Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

En arithmétique modulaire, le lemme de Thue établit que tout entier modulo m peut être représenté par une « fraction modulaire » dont le numérateur et le dénominateur sont, en valeur absolue, majorés par la racine carrée de m. La première démonstration, attribuée à Axel Thue, utilise le principe des tiroirs. Appliqué à un entier m modulo lequel –1 est un carré (en particulier à un nombre premier m congru à 1 modulo 4) et à un entier a tel que a2 + 1 ≡ 0 mod m, ce lemme fournit une expression de m comme somme de deux carrés premiers entre eux.

Property Value
dbo:abstract
  • En arithmétique modulaire, le lemme de Thue établit que tout entier modulo m peut être représenté par une « fraction modulaire » dont le numérateur et le dénominateur sont, en valeur absolue, majorés par la racine carrée de m. La première démonstration, attribuée à Axel Thue, utilise le principe des tiroirs. Appliqué à un entier m modulo lequel –1 est un carré (en particulier à un nombre premier m congru à 1 modulo 4) et à un entier a tel que a2 + 1 ≡ 0 mod m, ce lemme fournit une expression de m comme somme de deux carrés premiers entre eux. (fr)
  • En arithmétique modulaire, le lemme de Thue établit que tout entier modulo m peut être représenté par une « fraction modulaire » dont le numérateur et le dénominateur sont, en valeur absolue, majorés par la racine carrée de m. La première démonstration, attribuée à Axel Thue, utilise le principe des tiroirs. Appliqué à un entier m modulo lequel –1 est un carré (en particulier à un nombre premier m congru à 1 modulo 4) et à un entier a tel que a2 + 1 ≡ 0 mod m, ce lemme fournit une expression de m comme somme de deux carrés premiers entre eux. (fr)
dbo:namedAfter
dbo:wikiPageID
  • 10182893 (xsd:integer)
dbo:wikiPageLength
  • 8896 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 181413057 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En arithmétique modulaire, le lemme de Thue établit que tout entier modulo m peut être représenté par une « fraction modulaire » dont le numérateur et le dénominateur sont, en valeur absolue, majorés par la racine carrée de m. La première démonstration, attribuée à Axel Thue, utilise le principe des tiroirs. Appliqué à un entier m modulo lequel –1 est un carré (en particulier à un nombre premier m congru à 1 modulo 4) et à un entier a tel que a2 + 1 ≡ 0 mod m, ce lemme fournit une expression de m comme somme de deux carrés premiers entre eux. (fr)
  • En arithmétique modulaire, le lemme de Thue établit que tout entier modulo m peut être représenté par une « fraction modulaire » dont le numérateur et le dénominateur sont, en valeur absolue, majorés par la racine carrée de m. La première démonstration, attribuée à Axel Thue, utilise le principe des tiroirs. Appliqué à un entier m modulo lequel –1 est un carré (en particulier à un nombre premier m congru à 1 modulo 4) et à un entier a tel que a2 + 1 ≡ 0 mod m, ce lemme fournit une expression de m comme somme de deux carrés premiers entre eux. (fr)
rdfs:label
  • Lemma di Thue (it)
  • Lemma von Thue (de)
  • Lemme de Thue (fr)
  • Lemma di Thue (it)
  • Lemma von Thue (de)
  • Lemme de Thue (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of