − New Programs

" " and "" (print, repeat previous command)

" alarm(1) � timeouts in rc scripts

" atari(1) � 2600 emulator

" audio(1) � mp3, ogg, flac, µlaw, wav

" auth/box(8) � execute its arguments in a minimal namespace

" bar(1) � display a bar

" blit(1) � Blit terminal emulator

" bullshit(1) � print out a stream of bullshit

" cifsd(8) � CIFS/SMB server

" cryptsetup(8) � prepare an AES-encrypted partition to be used with the
fs(3) device

" aux/dial(1) � connect to a remote service

" derp(1) � find changes between directories

" dtracy(1) � dynamic tracing language (like dtrace)

" evdump(1) � dump input and window events

" ext4srv(4) � ext4 file system

" fplot(1) � plot elementary function

" New games: doom, glendy, linden, mandel, mines, mole, packet, v8e

" git(1) � native git client

" hget(1) � rewritten in rc, now uses webfs

" hjfs(4) � new, experimental fs

" hpost(1) � extract and post HTML forms

" hold(1) � simple text editor

" icanhasmsi(8) � print MSI configuration
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" ipserv(8) � proxy servers socksd and hproxy

" ircrc(1) � IRC client

" memory(1) � check memory usage

" mothra(1) � Tom Duff�s web browser, now uses webfs

" netaudit(8) � network configuration checker

" newt(1) � Usenet client

" nietzsche(1) � print out Nietzsche quote

" nintendo(1) � Nintendo emulators: gb, gba, nes, snes

" page(1) � zoom and enhance!

" paint(1) � drawing program

" play(1) � audio player

" pstree(1) � print tree-like map of current processes and sub-processes

" ptrap(4) � plumber(4) filter

" rc−httpd(8) � HTTP server

" rcpu(1) � replacement for legacy cpu(1) client, uses dp9ik

" qcow2(8) � QCOW2 file system

" resize(1) � fast but low quality image resampler

" riow(1) � keyboard-controller for rio(1)

" rotate(1) � rotate or mirror a picture

" scram(8) � ACPI and APM shutdown

" sega(1) � Sega Megadrive/Genesis emulator: md

" spred(1) � sprite editor

" ssam(1) � stream interface to sam

" ssh(1) � SSH2 client

" sshnet(4) � re-implementation of sshnet for SSH2

" sysinfo(1) � print hardware report

" sysupdate(1) � update the local git repository
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" theo(1) � print out insults from Theo de Raadt

" tput(1) � measure read throughput

" troll(1) � automated trolling

" tap(1) � follow the pipes of a process

" tif(1) � tiff decoder

" tinc(8) � mesh peer to peer VPN

" tojpg(1) � jpeg encoder

" totif(1) � tiff encoder

" torrent(1) � bittorrent client

" walk(1) � recursively walk descending directories

" zuke(1) � GUI audio player, replacement for juke(1)

1.3.1.1.1 − Why do some new program names begin with hj?
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Date: Wed, 8 Mar 2006 15:10:14 +1100
From: "Bruce Ellis" <bruce.ellis@gmail.com>
To: "Fans of the OS Plan 9 from Bell Labs" <9fans@cse.psu.edu>
Subject: Re: [9fans] structure allocation.

i still like hjdicks it is obscure enough that no−one would think
it’s a feature (or guess it). it was required because we had a
large slab of 3rd−party code that assumed it could read packets off
the wire (assuming correct endian) and do no marshaling.

#pragam pack

looks like a feature.

i was there when it happened (after a nice italian meal).

ken asked "Do i really have to do this?"

P: Yes, there’s buckets of code that rely on it.

K: *some expression of disbelief*

P: well hj are just dicks

done deal

it also turned out to be important for inferno on machines with
greater than 32 bit alignment requirements. the 64 bit mips
is an example. took but a recompile with hjdicks in the right
place (it takes an optional alignment parameter). same with
the ps2 which has 128 bit issues.

thanks for telling me that it has been changed.

brucee

On 3/8/06, geoff@collyer.net <geoff@collyer.net> wrote:
> I was implicitly referring to C compilers. Heck, Pascal had
> packed data in the early 1970s, possibly even the late 1960s.
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1.3.1.2 − New Hardware Support

CPU

" MediaTek MT7688 � /sys/src/9/mt7688/

" NXP i.MX8MQ � /sys/src/9/imx8/

Audio

" AC97 � /sys/src/9/pc/audioac97.c

" Intel HDA � /sys/src/9/pc/audiohda.c

" SB 16/ESS � /sys/src/9/pc/audiosb16.c

" Countless new variants (VID/DID) added to existing drivers.

Ethernet

" ADMtek Pegasus � /sys/src/cmd/nusb/ether/aue.c

" Broadcom BCM57xx � /sys/src/9/pc/etherbcm.c

" Realtek RTL8150 � /sys/src/cmd/nusb/ether/url.c

" Countless new variants (VID/DID) added to existing drivers.

WiFi

" Intel Centrino Advanced-N 6205/6235

" Intel Centrino Ultimate-N

" Intel Centrino Wireless-N 100/2200/2230

" Intel WiFi Link 1000/4965/5100/5300/5350 AGN

" Intel PRO Wireless 3945ABG

" Intel Dual Band Wireless-AC 3168

" Intel Wireless AC 3160/7260/8260/8265/9260

" Ralink RT2860/RT3090
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Tablets

" Wacom serial tablets WACF004, WACF008

/sys/src/cmd/aux/wacom.c, /sys/src/cmd/aux/tablet.c

" USB tablets supported by USB subsystem

Video

" AMD Geode LX driver

/sys/src/cmd/aux/vga/geode.c /sys/src/9/pc/vgageode.c

" Intel GM915, GM965, Sandy Bridge, Ivy Bridge, and Haswell driver

/sys/src/cmd/aux/vga/igfx.c /sys/src/9/pc/vgaigfx.c

SD Card

" Ricoh � /sys/src/9/pc/pmmc.c

Read: FQA 3.2 − Known Working Hardware for a list of complete machines known to
work.
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1.4 − Is 9front really free?

Yes.

Read: FQA 0.2.4 − What is the deal with Plan 9’s weird license?

1.5 − How can I help support 9front?

We are greatly indebted to the people and organizations that have contributed to the
9front project. That said, the topic is complicated: The main developers refuse to accept
donations (except when they do accept donations), and the people who do offer to make
donations often disappear without further explanation, or make strange demands that
nobody feels like capitulating to. This complex, fluid, and at times contentious dynamic
can best be navigated by joining #cat−v on irc.oftc.net and asking strangers how to
donate to the project.

When this fails, donations that help pay for the hosting of 9front.org and
cat−v.org (including fqa.9front.org, the document you are reading right now)
can be made at: http://patreon.com/stanleylieber

You can also buy a print copy of the 9front dash1 manual (the print edition of the docu
ment you are reading right now), and/or the man pages at:
http://9front.org/propaganda/books

1.6 − Who maintains 9front?

9front is maintained by an East German intelligence officer who never sleeps, but
instead logs periods of inactivity staring straight into the soulless eyes of
games/catclock. Occasional contributions are made by a diverse team of malcon
tents that is spread somewhat thinly across many different timezones and Internet pro
viders. Most of them have dayjobs, and in fact are not concerned with your demands.
Subsidized or not.

1.7 − When is the next release of 9front?

Soon.

The 9front team makes new releases on a regular, but unscheduled, basis. More infor
mation on the development cycle can be found on the 9front mailing list, while historical
release announcements are archived at 9front.org/releases.

1.8 − What is included with 9front?

Some useful programs included with the operating system are:

" 2600 � Atari 2600 emulator.

" acid � Programmable symbolic debugger.

" acme � Text editor, window system, mail client and more.
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" ape � ANSI/POSIX environment.

" cwfs64x � Cached-worm file server based on the original Ken�s fs.

" doom � Science fiction horror-themed first-person shooter video game by id
Software.

" git � native git client.

" gs � Aladdin Ghostscript (PostScript and PDF language interpreter).

" hjfs � A new, experimental fs.

" mk � Tool for describing and maintaining dependencies between files.

" mothra � Web browser by Tom Duff.

" newt � NNTP client.

" nintendo � Nintendo Game Boy, NES, SNES and GBA emulators.

" paint � Drawing program.

" page � FAX, image, graphic, PostScript, PDF, epub, cbz viewer.

" play � Flac, ogg, mp3, sun, wav player.

" plumber � Mechanism for inter-process communication.

" rc � Shell by Tom Duff.

" rc−httpd � Web server written in rc.

" rio � Rectangle multiplexer/window system.

" sam � Text editor.

" sega � Megadrive/Genesis emulator.

" torrent � BitTorrent client.

" troff � Text processor/typesetter.

" upas � A simpler approach to network mail.

" zuke � GUI audio player.

1.9 − Can I use 9front as a desktop system?

This question is often asked in exactly this manner�with no explanation of what the
asker means by "desktop". The only person who can answer that question is you, as it
depends on what your needs and expectations are.
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Read: FQA 1.3 − Why might I want to use 9front?

1.10 − Why is/isn’t ProductX included?

Two potential reasons:

" Nobody wanted it.

" Nobody wrote the code.

Many "features" and programs are missing from Plan 9 for a very good reason: They are
terrible ideas expressed as terrible software. Other features are missing simply because
no one has yet written the code to implement them. It is left as an exercise for the
reader to determine which is which, and to apply the appropriate remedy.

Read: FQA 8.8 − Additional Software

1.11 − Fine, where can I get 9front?

If you simply cannot be dissuaded from trying 9front for yourself, obtain installation
media from the mirrors mentioned in the following section.

1.11.1 − Mirrors

1.11.1.1 − 9front.iso

http://9front.org/iso/

http://felloff.net/usr/cinap_lenrek/9front.torrent

https://ftp.cc.uoc.gr/mirrors/9front/
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http://iso.only9fans.com/ - nightly builds

1.11.1.2 − git repository

http://git.9front.org/plan9front/plan9front/ (official)

Good luck, you may need it.
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FQA 2 − Getting To Know 9front

2.1 − Web Pages

The official websites for the 9front project are located at:

" http://9front.org � main website

" http://wiki.9front.org � unofficial mirror of unofficial documentation, community
maintained

" http://fqa.9front.org � counterintelligence manual, ostensibly fictional

" http://lists.9front.org � mailing lists

" http://man.9front.org � man pages

Somewhat outdated, and not entirely applicable to 9front is the Bell Labs Plan 9 wiki:
https://9p.io/wiki/plan9/plan_9_wiki/

Some users have set up their own sites and pages with 9front specific information. As
always, do not blindly enter commands you do not understand into your computer.

That said, much valuable information can be found at http://cat-v.org regarding various
aspects of UNIX, Plan 9, and software in general.

2.2 − Mailing Lists

The 9front project maintains several mailing lists which users should subscribe to and
follow. To subscribe to a mailing list, send an e-mail message to list-owner@9front.org,
where list is the name of the mailing list. That address is an automated subscription
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service. In the body of your message, on a single line, you should include the subscribe
command. For example:

subscribe

After subscribing, list messages are received from and sent to list@9front.org, where list
is the name of the mailing list.

The lists are as follows:

9front � general discussion

9front-commits � read-only log of commits to the 9front git repository

9front-fqa � log of commits to, and discussion about
http://fqa.9front.org

9front-sysinfo � read-only log of sysinfo(1) output from user systems

To unsubscribe from a list, you will again send an e-mail message to list-
owner@9front.org. It should look like this:

unsubscribe

Before posting a question on the 9front mailing list, please check the rest of this FQA. If
asking a question possibly related to hardware, always include the output of
sysinfo(1)!

2.2.1 − Mailing List Archives

Mailing list archives are available via 9p:

% 9fs 9front
post...
% ls /n/lists
/n/lists/9front

Each of these directories contains messages sent to the respective mailing list in mdir
format, one message per file. Erik Quanstrom�s nupas upas/fs (now merged with 9front
upas) can mount these directories as mailboxes, for reading directly with a mail client.

Note: Opening large mailboxes over a slow 9p link will be very slow.

2.2.1.1 − Unofficial Web Archives

Someone created a searchable website:

https://inbox.vuxu.org/9front/

2.2.1.2 − Official Web Archives

Someone else created another searchable website:

http://lists.9front.org/9front/
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2.2.2 − Other useful mailing lists

9fans � Official mailing list of Plan 9 from Bell Labs.

2.2.2.1 − Starfleet General Order 1

"There’s a reason why it’s Starfleet’s General Order number 1." �Harry Kim, 2371
("Prime Factors")

As the rights of each sentient species to live in accordance with the normal cultural
evolution is considered sacred, no Starfleet personnel may interfere with the normal and
healthy development of alien life and culture. Such interference includes introducing
superior knowledge, strength, or technology to a world whose society is incapable of
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handling such advantages wisely. Starfleet personnel may not violate the Prime
Directive even to save their lives and/or their ship, unless they are acting to right an
earlier violation or an accidental contamination of said culture. This directive takes
precedence over any and all other considerations, and carries with it the highest moral
obligation.

"This is how it begins. All it takes is for one impressionable youngster to join Starfleet,
and the next thing you know, a whole generation of Ferengi will be quoting the Prime
Directive and abandoning the pursuit of latinum. It’s the end of Ferengi civilization as
we know it and it’s all your fault." �Quark, 2371 ("Family Business")

Read: https://memory-alpha.fandom.com/wiki/Prime_Directive

2.3 − Manual Pages

9front comes with extensive documentation in the form of manual pages. Considerable
effort is made to make sure the man pages are up-to-date and accurate. In all cases, 1.)
the source, followed by 2.) the man pages, are considered the authoritative source of
information for 9front.

You can find all the 9front man pages on the web at the following sites:

http://man.9front.org

http://felloff.net/sys/man

http://man.aiju.de

http://man.cat-v.org/9front

as well as on your 9front computer.

In general, if you know the name of a command or a manual page, you can read it by
executing man command. For example: man vi to read about the MIPS binary
emulator. If you don�t know the name of the command, or if man command doesn�t
find the manual page, you can search the manual page database by executing
lookman something, where something is a word that is likely to appear in the
title of the manual page you�re looking for. For example:

% lookman vesa
man 3 vga # vga(3)
man 8 realemu # realemu(8)
man 8 vga # vga(8)

The resulting list is presented in the form of commands that can be highlighted and
sent using rio�s mouse button 2 menu.

For many, having a hardcopy of the man page can be useful. To make a printable copy
of a man page:

man −t vga realemu | lp −dstdout > vga.ps

or:

man −t vga realemu | lp −dstdout | ps2pdf > vga.pdf
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2.3.1 − How do I display a man page source file?

The command man −w prints the location of the man page�s source file:

% man −w vga realemu
/sys/man/3/vga
/sys/man/8/realemu
/sys/man/8/vga

2.3.2 − How do I write my own manual page?

As was mentioned in FQA 0.3.2 − Man pages, Plan 9 man pages are divided into sections
based upon the features they describe. For example, the troff source of the io(1) man
page is located in section 1, in the file /sys/man/1/io. You can examine this troff
source for a simple example of how to format and construct a typical man page.

For additional information, read: How to Write a Plan 9 Manual Page, man(6),
troff(1)

2.4 − Reporting Bugs

"I have with Plan 9 Is there a way to"

Remember: 9front developers cannot read your mind. Very detailed information is
required to diagnose most serious bugs.

Also remember: It is possible you simply don’t know what you’re doing. If you do
not understand how something is done in 9front or how it works, and can�t figure out
how to resolve the problem using the manual pages, FQA 8 − Using 9front, or FQA 9 −
Troubleshooting, join #9front on irc.oftc.net or use the mailing list
(9front@9front.org) to request help.
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On the other hand, it�s possible you really found a bug. If so, please file a bug report by
sending an e-mail to 9front@9front.org.

2.4.1 − Your bug report SUCKS

A minimum useful bug report contains the following:

" A complete description of what you did.

" A complete description of what you expected to happen.

" A complete description of what happened, instead.

Extra credit:

" The make and model of your computer.

" The URL returned when you run sysinfo -p on the affected system.

2.4.2 − How do I get more useful info for developers?

The following sub-sections offer some useful tips.

2.4.2.1 − Take a photo of the panic screen

Under some circumstances, you may not be able to recover text directly from a crashed
system. In this situation, snap a photo of the screen, including as much of the screen in
good focus as possible, and upload the image somewhere where it can be retrieved by
developers.
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2.4.2.2 − Make a stack trace of a crashed process

% hget http://www.jwz.org/blog/feed | rssread
panic: D2B called on non−block c580 (double−free?)
rssread 882285: suicide: sys: trap: fault read addr=0x0 pc=0x000038ef
% acid 882285
/proc/882285/text:386 plan 9 executable
/sys/lib/acid/port
/sys/lib/acid/386
acid: lstk()
abort()+0x0 /sys/src/libc/9sys/abort.c:6
ppanic(p=0xb5a0,fmt=0xbf72)+0x146 /sys/src/libc/port/malloc.c:166

pv=0xc100
msg=0xc310
v=0xdfffee90
n=0x2b

D2B(p=0xb5a0,v=0xc580)+0x5a /sys/src/libc/port/pool.c:966
a=0xc578

poolfreel(v=0xc580,p=0xb5a0)+0x20 /sys/src/libc/port/pool.c:1190
ab=0xc100

poolfree(p=0xb5a0,v=0xc580)+0x41 /sys/src/libc/port/pool.c:1325
free(v=0xc588)+0x23 /sys/src/libc/port/malloc.c:250
nextxmlpull(x=0xc548)+0x334 /usr/sl/src/xmlpull/xmlpull.c:221
nextxmlpull(x=0xc548)+0x2cb /usr/sl/src/xmlpull/xmlpull.c:316
main()+0x34 /usr/sl/src/rssread/rssread.c:159

st=0x1
f=0xc5a8
r=0x0
x=0xc548

_main+0x31 /sys/src/libc/386/main9.s:16
acid:

2.4.2.3 − Make a process snapshot

To collect even more information than a stacktrace, you can also make a full process
snapshot, which includes all the memory of the program. The snapshot file can later be
analyzed (even on a different machine [even on a different machine of a different archi
tecture]).

% snap 882285 > rssread.snap

2.5 − Sending Fixes

We take fixes.

2.5.1 − How do I write good patches? Explain the problem that your change solves.
Explain why your change solves the problem well. If applicable, explain how you tested
the patch, and give us a way of reproducing the issue.

Before making the patch, make sure your system is up to date.

Make your code match the rest of the system. Look at style(6) for a summary of our
code style.
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If your patch includes new features or flags, be sure to update the documentation.

If the patch is intrusive or significantly changes the design of aspects of the system, it
may be worth discussing it first. Email works for this, but IRC works better.

2.5.2 − How do I send in my patches? To send changes, email 9front@9front.org with
your patch attached inline. Generate the patch using

% bind −ac /dist/plan9front /
% cd /sys/src/your/changed/code
% git/diff . > /tmp/mypatch.diff

and paste the change into your email client of choice.

This project is run by hobbyists. It may take some time for people to respond. If you
don�t hear anything for more than a week or so, send a ping.
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FQA 3 − Hardware

3.1 − Selecting Hardware

Selecting appropriate hardware to run your 9front system on is important, as it can
mean the difference between success and failure of a project. Fortunately, most com
mon PC hardware is at least minimally functional in Plan 9 (excluding certain exotic
audio, VGA, and WiFi devices). Nowadays, thanks to 9boot(8), realemu(8), and the
VESA driver, it is at least very likely that your PC will boot. In addition, most popular vir
tualization platforms are reasonably well supported.

Check FQA 3.2 − Known Working Hardware as well as the various supported hardware
pages on the Bell Labs Plan 9 wiki to help determine if your hardware or VM is
supported.

3.2 − Known Working Hardware

This list adds to the various supported hardware pages on the Plan 9 from Bell Labs
wiki. Note: NONE of these lists are all-inclusive. Some drivers listed on the Bell Labs
wiki have not been tested by 9front developers. The following list consists of hardware,
1.) that we have actually used, or 2.) about which we have received reliable reports from
users.

Some drivers and their options are also documented in plan9.ini(8).

Read: FQA 1.3.1.2 − New Hardware Support for information about hardware drivers that
are new in 9front.
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3.2.0 − Input Devices

3.2.0.1 − Mice

Almost any PS/2 or USB mouse is going to work. The following are preferred for use
with Plan 9.

3.2.0.1.1 − IBM/Lenovo

N700 Wireless/Bluetooth, 3 button Mouse and Laser Pointer

Part Number: 888015450
DPI: 1200
"Just works" with USB receiver. No additional driver required.
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ScrollPoint Optical Mouse, 3 button, USB/PS2

Part Number: 31P7405
DPI: 800

3.2.0.2 − Keyboards

Almost any AT, PS/2, or USB keyboard is going to work. The following are preferred for
use with Plan 9.
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3.2.0.2.1 − IBM/Lenovo

IBM Model M 1391401

Part Number: 1391401

IBM UltraNav SK−8835

Part Number: SK-8835
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3.2.0.2.2 − TEX Electronics

TEX Shinobi

3.2.0.2.3 − MNT Research GmbH

MNT Reform USB Keyboard

Configuration:
http://plan9.stanleylieber.com/hardware/mnt/reform/
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3.2.1 − Audio Audio support is much improved in 9front, with added support for AC97,
Intel HDA, and (ha!) Soundblaster 16.

AMD FCH Azalia Controller

vid/did: 1022/780d

Intel 888 Microsoft UAA bus for HD audio

vid/did: 8086/284b

Intel 82801CA/CAM AC97

vid/did: 8086/2485

Intel 82801 DB DBM/DA AC 97

vid/did: 8086/24c5

Intel 486486 82801IB/IR/IH HD Audio

vid/did: 8086/293e

Intel Gemeni Lake

vid/did 8086/3198
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Intel HD NM10/ICH7

vid/did: 8086/27d8

Intel HD 6 Series/C200 Series

vid/did: 8086/1c20

Intel HD 7 Series/C210 Series

vid/did: 8086/1e20

3.2.2 − Graphics Many video cards for which there exists no native VGA driver can be
made to work with the generic VESA driver. Examples are provided below.

3.2.2.1 − AGP

NVidia GeForce FX 5200 128MB VGA output

vid/did: 10de/0322
monitor=vesa vgasize=1600x1200x32
monitor=dellst2210 vgasize=1920x1080x32

NVidia GeForce FX 5700

vid/did: 10de/0341
monitor=vesa vgasize=1600x1200x32
monitor=dellst2210 vgasize=1920x1080x32
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3.2.2.2 − Integrated

ATI Mobility Radeon 7500 128MB DVI/VGA output

vid/did: 1002/4c57
monitor=vesa vgasize=1024x768x32

ATI Mobility Radeon FireGL V3200/X600

vid/did: 1002/3154
monitor=vesa vgasize=1600x1200x32

ATI RS880

monitor=vesa vgasize=1280x1024x32

ATI X1300

Intel Mobile 945GM/GMS/GME, 943/940GML Express

vid/did: 8086/27a6
monitor=vesa vgasize=1400x1050x32
monitor=x60t vgasize=1400x1050x32

Intel X3100/GM965/PM965/GL960

vid/did: 8086/2a03
monitor=vesa vgasize=1680x1050x32

Intel Mobile Intel 4 Series 4500MHD

vid/did: 8086/2a42, 8086/2a43
monitor=vesa vgasize=1440x900x32
monitor=x301 vgasize=1440x900x32

Intel HD 3rd Gen Core processor Graphics Controller

vid/did: 8086/0166
monitor=vesa vgasize=1366x768x32
monitor=x230 vgasize=1366x768x32

NVidia GeForce FX Go5200 64M

vid/did: 10de/0324
monitor=cinema vgasize=1152x768x32
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S3 SuperSavage IX/C 16MB

vid/did: 5333/8c2e
monitor=t23 vgasize=1024x768x32
monitor=vesa vgasize=1024x768x32

3.2.2.3 − PCI Express

NVidia GeForce 6200 AGB

vid/did: 10de/0220

NVidia GeForce 6200 LE

vid/did: 10de/0163
monitor=e228wfp vgasize=1680x1050x32

NVidia GeForce 8400 GS

vid/did: 10de/0422
monitor=vesa vgasize=1680x1050x32

NVidia GeForce 8600 GT

vid/did: 10de/0402
monitor=vesa vgasize=1600x1200x32

NVidia GeForce GTX 550

vid/did: 10de/0bee
monitor=vesa vgasize=1600x1200x32

3.2.3 − Networking

3.2.3.1 − Ethernet

Ethernet is well supported across many vendors and chipsets. 9front introduces a
"medium-to-low quality" driver for Broadcom BCM57xx cards, previously unsupported
by Plan 9.

3.2.3.1.1 − Integrated

Broadcom BCM5751M NetXtreme Gigabit

vid/did: 14e4/167d
tested 100/1000 mbps
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Broadcom BCM5755/5780 NetXtreme Gigabit

vid/did: 14e4/167b
tested 100/1000 mbps

Broadcom BCM5782 NetXtreme Gigabit

vid/did: 14e4/1696

Intel X553/X550−AT 10GBASE−T

vid/did: 8086/15c8

Intel 82540EP Gigabit

vid/did: 8086/101e
tested 100/1000 mbps

Intel 82562ET

tested 10/100 mbps

Intel 82566MM Gigabit

vid/did: 8086/1049
tested 100/1000 mbps

Intel 82567LM 82567LM−2 Gigabit

vid/did: 8086/10f5
tested 100/1000 mbps

Intel 82573L Gigabit

vid/did: 8086/109a
tested: 100/1000 mbps

Intel 82579LM Gigabit

vid/did: 8086/1502
tested: 100/1000 mbps

Intel 82801CAM PRO/100 VE

vid/did: 8086/1031
tested 10/100 mbps
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Realtek RTL8139

vid/did: 10ec/8139
tested 10/100/1000 mbps

Realtek RTL8156

Realtek RTL8169/RTL8101E/RTL8102E

vid/did: 10ec/8136
tested 10/100/1000 mbps

3.2.3.1.2 − USB

Beceem Communications CLEAR Stick

vid/did 198f:8160
This is a WiMAX device that appears as a USB CDC Ethernet device
Works with nusb/ether

RNDIS

Android phones should work
Works with nusb/ether

3.2.3.1.3 − PCMCIA

3Com 3c589c

Set the following in plan9.ini: irq=3 port=0x300

3.2.3.2 − WiFi

9front adds support for several WiFi adapters from Ralink and Intel, as well as support
for WPA and WPA2.

Note: Some WiFi hardware requires a corresponding firmware blob to exist under
/lib/firmware/. Contents of this directory get included into the kernel paqfs when
the kernel is rebuilt, so make sure you don�t have so much firmware in there that your
kernel gets too large for your machine to boot. This, of course, varies from machine to
machine.

Read: wpa(8), and plan9.ini(8)

74 



3.2.3.2.1 − Bridge (external)

IOgear GWU627

802.11n
connect ethernet port to GWU627
HTTP management interface requires Javascript. Managed to program it using
Inferno�s charon browser, which supports ecmascript 1.0.

IOgear GWU637

802.11n
connect ethernet port to GWU6

Vonets VAP11G

802.11g
connect ethernet port to VAP11G
Requires a proprietary Windows program (ships with the device) to program its set
tings before using it for the first time.

3.2.3.2.2 − Mini−PCI

Actiontec 800MIP

802.11b
often branded Lucent WaveLAN
ether0=type=wavelanpci ssid=YOUR_AP station=T42 irq=11

Ralink RT2860 802.11b

3.2.3.2.3 − Mini−PCI Express

3.2.3.2.3.1 − iwl

Intel Wireless WiFi Link mini PCI-Express adapters require firmware from
http://git.9front.org/plan9front/firmware/HEAD/info.html to be present on attach in
/lib/firmware or /boot. To limit the selected APs the options essid= and
bssid= may be set at boot or in the ether interface clone file using a space as the sep
arator between option and value, e.g. echo essid left−armpit
>/net/ether1/clone Scan results appear in the ifstats file and can be read out
like: cat /net/ether1/ifstats Ad-hoc mode or WEP encryption is currently not
suppported.

Example configuration for plan9.ini:
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ether0=type=iwl essid=YOUR_AP
wpapsk=PASSWORD

List of relevant Intel WiFi cards in their various hardware configurations:
https://ark.intel.com/content/www/us/en/ark/products/series/59485/wireless.html

Note: Many of these cards come in different configurations (sometimes coupled with
Bluetooth, sometimes with different physical dimensions, connectors, or antennas). The
specific versions listed below are known to work based on user reports or the author�s
own testing. Every effort has been made to keep this list accurate and up to date. No
refunds.

Intel Centrino Advanced−N 6205

vid/did: 8086/0085
firmware: iwl-6005

Intel Centrino Advanced−N 6235

firmware: iwn-6030
vid/did: 8086/088f

Intel Centrino Ultimate−N

firmware: iwl-6000

Intel Centrino Wireless−N 100

Intel Centrino Wireless−N 2200/2230

vid/did: 8086/0891

Intel WiFi Link 1000/5350 AGN

Intel Wireless AC 3160

Intel Dual Band Wireless−AC 3168

firmware: iwn-3168-29
vid/did: 1180/24fb

Intel Wireless 4965 AG or AGN

vid/did: 1180/0476
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Intel Wireless 5100 AGN

firmware: iwn-5000
vid/did: 104c/ac56

Intel Ultimate N WiFi Link 5300

firmware: iwn-5000
vid/did: 1180/0476

Intel 5300 AGN

firmware: iwn-5000
vid/did: 8086/444e

Intel Wireless AC 7260

firmware: iwm-7260
vid/did: 8086/08b2

Intel Wireless AC 8260

firmware: iwm-8000C-34

Intel Wireless 8265/8275

firmware: iwm-8265-34
vid/did: 8086/15c0

Intel Wireless AC 9260

firmware: iwm-9260-34

3.2.3.2.3.2 − wpi

Intel PRO Wireless 3945abg PCI/PCI-Express wireless adapters require firmware from
http://git.9front.org/plan9front/firmware/HEAD/info.html to be present on attach in
/lib/firmware or /boot. See the iwl section above for configuration details.

Example configuration for plan9.ini:

ether0=type=wpi essid=YOUR_AP
wpapsk=PASSWORD

Intel PRO Wireless 3945ABG

firmware: wpi-3945abg
vid/did: 1180/0476
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3.2.3.2.3.3 − rt2860

Ralink Technology PCI/PCI-Express wireless adapters require firmware from
http://firmware.openbsd.org/firmware/*/ral-firmware*.tgz to be present on attach in
/lib/firmware or /boot. See the aboveiwlsection

Ralink RT3090

802.11g

3.2.3.2.4 − PCI

Ralink RT3090

802.11b

3.2.3.2.5 − PCMCIA

Linksys WPC11

802.11b
Prism 2.5
ISL37300P
RevA

Lucent WaveLAN PC24E−H−FC

802.11b
ether0=type=wavelan essid=YOUR_AP crypt=off station=x61 irq=11

3.2.4 − Tablet Digitizers

Support for Wacom serial tablets was added in 2012. The touchscreen digitizers in some
Lenovo ThinkPads (notably, the X230) also seem to function without need of any drivers
(presumably, controlled by the BIOS).

3.2.4.1 − Serial

3.2.4.1.1 − Integrated

Wacom WACF004

ThinkPad X4* series tablets

To enable the tablet�s serial port in plan9.ini:
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uart2=type=isa port=0x200 irq=5

To turn on the tablet:

aux/wacom; aux/tablet &

Wacom WACF008

ThinkPad X6* series tablets

To enable the tablet�s serial port in plan9.ini:

uart2=type=isa port=0x200 irq=5

To turn on the tablet:

aux/wacom; aux/tablet &

3.2.4.2 − USB

3.2.4.2.1 − Integrated

Wacom (from ThinkPad X230 Tablet, model unknown)

Treated as a mouse.

Wacom (from ThinkPad X1 Yoga 3rd Gen, model unknown)

Treated as a mouse.

3.2.4.2.2 − External

Wacom CTE−640

Treated as a mouse.
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3.2.5 − Desktop and Laptop Systems

The ever�expanding list of supported desktop and laptop systems has been redacted
from this book and moved exclusivly online. Access it here:
http://plan9.stanleylieber.com/hardware/
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3.3 − Virtual Machines

9front has been tested on several virtual machines. Details below.

Note: As a general rule it is a good idea to manually specify a unique MAC address for
each virtual machine instance running on the network, to avoid collisions.

3.3.1 − Qemu

The following generic setup is tested with qemu 1.5.0 and 2.0.50 running on Linux,
using FQA 3.3.3 − virtio for disk and network. This same generic setup should work for
most host operating systems.

3.3.1.1 − Installation

Create a sparse disk image:

qemu−img create −f qcow2 9front.qcow2.img 30G

Boot the 9front.iso:

qemu−system−x86_64 −cpu host −m 1024 \
−net nic,model=virtio,macaddr=00:20:91:37:33:77 −net user \
−device virtio−scsi−pci,id=scsi \
−drive if=none,id=vd0,file=9front.qcow2.img \
−device scsi−hd,drive=vd0 \
−drive if=none,id=vd1,file=9front.iso \
−device scsi−cd,drive=vd1,bootindex=0

Finally, see: FQA 4.3 − Performing a simple install
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3.3.1.1.1 − arm64 QCOW

The arm64 QCOW image is an arm64 9front image which can be run in QEMU.

It is intended to be used under a hypervisor (such as Linux KVM or macOS
Hypervisor.framework), and thus uses the most general subset of arm64 features to
ensure compatibility across hardware (4K page sizes, GICv3).

It currently supports XHCI USB and PCIe devices (used for VirtIO), but it is picky about
which peripherals it requires since arm64 does not standardize them. It does not pro
vide a graphical interface, and must be driven via serial (you can however use this to
open a drawterm connection, and this is recommended!)

Requirements:

" virt-2.12 machine type because later versions place ECAM in higher memory

" GICv3

" VirtIO devices marked "non-transitional"

As well, U-Boot is required to boot the image. As there are no binaries for U-Boot
arm64 QEMU, they must be built yourself:

; git clone https://source.denx.de/u−boot/u−boot.git
; make qemu_arm64_defconfig
; make

This will produce a u−boot.bin which we will use to run the system.

Running

To boot the system, use the correct machine type, GIC version and pass the QCOW:

qemu−system−aarch64 −M virt−2.12,gic−version=3 n
−cpu cortex−a72 −m 4G −smp 4 n
−bios u−boot.bin n
−drive file=9front.arm64.qcow2,if=none,id=installer n
−device virtio−blk−pci−non−transitional,drive=installer n
−serial stdio

For hardware acceleration, pass accel=hvf in the −M line for e.g. macOS
Hypervisor.framework.

For installation, create an additional disk:

qemu−img create −f qcow2 9front.qcow2 64G

And add it to the QEMU machine as follows:

−drive file=9front.qcow2,if=none,id=disk n
−device virtio−blk−pci−non−transitional,drive=disk

Then, the machine can be installed as per usual over serial.

For networking devices, attach a virtio−net−pci−non−transitional pointed
to your network interface (such as user networking).

USB Devices

82 



USB devices can be attached after adding an XHCI PCIe device:

−device qemu−xhci,id=xhci −device usb−tablet,bus=xhci.0

3.3.1.2 − Post−Installation Booting

qemu−system−x86_64 −cpu host −m 1024 \
−net nic,model=virtio,macaddr=00:20:91:37:33:77 −net user \
−device virtio−scsi−pci,id=scsi \
−drive if=none,id=vd0,file=9front.qcow2.img \
−device scsi−hd,drive=vd0

3.3.1.2.1 − Multiboot

Multiboot can be used to start the 9front kernel directly, skipping the bootloader step:

qemu −kernel 9pc −initrd plan9.ini

3.3.1.4 − Networking

User networking is the default and works the same on every platform. More advanced
options are particular to specific host operating systems; several are described below.

Note: On many operating systems ICMP is limited to the superuser. One consequence is
that a VM running with guest networking cannot ping remote hosts.

3.3.1.4.1 − Linux VDE

Install vde2.

Setup a tap interface:

sudo tunctl −u $USER −t tap0

Start a virtual switch connected to the tap interface:

vde_switch −−tap tap0 −daemon

Connect the switch to the network of the host. Use DHCP:

slirpvde −−dhcp −−daemon

When booting 9front, add the following to the qemu command line arguments:

−net vde
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3.3.1.4.2 − OpenBSD TAP

Tested: OpenBSD/amd64 6.0-STABLE, qemu-2.6.0

Note: Read over this first. Be careful not to clobber any system settings you may already
have configured. If you don�t understand something, read the relevant man pages until
you do. Feel free to substitute arbitrary network values below.
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# as root
pkg_add bzip2 plan9port qemu ssvnc wget
cp −f /usr/local/plan9/bin/rc /bin/ # for scripts
sysctl net.inet.ip.forwarding=1
echo ’net.inet.ip.forwarding=1’ >>/etc/sysctl.conf
echo inet 192.168.54.1 255.255.255.0 NONE >/etc/hostname.vether0
ed /etc/pf.conf
/ext_if
a
int_if="vether0"

match out from $int_if:network to any nat−to ($ext_if:0)
.
w
q
pfctl −f /etc/pf.conf
echo link0 up >/etc/hostname.tap0
echo add vether0 add tap0 up >/etc/hostname.bridge0
sh /etc/netstart
>/etc/dhcpd.conf
ed /etc/dhcpd.conf
i
option domain−name "example.com";
option domain−name−servers 192.168.54.1;

subnet 192.168.54.0 netmask 255.255.255.0 {
option routers 192.168.54.1;

range 192.168.54.100 192.168.54.199;
}
.
w
q
rcctl enable dhcpd
rcctl start dhcpd
ed /var/unbound/etc/unbound.conf
/interface
a

interface: 192.168.54.1
.
/access−control
a

access−control: 192.168.54.0/24 allow
w
q

rcctl enable unbound
rcctl start unbound
echo ´permit setenv { −ENV PS1=$DOAS_PS1 SSH_AUTH_SOCK } :wheel´ \

>/etc/doas.conf

# as user who is in wheel group
mkdir −p $HOME/9 $HOME/bin
cd $HOME/9
qemu−img −f qcow2 9front.qcow2.img 30G
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# adjust url for current iso
wget http://9front.org/iso/9front−5561.df1dc1ff2475.iso.bz2
bunzip2 9front−5561.df1dc1ff2475.iso.bz2
mv 9front−5561.df1dc1ff2475.iso 9front.iso
cd $HOME/bin
wget http://openbsd.stanleylieber.com/rc/q9
chmod 775 q9
cd
# boot from iso (install)
doas −u root q9 −i
# boot from qcow image (after completing the install)
doas −u root q9
# connect to qemu via vnc
q9 −v

3.3.1.4.3 − Windows TAP

This is tested with the qemu for windows distribution. Download and run the installer
from openvpn to install the windows TAP driver. Create a new TAP interface with the
"Add a new TAP virtual ethernet adapter" from the openvpn start menu. Go to the net
work manager and rename that new TAP interface to something more sane like: "qemu-
tap". Configure ip addresses or bridge that interface with the network manager.

Now you should be able to run qemu on that interface:

qemu.exe −net nic −net tap,ifname="tap−qemu" ...

3.3.1.4.4 − Linux TAP

Contributed by joe9:

on the host:

sudo ip tuntap add dev tap0 mode tap user joe
sudo ip address add 10.0.0.1/24 dev tap0

start qemu using (do not need sudo for qemu):

SDL_VIDEO_X11_DGAMOUSE=0 qemu−system−x86_64 \
−cpu host −enable−kvm −m 1024 \
−netdev tap,id=eth,ifname=tap0,script=no,downscript=no \
−device e1000,netdev=eth,mac=00:20:91:37:33:77 \
−device virtio−scsi−pci,id=scsi −drive \
if=none,id=vd0,file=9front.qcow2.img \
−device scsi−hd,drive=vd0 \
−usb −usbdevice tablet −sdl \
−ctrl−grab

on 9front: add the below line to /lib/ndb/local

sys=cirno ether=52540000ee03 ip=10.0.0.2 ipmask=255.255.255.0
ipgw=10.0.0.1
dns=10.0.0.1
dom=cirno.9front

run: ip/ipconfig −N
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Now, "ping 10.0.0.2" from linux host and "ip/ping 10.0.0.1" from qemu 9front should
work.

check the communication between the vm and the linux host using (on the linux host):

sudo tcpdump −nS −vv −i tap0

Contributed by hiro:

If you want to enable internet access enable NAT forwarding on the linux host (as root).

To do this, first globally enable forwarding:

echo 1 > /proc/sys/net/ipv4/ip_forward

Enable Masquerading for everything comping from the VM�s tap device (eth0 being your
host�s way to the internet):

iptables −t nat −A POSTROUTING −s 10.0.0.0/24 −o eth0 −j MASQUERADE

block everything else from being forwarded:

iptables −A FORWARD −m state −−state RELATED,ESTABLISHED −j ACCEPT
iptables −A FORWARD −s 10.0.0.0/24 −i tap0 −j ACCEPT
iptables −P FORWARD DROP

3.3.1.5 − Audio

Run qemu with the flag −soundhw sb16 and put the following line in
plan9.ini:

audio0=type=sb16 port=0x220 irq=5 dma=5

Note: irq and dma values may vary.

3.3.1.6 − Graphics

Use monitor=vesa

Note: Some versions of QEMU running on OSX have exhibited graphical glitches when
using a 16-bit color mode (for example: 1024x768x16. Try a 32-bit mode instead (for
example: 1024x768x32).
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3.3.2 − Virtualbox

Don�t use Virtualbox. It tends to break between versions.

Read: http://www.landley.net/notes−2015.html#25−06−2015

If you can�t be dissuaded, the following sections detail empircal observations re:
Virtualbox.

3.3.2.1 − Ethernet The emulated "Intel PRO/1000 MT Server" ethernet controller is
known to work.

3.3.2.2 − Audio

Put the following in plan9.ini:

audio0=type=sb16

3.3.2.3 − Graphics Use monitor=vesa

3.3.2.4 − Known Working Versions

" 4.3.14 r95030 on Windows 7

" 4.3.16 on Mac OS X

" 4.3.18 r96516 on Linux x86_64 kernel 3.14.22

" 4.3.18 on Windows 7:
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just tried with vbox 4.3.18 on windows7. 9front boots fine in BIOS mode, but
the PCnet nic dosnt work. reason is that vbox pIIx pci irq routing is fucked so
the ethernet doesnt get interrupts. if i boot with *nopcirouting=1, it works
fine. theres a option to select the chipset so i tried ICH9 with IO-APIC
enabled. normal mp mode fails because of broken mp tables, but works with
*acpi=. also, it works with UEFI mode (which always uses ACPI). the usual
intel mt server nic also works (thats what is usually recommended for working
arround the broken ethernet).

pci routing issue has been fixed in latest kernel, should be available in iso
release after 3960.

" 4.3.20 r96996 on Mac OS X 10.6.8/10.9 and Ubuntu 14.04/14.10:

General −> Basic
Type: Other
Version: Other/Uknown

System −> Motherboard
Chipset: PIIX3
Pointing Device: PS/2 Mouse
Extended Features: [x] Enable I/O APIC

System −> Processor
Extended Features: [x] PAE/NX (not sure this matters)

System −> Acceleration
[x] Enable VT−x/AMD−V
[x] Enable Nested Paging

Display −> Video
Extended Features: [x] Enable 3D Acceleration (not sure this matters)

Storage −> Attributes
Name: IDE
Type: PIIX4
[x] Use Host I/O Cache

Audio −>
[x] Enable Audio
Host Audio Driver: CoreAudio (Can be PulseAudio or otherwise for Linux,
etc. Shouldn’t be hard to set this)
Audio Controller: Soundblaster 16

Network −> Adapter 1
Attached to: NAT
−> Advanced
Adapter Type: Intel PRO/1000 MT Server
Promiscuous Mode: Deny (Not sure this matters)

Note: Enabling USB 2.0 Controll in �Ports -> USB� works just fine in 9front, mounting
under /shr flawlessly as long as the host has the Virtualbox Extension Pack running.
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3.3.3 − Virtio

Current versions of qemu/kvm and virtualbox as of 3.1 support faster paravirtualized
devices. Presently, 9front provides drivers for virtio hard disk and network.

The virtio-blk disk device should show up as: /dev/sdF0

The virtio-scsi disk device should show up as: /dev/sd00

3.3.4 − bhyve

Two different guides (and a bonus video) have appeared elsewhere on the Internet:

FreeBSD Wiki: https://wiki.freebsd.org/bhyve/9front

9front Wiki: http://wiki.9front.org/freebsd-bhyve

Watch: https://youtu.be/m7igZ1fR7ZA
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FQA 4 − 9front Installation Guide

4.1 − Pre−installation Checklist

Before you start your install, you should have some idea what you want to end up with.
You will want to know the following items, at least:

Machine name, hereafter referred to as sysname.

Hardware installed and available. Read: FQA 3.3 − Selecting Hardware. Check
FQA 3.2 − Known Working Hardware as well as the various supported hardware
pages on the Bell Labs Plan 9 wiki to help determine if your hardware or VM is
supported.

Network settings, if not using DHCP: Gather the requisite information for your
network (IP, netmask, default gateway, etc.). If you plan to install in a VM, see FQA
3.3 − Virtual Machines.

In case of trouble, see: FQA 9 − Troubleshooting, FQA 2.2.1 − Mailing List Archives

4.2 − Creating bootable 9front install media

4.2.1 − ISO image

Obtain the 9front.iso.

Read: 1.11.1 − Mirrors
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4.2.1.1 − Creating on Plan 9

Read: 8.6.2 - Burn a CD-ROM

4.2.2 − USB drive

Booting from USB disk is handled the same way as booting from internal hard drive.
There are two ways to create a bootable 9front USB:

1.) Write the ISO image directly to the USB device. Example:

cat 9front.iso >/dev/sdUxxxxx/data

2.) Alternately, the boot process is able to use an ISO image stored on a FAT file system
as its root file system, so all that is needed is to install the 9boot(8) bootloader, a
kernel and the 9front.iso on the USB disk. The following sections describe this pro
cess on Plan 9 and Linux.

4.2.2.1 − Creating on Plan 9

The path to your USB device will look something like this: /dev/sdUxxxxx where
xxxxx is the unique name of your usb device.

Build and install the mbr and boot loader:

cd /sys/src/boot/pc # 386 = pc, amd64 = pc64, etc.
mk 9bootfat mbr pbs
disk/mbr −m mbr /dev/sdUxxxxx/data

If it doesn�t already exist, create and format a FAT partition. Don�t forget to set the FAT
partition active in the fdisk menu:

disk/fdisk −b /dev/sdUxxxxx/data # type ’?’ for help
disk/format −b pbs −d −r 2 /dev/sdUxxxxx/dos

Mount the USB device:

dossrv −f /dev/sdUxxxxx/dos sdos
mount −c /srv/sdos /n/dos

Create a suitable /n/dos/plan9.ini:

bootfile=9pc # 386 = 9pc, amd64 = 9pc64, etc.
mouseport=ask
monitor=ask
vgasize=ask

Note: By convention, Plan 9 usually expects text files to end with a newline. If the last
line of plan9.ini is not a newline, it could fail to be parsed correctly at boot time.

