Property |
Value |
dbo:abstract
|
- En arithmétique modulaire, le lemme de Thue établit que tout entier modulo m peut être représenté par une « fraction modulaire » dont le numérateur et le dénominateur sont, en valeur absolue, majorés par la racine carrée de m. La première démonstration, attribuée à Axel Thue, utilise le principe des tiroirs. Appliqué à un entier m modulo lequel –1 est un carré (en particulier à un nombre premier m congru à 1 modulo 4) et à un entier a tel que a2 + 1 ≡ 0 mod m, ce lemme fournit une expression de m comme somme de deux carrés premiers entre eux. (fr)
- En arithmétique modulaire, le lemme de Thue établit que tout entier modulo m peut être représenté par une « fraction modulaire » dont le numérateur et le dénominateur sont, en valeur absolue, majorés par la racine carrée de m. La première démonstration, attribuée à Axel Thue, utilise le principe des tiroirs. Appliqué à un entier m modulo lequel –1 est un carré (en particulier à un nombre premier m congru à 1 modulo 4) et à un entier a tel que a2 + 1 ≡ 0 mod m, ce lemme fournit une expression de m comme somme de deux carrés premiers entre eux. (fr)
|
dbo:namedAfter
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 8896 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En arithmétique modulaire, le lemme de Thue établit que tout entier modulo m peut être représenté par une « fraction modulaire » dont le numérateur et le dénominateur sont, en valeur absolue, majorés par la racine carrée de m. La première démonstration, attribuée à Axel Thue, utilise le principe des tiroirs. Appliqué à un entier m modulo lequel –1 est un carré (en particulier à un nombre premier m congru à 1 modulo 4) et à un entier a tel que a2 + 1 ≡ 0 mod m, ce lemme fournit une expression de m comme somme de deux carrés premiers entre eux. (fr)
- En arithmétique modulaire, le lemme de Thue établit que tout entier modulo m peut être représenté par une « fraction modulaire » dont le numérateur et le dénominateur sont, en valeur absolue, majorés par la racine carrée de m. La première démonstration, attribuée à Axel Thue, utilise le principe des tiroirs. Appliqué à un entier m modulo lequel –1 est un carré (en particulier à un nombre premier m congru à 1 modulo 4) et à un entier a tel que a2 + 1 ≡ 0 mod m, ce lemme fournit une expression de m comme somme de deux carrés premiers entre eux. (fr)
|
rdfs:label
|
- Lemma di Thue (it)
- Lemma von Thue (de)
- Lemme de Thue (fr)
- Lemma di Thue (it)
- Lemma von Thue (de)
- Lemme de Thue (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |