dbo:abstract
|
- Soit (X, Σ, μ) un espace mesuré. On dit que la mesure μ est σ-finie lorsqu'il existe un recouvrement dénombrable de X par des sous-ensembles de mesure finie, c'est-à-dire lorsqu'il existe une suite (En)n∈ℕ d'éléments de la tribu Σ, tous de mesure finie, avec (fr)
- Soit (X, Σ, μ) un espace mesuré. On dit que la mesure μ est σ-finie lorsqu'il existe un recouvrement dénombrable de X par des sous-ensembles de mesure finie, c'est-à-dire lorsqu'il existe une suite (En)n∈ℕ d'éléments de la tribu Σ, tous de mesure finie, avec (fr)
|
rdfs:comment
|
- Soit (X, Σ, μ) un espace mesuré. On dit que la mesure μ est σ-finie lorsqu'il existe un recouvrement dénombrable de X par des sous-ensembles de mesure finie, c'est-à-dire lorsqu'il existe une suite (En)n∈ℕ d'éléments de la tribu Σ, tous de mesure finie, avec (fr)
- Soit (X, Σ, μ) un espace mesuré. On dit que la mesure μ est σ-finie lorsqu'il existe un recouvrement dénombrable de X par des sous-ensembles de mesure finie, c'est-à-dire lorsqu'il existe une suite (En)n∈ℕ d'éléments de la tribu Σ, tous de mesure finie, avec (fr)
|