Copy files to the USB device:
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cp /386/9bootfat /n/dos
chmod +al /n/dos/9bootfat # defrag magic
cp /386/9pc /n/dos # 386 = 9pc, amd64 = 9pc64, etc.
cp /path/to/9front.iso /n/dos

Optional for EFI systems:

cd /sys/src/boot/efi; mk install
mkdir −p /n/dos/efi/boot
cp /386/boot*.efi /n/dos/efi/boot

Unmount the USB device:

unmount /n/dos
rm −f /srv/sdos

Boot the device.

Read: prep(8)

4.2.2.2 − Creating on Linux

Note: There are numerous methods for creating bootable USB devices on Linux. This is
one.

Obtain mbr, pbs, 9bootfat and 9pc binaries. Either copy them from the distributed
ISO image (the files are located under /386/) or build up to date binaries on a 9front
system. Read: FQA 5.2.2 − Building from source

On the Linux system, create a $dir that contains the following files:

9front.iso
9pc # 386 = 9pc, amd64 = 9pc64, etc.
plan9.ini (as described above)
9bootfat
mbr
pbs

Optional for EFI systems, create the directory boot in $dir and copy the files
bootia32.efi and bootx64.efi into it.

Use the makebootfat tool to create bootable device (ie. /dev/sdc):

$ makebootfat −m $dir/mbr −b $dir/pbs −o /dev/sdc $dir

Copy the ISO to the device and then boot the device.

4.2.2.3 − Bootargs

At the bootargs prompt you�ll need to enter the path to the ISO on the USB device. It will
look something like this:

bootargs=local!/shr/sdUxxxxx/9front.iso
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If a USB device is not listed, escape to a shell with !rc, and ls /shr to find it.

Read: 9.5.1 - Devices not recognized or not working

4.3 − Performing a simple install

There is nothing magical about installing Plan 9. It is simply a matter of populating a
Plan 9 file system ( cwfs or hjfs ) and arranging a bootstrap to eventually load a Plan
9 kernel that can then use that file system as its root.

In most cases, the file server is the only machine that needs to have a disk. Once the ini
tial file server is running, setting up an auth server, and enabling bootp and tftp for
PXE booting, will allow Plan 9 terminals and cpu servers to load kernels from the file
server and share its file system over the network.

Note: This guide describes the default installation of a terminal with disk, which is an
amalgamation of a normal Plan 9 network, but is sufficient for exploring the basics of
using Plan 9. Configuration of additional services (such as a file server with networking
listeners, a cpu server, etc.) is outlined in FQA 7 − System Management.

To install 9front, boot the 9front.iso image and follow the steps below.

4.3.1 − boot

Successfully booting the system will result in basic information about the state of the
system being printed on screen:

Plan 9
126 holes free
00018000 0009f000 552960
00485000 0cf2c000 212496384
213049344 bytes free
cpu0: 3395MHz GenuineIntel P6
ELCR: 0E20
#l0: AMD79C970: 10Mbps port 0x2000 irq 10: 000c291d0baf
mylex ctlr @ port 0x10c0: 32−bit wide SCSI host adapter
512M memory: 207M kernel data, 304M user, 929M swap
nusb/usbd: /dev/usb: no hubs

4.3.2 − bootargs

A list of attached storage devices is printed, followed by a prompt asking for a Plan 9
partition to boot from:

/dev/sdC0: VMware Virtual IDE Hard Drive
/dev/sdC0/data
/dev/sdD0: VMware Virtual IDE CDROM Drive
/dev/sdD0/data 9660
bootargs is (tcp, il, local!device) [local!/dev/sdD0/data]

In most cases, the suggested default will correspond to the device used to boot the ISO
image.
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4.3.3 − user

Next, a prompt asks for a username:

user[glenda]:

Glenda is the default hostowner name. Don�t change this until you know what you are
doing. Hit enter to accept the default.

Note: The hostowner differs from the concept of root on a UNIX system, where a
single user root may take control of all processes and files on the system. By contrast,
even the hostowner of a Plan 9 file server cannot violate file permissions on the file
system, except when permissions checking is disabled on the console or when entering
special commands at the console of the file server. The hostowner controls only the
processes running on the local machine (in the case of the filserver, the file server pro
cess itself is obviously owned by the system�s hostowner). This fundamental separa
tion between control of processes and file permissions is exploited throughout the sys
tem, but can be confusing for users coming from a UNIX background.

4.3.4 − vgasize, monitor, mouseport

The next set of prompts deal with graphics display and the mouse:

vgasize is (text, 640x480x8, 1024x768x16, ...) [1024x768x16]
monitor is (vesa, xga, lcd, ...) [vesa]
mouseport is (ps2, ps2intellimouse, 0, 1, 2) [ps2]

The boot process prompts for the environment variables $vgasize, $monitor and
$mouseport, and the installer will later write those values to the system�s
plan9.ini, from which they are loaded on subsequent system bootup.

Setting $monitor to anything besides vesa will bypass the emulated VESA BIOS and
attempt to use a native VGA driver for the video card in question. Read: /lib/vgadb
for a list of monitors and video cards that are already known by the system; and the man
pages vga(3), vga(8) and vgadb(6) for more information about how graphical
displays are configured.

The default $mouseport of ps2 is sufficient in most cases. Set it to
ps2intellimouse on laptops or for mice that have a scrollwheel.

Note: Some laptops require the trackpad to be disabled in the BIOS in order for mouse
button 2 (the center button) to function in Plan 9. In a pinch, mouse button 2 may be
simulated by holding down the shift key while clicking mouse button 3 (the right but
ton).

After the install, changes intended to persist across reboots should be added to
plan9.ini.

Examples:

Values as they appear in plan9.ini:
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monitor=vesa
vgasize=1024x768x16
mouseport=ps2intellimouse

Read: mouse(8), vga(3), vgadb(6), plan9.ini(8), realemu(8), vga(8),
FQA 7.2.2 − How do I modify plan9.ini?

After the mouseport prompt is answered, the boot process will attempt to start the
Plan 9 graphical environment, rio(1), opening a stats(8) window and a rio
window on top of a gray desktop background.

4.3.4.1 − Changing screen resolution

At this point it may be desireable to change the screen resolution. To change video
mode from the command line:

vesa:

Note: Only valid modes listed in the VESA BIOS may be used.

# obtain a list of vesa bios modes
@{rfork n; aux/realemu; aux/vga −p}
# configure one of the valid modes
@{rfork n; aux/realemu; aux/vga −m vesa −l 1024x768x16}

vga:

aux/vga −m dellst2210 −l 1920x1080x32
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4.3.5 − inst/start

Installation is performed by the rc scripts in /rc/bin/inst. To begin the installa
tion, type inst/start in the terminal window. Follow the prompts to complete the
installation, selecting the defaults where appropriate.

Note: Any task may be repeated by manually entering its name at the next Task to
do prompt.

term% inst/start
Tue Jul 17 12:38:50 CET 2012 Installation process started

The following Task to do steps are handled one at a time:

4.3.6 − configfs

You can install the following types of systems:

cwfs64x the cached−worm file server
hjfs the new 9front file server (experimental!)

File system (cwfs64x, hjfs)[cwfs64x]:

Note: The cwfs64x file server uses 16KB blocks, with its cache and permanent storage
locate on separate partitions. The hjfs file server uses 4KB blocks, with its cache and
permanent storage located on the same partition. If you are installing to a disk of less
than 12GB, you should choose hjfs.

However: The hjfs file system is relatively slow, and performance will degrade due to
fragmentation as the disk fills up. The valuable lesson is that you can get what you
want and still not be very happy. � Pope Cerebus

In this example we will press enter to accept cwfs64x as the default.

4.3.6.1 − cwfs no−dump configuration

A cheap VPS or an SD card lack the storage capacity for running a usable default
cwfs(4) setup with a big WORM partition and daily dumps. The go-to solution is the
hjfs(4) file system, which doesn�t use a dedicated WORM partition and doesn�t do
daily dumps by default. However, it has several performance problems and is not as
well tested.

The cwfs file system can be configured in lots of ways beyond the default cache-worm
+ other configuration supported by the 9front installer.

The desired configuration we�re going to cover is a single main file server tree backed
by a simple disk file system - the same type used by the other tree in the default
setup.

To do this we�re going to partition the disk appropriately and override the mountcwfs
stage of the 9front installer with a replacement script
http://plan9.stanleylieber.com/rc/mountcwfs that will configure cwfs appropriately.
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The rest of the installation and most of the subsequent system operation remain
unaffected.

Start by booting from the installation media. Configure networking with
ip/ipconfig(8) and fetch the replacement mountcwfs script, or put the script on
a flash drive:

% webfs
% ramfs
% hget http://plan9.stanleylieber.com/rc/mountcwfs >/tmp/mountcwfs
% chmod +x /tmp/mountcwfs

Override the mountcwfs stage using bind(1):

bind /tmp/mountcwfs /bin/inst/mountcwfs

Run inst/start and complete the stages up to preppart as you would normally.
At preppart, delete the default partitions and create one named fsmain with a
desired size:

d other
d fscache
d fsworm
a fsmain 123456 .+100%
w
q

Make sure to "ream" the new partition at the next step.

Complete the rest of the installation, reboot. That is all.

4.3.7 − partdisk

The following disk devices were found.

sdC0 − VMware Virtual IDE Hard Drive
empty 0 3916 (3916 cylinders, 29.99 GB)

sdD0 − VMware Virtual IDE CDROM Drive

Disk to partition (sdC0, sdD0)[no default]:

Enter the media you wish to install to.

Disk to partition (sdC0, sdD0)[no default]: sdC0
The disk you selected HAS NO master boot record on its first sector.
(Perhaps it is a completely blank disk.)
Shall we create a blank EFI partition table (GPT)
or install traditional DOS partition table (MBR)?

Assuming a blank disk image, install a fresh mbr:
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Install mbr or gpt (mbr, gpt)[no default]: mbr

This is disk/fdisk; use it to create a Plan 9 partition.
If there is enough room, a Plan 9 partition will be
suggested; you can probably just type ’w’ and then ’q’.

cylinder = 8225280 bytes
>>>

For this example we will use the entire disk. Accept the defaults.

>>> w
>>> q

4.3.8 − prepdisk

The following Plan 9 disk partitions were found.

/dev/sdC0/plan9
empty 0 62910477 (62910477 sectors, 29.99 GB)

Plan 9 partition to subdivide (/dev/sdC0/plan9)[no default]:

Use the Plan 9 partition created in the previous step. Type /dev/sdC0/plan9 and hit
enter.

This is disk/prep; use it to subdivide the Plan 9 partition.
If it is not yet subdivided, a sensible layout will be suggested;
you can probably just type
w
and then
q.

no plan9 partition table found
9fat 204800
nvram 1
other 8957953
fscache 8957953
fsworm 44789770
>>>

Again, accept the defaults.

>>> w
>>> q

4.3.9 − mountfs

The please choose your cwfs64x partitions

Hit enter to select each partition at the prompt.
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−−rw−r−−−−− S 0 glenda glenda 4586471936 Jul 4 13:28 /dev/sdC0/fscache

Cwfs cache partition (/dev/sdC0/fscache)[/dev/sdC0/fscache]:
−−rw−r−−−−− S 0 glenda glenda 22932362240 Jul 4 13:28 /dev/sdC0/fsworm

Cwfs worm partition (/dev/sdC0/fsworm)[/dev/sdC0/fsworm]:
−−rw−r−−−−− S 0 glenda glenda 4586471936 Jul 4 13:28 /dev/sdC0/other

Cwfs other partition (/dev/sdC0/other)[/dev/sdC0/other]:

Since this is a fresh install, we choose yes to ream (format) the file system:

Ream the file system? (yes, no)[no]: yes
Starting cwfs64x file server for /dev/sdC0/fscache
Reaming file system
bad nvram key
bad authentication id
bad authentication domain
nvrcheck: can’t read nvram
config: config: config: auth is now disabled
config: config: config: config: config: config: current fs is "main"
cmd_users: cannot access /adm/users
63−bit cwfs as of Wed Jul 4 00:59:30 2012

last boot Tue Jul 17 13:34:57 2012
Configuering cwfs64x file server for /dev/sdC0/fscache
Mounting cwfs64x file server for /dev/sdC0/fscache
% mount −c /srv/cwfs /n/newfs
Mounting cwfs64x file server for /dev/sdC0/other
% mount −c /srv/cwfs /n/other other

4.3.10 − configdist

Are you going to download the distribution
from the internet or do you have it on local media?

Distribution is from (local, net)[local]:

We are installing from local media, so, local. Hit enter to accept the default.

Note: The net option attempts to download the ISO from the Internet and install it
directly to disk. Since the installer is most likely already running from an ISO image, this
option may prove to be of limited utility. The option is somewhat experimental, and may
work. Attempt it at your own risk.

[Continued on next page]
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4.3.11 − confignet

You can connect to the internet via a local ethernet connection.

We will configure the ethernet.

Please choose a method for configuring your ethernet connection.

manual − specify IP address, network mask, gateway IP address
automatic − use DHCP and SLAAC to automatically configure

Configuration method (manual, automatic)[automatic]:

4.3.11.1 − automatic

Hit enter to move on to the next task.

4.3.11.2 − manual

If you chose manual, enter values that are appropriate for your network.

Configuration method (manual, automatic)[automatic]: manual
ip address [no default]: 10.0.2.15
network mask [no default]: 255.255.255.0
gateway address [no default]: 10.0.2.2

4.3.12 − mountdist

Please wait... Scanning storage devices...
/dev/sdC0/9fat
/dev/sdC0/data
/dev/sdC0/fscache
/dev/sdC0/fsworm
/dev/sdC0/other
/dev/sdD0/data

The following storage media were detected.
Choose the one containing the distribution.

/dev/sdD0/data (iso9660 cdrom)

Distribution disk (/dev/sdD0/data, /dev/sdC0/fscache, /)[no default]:

The CD-ROM is already mounted at /, so type / and hit enter.

101 



% mount /srv/boot /n/distmedia

Which directory contains the distribution?
Any of the following will suffice (in order of preference):

− the root directory of the cd image
− the directory containing 9front.iso
− the directory containing 9front.iso.bz2

Location of archives [/]:

And again, the root directory of the CD-ROM is already mounted at /, so hit enter to
choose the default.

% mount /srv/boot /n/distmedia

Which directory contains the distribution?
Any of the following will suffice (in order of preference):

− the root directory of the cd image
− the directory containing 9front.iso
− the directory containing 9front.iso.bz2

Location of archives [/]:

Hit enter.

4.3.13 − copydist Hit enter at the copydist prompt to begin the process of copying
the distribution files from the install media to the hard disk.

processing /sys/lib/sysconfig/proto/allproto

ACHTUNG! Currently, there is no progress meter. For systems without DMA, the
copydist task may exceed one hour in duration. Disk activity may be verified by
inspecting the stats(8) window.

Eventually, you should see the following:

file system made

This indicates that the system files have completed copying to the install target.

4.3.14 − ndbsetup

Setup network configuration

sysname [cirno]:

Use a system name of your choice, or just hit enter to select the default.
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4.3.15 − tzsetup

Setup Time Zone

Time Zone (Argentina, Australia_ACT, Australia_Broken−Hill,
Australia_LHI, Australia_NSW, Australia_North, Australia_Queensland,
Australia_South, Australia_Sturt, Australia_Tasmania,
Australia_Victoria, Australia_West, Australia_Yancowinna, Brazil_Acre,
Brazil_DeNoronha, Brazil_East, Brazil_West, CET, Canada_Atlantic,
Canada_Central, Canada_East−Saskatchewan, Canada_Eastern,
Canada_Mountain, Canada_Newfoundland, Canada_Pacific, Canada_Yukon,
Chile_Continental, Chile_EasterIsland, Cuba, EET, Egypt, GB−Eire, GMT,
HST, Hongkong, Iceland, Iran, Israel, Jamaica, Japan, Libya,
Mexico_BajaNorte, Mexico_BajaSur, Mexico_General, NZ, NZ_CHAT, Navajo,
PRC, Poland, ROC, ROK, Singapore, Turkey, US_Alaska, US_Arizona,
US_Central, US_East−Indiana, US_Eastern, US_Hawaii, US_Michigan,
US_Mountain, US_Pacific, US_Yukon, W−SU, WET)[US_Eastern]:

Daylight saving time (DST) is handled automatically. Type your chosen time zone and hit
enter.

4.3.16 − bootsetup

Setup Plan 9 FAT boot partition (9fat)

Plan 9 FAT partition (/dev/sdC0/9fat)[/dev/sdC0/9fat]:

Hit enter to accept the default. Any environment variables entered at the > prompt
during boot, as well as settings configured during install will now be written to
/n/9fat/plan9.ini and the kernel will be copied to the 9fat partition.

[Continued on next page]

dossrv: serving #s/dos
Initializing Plan 9 FAT partition.
% disk/format −r 2 −d −b /386/pbs /dev/sdC0/9fat
Initializing FAT file system
type hard, 12 tracks, 255 heads, 63 sectors/track, 512 bytes/sec
used 4096 bytes
% mount −c /srv/dos /n/9fat /dev/sdC0/9fat
% rm −f /n/9fat/9bootfat /n/9fat/plan9.ini /n/9fat/9pc
% cp /n/newfs/386/9bootfat /n/9fat/9bootfat
% chmod +al /n/9fat/9bootfat
% cp /tmp/plan9.ini /n/9fat/plan9.ini
% cp /n/newfs/386/9pc /n/9fat/9pc

If you use the Windows NT/2000/XP master boot record
or a master boot record from a Unix clone (e.g., LILO or
FreeBSD bootmgr), it is probably safe to continue using
that boot record rather than install the Plan 9 boot record.

Since we are not installing on a disk with a pre-existing Windows installation, we choose
to install the Plan 9 master boot record and mark the partition active:
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Install the Plan 9 master boot record (yes, no)[no default]: yes
Mark the Plan 9 partition active (yes, no)[no default]: yes

The Plan 9 partition is now marked as active.

4.3.17 − finish

The final task is to remove (or disable) the CD-ROM and finish by hitting enter to
reboot the machine.

Congratulations, you�ve just installed a 9front system!

Now your cat goes to sleep on the keyboard.
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4.4 − Encrypted Partitions

9front supports booting from encrypted fsworm, fscache and other partitions.
The following assumes a hard drive /dev/sdC0:

" Begin the installation process as normal by booting 9front.iso.

" During partdisk and prepdisk, create the fsworm, fscache and other
partitions as normal.

" At the mountfs prompt, enter !rc to drop to a shell prompt.

" Format and activate the encrypted partitions (generates new encryption key):

disk/cryptsetup −f /dev/sdC0/fsworm /dev/sdC0/fscache /dev/sdC0/other
disk/cryptsetup −i /dev/sdC0/fsworm /dev/sdC0/fscache /dev/sdC0/other

" Type exit to resume the installation.

" During mountfs, select the partitions under /dev/fs instead of the ones
under /dev/sdC0.

" During the rest of the installation, select the defaults, where appropriate.

" During post-installation boot, at the bootargs prompt, type !rc to drop to a
shell prompt.

" Activate the encrypted partitions (prompts for password):

disk/cryptsetup −i /dev/sdC0/fsworm /dev/sdC0/fscache /dev/sdC0/other

" Type exit to resume booting.

" At the bootargs prompt, enter local!/dev/fs/fscache to continue
booting from the encrypted partition.

Note: Encrypted partitions are largely untested with cwfs. Data integrity is not
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guaranteed. Use at your own risk.

Encrypted partitions have not been tested at all with hjfs.

Read: cryptsetup(8)
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FQA 5 − Building the System from Source

5.1 − Why should I build my system from source?

Some reasons why you might actually wish or need to build from source:

" Updates have been committed since you performed the installation.

" Test or develop new features.

5.2 − Building 9front from source

5.2.1 − Update sources

9front uses git(1) to synchronize the system with the 9front repository:

cd /
bind −ac /dist/plan9front /
git/pull −u gits://git.9front.org/plan9front/plan9front

which is consolidated in the command:

sysupdate

After the tree is updated, recompile/build the updated programs as needed.
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5.2.1.1 − hgrc

5.2.1.2 − git

During installation, the 9front git repository is copied to /dist/plan9front/.git,
is chmod 775, and is owned by user glenda and group sys. To update the
repository when logged in as a user other than glenda, add that user to group sys.

5.2.2 − Building from source

Note: A minimum of 512MB RAM is needed to link some programs. If less than 512MB is
available, be sure to turn on swap before building (Read: swap(8)).

# create any missing directories needed for the build
cd /
. /sys/lib/rootstub

# build everything
cd /sys/src
mk install
mk clean

# build manpage indices
cd /sys/man
mk

# build the papers and html (optional)
cd /sys/doc
mk
mk html

Note: Before cross compiling a kernel, the compiler, assembler, linker, and paqfs(4)
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for the target architecture need to be built and installed (Read FQA 5.2.2.1 − Cross
compiling).

Build the kernel for 386:

cd /sys/src/9/pc
mk install

Build the kernel for amd64:

cd /sys/src/9/pc64
mk install

Build the kernel for arm / Raspberry Pi:

cd /sys/src/9/bcm
mk ’CONF=pi’ install
mk ’CONF=pi2’ install

Build the kernel for arm64 / Raspberry Pi 3:

cd /sys/src/9/bcm64
mk install

Read: FQA 7.2.5 − How do I install a new kernel?

5.2.2.1 − Cross compiling

To cross compile, simply set the objtype environment variable prior to running the
build. For example, to build all the amd64 binaries on a 386 system:

# create any missing directories needed for the build
cd /
. /sys/lib/rootstub
cd /sys/src
objtype=amd64 mk install

5.3 − Building an ISO

The 9front ISO is a livecd that also serves as install media.

Note: Currently, only the 386 and amd64 architectures have downloadable ISOs (rpi has
a bootable image). Read: FQA 8.9 − Bootstrapping architectures not included on the ISO
for more information on booting other architectures.

# put your root file system into /n/src9
bind /root /n/src9

# put your hg repository there
bind −ac /dist/plan9front /n/src9

# build the iso
cd /sys/lib/dist
mk /tmp/9front.$objtype.iso
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5.4 − Common Problems when Compiling and Building

Most of the time problems in the build process are caused by not following the above
directions carefully.

People who complained about this section of the FQA have so far not submitted any
thing better.

Good luck.

5.4.1 − Updating compilers

Changes to the compilers may necessitate updating the compiler before rebuilding the
rest of the system:

cd /sys/src/cmd/cc; mk install
# choose the appropriate compiler for your architecture
cd /sys/src/cmd/6c; mk install

5.4.2 − Trouble updating the compilers

From the 9front mailing list:

If you didn’t ’mk nuke’ your libc you can build the assembler and linker first:

for(i in (6a 6l))@{ cd /sys/src/cmd/^$i && mk install }

Then you may rebuild the rest of the system.

If you did ’mk nuke’:
* if you use cwfs, copy older libc from dump and then do the above

9fs dump cp /n/dump/2024/...
* if you use hjfs, copy updated binaries from the iso box.

9fs iso && cp /n/iso/amd64/bin/^(6a 6c 6l) /amd64/bin/

It would be nice to have a way of these updates notifying people
of such manual steps. But for the time being I would suggest perusing
the mailing lists when doing large updates.

Thanks,
moody

Read: Re: [9front] Error compiling libc/amd64/main9.s and/or main9p.s
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FQA 6 − Networking

6.1 − Before we go any further

Plan 9�s approach to networking is unusual: most operations comprise reading and writ
ing ("composing") byte streams ("files"). For the bulk of this document, it helps if you
have read and at least partially understood FQA 0.1 − What is Plan 9?

Next, read: The Organization of Networks in Plan 9

If you are working with applications such as web servers, FTP servers, and mail servers,
you may benefit greatly by reading the RFCs.

Note: A script for downloading all the RFCs is located in /lib/rfc/grabrfc. It
copies the files into /lib/rfc/, and it may take hours for the script to run to comple
tion.

6.2 − Network configuration

Basic networking is initially configured by the installation process. However, more com
plex settings or services may be desired. In Plan 9, network configuration is organized
in ndb, the network database.

From ndb(6):

The network database consists of files describing machines known to the local
installation and machines known publicly. The files comprise multi-line
tuples made up of attribute/value pairs of the form attr=value or sometimes
just attr. Each line starting without white space starts a new tuple. Lines start
ing with # are comments.

The file /lib/ndb/local is the root of the database. Other files are included in
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the database if a tuple with an attribute-value pair of attribute database and
no value exists in /lib/ndb/local. Within the database tuple, each pair with
attribute file identifies a file to be included in the database. The files are
searched in the order they appear. For example:

database=
file=/lib/ndb/common
file=/lib/ndb/local
file=/lib/ndb/global

declares the database to be composed of the three files /lib/ndb/common,
/lib/ndb/local, and lib/ndb/global. By default, /lib/ndb/local is
searched before the others. How- ever, /lib/ndb/local may be included in the
database to redefine its ordering.

Within tuples, pairs on the same line bind tighter than pairs on different lines.

As mentioned, the installer adds basic information about the machine to the file
/lib/ndb/local, based on the questions asked during the installation. This file may
be edited to modify or expand the definition of the local network.

6.2.1 − Host name

Each machine on the network receives a corresponding section in ndb. The host name
(hereafter referred to as sysname) is assigned by setting the sys= tuple:

sys=x301

The resulting sysname is used by the /rc/bin/termrc and /rc/bin/cpurc
startup scripts, which in turn call upon any additional configuration that may exist in
/cfg/$sysname/. (Look at the scripts to see how they deal with /cfg.)

6.2.2 − Identifying and setting up your network interfaces

Network interfaces are recognized by their MAC addresses, which are identified to ndb
using the ether= tuple:

sys=x301 ether=00226811f7dd

Additional tuples in the same grouping will be used to configure the interface in ques
tion.

6.2.2.1 − WiFi

The following sections provide information pertaining to specific chipsets.

Read: plan9.ini(8), FQA Section 3.2 − Known Working Hardware
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6.2.2.1.1 − Interfaces

6.2.2.1.1.1 − wavelan

Lucent Wavelan (Orinoco) IEEE 802.11b and compatible PCMCIA cards. Compatible
cards include the Dell TrueMobile 1150 and the Linksys Instant Wireless Network PC
Card. Port and IRQ defaults are 0x180 and 3 respectively.

These cards take a number of unique options to aid in identifying the card correctly on
the 802.11b network. The network may be ad hoc or managed (i.e. use an access
point): mode=[adhoc, managed] and defaults to managed. The 802.11b network
to attach to (managed mode) or identify as (ad hoc mode), is specified by
essid=string and defaults to a null string. The card station name is given by
station=string and defaults to Plan 9 STA. The channel to use is given by
channel=number where number lies in the range 1 to 16 inclusive; the channel is
normally negotiated automatically.

If the card is capable of encryption, the following options may be used:
crypt=[off, on] and defaults to on. keyN=string sets the encryption key N
(where N is in the range 1 to 4 inclusive) to string; this will also set the transmit key to N
(see below). There are two formats for string which depend on the length of the string.
If it is exactly 5 or 13 characters long it is assumed to be an alphanumeric key; if it is
exactly 10 or 26 characters long the key is assumed to be in hex format (without a
leading 0x). The lengths are checked, as is the format of a hex key. txkey=number
sets the transmit key to use to be number in the range 1 to 4 inclusive. If it is desired
to exclude or include unencrypted packets clear=[off, on] configures reception
and defaults to inclusion.

The defaults are intended to match the common case of a managed network with
encryption and a typical entry would only require, for example essid=left−
armpit key1=afish key2=calledraawaru if the port and IRQ defaults are
used. These options may be set after boot by writing to the device�s ctl file using a
space as the separator between option and value, e.g. echo ’key2
1d8f65c9a52d83c8e4b43f94af’ >/net/ether0/0/ctl Card-specific
power management may be enabled/disabled by pm=[on, off]

6.2.2.1.1.2 − wavelanpci

PCI Ethernet adapters that use the same Wavelan programming interface. Currently the
only tested cards are those based on the Intersil Prism 2.5 chipset.

6.2.2.1.1.3 − iwl

Intel Wireless WiFi Link mini PCI-Express adapters require firmware from
http://git.9front.org/plan9front/firmware/HEAD/info.html to be present on attach in
/lib/firmware or /boot. To select the access point, the essid= and bssid=
parameters can be specified at boot or set during runtime like:

echo essid left−armpit >/net/ether1/clone

If both essid= and bssid= are specified, both must match. Scan results appear in
the ifstats file and can be read out like:

113 



cat /net/ether1/ifstats

Ad-hoc mode or WEP encryption is currently not supported. To enable WPA/WPA2
encryption, see wpa(8) for details.

6.2.2.1.1.4 − rt2860

Ralink Technology PCI/PCI-Express wireless adapters require firmware from
http://firmware.openbsd.org/firmware/ral-firmware*.tgz to be present on attach in
/lib/firmware or /boot. See the iwl section above for configuration details.

6.2.2.1.1.5 − wpi

Intel PRO Wireless 3945abg PCI/PCI-Express wireless adapters require firmware from
http://git.9front.org/plan9front/firmware/HEAD/info.html to be present on attach in
/lib/firmware or /boot. See the iwl section above for configuration details.

6.2.2.1.2 − WPA

WPA1/TKIP and WPA2/CCMP are supported with the use of the wpa(8) command.

Read: wpa(8)

6.2.2.1.3 − WiFi Roaming

A script can be used to dynamically re-associate with available wifi access points:

http://plan9.stanleylieber.com/rc/wifiroam

Example usage:

@{wifiroam attwifi | aux/statusmsg −k wifiroam} &

6.2.2.1.4 − WiFi Debug

For cards that use the wifi layer, debug prints (note: will appear on the console) may be
enabled with:

echo debug >´#l0/ether0/clone´
# change this to suit if wifi interface is not #l0

or by adding debug=1 to the interface definition in plan9.ini.

Read: plan9.ini(8)
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6.2.3 − IP address The ip= tuple is used to associate an IP address with the machine:

sys=x301 ether=00226811f7dd ip=192.168.0.31

If no ip= tuple is present, the boot scripts will attempt to bring up the interface using
DHCP (see below). If multiple ip= tuples are present, an ipnet entry is required for
each.

6.2.4 − Default gateway

The default gateway is configured using the ipgw= tuple, usually under an ipnet=
section that defines default settings for an entire subnet:

ipnet=9front ip=192.168.0.0 ipmask=255.255.255.0 ipgw=192.168.0.1

but it may also be specified on a per-machine basis:

sys=x301 ether=00226811f7dd ip=192.168.0.31 ipgw=192.168.0.1

Note: Tuples included in the definition of a machine supercede those defined for the
network to which the machine belongs.

6.2.5 − DNS Resolution

DNS resolvers may be specified using the dns= tuple, and may be configured for an
entire network:

ipnet=9front ip=192.168.0.0 ipmask=255.255.255.0 ipgw=192.168.0.1
dns=192.168.0.1

or on a per-machine basis:

sys=x301 ether=00226811f7dd ip=192.168.0.31 dns=192.168.0.1

These changes will take effect after a reboot. To configure a DNS resolver on the fly, it is
possible to manually edit /net/ndb:

ip=192.168.0.31 ipmask=255.255.255.0 ipgw=192.168.0.1
sys=x301
dom=x301.9front
dns=192.168.0.1
# add or modify dns= lines to associate the DNS
# server 192.168.0.1 with the running system

Note: /net/ndb is a synthetic file that represents the current operating state. It does
not persist across reboots, and is only pre-populated when system networking was con
figured via DHCP. Changes to a blank /net/ndb file will match on the ip= tuple.

Read: ip(3)

Finally, to turn on debug in dns:

echo −n debug >/net/dns
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6.2.5.1 − Caching DNS server

To run a caching DNS server, modify /cfg/$sysname/termrc or
/cfg/$sysname/cpurc (whichever is appropriate) to include the following:

ndb/dns −rs

The caching DNS server will be started at boot time.

Next, modify /lib/ndb/local such that the desired machines will use the IP
address of the new caching DNS server as their DNS server, either by changing the
dns= tuple under the ipnet of the corresponding network or by adding a dns= tuple
to the line of each desired machine.

Read: ndb(6) and ndb(8)

6.2.5.2 − DNS authoritative name server

An authoritative domain name record, with associated reverse-lookup and sub-
domains, looks like this:

dom=bell−labs.co soa=
refresh=10800 ttl=10800
# serial is automatically maintained if omitted
serial=2012110732
ns=ns5.he.net
ns=ns4.he.net
ns=ns3.he.net
ns=ns2.he.net
ns=nm.iawtp.com
ns=pp.iawtp.com
ns=mars2.iawtp.com
dnsslave=slave.dns.he.net
mb=sl@stanleylieber.com
mx=pp.inri.net pref=5
mx=nm.inri.net pref=10
mx=mars2.inri.net pref=15
txt="v=spf1 mx −all"

dom=125.191.107.in−addr.arpa soa=
refresh=3600 ttl=3600
ns=nm.iawtp.com

dom=bell−labs.co ip=107.191.125.208

dom=www.bell−labs.co cname=bell−labs.co

An FQDN may be assigned to an existing machine by adding the dom= tuple to its defi
nition:

sys=x301 dom=x301.bell−labs.co ether=00226811f7dd ip=192.168.0.31

Note: The dnsslave entries specify slave DNS servers that should be notified when the
domain changes. The notification service also requires the −n flag:
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ndb/dns −nrs

Read: ndb(8)

6.2.5.2.1 − Troubleshooting DNS authoritative name server

An online tool that evaluates the DNS configuration of a given domain name is available
at: https://intodns.com

6.2.6 − Network−wide configuration

Settings for an entire network subnet may be defined under an ipnet= tuple:

ipnet=9front ip=192.168.0.0 ipmask=255.255.255.0
ipgw=192.168.0.1
auth=192.168.0.2
authdom=9front
fs=192.168.0.3
cpu=192.168.0.4
dns=192.168.0.1
dnsdomain=9front
smtp=192.168.0.4

# ethernet/wifi router
sys=onoff dom=onoff.9front ip=192.168.0.1

# auth server
sys=auth dom=auth.9front ether=00d059b6dac8 ip=192.168.0.2

bootf=/386/9bootpxe

# cpu server
sys=cpu dom=cpu.9front ether=001125149137 ip=192.168.0.4

bootf=/386/9bootpxe

# file server
sys=fs dom=fs.9front ether=001641360117 ip=192.168.0.3

# terminal
sys=x301 dom=x301.9front ether=00226811f7dd ip=192.168.0.31

bootf=/386/9bootpxe

Note: Each ipnet entry matches on a single IP prefix. Attributes missing from an
ipnet entry can be inhereted from more inclusive entries with shorter prefixes.

6.2.7 − Activating the changes

6.2.7.1 − NIC

Network interfaces are automatically initialized at boot time. To make a manual change
without rebooting, use the ipconfig(8) command:
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ip/ipconfig −g 192.168.0.1 ether /net/ether0 \
192.168.0.31 255.255.255.0

6.2.7.2 − cs

To refresh the network database NOW after changing /lib/ndb/local:

echo −n refresh > /net/cs

6.2.7.3 − dns

echo −n refresh > /net/dns

6.2.8 − Verifying network settings

; cat /net/ndb
ip=192.168.0.31 ipmask=255.255.255.0 ipgw=192.168.0.1

sys=x301
dom=x301.9front
auth=192.168.0.2
dns=192.168.0.1

6.2.8.1 − Checking routes

; cat /net/iproute
0.0.0.0 /96 192.168.0.1 4 none −
192.168.0.0 /120 192.168.0.0 4i ifc 0
192.168.0.0 /128 192.168.0.0 4b ifc −
192.168.0.31 /128 192.168.0.31 4u ifc 0
192.168.0.255 /128 192.168.0.255 4b ifc −
255.255.255.255 /128 255.255.255.255 4b ifc 0

6.2.8.1.1 − Adding static routes

Route requests for 192.168.1.0/24 through the gateway 192.168.0.99 (which
itself must already be accessible via the existing network configuration):

echo ´add 192.168.1.0 255.255.255.0 192.168.0.99´ >/net/iproute

Note: Manual configurations such as this may be added to optional boot scripts created
in /cfg/$sysname/.

Read: ip(3)

6.2.9 − Setting up your 9front box as a forwarding gateway

Read: ip(3)
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6.2.10 − Setting up aliases on an interface

Read: ip(3)

6.3 − How do I filter and firewall with 9front?

6.3.1 − Blackhole routes with null device

Create a null device with a junk IP address (don�t use this network for anything else):

; ip/ipconfig null /dev/mordor 10.69.69.69 255.255.255.0

Route unwanted traffic to the null device:

; echo ’add 47.128.0.0 255.252.0.0 10.69.69.69’ >/net/iproute

Read: ip(3), ipconfig(8)

6.3.2 − Block traffic with aux/dial

Immediately hangup on unwanted addresses:

; aux/dial −e −o hangup ’ipmux!ver=4;src=47.128.0.0&255.252.0.0’ rc −c ’echo 0 >

To remove the block:

; rm /srv/blocked.47.128

Read: ip(3), dial(1)

6.3.2.1 − aux/dial scripted blocklist

Persistent crawlers suck. A casually updated blocklist is maintained in script form here:
http://plan9.stanleylieber.com/rc/nipmux

Note: It�s probably too aggressive.

6.4 − Dynamic Host Configuration Protocol (DHCP)

6.4.1 − DHCP client

In /lib/ndb/local, if no ip= tuple is present in the machine�s definition, the boot
scripts will attempt to obtain an IP address via DHCP.

To obtain a DHCP lease manually:

ip/ipconfig

Read: ipconfig(8)
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6.4.2 − DHCP server

From dhcpd(8):

[Continued on next page]
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Dhcpd runs the BOOTP and DHCP protocols. Clients use these
protocols to obtain configuration information. This infor−
mation comes from attribute/value pairs in the network data−
base (see ndb(6) and ndb(8)). DHCP requests are honored both
for static addresses found in the NDB and for dynamic
addresses listed in the command line. DHCP requests are
honored if either:
− there exists an NDB entry containing both the ethernet
address of the requester and an IP address on the originat−
ing network or subnetwork.
− a free dynamic address exists on the originating network
or subnetwork.

A BOOTP request is honored if all of the following are true:
− there exists an NDB entry containing both the ethernet
address of the requester and an IP address on the originat−
ing network or subnetwork.
− the entry contains a bootf= attribute
− the file in the bootf= attribute is readable.

Dynamic addresses are specified on the command line as a
list of addresses and number pairs. For example,

ip/dhcpd 10.1.1.12 10 10.2.1.70 12
directs dhcpd to return dynamic addresses 10.1.1.12 through
10.1.1.21 inclusive and 10.2.1.70 through 10.2.1.81 inclu−
sive.

Dhcpd maintains a record of all dynamic addresses in the
directory /lib/ndb/dhcp, one file per address. If multiple
servers have access to this common directory, they will cor−
rectly coordinate their actions.

Attributes come from either the NDB entry for the system,
the entry for its subnet, or the entry for its network. The
system entry has precedence, then the subnet, then the net−
work. The NDB attributes used are:

ip the IP address
ipmask the IP mask
ipgw the default IP gateway
dom the domain name of the system
fs the default Plan 9 file server
auth the default Plan 9 authentication server
dns a domain name server
ntp a network time protocol server
time a time server
wins a NETBIOS name server
www a World Wide Web proxy
pop3 a POP3 mail server
smtp an SMTP mail server
bootf the default boot file; see ndb(6)

Dhcpd will answer BOOTP requests only if it has been specif−
ically targeted or if it has read access to the boot file
for the requester. That means that the requester must spec−
ify a boot file in the request or one has to exist in NDB
for dhcpd to answer. Dhcpd will answer all DHCP requests
for which it can associate an IP address with the requester.
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To configure a DHCP server on your system:

mkdir /lib/ndb/dhcp

and then modify /cfg/$sysname/cpurc or /cfg/$sysname/termrc (which
ever is appropriate) to start dhcpd and tftpd at boot time:

ip/dhcpd

Read: dhcpd(8)

6.5 − PPP

Read: Dialup modem config at the Bell Labs Plan 9 wiki.

6.6 − Setting up a network bridge in 9front

Read: bridge(3) and ip(3)

6.7 − How do I boot from the network?

First, read FQA 7.3.3 − Setting up a listener for network connections. The file server
should already be running a listener, and an auth server should already be configured
and running on the network.

6.7.1 − How do I tcp boot?

It is possible to boot from local media and then mount the root file system over the net
work. At the bootargs prompt, type tls (the old tcp boot option will still work but
is not recommended because the connection will not be encrypted). At this point,
ip/ipconfig will determine network parameters using DHCP. When file (fs) or
authentication (auth) server IP addresses could not be determined over DHCP then the
boot process will prompt for those. When prompted for a user, enter a valid username
and password that has already been configured on the auth server. The machine should
then proceed to mount its root file system from the file server.

Note: Values for fs and auth may be added to plan9.ini.

Read: plan9.ini(8)

6.7.1.1 − Passing arguments to ipconfig at the bootargs prompt

When a DHCP server is not available, you may still tcp boot by configuring networking
manually at the bootargs prompt. Everything after tcp! is passed as arguments to
the ipconfig command.

At the prompt:

bootargs is (tcp, tls, il, local!device) [tcp]

enter something like the following:
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tls!−g 192.168.0.1 ether /net/ether0 192.168.0.23 255.255.255.0

where 192.168.0.1 is the gateway, 192.168.0.23 is the static IP address and
255.255.255.0 the subnet mask.

Read: ipconfig(8)

6.7.2 − How do I boot using PXE?

It is also possible to PXE boot a system.

On the file server, add the following lines to /cfg/$sysname/cpurc to start dhcpd
and tftpd at boot time:

ip/dhcpd
ip/tftpd

Add an entry for tftp under the appropriate ipnet= tuple in /lib/ndb/local:

ipnet=9front ip=192.168.0.0 ipmask=255.255.255.0 ipgw=192.168.0.1
auth=192.168.0.2
authdom=9front
cpu=192.168.0.4
dns=192.168.0.1
dnsdomain=9front
smtp=192.168.0.4
tftp=192.168.0.3

Reboot the file server:

fshalt −r

To configure machines that will PXE boot from the file server, edit /lib/ndb/local
on the file server and add a bootf= (boot file) tuple to the line representing each
machine:

sys=x301 dom=x301.9front ether=00226811f7dd ip=192.168.0.31
bootf=/386/9bootpxe

For the system x301 we would then create a file /cfg/pxe/00226811f7dd on the
file server to serve as its plan9.ini:

bootfile=/386/9pc
bootargs=tls
nobootprompt=tls
auth=192.168.0.2
fs=192.168.0.3
mouseport=ps2intellimouse
monitor=vesa
vgasize=1440x900x32
*acpi=1
user=sl

Note: The user= parameter refers to a single username that has been added both to
the file server (for file permissions) as well as to the auth server (for network authentica
tion).
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If a file matching the remote system�s MAC address is not found under /cfg/pxe/,
the file /cfg/pxe/default (if it exists) will be used instead.

Finally, boot the desired remote systems via PXE. When prompted for a user, enter a
valid username and password that has already been configured on the auth server. The
remote system should now proceed to boot from the file server.
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FQA 7 − System Management

7.1 − Plan 9 Services Overview

In order to be an effective system manager it is a good idea to understand how the sys
tem is designed, and how it is intended to be used.

A Plan 9 installation consists of a disk file server, an authentication server, and one or
more cpu servers and terminals�all sharing the same disk file system.

That said, Plan 9 services may be run on separate machines, all together on one
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machine, or in various combinations. The original design of Plan 9 assumed that each
network service would run on separate hardware; by design, individual components of
the system are generally unaware if they co-exist on the same machine or are dis
tributed amongst separate machines.

This document will describe individual services as if they are all running separately.

Read: Designing Plan 9, Plan 9 From Bell Labs, The Organization of Networks in Plan 9

7.1.1 − What is the kernel?

The kernel is a service that provides processes and resources to users active on an indi
vidual machine. Every Plan 9 machine boots a kernel.

At boot time the kernel takes on the identity of $user (the user who logs in at the con
sole), which becomes the hostowner of the system. The hostowner in turn 1.) con
trols access to the kernel�s resources, 2.) serves as the auth identity (authid) of the
machine and the services it provides.

Note: The hostowner differs from the concept of root on a UNIX system, where a
single user root may take control of all processes and files on the system. By contrast,
even the hostowner of a Plan 9 file server cannot violate file permissions on the file
server, except when permissions checking is disabled on the console or when entering
special commands at the console of the file server. The hostowner controls only the
processes running on the local machine. This fundamental separation between control of
processes and file permissions is exploited throughout the Plan 9 system, but can be
confusing for users coming from a UNIX background.

7.1.2 − What is the file server?

In a traditional Plan 9 network there is one disk file server, typically the only machine
with a physical hard disk, that serves files to all other machines on the network. In most
cases, other machines are either diskless or only use their disks for local caching. Ken
Thompson�s original Plan 9 file server ran a unique, special-purpose kernel that only
served files, and whose configuration could only be changed at the console. In 9front,
the file server runs a normal kernel and typically also runs as a cpu server (for remote
access).

9front supports two different disk file systems for use on the file server: cwfs and
hjfs. cwfs is a userspace port of Ken Thompson�s original Plan 9 file server. hjfs
is a new, experimental file server that stores both the cache and worm on a single parti
tion (and thus requires less disk space to be used effectively). Both are reasonably
robust.

Read: The Plan 9 File Server (deprecated, but partially applies to cwfs), cwfs(4),
hjfs(4)

Note: Since most Plan 9 systems have no disk, security of the file server is largely pro
tected from breaches of security in its clients. The fewer the programs that run on the
file server, the more isolated it can be from security holes in programs.

Note: Users seeking access to the file server must be added as a user on the file system
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itself, and, if auth is enabled, added to the auth server�s user database.

Note: Some users choose to run remote cpu or auth servers as stand-alone systems,
each with their own local disk file systems. The distinction between all these types of
systems is fuzzy and can become even fuzzier as services are enabled and disabled in
different combinations.

7.1.3 − What is the auth server?

The auth server manages authentication for an entire Plan 9 network. It boots a normal
kernel but is usually run on a separate, diskless machine that performs no other func
tions, in order to reduce the danger of a security breach compromising its kernel pro
cesses. That said, the auth server is usually also configured as a cpu server, for remote
access.

Note: The cron(8) service should be run only on the auth server, where it can authen
ticate itself to access any of the other machines on the network.

Read: Security in Plan 9, FQA 7.4 − Auth server configuration and maintenance,
auth(8)

7.1.4 − What is the cpu server?

The cpu server is used for remote computation. A cpu server�s kernel runs processes in
isolation, on only that machine. The boot process of a cpu server (defined as such by
setting service=cpu in the machine�s plan9.ini or equivalent) may be examined
by reading the /rc/bin/cpurc script, which is executed at boot time. Running as a
cpu server causes the kernel to adjust certain resource values that ultimately determine
the behavior of the machine. For example, the cpurc script starts certain programs
only if the machine is recognized as a cpu server.

Common use cases for a separate cpu server are: To execute programs compiled for a
different architecture than that of the terminal; To execute programs closer to the data
they are operating upon (for example, if the terminal is running over a slow link but the
cpu server is on the same ethernet segment as the file server); To execute processes in
physical isolation from other processes. In the early days of Plan 9, a cpu server was
often significantly more powerful than the (often, special-purpose) hardware used for
diskless terminals. Today, terminals are typically powerful computers in their own right,
and the need for a separate machine running only as a cpu server is less common. That
said, it can be useful to execute unstable or unpredictable programs on a separate
machine so that frequently crashing and/or rebooting does not affect one�s immediate
workspace environment�especially when testing new code. In the case of remote (mail,
web, etc.) servers, it is also likely that cpu access would be desired.

In practice, the disk file server, the auth server, and even some terminals will often run
their own cpu listeners, to enable remote access to the processes controlled by their
kernels.

Note: Users seeking access to a cpu server must first be added on the file system of the
cpu server�s corresponding file server (for permission to access and modify files) as well
as the user database of its designated auth server (for login authentication).
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Read: The Organization of Networks in Plan 9, rcpu(1)

7.1.5 − What is a terminal?

The terminal is the machine at which the Plan 9 user is most often physically located.
Usually diskless, the terminal will almost always run with graphics enabled (for launch
ing the rio GUI or other graphical programs). The boot process of a terminal (defined
as such by setting service=terminal in the machine�s plan9.ini or equivalent)
may be examined by reading the /rc/bin/termrc script, which is executed at boot
time.

Note: Many Plan 9 users run stand-alone systems that operate � effectively � as a
combined terminal and file server. For example, inside a virtual machine such as qemu,
or booted from hard disk on a laptop. In this case the Plan 9 network is entirely self-
contained, running one kernel on one machine, which renders auth and cpu services
superfluous. This configuration trades some of the inherent security of separate hard
ware and kernel boundaries for the convenience of combining the whole system into a
single, bootable instance.

Note: Terminal users who do not run stand-alone machines or who wish to access Plan
9 network resources must first be added to the file system of the network�s file server,
and to the user database of the network�s auth server.

7.2 − Kernel configuration and maintenance

7.2.1 − How do I mount the 9fat partition?

9front has done away with the scripts 9fat:, c:, and so forth, that are found in the
Bell Labs Plan 9 distribution. Instead, use the 9fs script to mount the 9fat partition:

9fs 9fat

If you are not at the console, or if #S has not already been bound over /dev:

bind −b ´#S´ /dev # bind the local hard drive kernel device over /dev
9fs 9fat /dev/sdXX/9fat # specify the full path to the corresponding 9fat

Note: 9fs 9fat posts a file descriptor in /srv/dos. If this file already exists and is
already in use, 9fs 9fat will fail. If no other process is using the file it is safe to
simply remove it and run 9fs 9fat again.

Read: dossrv(4)

7.2.2 − How do I modify plan9.ini?

Mount the 9fat partition and then edit the file /n/9fat/plan9.ini.

Note: The file must end with a newline.

Read: plan9.ini(8)
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7.2.3 − Kernel configuration file

Kernel configuration files are stored in the kernel directory and share the name of the
kernel to which they apply. For example, the configuration file for the pc kernel is
/sys/src/9/pc/pc.

7.2.4 − Kernel drivers

Kernel driver source files are located in the kernel source directory. For example, the pc
kernel source is located in /sys/src/9/pc.

7.2.5 − How do I install a new kernel?

To build and install the new kernel(s) on the file system:

For 386:

cd /sys/src/9/pc
mk install # kernel is copied to /386/9pc

For amd64:

cd /sys/src/9/pc64
mk install # kernel is copied to /amd64/9pc64

For arm / bcm (Raspberry Pi, etc.):

cd /sys/src/9/bcm
mk install # kernel is copied to /arm/9pi2

For arm64 / bcm64 (Raspberry Pi 3):

cd /sys/src/9/bcm64
mk install # kernel is copied to /arm64/9pi3

For 386 and amd64 machines with local disk, it may be desired to install the new boot
loader and kernels onto the 9fat partition, in order to boot directly from disk. Note:
The bootloader needs to be continuous on disk, so simply copying over the original file
does not produce the desired effect. Instead:

9fs 9fat
rm /n/9fat/9bootfat
cp /386/9bootfat /n/9fat/
chmod +al /n/9fat/9bootfat # defrag magic

then copy the desired kernels:

For 386:

cp /386/9pc /n/9fat/

For amd64:
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cp /amd64/9pc64 /n/9fat/

Finally, if a different kernel is being installed than the one currently running, edit
plan9.ini and change bootfile to point to the new kernel.

Read: FQA 7.2.2 − How do I modify plan9.ini?

7.3 − Fileserver configuration and maintenance

7.3.1 − Adding users

Add a new user on the file server:

For cwfs:

echo newuser username >>/srv/cwfs.cmd

For hjfs:

echo newuser username >>/srv/hjfs.cmd

If needed, make the new user a member of another group (example: upas):

For cwfs:

echo newuser upas +username >>/srv/cwfs.cmd

For hjfs:

echo newuser upas +username >>/srv/hjfs.cmd

Both file servers store their user database in /adm/users. Examine this file, and the
contents of the /usr directory, to evaluate success.

Note: It is also possible to access the control file interactively:

For cwfs:

con −C /srv/cwfs.cmd

For hjfs:

con −C /srv/hjfs.cmd

From here commands may be entered directly.

Type Ctrl−\ to resume the con prompt, followed by q to quit.

Note: New users are created without a profile, mail directory, tmp directory (needed to
edit files with sam) or other confections. To install a default profile for a new user, upon
first login as that user, run:
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/sys/lib/newuser

then edit /usr/username/lib/profile to your own specifications. The
newuser file system command is described in the man pages fs(8) (for cwfs) and
hjfs(8). The default system /lib/namespace does the following:

bind −c /n/other/usr/$user/tmp /usr/$user/tmp

For cwfs users, it may be desirable to store the user�s tmp directory on the other
partition:

mkdir /n/other/usr/$user/tmp

7.3.2 − Configuring nvram

The cpu kernel checks the nvram file for valid auth credentials and attempts to copy
them into factotum so that the machine may boot without manual intervention. To
configure the nvram, run the command auth/wrkey, which will prompt for an
authid, authdom, secstore key, and password. password(twice) The
authid is a synonym for the hostowner of the machine and should be a valid user
that has already been (or will be) added to the corresponding auth server, in this case
glenda. The authdom is the authentication domain for the machine, in this case
9front. The secstore key and password are secret passwords of eight
characters or more in length. The password is the password belonging to the
authid user on the auth server responsible for the authdom entered above. The
secstore key is the password of the user on the secure-store server (Read: FQA
7.4.3 − secstored). If the secstore client (Read: FQA 8.4.7 − secstore) is not being
used on this machine (for example, if this is the auth server where secstored will
run), just hit enter at the secstore key: prompt.

Run the command auth/wrkey:

bad nvram key
bad authentication id
bad authentication domain # You may not see these errors.
authid: glenda
authdom: 9front
secstore key: [glenda’s secstore password]
password: [glenda’s password]
confirm password: [glenda’s password again]

To ensure that the correct nvram partition is found in all cases, an nvram line should
be added to /n/9fat/plan9.ini.

nvram=#S/YOURDRIVE/nvram

Note: Booting the file system with authentication enabled and an invalid nvram file will
cause auth/wrkey to be run automatically at startup.

Read: auth(8)
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7.3.3 − Setting up a listener for network connections

In order for remote machines to mount the file system of the file server, the file server
must first be running a network listener. This section details the steps required to trans
form a terminal with disk (the result of a default install of 9front) into a disk file server
for other machines.

The first step is to switch from the terminal service to the cpu service by editing the
service line in /n/9fat/plan9.ini:

service=cpu

Read: FQA 7.2.2 − How do I modify plan9.ini?

Before rebooting, configure the nvram: FQA 7.3.2 − Configuring nvram. This allows the
machine to load auth credentials from the nvram file into factotum, so that it can
continue to boot without manual intervention.

Reboot:

fshalt −r

ACHTUNG! The next step (on cwfs; not needed on hjfs) is to enable authentication on
the file server, to prevent unauthorized users from accessing the disk over the network.
At the bootargs prompt, retype the default and add the −c flag to enter the file
server�s config mode. At the config prompt, type noauth twice to toggle authentica
tion on the file server. Finally, type end to continue with the boot process:
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bootargs is (tcp, local!device)
[local!/dev/sdXX/fscache] local!/dev/sdXX/fscache −c

config: noauth
auth is now disabled
config: noauth
auth is now enabled
config: end

The machine will now continue to boot.

Once booted, the next step is to configure the file server to listen for connections from
remote hosts. Modify the bootargs of the file server in /n/9fat/plan9.ini:

For cwfs:

bootargs=local!/dev/sdXX/fscache −a tcp!*!564

For hjfs:

bootargs=local!/dev/sdXX/fs −m 702 −A −a tcp!*!564

Note: The −m 702 flag for hjfs allocates 702 megabytes of memory to be used as a
cache. This value is typically automatically calculated by the 9front installer, and may
differ on your system. There is no need to change whatever default was already
configured.

Read: FQA 7.2.2 − How do I modify plan9.ini?

Reboot the file server:

fshalt −r

When the system finishes booting it should now be listening for network connections to
the file system. Users who have been added to the file server and the auth server should
now be able to authenticate and mount the file server (tcp boot, etc.).

Read: cwfs(4), hjfs(4), FQA 6.7.1 − How do I tcp boot?

7.3.3.1 − Stop cwfs from allowing user none to attach without authentication

ACHTUNG! By default, a cwfs listener allows unathenticated attaches as user none.
Disable it at the fsconfig(8) prompt as follows:

bootargs is (tcp, local!device)
[local!/dev/sdXX/fscache] local!/dev/sdXX/fscache −c

config: nonone
none disabled
config: end

7.3.3.1.1 − notes on user none

[Continued on next page]
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/sys/src/9/port/chan.c:1321,1335

Date: Fri, 22 Jan 2021 15:44:05 -0800
From: Anthony Martin <ality@pbrane.org>
To: 9front@9front.org
Subject: [9front] notes on user none
Reply-To: 9front@9front.org

I remembered investigating the restrictions on user none
in the past so I went and dug out my notes. They�re only
applicable to fossil and cwfs, though, so someone else
will have to go through the hjfs code to compare.

The notes are attached below.

Cheers,
Anthony

# from /sys/doc/9.ms
Finally, a special user called none has no password and is always
allowed to connect; anyone may claim to be none. None has restricted
permissions; for example, it is not allowed to examine dump files and
can read only world-readable files.

# from /sys/doc/auth.ms
Factotum is the only process that needs to create capabilities, so all
the network servers can run as untrusted users (e.g., Plan 9�s none or
Unix�s nobody), which greatly reduces the harm done if a server is
buggy and is compromised.

# kernel
- documented

- anyone can become none with none(8)
- undocumented

- eve can change the owner of proc(3) files to none
- none cannot use proc(3) to view or modify the state of other processes
- none cannot create shr(3) files on 9front

# cwfs(4) and fossil(4)
- documented

- none cannot authenticate a connection
- auth(5) with uname "none" returns Rerror

- none can be chaperoned on authenticated connections
- attach(5) with afid NOFID sets uname to "none"

- none has minimal access permissions (i.e. "world" or "other")
- users in the "noworld" group are denied world access permissions

- undocumented
- none cannot be a group leader

- wstat(5) is limited

# fossil(4)
- documented

- none cannot attach to an unauthenticated connection
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- unless the -N flag is given to listen or srv
- users not in the "write" group cannot modify the file system

- unless the group doesn�t exist
- undocumented

- none cannot modify file status information
- wstat(5) returns Rerror

# cwfs(4)
- documented

- none *can* attach to an unauthenticated connection
- unless the nonone flag is set on 9front (undocumented)

- undocumented
- none cannot attach to the dump file system

- attach(5) returns Rerror

7.3.4 − Mounting a file system from userspace

For cwfs:

# use the correct path to your fscache
% cwfs64x −n fs −f /dev/sdE0/fscache
% mount /srv/fs /n/fs

Note:
Running the above commands will post the file systems’s console in
/srv/fs.cmd.

For hjfs:

# use the correct path to your fs partition
% hjfs −n hjfs −f /dev/sdE0/fs
% mount /srv/hjfs /n/hjfs

7.3.5 − dump

7.3.5.1 − manually trigger the dump

As hostowner,

For cwfs:

% echo dump >>/srv/cwfs.cmd

For hjfs:

% echo dump >>/srv/hjfs.cmd
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7.4 − Auth server configuration and maintenance

7.4.1 − Configuring an auth server

The auth server should be booted with service=cpu in plan9.ini, and ndb modi
fied to associate the new auth server with the desired authdom.

If the cpu server machine boots from a local disk, edit the service line in in
/n/9fat/plan9.ini:

service=cpu

Read: FQA 7.2.2 − How do I modify plan9.ini?

If the machine boots via PXE, edit the service line in in the file under /cfg/pxe/
that correspondes to its MAC address. In this case, /cfg/pxe/000c292fd30c:

service=cpu

Note: The contents of /cfg/pxe/000c292fd30c serves as the equivalent of
plan9.ini for the PXE booted machine. Any other settings that would normally be
configured in plan9.ini may also be entered there.

Next, ndb must be modified to associate the new auth server with the desired
authdom. Assuming the auth server has a MAC address of 00:0c:29:2f:d3:0c,
an IP address of 192.168.0.2, and a default gateway/DNS server of 192.168.0.1
that are all on the Class C network 192.168.0.0/24, and that the authdom is
9front, edit /lib/ndb/local and add the authdom and the auth server�s IP
under the corresponding ipnet:

ipnet=9front ip=192.168.0.0 ipmask=255.255.255.0
ipgw=192.168.0.1
auth=192.168.0.2 # add auth server’s ip
authdom=9front # add authdom
fs=192.168.0.3
cpu=192.168.0.4
dns=192.168.0.1
dnsdomain=9front
smtp=192.168.0.4

Read: ndb(6)

Before rebooting, configure the nvram: FQA 7.3.2 − Configuring nvram. This allows the
machine to load auth credentials from the nvram file into factotum, so that it can
continue to boot without manual intervention.

Note: If the auth server�s hostowner (referred to as authid in the auth/wrkey
dialogue) will be any other user than the default glenda, that user must be authorized
(in the auth context) to "speak for" other users. Assuming a hostowner of sl, add a rule
to /lib/ndb/auth:

hostid=sl
uid=!sys uid=!adm uid=*

This rule allows the user sl to speak for all users except for sys and adm.
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Read: auth(8)

Reboot:

fshalt −r

At boot time, the shell script /rc/bin/cpurc consults ndb to determine if the
machine is an auth server. If it is, the script will launch the keyfs process and start lis
teners for auth connections. If, after booting, keyfs is not running, something went
wrong.

Finally, create an auth user and configure an auth password for the hostowner of the
machine. This auth user should be the same name as the authid that was entered at
boot time during the auth/wrkey dialogue. Likewise, set the password to match
the password that was entered during the auth/wrkey dialogue. Note: If the user
and password do not match what was entered during the auth/wrkey dialogue, users
will not be able to authenticate using this auth server.

Read: FQA 7.4.2 − Adding users

7.4.1.1 − Avoiding an ndb entry for the auth server

If an auth server for a given authdom is not found in the local ndb, then the
authdial() function from the libauthsrv library (used for resolving auth servers)
will default to the dns host name p9auth.example.com, where p9auth is the sub
domain, and example.com is the authdom. This convention (where followed) is useful
to avoid having to manually add auth server information for arbitrary remote networks
to the local ndb.

7.4.2 − Adding users

To add a new user to the auth server, login as the auth server�s hostowner, make
sure auth/keyfs is running in your namespace, and then set an auth password for
the user:

% auth/keyfs
% auth/changeuser username
Password: # type password here, will not echo
Confirm password: # confirm password here, will not echo
assign Inferno/POP secret? (y/n) n
Expiration date (YYYYMMDD or never)[return = never]:
2 keys read
Post id:
User’s full name:
Department #:
User’s email address:
Sponsor’s email address:
user username installed for Plan 9

Note: Questions that appear after the keys read notice are optional. Hit Enter for
each one to leave them blank.

Read: auth(8), keyfs(4)
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7.4.3 − secstored

Secstore authenticates to a secure-store server using a password and optionally a hard
ware token, then saves or retrieves a file. This is intended to be a credentials store
(public/private keypairs, passwords, and other secrets) for a factotum.

To set up secstored, login to the auth server as hostowner and:

mkdir /adm/secstore
chmod 770 /adm/secstore

Start secstored at boot time by adding the following to /cfg/$sysname/cpurc
on the auth server:

auth/secstored

Read: secstore(1), secstore(8)

7.4.3.1 − Adding users to secstore

secuser is an administrative command that runs on the secstore machine, normally
the auth server, to create new accounts and to change status on existing accounts. It
prompts for account information such as password and expiration date, writing to
/adm/secstore/who/user for a given secstore user.

Login to the auth server as hostowner and:

auth/secuser username

and answer the prompts.

By default, secstored warns the client if no account exists. If you prefer to obscure
this information, use secuser to create an account FICTITIOUS.

Read: FQA 8.4.7 − secstore for more information on using the secstore client.

7.4.3.2 − Converting from p9sk1 to dp9ik

[Continued on next page]
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Date: Wed, 6 Jan 2016 03:54:08 +0100
From: cinap_lenrek@felloff.net
To: 9front@9front.org
Subject: [9front] new factotum/authsrv/keyfs
Reply−To: 9front@9front.org

i just pushed the new code which adds dp9ik authentication support.

to update a system, the following things need to be done:

# make sure you have the latest libmp/libsec
cd /sys/src/libmp; mk install
cd /sys/src/libsec; mk install

# rebuild mpc (required for libauthsrv)
cd /sys/src/cmd; mk mpc.install

# rebuild libauthsrv / libauth
cd /sys/src/libauthsrv; mk install
cd /sys/src/libauth; mk install

# rebuild factotum/keyfs/authsrv
cd /sys/src/cmd/auth; mk install

# then rebuild kernel to include the new factotum,
# but dont reboot your authserver just yet...
cd /sys/src/9/pc; mk install

# if your /adm/keydb is still in DES format (cat it to see
# if the keyfile starts with the AES signature), you need to
# convert it to use the new dp9ik protocol:

# make backup
cp /adm/keys /adm/keys.old
auth/convkeys −ap /adm/keys

# now set the aes key in nvram (so authserver can decrypt
# the keydb when it boots)
auth/wrkey

# now you can reboot the AS and once its up, you have to
# set new passwords for the users. logging in with the
# old p9sk1 plan9 password should continue to work if
# you skip this.
passwd [username]

# if there are issues logging in with dp9ik because keydb
# doesnt have the new key yet, you can use delkey(1) to
# remove the dp9ik key from factotum as a work arround.

−−
cinap
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7.5 − Cpu server configuration and maintenance

7.5.1 − Configuring a cpu server

Note: Operating a cpu server requires auth services. Read: FQA 7.4 − Auth server
configuration and maintenance

The first step in converting a terminal to a cpu server is to switch from the terminal
service to the cpu service.

If the cpu server machine boots from a local disk, edit the service line in in
/n/9fat/plan9.ini:

service=cpu

Read: FQA 7.2.2 − How do I modify plan9.ini?

If the machine boots via PXE, edit the service line in in the file under /cfg/pxe/
that correspondes to its MAC address. In this case, /cfg/pxe/000c292fd30c:

service=cpu

Note: The contents of /cfg/pxe/000c292fd30c serves as the equivalent of
plan9.ini for the PXE booted machine. Any other settings that would normally be
configured in plan9.ini may also be entered here.

Setting service=cpu causes the shell script /rc/bin/cpurc to be run at boot
time, which in turn launches a listener that scans the /rc/bin/service directory for
scripts corresponding to various network ports. Read: listen(8). The scripts
tcp17019 and tcp17020 handles incoming rcpu connections. Authentication for
incoming rcpu connections is performed by the auth server associated with the
authdom by ndb. Read: FQA 7.4.1 − Configuring an auth server

Before rebooting, configure the nvram: FQA 7.3.2 − Configuring nvram. This allows the
machine to load auth credentials from the nvram file into factotum, so that it can
continue to boot without manual intervention.

Reboot:

fshalt −r

7.6 − Terminal configuration and maintenance

7.6.1 − Configuring a terminal

The 9front ISO boots into a livecd running the 9pc kernel, resulting in the simplest
form of terminal running on the 386 architecture. A terminal may also be network
booted (the preferred method) or installed to its own stand-alone file system on a local
storage device.

Read: FQA 6.7 − How do I boot from the network?
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7.6.2 − Configuring a Terminal to Accept cpu Connections

If the hostowner factotum has been loaded with the appropriate key and the system
is listening for rcpu connections, a user may rcpu into a terminal that is not running
auth services. To configure a terminal to accept rcpu connections in this fashion, sub
stitute your choice of dom (this refers to the authdom), user and password, below:

echo ´key proto=dp9ik dom=9front user=glenda !password=p@ssw0rd´ \
>/mnt/factotum/ctl

aux/listen1 −t ´tcp!*!rcpu´ /rc/bin/service/tcp17019

7.6.3 − UTC Timesync

By default, /rc/bin/termrc sets TIMESYNCARGS=(−rLa1000000), to synchro
nize 9front time with the real time clock. On many systems this time is saved as UTC,
whereas Windows keeps the local time there. If your time is in UTC you should omit the
-L: Put TIMESYNCARGS=(−ra1000000) into /rc/bin/termrc.local, which is
executed by /rc/bin/termrc.

7.7 − Mail server configuration and maintenance

Incoming and outgoing mail is handled by upas and its related suite of programs. Con
figuration is handled by a number of files found in /mail/lib/, while many of
upas’ common functions are carried out by shell scripts that are (relatively) easy to
modify.

Note: The user who runs the assorted upas programs needs read and write permis
sions on /mail/queue and /mail/tmp, as well as write permissions for any mail
boxes where mail will be delivered.

Note: That user is often user none, because upas hardcodes becoming none in some
of its sub-programs.
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Note: Be sure to configure proper DNS entries for your domains. If Plan 9 will host your
DNS, see: FQA 6.2.5.2 − DNS authoritative name server

Read: Upas − A Simpler Approach to Network Mail, mail(1)

The following sections describe configuration of basic Internet mail services.

7.7.0 − tcp25

Port 25 is disabled by default. Enable it by creating the file
/rc/bin/service/tcp25:

#!/bin/rc
user=`{cat /dev/user}
exec /bin/upas/smtpd −s −e −n $3
# to use with listen1, change $3 to $net

7.7.1 − smtpd.conf

Some changes to the default smtpd.conf are required to accept mail for Internet
domain names, and to relay mail for remote hosts (most commonly, your own
machines). The following lines should be changed to correspond to your network:

# outgoing mail will be sent from this domain by default
defaultdomain 9front.org

# do not be an open relay
norelay on

# disable dns verification of sender domain
verifysenderdom off

# do not save blocked messages
saveblockedmsg off

# if norelay is on, you need to set the
# networks allowed to relay through
# as well as the domains to accept mail for
ournets 199.191.58.37/32 199.191.58.42/32 192.168.4.0/24

# domain names for which incoming mail is accepted
ourdomains 9front.org, bell−labs.co, cat−v.org

Read: smtpd(6), smtp(8)

7.7.2 − rewrite

To act as an Internet mail server, copy rewrite.direct to rewrite and modify to
reflect your site�s Internet domain name(s):

[Continued on next page]
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# case conversion for postmaster
pOsTmAsTeR alias postmaster

# local mail
\l!(.*) alias \1
(ttr|9front.org|bell−labs.co|cat−v.org)!(.*) alias \2
[^!@]+ translate "/bin/upas/aliasmail ´&´"
local!(.*) >> /mail/box/\1/mbox

# we can be just as complicated as BSD sendmail...
# convert source domain address to a chain a@b@c@d...
@([^@!,]*):([^!@]*)@([^!]*) alias \2@\3@\1
@([^@!]*),([^!@,]*):([^!@]*)@([^!]*) alias @\1:\3@\4@\2

# convert a chain a@b@c@d... to ...d!c!b!a
([^@]+)@([^@]+)@(.+) alias \2!\1@\3
([^@]+)@([^@]+) alias \2!\1

# /mail/lib/remotemail will take care of gating to systems we don’t know
([^!]*)!(.*) | "/mail/lib/qmail ´\s´ ´net!\1´" "´\2´"

Read: rewrite(6)

7.7.3 − names.local

To map incoming e-mail addresses to local usernames, edit names.local accord
ingly:

# postmaster goes to glenda
postmaster glenda

Note: postmaster@[any domain] will be delivered to local user glenda.

7.7.4 − remotemail

Finally, upas needs to know what to do with mail that cannot be delivered locally. Edit
remotemail and enter the desired behavior.

To deliver mail directly to the remote server responsible for the Internet domain name in
question:

#!/bin/rc
shift
sender=$1
shift
addr=$1
shift
exec /bin/upas/smtp $addr $sender $*

Read: smtp(8)
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7.7.5 − SMTP over TLS

First, make sure you have already created TLS certificates for your server.

Next, create a file /rc/bin/service/tcp587:

#!/bin/rc
user=`{cat /dev/user}
exec /bin/upas/smtpd −e −c /sys/lib/tls/cert −n $3
# to use with listen1, change $3 to $net

Finally, if you haven�t already, create an "Inferno/POP" password for your user. Read:
FQA 7.4.2 - Adding users

7.7.6 − IMAP4 over TLS

First, make sure you have already created TLS certificates for your server.

Next, create a file /rc/bin/service/tcp993:

#!/bin/rc
exec tlssrv −c/sys/lib/tls/cert −limap4d \

−r`{cat $3/remote} /bin/upas/imap4d −p \
−r`{cat $3/remote} >>[2]/sys/log/imap4d
# tlssrv and imap4d both have −r flags.
# to use with listen1, change $3 to $net.

Finally, if you haven�t already, create an "Inferno/POP" password for your user. Read:
FQA 7.4.2 - Adding users

7.7.7 − Spam Filtering

7.7.7.1 − ratfs

From ratfs(4):

Ratfs starts a process that mounts itself (see bind(2)) on mountpoint (default
/mail/ratify). Ratfs is a persistent representation of the local network configu
ration and spam blocking list. Without it each instance of smtpd(6) would
need to reread and parse a multimegabyte list of addresses and accounts.

To configure the spam blocking list, edit /mail/lib/blocked as desired, according
to the rules laid out in the man page. Example:

# allow messages from any user at 9front.org
*allow 9front.org!*

# block messages from any user at bell−labs.com
*block bell−labs.com!*

# block messages from ip block of aol modems
block 152.166.0.0/15
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If ratfs is already running, cause it to reload the modified /mail/lib/blocked:

echo reload >/mail/ratify/ctl

For more details, read: ratfs(4), smtpd(6)

To launch ratfs at boot time, add the following line to
/cfg/$sysname/cpustart:

upas/ratfs

and add the following line to /lib/namespace:

mount −c #s/ratify /mail/ratify

Note: The directory served by ratfs must be visible from the upas listener�s names
pace. Usually, this is accomplished by starting ratfs before the upas listeners.

7.7.7.2 − scanmail

Read: scanmail(8)

7.7.8 − Troubleshooting the mail server

An online tool that evaluates the configuration of a given mail server is available at:
https://www.mail−tester.com

7.7.9 − Setting up a mailing list

7.7.9.1 − mlmgr

The 9front mailing lists are hosted on 9front using the mlmgr(1) collection of tools.

Incoming mail to a list is filtered through a custom pipeto, which in turn calls a
script called nml.

Your mileage may vary.

[Continued on next page]
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7.8 − Web server configuration and maintenance

If you must.

7.8.1 − ip/httpd

No.

7.8.2 − rc−httpd

The rc−httpd web server is a simple shell script that handles static files, directory
listings and drop-in CGI programs such as the werc anti-framework. rc−httpd is run
from a file in the directory scanned by listen(8), or called as an argument to
listen1(8).

Read: rc−httpd(8)

Note: rc−httpd is employed to serve the 9front.org family of websites.

[Continued on next page]
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7.9 − TLS certificates

To use TLS-enabled services on a Plan 9 mail server (poptls, apoptls, imaps, etc.) you
need to generate a certificate and key for your mail server and tell the factotum of
the server about that key. The following example creates a self-signed certificate:

ramfs −p
cd /tmp
auth/rsagen −t ´service=tls role=client owner=*´ > key
chmod 600 key
cp key /sys/lib/tls/key # or: store key in secstore
auth/rsa2x509 ´C=US CN=fakedom.dom´ /sys/lib/tls/key | \

auth/pemencode CERTIFICATE > /sys/lib/tls/cert

Note: Here, US is the two-digit country code, and fakedom.dom is the fully qualified
domain name.

To load the key into the server�s factotum at boot time, add the following line to
/cfg/$sysname/cpustart:

cat /sys/lib/tls/key >>/mnt/factotum/ctl

Read: rsa(8)

7.9.1 − ACME protocol 9front ships an Automatic Certificate Management Environment
(ACME) client called acmed(8).

The following prepares an identity and certificate signing request, so that a certificate
can be requested via the ACME protocol. Letsencrypt, a popular ACME provider, is the
default.

[Continued on next page]
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ramfs −p
cd /tmp
auth/rsagen −t service’=’acme role=sign \

hash’=’sha256 acct’=’user@domain.com \
>user@domain.com.key

auth/rsa2jwk user@domain.com.key \
>/sys/lib/tls/acmed/user@domain.com.pub

cat user@domain.com.key > /mnt/factotum/ctl
auth/rsagen −t service’=’tls owner’=*’ >domain.com.key
chmod 600 user@domain.com.key domain.com.key
cp user@domain.com.key domain.com.key \

/sys/lib/tls/acmed/
auth/rsa2csr CN’=’domain.com \

/sys/lib/tls/acmed/domain.com.key \
>/sys/lib/tls/acmed/domain.com.csr

Note: Multi-domain certificates can be created with the notation
CN=domain1.com,domain2.com

The following uses the CSR from above, and fetches a newly signed certificate:

auth/acmed −t http −o /path/to/.well−known/acme−challenge \
user@domain.com /sys/lib/tls/acmed/domain.com.csr \
>/sys/lib/tls/acmed/domain.com.crt

This requires the output directory (by default, /usr/web/.well-known/acme-challenge)
to be served over HTTP. It must appear as a directory available at

http://domain.com/.well−known/acme−challenge

containing the challenge files generated by auth/acmed.

Note: If multi-domain, you may use the same disk directory to handle challenges for all
domains by arranging for the webserver to bind the correct directory over a dummy
directory under each domain.

Alternatively, the challenges can be completed using DNS. This requires your ndb to
include the ndb snippet generated by auth/acmed:

database=
...
# add this line under what you already have
file=/lib/ndb/dnschallenge

In addition, the domain that you�d like to get verified needs to have a certificate author
ity authorization record of your ACME provider declared:

dom=domain.com caa=letsencrypt.org

To load the key into the server�s factotum at boot time, add the following line to
/cfg/$sysname/cpustart:
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cat /sys/lib/tls/acmed/domain.com.key >>/mnt/factotum/ctl

Note: When using Letsencrypt, it is advisable to troubleshoot by running acmed with
the −d and −p https://acme−staging−
v02.api.letsencrypt.org/directory flags to enable more verbose output
and to avoid Letsencrypt�s request throttling. Once things are working, remember to
remove the −p flag and run again to generate your final certificate.

Read: acmed(8)
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FQA 8 − Using 9front

When applied consistently, simple conventions can combine to provide powerful results.
In Plan 9, conventions are preferred to rules. This section explores the Plan 9 approach
to actually using the computer.
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8.1 − rc

rc was a startup script from very early times in Unix, shortened, as
Ken was wont to do, from runcom, the nearest thing CTSS had to a
shell�it could run up to six prespecified commands in background.
The name runcom came to be applied to the scripts as well as to their
interpreter.
� Doug McIlroy

The rc shell was written by Tom Duff for Research UNIX v10. It was later adopted as
the shell for Plan 9. Some of its conventions are unusual compared with other command
interpreters influenced by the Bourne shell. Although its syntax may seem strange at
first, have patience; rc was designed this way on purpose. Once its (few, but powerful)
features are internalized, rc simply gets out of the way.

Read: Rc − The Plan 9 Shell, rc(1)

8.1.1 − Prompts

Creating an rc function with the same name as your prompt allows you to easily
double-click to select at the end of a previously typed line and then send it using the
mouse button 2 menu (see the discussion of rio menus, below). This can be used to
approximate a form of command history (see also the commands " and "", which print
and execute the previous command, respectively).

Add something like this to your $home/profile:

fn term%{ $* }

In rc the ; character forces the end of a line and is treated as a noop when it appears
alone, so it is also possible to create a simple prompt that would require no special
prompt function in order for the prompt to be effectively ignored when selecting and
sending:

prompt=´; ´

Obviously, the prompt can be named however the user sees fit.

8.1.2 − /env

Note: Contents of the /env directory are provided by the kernel and represent a sepa
rate accounting of the shell�s environment; rc reads /env only on startup, and
flushes/writes /env only before executing programs.
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8.2 − rio

rio is the Plan 9 window system. More accurately, rio multiplexes input devices with,
and serves a file interface to, a series of rectangles, inside the boundaries of which are
drawn an arbitrary arrangement of pixels. Controlling the rectangles is more straightfor
ward, and at the same time more flexible, than what is commonly expected from most
"window managers."

Read: rio(1), rio(4)

To effectively use rio, you need a three button mouse. If you only have a two button
mouse you can emulate the middle button by holding down the shift key whilst press
ing the right button.

Note: Button 1, 2, and 3 are used to refer to the left, middle, and right buttons respec
tively.

8.2.1 − The Pop−up Menu

Pressing and holding down mouse button 3 on the gray desktop or on a shell window
will give you a menu with the following options:

New

Resize

Move

Delete

Hide

Pressing and holding down mouse button 2 on a shell window results in a menu with the
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following options:

cut

paste

snarf

plumb

look

send

scroll

Select an item by releasing the button over the menu item. Rio uses the same button
that started an action throughout that operation. If you press another button during the
action the operation is aborted and any intermediate changes are reversed.

Each menu acts as a action verb selector which then requires an object (i.e. window) to
be picked to indicate which window the verb is to act on. A further mouse action may
then be required.

8.2.2 − Window control

Clicking on a window brings it to the front.

You can directly change the shape of a window by clicking and dragging on the edge or
corner of the window border. Mouse button 1 or 2 will allow you to drag the edge or
corner to a new size, and mouse button 3 will allow you to move the window.

The mouse button 3 menu contains a list of all windows that are corrently obstructed by
other windows. Selecting a label tops the window.

The pop-up menu remembers the last command chosen, so as a shortcut you can just
press and release button 3 without moving the mouse between pressing and releasing
to select the previous command again.

In addition, rio serves a variety of files for reading, writing, and controlling windows.
Some of them are virtual versions of system files for dealing with the display, keyboard,
and mouse; others control operations of the window system itself. These files, as well as
the window(1) command, allow for controlling windows programmatically by reading
and writing text strings. Thus simplifying the automated opening and placement of vari
ous windows with user scripts.

Read: rio(4)

8.2.3 − Text in rio windows

Text in a rio window may be freely manipulated, edited, altered, deleted and/or acted
upon using either mouse chords or the options from the mouse button menus. (For an
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example, see the discussion of the use of rc prompts, above.)

The special file /dev/text (for the current window), or /mnt/wsys/n/text (for
window n) contains all text that has already appeared in the window. The contents of
this file may serve as a primitive form of command history (and may be acted upon
using standard command line tools), but are lost when the window is closed.

Seriously, read: rio(4)

8.2.4 − Scrolling

By default, a rio window will fill up with text and then block, obviating the need for a
separate pager program (though the p(1) pager program still ships with the system).

Endless scrolling may be enabled by selecting scroll from the mouse button 2 menu.

The up or down arrow keys and pgup or pgdwn keys may be used to scroll up or
down in consistently measured increments.

Holding down the shift key and pressing the up or down arrow key will scroll a single
line in the respective direction.

9front�s rio supports mousewheel scrolling. The heuristic employed is roughly the
same as that of clicking in the scrollbar on the left of the window: when the mouse
pointer is near the top of the window the scrolling increment is small, while as the
mouse pointer approaches the bottom of the window the scrolling increment grows pro
gressively larger. Presently this behavior is limited to rio, sam, and mothra but may
later be extended to other programs.

Note: While the behavior of the arrow and page keys is fairly consistent between pro
grams, mousewheel scrolling is not. So far, shift

up or down is only supported in rio windows.

8.2.5 − Mouse Chording

Almost anywhere � sam(1), acme(1), window(1) � you can use the following
mouse chords:

mb1 � Select text.

mb1 double click � Select word under cursor, or at the end/start of a line, select
the whole line.

After selecting with mb1 and while still holding mb1 down (these chords also
work with text selected by double-clicking, the double-click expansion happens when

the second
click starts, not when it ends):

mb2 � Cut text.

mb3 � Paste text (can be reverted by clicking mb2 immediately afterwards).
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To snarf (copy), click mb2 immediately followed by mb3.

8.2.6 − Keyboard Shortcuts

Almost anywhere � sam(1), acme(1), window(1) � you can use the following
shortcuts:

Ctrl−u � Delete from cursor to start of line.

Ctrl−w � Delete word before the cursor.

Ctrl−h � Delete character before the cursor.

Ctrl−a � Move cursor to start of the line.

Ctrl−e � Move cursor to end of the line.

Ctrl−b � Move cursor to the position immediately after the prompt. (rio only)

Read: UNIX Keyboard Bindings

In a rio(1) window, scroll up or down one line by holding shift and pressing the up
or down arrow.

8.2.6.1 − No, really, keyboard shortcuts (and virtual desktops for free)

Part of 9front�s bold initiative for modernizing Plan 9�s interface (demo day!) while still
retaining all of the bits and bobs that really annoy people (no icons! no buttons! no
banners!) is to implement a keyboard�controller overlay that provides configurable
keyboard shortcuts without actually altering rio itself, thereby representing a
negotiated ceasefire somewhere on the spectrum between touching the artwork,
Joker�style, and creating a brand new GUI from scratch. One of the features provided by
riow is the ability to navigate through virtual desktops using only the keyboard, which,
to my mind, goes some way towards satisfying the bounty for a dwm/i3/sway -like
rio replacement. Somebody pay Sigrid.

Read: riow(1), Appendix B: Bounties

[Continued on next page]
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8.2.7 − Color scheme

rio looks like this:

rio�s color scheme may be modified by editing the .c configuration files and re-
compiling:

Note: Someone will mock you for doing this.

You can also elect to modify rio to support wallpapers, themes, etc. This has been
tried various times in different ways and by different people. YMMV. Sigrid�s work in this
area is probably still the best.
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See: https://ftrv.se/14

Rob Pike, rio�s author, was all like:

the clean appearance of the screen comes mostly from laziness, but the color
scheme is (obviously) deliberate. the intent was to build on an observation by
edward tufte that the human system likes nature and nature is full of pale col
ors, so something you�re going to look at all day might best serve if it were
also in relaxing shades. renee french helped me with the specifics of the
color scheme (she�s a professional illustrator and my color vision is suspect),
once i�d figured out how i wanted it to look. there are still some features of
the color system that i put in that i think no one has ever noticed. that�s a
good thing, in my opinion; the colors should fade away, if you�ll pardon the
expression. having used other systems with different approaches to color
screens, most especially windows XP (extra pukey), i think tufte was right.

Rob Pike, 2003

The color scheme was an attempt to honor a point made originally in a little
brochure by Edward Tufte that the colors of nature are soft and quiet and
peaceful to look at, while most computer screens are covered in glaring bright
colors. When color came to the system I wanted it to be pleasant.

Rob Pike, 2008

See: edwardtufte.com

8.2.8 − Why is rio like this?

Window systems should be transparent. That�s the argument put forward in the famous
paper by rio�s author, Rob Pike.
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Beyond this, Rob offered an explanation (in response to a question on the 9fans mailing
list) of some of the choices made in the design of 8½ and rio:

> functioning cursor keys would still be a speed benefit.

This feels true but is false. There were some fascinating experiments done a
few years ago in which people were given a long, tedious editing task. Some
of the people were keyboard fans, some were mouse fans. Both folks were
asked to do the task two ways, in random order, once using the mouse to do
the editing, once using cursor keys etc. Regardless of their predilections,
which was stated up front, after the experiment everyone who did the task
agreed that it was faster to use the keyboard than the mouse to complete the
task. Everyone. Here�s the kicker: everyone was wrong. They were being
timed, and in fact the reverse was true. Although they thought the keyboard
was faster, doing the task using the mouse was faster for everyone, by a sub
stantial fraction.

The explanation, besides the obvious that arrow keys are actually pretty slow
if you�re going more than a line or character, is that people feel the mouse
wastes time because you need to grab it and move it, but it�s time well spent.
The part of the brain that uses keyboard commands to move the cursor is a
higher-order function, and thinking and planning how to use the keys to get
to the destination blocks thinking about the editing task at hand. But using
the mouse is done by a lower-order part of the brain, which keeps the editing
part of the brain clear. There�s less task switching going on when you use the
mouse, so you work more efficiently.

If you don�t believe me, the story is here:

http://www.asktog.com/readerMail/1999-12ReaderMail.html

Thanks to some forgotten 9fan who mentioned this a while back. I didn�t
know about these experiments when I said, long ago, that using arrow keys to
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point at a display is like telling someone how to go somewhere by giving
directions, while using a mouse is like pointing at a map. In fact, I never used
a screen editor until I had a mouse, for just this reason.

Rob Pike, 2001

8.2.9 − tips

8.2.9.1 − Taking a screenshot

To capture the entire screen:

topng </dev/screen >screen.png

To capture only the current window:

topng </dev/window >window.png

It is also possible to capture other windows:

topng </dev/wsys/n/window >window.png

where n is the number of the window being captured.

Read: rio(4)

8.2.9.2 − Prevent console messages from overwriting the screen

To capture console messages in a rio window, open a new window and:

cat /dev/kprint

8.3 Text Editors

8.3.1 − sam

The text editor sam was created by Rob Pike, and included in Research UNIX V9 (circa
1986), and later included with Plan 9.

See: http://sam.cat-v.org

Read:

The Text Editor sam � The original paper by Rob Pike.

A Tutorial for the Sam Command Language � Documents the editing language.

sam quick reference card

sam(1) man page
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http://sam.cat-v.org/sam-fans/ � sam-fans mailing list archive

Dan Flavin, Document for Untitled (to the �innovator� of Wheeling Peachblow), 1968

8.3.1.1 − Scrolling

9front�s slightly modified version of sam supports mousewheel scrolling in the same
manner as rio.

Read: FQA 8.2.4 − Scrolling

8.3.1.2 − Mouse Chording

9front sam supports the same mouse chording as rio.

Read: FQA 8.2.5 − Mouse Chording

8.3.1.3 − Why does sam have a separate snarf buffer from rio?

The program�s author, Rob Pike, says:

was a consequence of running over 1200 baud when sam was first written.
you didn�t want every cut and paste to bounce off the remote end at that
speed. nowadays that argument has less weight. on the other hand, i still
kinda like that you can have an editing session that doesn�t corrupt what you
have in rio�s snarf buffer. i tried the unified way in acme and i often (not
always) miss the old way.

Rob Pike, 2003
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8.3.1.4 − Keyboard Shortcuts

Esc � Cut (and consequently, snarf) the selected text.

Ctrl−b � Switch focus to the edit window.

8.3.2 − acme

There is also an alternative user interface, acme(4), that some people use as their editor.
� Geoff Collyer

The text editor acme was created by Rob Pike. It builds on the sam command
language, and adds new features, which have proven very popular.

See:

http://acme.cat-v.org

The Acme Readme

Acme: A User Interface for Programmers � The original paper by Rob Pike.

acme(1) � Commands: acme, win, awd, interactive text windows.

acme(4) � The file system interface: control files for text windows.

A Tour Of Acme � Video tutorial by Russ Cox explaning the main features and
principles of Acme.

Handmade cyclogram by Russian cosmonaut, Georgi Grechko.
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8.4 − Internet

Sending and receiving bits via alien protocols.

8.4.1 − Mail

Read: mail(1), FQA 7.7 − Mail server configuration and maintenance

8.4.1.1 − upasfs

From upasfs(4):

Fs is a user level file system that caches mailboxes and presents them as a file
system. A user normally starts fs in his/her profile after starting plumber(4)
and before starting a window system, such as rio(1) or acme(1). The file sys
tem is used by nedmail(1), acme(1)�s mail reader, and imap4d and pop3 (both
pop3(8)) to parse messages. Fs also generates plumbing messages used by
biff and faces(1) to provide mail announcements.

Read: upasfs(4), pop3(8), faces(1)

8.4.1.1.1 − Reading gmail via IMAP

upas/fs −f /imaps/imap.gmail.com/your.username@gmail.com

The first time this command is run, you should see an error that looks something like
this:

upas/fs imap: server certificate 22471E10D5C1E41768048EF5567B27F532F33
not recognized

upas/fs: opening mailbox: bad server certificate
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To add this certificate to your system, type:

echo ´x509 sha1=22471E10D5C1E41768048EF5567B27F532F33´ \
>>/sys/lib/tls/mail

Once upas/fs is running, you can open as many additional gmail mailboxes (labels) as
you wish:

echo open /imaps/imap.gmail.com/your.username@gmail.com/yourlabel \
yourlabel >/mail/fs/ctl

Note: Opening large mailboxes over a slow 9p link will be very slow.

8.4.1.1.2 − Sending mail with gmail

Add your gmail password to the factotum:

echo ’key proto=pass server=smtp.gmail.com service=smtp \
user=your.username@gmail.com !password=yourpassword’\
>/mnt/factotum/ctl

Modify /mail/lib/remotemail to gateway mail through your gmail account:

#!/bin/rc
shift
sender=your.username@gmail.com
shift
addr=tcp!smtp.gmail.com!587
shift
fd=`{/bin/upas/aliasmail −f $sender}
switch($fd){
case *.*

;
case *

fd=gmail.com
}
exec /bin/upas/smtp −u your.username@gmail.com \

−a −h $fd $addr $sender $*

Read: rewrite(6)

To actually use the gateway you have to setup your /mail/lib/rewrite by includ
ing and adjusting the contents of /mail/lib/rewrite.gateway. Change
YOURDOMAIN.DOM to gmail.com:

# append the local domain to addresses without a domain
local!"(.+)" alias \1@gmail.com
local!(.*) alias \1@gmail.com

And adjust your /lib/ndb/local:

echo smtp=gmail.com >> /lib/ndb/local

Before this will work you need to retrieve the certificate hash. This can be done by trying
to send an e-mail and then looking for the hash in the log:
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echo hello | mail −s test your.username@gmail.com

Then look in /sys/log/smtp for the following error:

cert for smtp.gmail.com not recognized:
sha256=wnu7Uuzq4MlyJHP90+8f2smoh6x3cj0dG5z02jJlX42

Add the certificate to your system:

echo ’x509 sha256=wnu7Uuzq4MlyJHP90+8f2smoh6x3cj0dG5z02jJlX42’ \
>> /sys/lib/tls/smtp

You should now be able to send e-mail through gmail! I�m sorry.

Note: This configuration breaks local e-mail delivery.

8.4.1.1.3 − Reading mailboxes on remote Plan 9 file systems

Relatively self-explanatory, but:

rimport −c host /mail/box/user /mail/box/user
upas/fs

8.4.1.2 − nedmail

nedmail is a command line mail client similar to the classic mail client shipped with
Research UNIX.

Read: nedmail(1)

8.4.1.2.1 − mother

mother is a clone of nedmail, written in rc. It offers some convenient new features
and is easy to extend.

Download it here: http://plan9.stanleylieber.com/mother/

8.4.1.2.2 − Nail

Nail is a clone of acme�s Mail, written in c. It offers some convenient new features.

Update: Nail has been renamed Mail and integrated into acme to replace the origi
nal Mail. Just type Mail to use Nail.

8.4.1.3 − nupas

Read: Scaling Upas, by Erik Quanstrom Note: Erik�s nupas has been merged with
9front�s upas.
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8.4.2 − NNTP

Read: newt(1), nntpfs(4)

8.4.3 − IRC

8.4.3.1 − ircrc

ircrc is an IRC client implemented in rc. It is included with 9front.

Read: ircrc(1)

8.4.3.2 − irc7

A persistent IRC client was written in the c programming language by Andrey Mirt
chovski. It has been modified slightly by 9front users (mainly, adding an −e flag to the
ircsrv program that implements SSL connections). https://code.9front.org/hg/irc7

8.4.3.3 − ircs

A persistent, logging IRC client inspired by the classic Plan 9 IRC client irc7.

http://shithub.us/kemal/ircs/HEAD/info.html

8.4.3.4 − wircrc

A windowed version of ircrc was implemented in rc by cinap_lenrek. Several unsanc
tioned versions with various additions have since occasionally been spotted.

8.4.4 − FTP

Read: ftpfs(4)
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8.4.5 − HTTP

[Continued on next page]

8.4.5.1 − mothra

mothra is the standard web browser. It is a trivial program written in 1995 by Tom
Duff. It ignores Javascript, CSS and many HTML tags. It was dropped from Plan 9 after
the 2nd Edition, but has been picked up and (somewhat) refined for 9front. mothra
now uses webfs, and no longer supports non-HTTP protocols.

Read: mothra(1), webfs(4)
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8.4.5.2 − abaco

no.

8.4.5.3 − hget

hget is a command line HTTP client (similar to programs such as curl or wget) that
started out as a c program in Plan 9 from Bell Labs, but was re-implemented in rc for
9front. hget now uses webfs and no longer supports non-HTTP protocols.

Read: hget(1), webfs(4)

8.4.5.4 − charon

The Inferno operating system can be run hosted on Plan 9, and includes a GUI web
browser called charon, which implements ECMASCRIPT 1.0 as well as additional HTML
attributes.

Note: charon is ancient and is not really a sufficient replacement for 9front�s web
browsers. The rudimentary javascript support can be useful for some simple tasks.

8.4.5.5 − i

There exists an unfinished/buggy port of charon from Inferno�s limbo programming
language to Plan 9 c.

8.4.5.6 − NetSurf

NetSurf has been ported to Plan 9 (APE + native frontend). It nearly works.
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Download it here: https://github.com/netsurf-plan9/nsport

8.4.6 − SSH

Several SSH clients exist for Plan 9, none of which are perfect.

8.4.6.1 − ssh

9front used to ship with the original Plan 9 native SSH1 client from Bell Labs. It has since
been replaced with a new SSH2 client that has been written from scratch. The new client
supports only chacha20-poly1305 cipher and curve25519 Diffie-Hellman for key
exchange. RSA public key and password authentication are supported with factotum.

Read: ssh(1)

8.4.6.1.1 − sshfs

9front ships with an sshfs client that implements the SFTP protocol over the existing
ssh(1) client.

Read: sshfs(1)

8.4.6.1.2 − sshnet

Outgoing and incoming TCP connections can be proxied to an SSH server using the
sshnet(4) filesystem.

Read: Free Carrots #1: VNC over SSH
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8.4.6.5.1 − Mounting a remote u9fs share over SSH

The u9fs program runs on UNIX and serves an unencrypted 9P(2) share. It is possi
ble to mount such a share over SSH.

srv −s 5 −e ´ssh −u sl −h wm ´´/usr/local/bin/u9fs \
−u sl −na none´´´ wm /n/wm

An SSH connection is opened to remote UNIX host wm, logged in with user sl and
mounted on Plan 9 under /n/wm.

Read: srv(4)

8.4.7 − secstore

Typing in lots of passwords over and over again is annoying.

Secstore authenticates to a secure-store server using a password and optionally a hard
ware token, then saves or retrieves a file. This is intended to be a credentials store
(public/private keypairs, passwords, and other secrets) for a factotum.

Read: FQA 7.4.3 − secstored for information on setting up the secstore server, and: FQA
7.4.3.1 − Adding users to secstore to add users.

Once a user has been added to secstored, the user may add to the file read by
factotum at startup. To do so, open a new window and type

% ramfs −p; cd /tmp
% auth/secstore −g factotum
secstore password: [user’s secstore password]
% echo ´key proto=apop dom=x.com user=ehg !password=hi´ >> factotum
% auth/secstore −p factotum
secstore password: [user’s secstore password]
% read −m factotum > /mnt/factotum/ctl

and delete the window. The first line creates an ephemeral memory-resident work
space, invisible to others and automatically removed when the window is deleted. The
next three commands fetch the persistent copy of the secrets, append a new secret, and
save the updated file back to secstore. The final command loads the new secret into the
running factotum.

Note: On the first run, auth/secstore −g factotum will result in an error
because the file does not exist yet. This error can be ignored.

The ipso command packages this sequence into a convenient script to simplify editing
of files stored on a secure store. It copies the named files into a local ramfs and
invokes ditor on them. When the editor exits, ipso prompts the user to confirm
copying modified or newly created files back to secstore. If no file is mentioned, ipso
grabs all the user�s files from secstore for editing.

By default, ipso will edit the secstore files and, if one of them is named factotum, flush
current keys from factotum and load the new ones from the file.

Read: secstore(1), secstore(8)
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8.4.8 − drawterm

drawterm is a program that users of non-Plan 9 systems can use to establish graphi
cal cpu connections with Plan 9 cpu servers. Just as a real Plan 9 terminal does,
drawterm serves its local name space as well as some devices (the keyboard, mouse,
and screen) to a remote cpu server, which mounts this name space on /mnt/term and
starts a shell. Typically, either explicitly or via the profile, one uses the shell to start
rio. The original version is effectively abandoned, but is available here:
http://swtch.com/drawterm

There also exists a fork of Russ Cox�s drawterm that incorporates features from 9front,
most importantly DP9IK authentication support (see authsrv(6)) and the TLS based
rcpu(1) protocol: http://drawterm.9front.org.

Note: The fork is the preferred version of drawterm for use with 9front because the old
auth protocol is considered deprecated and the old CPU listeners are now disabled by
default.

Pending integration of article from: http://wiki.9front.org/drawterm

[Continued on next page]
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8.4.8.1 − Connect to Plan 9 from a mobile device

Use an SSH client to connect to a remote UNIX SSH server that can run the 9front fork�s
drawterm −G:

http://helpful.cat-v.org/Blog/2017/11/29/0/

8.4.8.2 − drawterm behind firewalls

drawterm connects to the cpu service, which normally listens on TCP port 17019,
after authenticating against the auth server, which normally listens on TCP port 567.
Authentication against the auth server is bypassed when connecting as the auth server�s
hostowner.

On the occasion you find yourself behind a firewall that blocks the auth/ticket TCP port
567, or the cpu TCP port 17019, you can configure your auth or cpu servers to listen on
different ports.

To configure the auth server to listen on TCP port 80, in addition to TCP port 567:

cd /bin/service.auth
cp tcp567 tcp80

From your command line, or script, use Plan 9 dial strings:

drawterm −a tcp!<auth_server>!80 −h <cpu_server> −u <username>

example:

drawterm −a tcp!auth.9front.org!80 −h cpu.9front.org −u ken

To configure your cpu server to listen on a different port:

cd /rc/bin/service
cp tcp17019 tcp23

From your command line:
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drawterm −a tcp!auth.9front.org!80 −h tcp!cpu.9front.org!23 −u ken

This will attempt to connect to your auth server on TCP port 80 (HTTP) and to your cpu
server on TCP port 23 (Telnet).

Note: The same use of Plan 9 dial strings works for specifying auth servers on Plan 9
VMs behind firewalls. Use the dial string for auth in /lib/ndb/local:
auth=tcp!<auth_server>!80

Read: listen(8), authsrv(6), dial(2)

8.4.9 − Peer to Peer (P2P)

You know what we mean.

8.4.9.1 − Tinc

tinc
implements the mesh peer to peer VPN protocol from https://www.tinc-vpn.org as of

version 1.0.32.

Read: tinc(8)

8.4.9.2 − Torrents

8.4.9.2.1 − ip/torrent

Native client. Works great. Does not support magnet links.

Read: torrent(1)

8.4.9.2.2 − torrent

Client written in Go. Works great. Supports magnet links.

Download it here: https://github.com/anacrolix/torrent

8.4.10 − Remote Administration

8.4.10.1 − VNC

8.4.10.1.1 − vnc and vncs

9front helpfully ships with both a VNC client and server.

Read: vnc(1)
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See also: Free Carrots #1: VNC over SSH

8.4.10.2 − RDP

8.4.10.2.1 − rd

rd is a remote desktop client for Plan 9 operating system implementing RDP,
Microsoft�s Remote Desktop Protocol. Initially started as a feature-cut fork of the X11
rdesktop client, it eventually grew into something different. It does not support
pre�RDP5 protocol versions and requires the server to support an equivalent of
STARTTLS (Windows XP SP2/2003 and up). The X.509 certs presented by servers are
checked with okThumbprint against the list kept in /sys/lib/tls/rdp file.

Download it here: git://shithub.us/covertusername/rd

8.5 − Audio

Pending integration of article at http://nopenopenope.net/posts/audio

Thanks, qwx!

Meanwhile, read: audio(1), audio(3)

Use: play(1), zuke(1)

8.6 − External Media

8.6.1 − Mount an ISO9660 CD−ROM

mount <{9660srv −s >[0=1]} /n/iso /dev/sdD1/data # cd−rom drive

or:

mount <{9660srv −s} /n/iso /path/to/9front.iso

Read: dossrv(4)

8.6.2 − Burn a CD−ROM

cdfs
cp 9front.iso /mnt/cd/wd
rm /mnt/cd/wd

Read: cdfs(4)
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8.6.3 − Mount a FAT formatted USB device

FAT formatted USB devices are automatically mounted under the /shr directory.

Note: Devices must be FAT or FAT32 formatted; exFAT is not supported.

[Continued on next page ]
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8.7 − Emulation

8.7.1 − Linux Emulation

linuxemu is a program that can execute Linux/i386 ELF binaries on Plan 9. Semi-
modern web browsers and other Linux programs may be run using linuxemu (if nec
essary, in conjunction with the equis X11 server).

Note: linuxemu is ancient history and can only be run on a Plan 9 system booted with
a 386 kernel and binaries. This section should really probably be removed, as you
almost certainly want vmx(1) instead. Still, vmx(1) only works on beefy amd64
systems, and I used to run linuxemu on a ThinkPad T42 with decent results.
Sometimes old and decrepit is worth keeping around.

BOOTSTRAP

To run linuxemu, you need a Linux root file system packed into a tarball:

http://felloff.net/usr/cinap_lenrek/mroot-linuxemu.tbz

https://web.archive.org/web/20170704102117/http://plan9.stanleylieber.com/linuxemu/mroot.tgz

The mroot−linuxemu.tbz version contains no symlinks and can be extracted with
plain Plan 9 tools bunzip and tar.

The mroot.tgz version contains the same Debian Sarge base as
mroot−linuxemu.tbz, but with several additional packages pre-installed:

9base

dmenu-4.1.1

dwm-5.8.2
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gcc 3.3.5

linux-kernel-headers

mercurial 0.9.4

opera 10.11

python 2.3.5

xlib-dev

and more.

You can create your own mroot with debootstrap on Debian Linux, or help write an
installer that unpacks and installs an alternative distribution on Plan 9... In any case,
linuxemu is not hardwired to any Linux distribution!

RUNNING

Use the provided linux script to chroot into your Linux mroot. The linux script is
necessary because for Linux programs to run, shared libraries from your mroot have to
appear in its /lib and /usr/lib directories, while configuration files are expected to
be in /etc. The script will build a private namespace and then bind the Linux mroot
over the Plan 9 root. The original Plan 9 namespace is mounted within linuxemu
under /9.

Assuming mroot is located in the current directory, start linuxemu like this:

linux −r ./mroot /bin/bash −i

If the −r option is omitted, the Linux mroot defaults to /sys/lib/linux on the
Plan 9 machine.

In the Linux mroot, /etc/resolv.conf should be changed to match your network
nameserver. In addition, /etc/apt/sources.list should be updated to a working
Debian mirror. Sarge packages can still be accessed at:

deb http://archive.debian.org/debian−archive/debian sarge
main

EXAMPLES

Linux X11 programs may be used in conjunction with the equis X11 server. For
example, to run the Opera web browser under your Linux mroot, start equis in a
rio window, start linuxemu in another rio window and then from within
linuxemu:

dwm & # X11 window manager
opera & # web browser

Opera should (eventually) appear in the equis window. A window manager (this exam
ple uses dwm) is recommended so that X11 programs interact with window resources
properly.
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DEBUGGING

If linuxemu crashes, use acid to figure out what�s going on:

mk acid
acid −l linuxemu.acid <pid>

Then you can issue the following commands:

ustk()

dump a (userspace) stacktrace for the current thread:

umem(Current()) dump the memory mappings
ufds(Current()) dump the filedescriptor table
utrace(Current()) dump the internal tracebuffer

(enabled by −d option)

Use xasm() and xcasm() for disassembly for Linux code.

Read: acid(1)

You can also enable full trace logging:

linux −r ./mroot −dd /bin/bash −i >[2]/tmp/linuxemu.log

This slows linuxemu down considerably. In case of race conditions, it often happens
that the bug disappears when doing full trace logging!

8.7.2 − Nintendo

Emulators for several Nintendo video game consoles ship with the system:

gb � Game Boy

gba � Game Boy Advance
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nes � Nintendo Entertainment System

snes � Super Nintendo Entertainment System

Read: nintendo(1)

8.7.3 − Sega

An emulator for the Sega Megadrive/Genesis video game console ships with the system:

md � Sega Mega Drive/Genesis

Read: sega(1)

[Continued on next page]
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8.7.4 − Commodore

An emulator for the Commodore 64 home computer ships with the system:

c64 � Commodore 64

Read: commodore(1)

8.7.5 − PC

An emulator for PC compatible computers ships with the system:

vmx � virtual PC
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Read: vmx(1), vmx(3)

8.7.5.1 − Virtualization Using vmx(1)

vmx(1) simulates a virtual PC running a specified kernel file, by using virtualization
extensions found on recent intel processors. Currently, only 9front and recent Linux
and OpenBSD kernels are supported.

The virtual PC is configured on vmx(1)�s command line, and the hardware specified is
seen as virtio devices. It will use one of the host�s CPU cores, and will run on the same
architecture as the host.

Note: vmx executes the operating system�s kernel directly, acting as a bootloader. It
therefore needs explicit support for it unless the kernel is in multiboot format.

Note: vmx currently works on intel processors only, and requires a number of virtual
ization features. To check if your processor is supported, use icanhasvmx(8).

Basic examples:

" Boot 386 kernel with 1 GB of RAM, a 9front iso as a disk, a network
interface through ether0 and a 640x480 framebuffer:

vmx −M 1G −d 9front.iso −n ether0 −v 640x480 /386/9pc

" Instead of a framebuffer, use con(1) to connect to the console:

window −scroll ´bind ´´#|´´ /n/p; \
<>[3]/n/p/data1 {echo 3 >/srv/pipe; \
con −r /n/p/data}´

vmx −c /srv/pipe −M 1G −d 9front.iso /386/9pc ´console=0´

180 



8.7.5.1.1 Block Devices

It may be desirable to attach a disk to the virtual PC. One may then specify a number of
files to be used as raw disk images with the −d flag. The files may be virtually anything
so long as vmx(1) can overwrite them.

The common options here include plain files, sd(3) disks, or ISO images.

The fastest way to generate a big plain file is to create a sparse file. For example, to
create a 4 GB sparse file with dd(1):

dd </dev/zero −of dicks −bs 1 −count 1 \
−seek `{echo 4*1024*1024*1024−1 | pc −n}

Using a real disk might yield somewhat faster performance. For example, using a USB:

vmx −d 9front.iso −d /dev/sdUxxxxx/data −v 640x480 /386/9pc

Use real disks with caution! vmx may induce kernel panics in the guest, for instance
through bugs or quirks in the virtio devices� implementation. Beware that the host
crashing may also trash your disks -- for instance, giving the guest too much memory,
which is always allocated in full on start up, will trigger an OOM on the host.

8.7.5.1.2 Ethernet

If network connectivity is required, the −n parameter specifies an interface to bridge as
a virtio ethernet card. vmx(1) will then send and receive traffic on this interface like
the host. Wireless ethernet interfaces may also be used without any additional work.
The interface can also be a dial string or a plain file. The emulated card�s MAC address
is random by default, and can be changed using an optional ea: prefix.

For example, to bridge an ethernet interface and use DE:AD:BE:EF:CA:FE for the
virtio device�s MAC:

vmx −d 9.img −n ea:deadbeefcafe!ether0 −v 640x480 /386/9pc

8.7.5.1.3 OpenBSD

OpenBSD kernels may change radically between releases. Only 6.1 and later have been
tested. Keep in mind that the versions of the kernel passed to vmx(1) and the system
provided on a disk must be in sync.

Besides the various kernel files and optional devices, little is needed to coerce OpenBSD
to work.

To use the OpenBSD installer, first find a bsd.rd kernel. To then use an existing
OpenBSD install, use a bsd kernel instead. A networked install may be used if an ether
net interface is specified on the command line: it will use OpenBSD�s vio(4) driver.
Otherwise, an install??.fs file may be used as a disk.
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Note: OpenBSD/386 does not support plain framebuffer graphics. You would need to
either use VESA, or configure a COM device and add a tty= option to the command
line.

For example, to install OpenBSD 6.2 to a disk file using an install image and VESA graph
ics:

vmx −d obsd.img −d install62.fs −v vesa:640x480 bsd.rd

Boot options are given as the kernel�s command line. The root device is specified with
the device= option, and if unset, is queried by OpenBSD�s bootloader.

To use VESA with X11, one must specify the -v argument with a vesa: prefix, one or
more display modes, and set machdep.allowaperture=2.

Example usage:

vmx −M 1G −c /srv/pipe −n ether0 −d /dev/sdUa2595/data \
−v vesa:640x480,800x600,1024x768 \
bsd ´tty=com0´ ´device=sd0a´ ´db_console=on´

8.7.5.1.4 Linux

You will need both a kernel and an initrd which will be used as a module. You must also
specify the root disk on the kernel�s command line. The most convenient way to obtain
a kernel is to extract it from the ISO; read 9660srv(4)

An example with Alpine Linux:
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vmx −M 1G −n ether0 −d alpine−standard−3.6.2−x86_64.iso \
−d alp.img −m initramfs−hardened −v vesa:800x600 \
vmlinuz−hardened

After installation:

vmx −M 1G −n ether0 −d alp.img \
−m initramfs−hardened −v vesa:800x600 \
vmlinuz−hardened ´root=/dev/vda1´

Recent versions of Alpine Linux might require specifying the rootfstype= parameter.
Typically, its value will be ext4.

8.7.5.1.5 Windows NT

Classified.

8.8 − Additional Software

8.8.1 − 9front sources server

Additional 9front software is available from a 9P share that is accessible from any Plan 9
system:

9fs 9front

The following files and directories will then be available under /n/:

9front/ � 9front source
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9front.torrent � torrent of current 9front ISO image

extra/ � third party software source

fqa/ � troff sources for 9front Frequently Questioned Answers

hardware/ � known working hardware (sysinfo, firmware, manuals, etc.)

iso/ � current 9front ISO image(s)

8.8.2 − 9front contrib

Some 9front users maintain a contrib directory on an official 9front 9P share (similar to
the contrib arrangement provided by Bell Labs [now deprecated]) that is accessible from
any Plan 9 system:

9fs 9contrib

User directories will then be available under /n/contrib/.

These directories are also accessible via HTTP: http://contrib.9front.org

8.8.3 − Other public 9p servers

A list of active public 9p servers is maintained here:
http://www.9paste.net/qrstuv/9pindex

8.8.4 − Advanced Namespace Tools for Plan 9

ANTS is a collection of modifications and additional software which adds new names
pace manipulation capabilities to Plan 9. It is free software based on 9front and uses the
same licensing, MIT for original code, LPL for modifications of Bell Labs source. Down
load it here: http://9gridchan.info

8.8.5 − Even More Additional Software

> Anyways how about a list of software.

http://shithub.us/git/repos.html
https://github.com/henesy/awesome−plan9
https://sr.ht/projects?search=%23plan9
https://github.com/Plan9−Archive
https://github.com/topics/plan9

8.8.6 − Community Maintained Link For Additional Software

http://wiki.9front.org/extra
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8.9 − Bootstrapping architectures not included on the ISO

8.9.1 − amd64

To setup the amd64 port, install the 386 port from the ISO, then cross compile and
install the amd64 binaries and kernel. Or, simply install from the amd64 ISO.

Read: FQA 5.2.2.1 − Cross compiling, FQA 7.2.5 − How do I install a new kernel?

8.9.2 − Raspberry Pi

The most convenient way to use an rpi is to cross compile and install the arm binaries
and the bcm kernel on the network file server, and then tcp boot the rpi.

Read: FQA 5.2.2.1 − Cross compiling, FQA 6.7.1 − How do I tcp boot?

Updated instructions for installing directly onto the rpi�s sd card are detailed in
Appendix J − Junk

8.9.3 − arm64

# create directory for arm64 files
mount −c /srv/boot /root
mkdir /root/arm64
cd /

# build arm64 compilers
for(i in /sys/src/cmd/7[acl]){cd $i && mk install}

# build remaining arm64 binaries
cd /sys/src
objtype=arm64
mk install

Read: FQA 5.2.2.1 − Cross compiling, FQA 7.2.5 − How do I install a new kernel?

[Continued on next page]
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8.10 − ACPI

Plan9front currently has partial ACPI support for PCI interrupt routing and system shut
down.

8.10.1 − Enabling ACPI

ACPI is now enabled by default. For machines without ACPI, disable it with the presence
of *acpi=0 boot parameter.

The command aux/acpi presents at mountpoint (default /mnt/acpi) an interface
to the ACPI. If a service is specified, the interface will be posted at /srv/service as
well.

Read: acpi(8)

8.12 − Revision Control

8.12.1 − cvs

OpenCVS was ported to Plan 9.

Download it here: http://plan9.stanleylieber.com/src/cvs.tgz

An implementation of a cvs (client) file server, called cvsfs, was also created for Plan
9.

Download it here: http://plan9.stanleylieber.com/src/cvsfs.tgz
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8.12.2 − git

There is a native git implementation available for Plan 9 called git9. It has been
added to the 9front distribution, but upstream is still located here:
http://shithub.us/ori/git9/HEAD/info.html

A guide for git9 has been posted here: http://wiki.9front.org/git9

Previously someone else wrote a shell script wrapper that attempts to replicate some
basic git actions by downloading a zip file from the repository and performing opera
tions on it. Download it here: http://plan9.stanleylieber.com/rc/git

8.12.3 − Mercurial

9front used to ship with Mercurial. Before being replaced with git(1) and redacted
from the distribution, the source for both Python and Mercurial were archived here:
http://git.9front.org/plan9front/pyhg/HEAD/info.html

Read: FQA 5.2.1.1 − hgrc

See also: hgfs(4)

8.12.4 − svn

No.

8.13 − Video

8.13.1 − treason

A video player for 9front. It can play H.264, AV1, VP8 and VP9-encoded MP4/MKV video
files. Only 8-bit per component YUV 4:2:0 is supported atm.

Download it here: https://sr.ht/~ft/treason/

8.13.2 − camv

Once connected, you can search for your camera device in /dev/usb/ctl:

nusb/cam /dev/usb/epXX.X
camv /dev/camXX.X

Read: nusb(4), camv(1),

8.14 − Keyboard Input
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8.14.1 − Keyboard Maps

By default, a us keyboard layout is used. The system provides many other layouts in
/sys/lib/kbmap/. To switch between them, a user may write the map to the
/dev/kbmap file presented by kbdfs(8).

cat /sys/lib/kbmap/colemak > /dev/kbmap

A graphical application, kbmap(1), is also given to provide a graphical menu in which a
user may click between the various keyboard maps provided.

8.14.2 − Ktrans

Ktrans is used for language specific input, supporting Japanese, Chinese (Wubizixing
and Pinyin dictionaries provided), Korean Dubeolsik, and Vietnamese Telex input meth
ods. Specific usage details may be found in ktrans(1), and dictionary information may
be found in ktrans(6).

8.14.2.1 − Japanese

cat /sys/lib/kbmap/jp > /dev/kbmap
jisho=/lib/ktrans/kanji.dict #default
ktrans −l jp /dev/kbdtap

8.14.2.2 − Chinese Pinyin

zidian=/lib/ktrans/pinyin.dict
ktrans −l zh /dev/kbdtap
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FQA 9 − Troubleshooting

9.1 − First

" STATE YOUR ASSUMPTIONS.

" cat /etc/os−release to verify you are not, in fact, running Ubuntu Linux
with a Plan 9 theme.

" Are you running drawterm?

" Verify your OpenBSD configuration.
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" Are you using the qwerty keyboard layout?

" Before reporting a bug, try the latest ISO image.

" MAKE SENSE.

" When all else fails, see: FQA 2.4 − Reporting Bugs

9.2 − Booting

9.2.1 − Boot parameters

" Immediately after the BIOS screen, hit any key until you see the > prompt. From
there, values from plan9.ini may be temporarily added or changed. Read:
9boot(8)

" Boot parameters beginning with a * are interpreted by the kernel. All other
parameters are passed as environment variables to the boot process.

" Adding or changing a parameter: param=value

" Removing a parameter: clear param=

" When finished, type boot to resume booting.

9.2.2 − Break into a shell

At the [bootargs] prompt, type !rc and hit enter to break into a shell. Type exit
to return to the [bootargs] prompt.
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9.2.3 − Editing plan9.ini

" It is not possible to edit plan9.ini stored on the ISO, but parameters can be
changed temporarily before booting. See above.

" On a harddrive installation, plan9.ini is stored with the bootloader and the
kernel in a small FAT partition called 9fat at the beginning of the plan9 parti
tion. The 9fat can be mounted by executing 9fs 9fat from the livecd or the
installed system. The file /n/9fat/plan9.ini can then be edited with a text
editor like acme(1), sam(1) or ed(1).

" If your change to plan9.ini or the 9fat made the system unbootable, it is
always possible to manually override parameters on the > prompt (see above) or
start the system from the livecd and pick your installed cwfs or hjfs partition on
the [bootargs] prompt. Example: local!/dev/sdC0/fscache

9.2.4 − Boot media not recognized

" Break into a shell, then type grep −n ’^01’ ’#$/pci/’*ctl to get the
pci vid/did of the installed disk controllers. then look in the sd drivers to see if the
controller is already recognized.

" Sometimes, there is a problem with the drive, not the controller. cat
/dev/sd*/ctl to get the status of the individual drives.

" Try different BIOS settings like AHCI/IDE mode.

" Try the USB troubleshooting steps (see below). Sometimes USB problems prevent
unrelated devices from working properly.

9.2.5 − I moved my hard drive between ports

If your file system is cwfs(4):

" Let�s assume it went from sdE0 to sdE1.

" At the bootargs prompt:

local!/dev/sdE1/fscache −c
filsys main c(/dev/sdE1/fscache)(/dev/sdE1/fsworm)
filsys dump o
filsys other /dev/sdE1/other
end

[Continued on next page]
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9.3 − Graphics

9.3.1 − Rio fails to start

See the discussion of graphics in FQA 4 − 9front Installation Guide. When you find a
working mode, update your plan9.ini.

9.3.2 − VESA BIOS does not contain a valid mode

The standard solution is to have the customer send the computer back to the manufac
turer, who reflashes the EEPROM with the correct information and return the computer
to the customer.

9.4 − Networking

9.4.1 − Networking is not working

Read: FQA 6.2.8 − Verifying network settings

9.4.2 − Cannot resolve domain names

If ndb/dns is running but you are still unable to resolve domains, you can try adding a
DNS server directly to /net/ndb.

Read: FQA 6.2.5 − DNS Resolution

9.4.3 − /mnt/web/clone does not exist

Programs that require webfs(4) to be running require webfs(4) to be running.

Read: hget(1), mothra(1)

9.4.4 − PCMCIA WiFi stopped working after reboot

Do fshalt and power down completely instead of just rebooting with fshalt −r.

9.5 − USB

9.5.1 − Devices not recognized or not working

" Break into a shell, or simply type in a rio window: cat /dev/usbevent
and try plugging in a USB device. If the devices where detected, some output
should appear on screen. This doesnt mean we have a working driver for it but
verifies that the USB controller and HUB driver recognized the device.
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" Dump USB controller status to the console with echo dump
>/dev/usb/ctl after that, you might recover the output from /dev/kmesg or
run cat /dev/kprint in a separate rio window to not spill it all over the
screen. Check the nintr and tdintr counters to see if they are all zero. If thats
the case, then this is might be a interrupt routing problem sometimes caused by
broken/incomplete BIOS MP tables. See below.

" If USB keyboard is the only option, try to enable PS2 emulation in the BIOS and
disable kernel usb support. See below.

" if the machine employs a USB3.0 (xHCI) controller, try to disable USB3.0 support
in BIOS as the driver may not support your chipset yet.

9.5.2 − System freezes after showing memory sizes

" The boot parameter *acpi=0 will disable ACPI (probably needed for 386
machines).

" Try the boot parameter *nomp= to disable multiprocessor mode.

" Try the boot parameter *nousbehci= (This disables USB 2.0.)

" Try the boot parameter *nousbuhci=

" Try the boot parameter *nousbohci=

" Try the boot parameter *nousbprobe= (This disables USB completely)

" Try the boot parameter *noetherprobe= (This disables Ethernet)

9.6 − auth This space left intentionally blank.

[Continued on next page]
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9.99999999999999999999999999999999999999 − GIVE UP

Give up now.

Go away.

Every joke is a tiny revolution
� George Orwell
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Appendix B − Bounties

INTRODUCTION

This is a wish list that has evolved over time to money.

PLEDGE

Pledge a bounty for a specific task by writing a message to the 9front mailing list. Say
what you mean, offer a definite price, and be prepared to pay up when someone fulfills
your request, deadbeat.

PENDING

Intel Wi−Fi 6 AX201 / Intel Wi−Fi 6E AX210 Driver. $25
Modern ThinkPads have soldered�on WLAN. See also: Make WiFi go faster, below. sl

Wacom PS/2 devices. $100
Would like to draw using ThinkPads that have integrated Wacom PS/2 devices (X1
Tablet, X1 Yoga Gen 6, etc.). Currently, Wacom PS/2 devices are ignored. Please make
them work. sl

Intel 82599 Driver. $70
Must work with a 1x 10Gbit SFP port, also please provide installation instructions. Mr
Neuralwright

Make WiFi go faster. $100
We already live with a theoretical hard limit of 54mbps. In practice, no WiFi card
supported by 9front comes anywhere close to achieving that hard limit. Some newer
cards (Intel 7260, 8265, 9620) even exhibit slower throughput than older cards. All of
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this combined with 9p latency really sucks. Please make WiFi go fast and I will pay you
$100. Acceptable results include "cards capable of throughput approaching 54mbps
consistently exhibit throughput approaching 54mbps" and "cards capable of throughput
greater than 54mbps consistently exhibit throughput greater than 54mbps." sl

Searchable PDFs in page $200
"look" command that allows me to search for text in PDFs

3D Accelerated Graphics $1
what

fully functional, read/write hgfs $55
Python and mercurial have been towed outside the environment. Anyone still want this?

fully functional, read/write gitfs $5
Someone already ported git to Plan 9. Who suggested this bounty? Still interested?

ICC color profiles $10
Support for calibrating displays using custom ICC color profiles. This is most useful for
making livable laptops that have shitty LCD panels.

MP4/VP9 video support $200
Decoder and/or encoder. Details to be determined. Some work in this area was done by
mischief and he was paid $200 of the original $400 bounty. Sigrid has take this a lot
farther, displaying youtube videos in full motion. Someone pay her?

vcardfs $5
File system for vCard files, preferably read AND write. sl will actually pay for this.

USB WiFi driver (you choose hardware) $5
Generally useful.

SSH server $5
SSH straight to 9front and authenticate with 9front user credentials. Potential use cases
include: SSH from phones, serve git, etc.

fix/polish hubfs, or create TMUX−alike $5
When you SSH in from a phone, you don�t want to do a lot of typing to resume where
you left off before your network connection dropped. kvik may qualify for this prize with
pin(1).

dmenu−bar for the i3−like rio replacement with useful info 30 euros
Some info that should be possible to display: workspaces, system info (cpu load,
memory load, network load, ...), digital 24h clock. If not configurable, the bar should be
at the top of the screen on all work spaces.

configuration−file based customization of the i3−like rio replacement and dmenu−
like bar 20 euros
A configuration file where key bindings and colours can be adjusted.

games/md Sega CD support $5
SNATCHER wasn�t a cartridge game.

games/tg16 TurboGrafx 16 $5
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Should exist.

OneDrive file system 20
Must Have (20 )

* File management (full CRUD support). * Works with OneDrive. * Works with
Sharepoint Drives. * Works with official Microsoft servers (office.com stuff).

Should Have

* User keys in factotum. * No complicated configuration. Auth info, drive (and maybe
server?) should be enough. * Native C preferred (9front).

Nice to Have (+5 )

* Access versions: File versions are provided by OneDrive/Sharepoint. Use these. * Lazy
caching: OneDrive protocol provides sha1sums. Files could be stored in a persistent
cache (simple directory?). cat file >/dev/null& for manually caching is fine. * some way
to show files are cached (maybe with ls?).

arm64 golang + gofmt $550
I will also accept simply being able to run GOOS=plan9 GOARCH=amd on the 64-bit
plan9 pi image.

DONE (pay up, deadbeats)

Intel 8260 WiFi driver $5
sl�s ThinkPad X1 Tablet 1st Gen can�t WiFi. DONE (pay cinap)

dwm/i3/sway−like rio replacement 50 euros
10 work spaces, tiling, start terminal with $mod+enter, switch work space with
$mod+number. DONE (paid sigrid)

Native Intel VGA Driver $260
People want to be able to access resolutions not presented via VESA. DONE (pay cinap)

Bookmark Support in page(1) $10
People want to bookmark things in PDFs and such, to come back to later. (How about
generic "snarf where I am" support? Some want to copy image path/name.) DONE (pay
cinap)

Quake $5
Apparently Doom is not good enough. DONE (pay qwx)

bsdemu $1
Linuxemu is the Linux treadmill. Since the point of all this is being able to run software
not supported in Plan 9, rather than simply worshipping Linux, OpenBSD makes more
sense as a base platform, since the contents of its ports tree are both 1.) (now)
reasonably up to date, and 2.) to some extent, pre-checked for abrigations of sanity.
Syscalls are still out of control, but let�s examine the real cost/benefit of the emulation
approach. DONE (see vmx(1)) (pay aiju)

look $5
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put the look command in rio DONE (pay cinap)

fix webfs to work with livejournal.com $1
Currently, after logging in to livejournal.com, webfs gets stuck in a 302 redirect loop
when visiting any account_name.livejournal.com virtual host. DONE (pay cinap)

replace p9sk1 with something better $10
We�re sitting ducks. DONE (pay cinap)

qemu or qemu−alike $50
PC hardware virtualization. Expose guest resources to the host. Forget about
linuxemu/bsdemu forever. DONE (see vmx(1)) (pay aiju)

improve TLS support $10
The tls(3) device implements the record layer protocols of Transport Layer Security
version 1.0 and Secure Sockets Layer version 3.0. It does not implement the handshake
protocols, which are responsible for mutual authentication and key exchange. 9fans has
debated what form expansion of TLS should take. Wanted: more ciphers, support for
user certificates, support for certificate verification. ECDSA! ECDHE! Also: SNI support in
tlssrv.

Some work has already been done:

libsec: implement tlsClient support for RFC6066 server name identification (SNI) (pay
cinap)

libsec: add TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA client cipher suit support (pay
cinap)

libsec: add aes_128_cbc and aes_256_cbc ciphers (pay mischief)

libsec/x509: use SHA2-256 digest algorithm instead of MD5 (pay cinap)
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libsec/tlshand: implement client side ECDHE (pay pr)

libsec: TLS1.1 support (needs new devtls) (pay cinap)

libsec: TLS1.2 client support (pay cinap)

libsec: TLS1.2 server support, make cipher list with most prefered first (pay cinap)

libsec: add TLS_RSA_WITH_AES_128_CBC_SHA256 and
TLS_RSA_WITH_AES_256_CBC_SHA256 ciphers (pay mischief)

libsec: add curve25519() from http://code.google.com/p/curve25519-donna/ (pay
cinap)

libsec: add rfc5869 hmac-based key derivation function hkdf_x() (pay cinap)

libsec: add TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 and
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 cipher suits (pay cinap)

libsec: implement client certificate authentication for tls1.2 (pay cinap)

libsec: add poly1305 (pay cinap)

libsec: add chacha cipher (from charles forsyth) (pay cinap)

libsec: add chacha20 poly1305 aead, allow 64 bit iv�s for chacha, add tsmemcmp() (pay
cinap)

tls: implement chacha20/poly1305 aead cipher suits (pay cinap)

libsec: add salsa20 stream cipher (pay cinap)

libsec: ecdsa client support for tlshand (pay cinap)

libsec: add libc.h include for aes_xts.c (drawterm) (pay cinap)

libsec: implement elliptic curve group operations in jacobian coordinate system (pay
cinap)

libsec: implement server side SCSV preventing silly client fallbacks (pay cinap)

shit ton of other tls work (pay cinap)
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Appendix G − GSOC

GSOC project ideas

Difficulty on a scale 1−5

Generally all of our projects require C programming and prior experience with C is a
prerequisite for all of them. Prior experience with Plan 9, while not technically a prereq
uisite, is extremely helpful and any student is advised to at least carefully read the Plan
9 documentation before applying.

MPEG−4 decoder (4)
The goal of this project is to create a video decoder to allow native playback of MPEG-4
video. This is a very challenging project that requires a very solid background in C.
Potential mentors: cinap_lenrek Skills: Reading and understanding the MPEG-4
documentation which probably requires a certain minimum of mathematical skills,
writing and debugging complex programs

Sam scrolling and other GUI work (2)
Scrolling in the text editor sam is currently very erratic. The goal of this project is to
improve on this situation. This project does not require much programming per se but it
does require analyzing, understanding and improving existing code. This project would
probably be extended to fixing other GUI problems. Potential mentors: cinap_lenrek,
Ori_B Skills: being able to innovate, coming up with algorithms for GUI problems such as
scrolling

Improved APE (2)
Our ANSI/POSIX emulation layer is currently very unpolished and improving the coverage
would be a worthwhile project. This is not very difficult but probably a lot of work.
Potential mentors: cinap_lenrek, Ori_B Skills: reading ANSI/POSIX documentation,
debugging code written by other people
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Drivers (3)
This project would consist of multiple drivers (to be decided) that need to be written.
This project is modestly challenging. Potential mentors: cinap_lenrek Skills: general
systems programming, prior OS development experience helpful

DjVu/CHM/Jbig2 support (2)
Our document reader page(1) needs DjVu, CHM and Jbig2 (PDF encoding) support.
Another project that�s not particularly challenging but a lot of work. Potential mentors:
cinap_lenrek, Ori_B Skills: reading and implementing documentation for various
document standards, some experience with image processing probably helpful

Improving acid (3)
Our debugger acid(1) lacks several useful debugging features that might be worth
looking into, such as watchpoints. The goal would be to research what might be good
features and implement them. This may require kernel changes. Potential mentors:
cinap_lenrek Skills: general systems programming, familiarity with low-level concepts

Implement ECDSA and ECDHE for TLS (2)
This would be implementing the ECC cipher suits for TLS (rfc4492) with libsecs ec(2)
functions. This should be a relatively easy task for beginners. Potential mentors:
cinap_lenrek Skills: reading standards, reading code, cryptopgraphy

Version control hosting support for werc (1)
Werc is a web anti-framework written in rc, the Plan 9 shell. rc-httpd is an HTTP server
written in the same language. 9front uses git for version control -- but nobody�s done
much work on making 9front able to *host* git repos. This project would involve setting
up werc and rc-httpd on a 9front System, then teaching werc to work with hg to host
repositories. For bonus points, test your changes on a UNIX system to make sure it�s
portable! Potential mentors: khm Skills: web stuff, mercurial, rc scripting Note: 9front
has recently switched from mercurial hosted on 9front to git hosted on 9front, so this
project may now be obsolete. (Pending redaction.)

Internet of things project: use 9p for sensor networks (1−2)
Write a 9p server and client (as you see fit) on the orchestrator and nodes. Create and
evaluate text-based protocol for 9p-based sensor network orchestration. You can use
rpi for everything, but are also free to choose a low-power solution for the nodes if
you�re up for some low-level C programming experience. Potential mentors: jpm Skills:
soldering, theory of sensor networks, C
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Appendix J − Junk

Raspberry Pi

Installation Instructions

The current release supports raspi1, 2, 3, and 4, and you can build a sdcard image that
will be bootable on raspi by running:

[Continued on next page]
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cd /sys/src

# build 32−bit arm userspace
objtype=arm
mk install

# build 64−bit arm64 userspace
objtype=arm64
mk install

# download raspi firmware
cd /sys/src/boot/bcm
mk

# build 32−bit kernel for rpi1 or rpi2 (pi2 also works for raspi3)
cd /sys/src/9/bcm
mk ’CONF=pi’ install
mk ’CONF=pi2’ install

# build a 64−bit kernel for rpi3 or rpi4
cd /sys/src/9/bcm64
mk ’CONF=pi3’ install
mk ’CONF=pi4’ install

# build bootable hjfs sdcard image for rpi
cd /sys/lib/dist
bind / /n/src9
mk /path/to/somethingsomething.pi.img

Once booted on the Raspberry Pi, you�re able to mount the dos partition with:

9fs pidos

This will mount the dos partition on /n/pidos, similar to how 9fs 9fat works.
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FQA Appendix L − Languages

C

Read: Plan 9 C Compilers, How to Use the Plan 9 C Compiler

C++

Read: Bjarne Stroustrup: "I Did It For You All..."
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C#

Go

Note: The following instructions may be more up to date:
http://wiki.9front.org/building−go

For now, this still works:

[Continued on next page]
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# automatically converted ca certs from mozilla.org
hget https://curl.haxx.se/ca/cacert.pem >/sys/lib/tls/ca.pem

# shell script that emulates git commands
hget http://9front.org/extra/rc/git >$home/bin/rc/git
chmod 775 $home/bin/rc/git

# fetch the repository
git clone https://go.googlesource.com/go
cd go
git checkout go1.4.2 # amd64 only: bootstrap with 1.4.2

# build go
cd src
./make.rc

# install documentation
go get golang.org/x/tools/cmd/godoc

# go!

Read: Documentation − The Go Programming Language and Go Plan 9 Wiki

Haskell

[Continued on next page]
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Perl

Perl 5.8.0, ported to Plan 9: http://plan9.bell-labs.com/sources/extra/perl.iso.bz2

PHP
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Python

Python 2.5.1 used to be included with the 9front distribution, not because anyone loved
Python, but because it was required by Mercurial (also loved by no one), which was
required by Google Code (which shut down in 2015). An abject lesson in expediency.
9front�s old Python and Mercurial are archived here:
http://git.9front.org/plan9front/pyhg/HEAD/info.html

Jeff Sickel ported Python 2.7 to Plan 9.

Ruby

Read: Ruby is Not Even Funny
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I am now used to the FQA being frankly not worth the 1s and 0s it was written in
� B. µ �

Once upon a time, khm was searching for rails documentation and accidentally
hit the Images link. In the first page of results was a photo of the train tracks of
Auschwitz. Its presence among the Ruby on Rails logos was so absurd and out of place
that khm memorialized it. It was made in an era before actual Nazis had re-entered the
public dialogue, so it felt like Google Image Search was denigrating Ruby on Rails by
including this sort of imagery in the results.

Generally speaking, 4chan types read it as an endorsement, which sucks. More recently,
people who are not assholes have also begun to read it as an endorsement, which is
even more unfortunate. Finally, the people who just get mad about things on social
media have begun nesting in it. As a result, this image has been targeted for redaction
by the 9front Internet Mob Mollification committee.

Read: https://news.ycombinator.com/item?id=25777580,

https://mastodon.social/@stevelord/105509463981426031,

https://lobste.rs/s/2tvtwp
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FQA Appendix T − TODO

Introduction

This is a list of possible things to add, remove, change in 9front. After there�s been
some consensus that something here is going to be implemented, an issue may be cre
ated on the bug tracker (which no longer exists).

Crazy Ideas

" make a TODO list which isn�t full of bullshit and random suggestions

Basically Sound

" dan cross� sor
http://permalink.gmane.org/gmane.os.plan9.general/8755

" video decoder/player (ffmpeg port?) (see FQA Appendix B − Bounties )

" graphviz

" equis:

� use /dev/kbd (for video game emulators, amongst other things)

� snarf/paste support (might be good as client program�how would this
work?)

" openvpn

" unrar 3

" un7zip
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" VacFS

" client auth

" groups (?)

" write access

" N64, PSX, SMS, TG-16 emulators

" music tracker program (sequencer), see: sigrid�s native FastTracker II clone

" pico(1) (the plan 9 image manipulation language), see:
http://nopenopenope.net/posts/pico

" OPUS audio support
http://tools.ietf.org/html/rfc6716

" djvu support

" chm support
http://www.nongnu.org/chmspec/latest/index.html

" GUI programs (mothra, abaco, sam, etc.) should have shift+up/down arrow
behavior like rio

" add magnet/dht and peer discovery support to ip/torrent

" implement some way to determine used and free space on FAT volumes

Somebody Else’s Problem

" inferno:

� make snarf work by default

� fix build on amd64

For the Masochists

" write NTFS driver

" exfat filesystem

For the Users

" read fqa

" read man pages

" read plan 9 papers

" learn c
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FQA Appendix Z − Getting Started With 9front

Many users are not only new to 9front, but new to Plan 9.

You may be lost.

Read: http://massivefictions.com/fuck_computers/

Listen: https://archive.org/download/Piracy/Piracy-Track_04-Nobody_Listens_vbr.mp3

Self-test: http://n-gate.com

Finally: Turn off your machine and get a life.
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NOTES
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