Monitoring corrosion-induced cracks in concrete by acoustic emission

Faculty of Engineering, Kumamoto University, Kurokami, Kumamoto, Japan

Taiheiyou Cement Corporation, Sakura, Tiba, Japan

Y. Kawasaki & M. Ohtsu

The Manusian of Technology, Kumamoto University, Kurokami, Kumamoto, JAPAN

ABSTRACT: Concrete structures suffer from the corrosion of reinforcing steel-bars due to severe environments, in particular, chloride attack. Acoustic Emission (AE) techniques have been extensively applied to concrete and concrete structures. In order to identify the onset of corrosion and the nucleation of concrete cracking due to expansion of corrosion products, continuous AE monitoring is available. These corrosioninduced cracks in concrete are studied in an accelerated corrosion test, where kinematics of micro-cracks is identified by SiGMA (Simplified Green's functions for Moment tensor Analysis). Monitoring the corrosion process of rebar by AE, it is confirmed that the onset of corrosion and the nucleation of corrosion-induced cracks in concrete are successfully identified. Then, generating mechanisms of corrosion-induced cracks are clarified by the SiGMA analysis.

1 INTRODUCTION

In order to avoid harmful corrosion damages before reaching critical level, a variety of monitoring methods have been developed (Dubravka et al., 2000). One effective method is nondestructive evaluation (NDE), by which the corrosion of rebar is evaluated quickly and inexpensively, using a sensor or a probe placed on the surface of existing concrete structures, or embedded inside concrete for new structures. NDE methods are practical and useful in both a laboratory test and on-site measurement. So far, electrochemical techniques of the half-cell potential, the polarization resistance and so forth are widely employed. The corrosion potentials or currents during the electrochemical corrosion process are evaluated. Recently, acoustic emission (AE) (Ohtsu, 2003) method is introduced for detecting microcracks generated by corrosion.

According to the relationship between deterioration of RC structures and a lifecycle of RC structure shown in Figure 1 (JSCE, 2001), deterioration process of a concrete structure due to corrosion is divided into four stages of dormant, initiation, acceleration and deterioration. Since the dormant stage is governed by penetration of chloride ions, onset of corrosion depends on the microstructure of concrete, the external environment and initial concentration of chloride ions, the thickness of cover and so on. When the chloride concentration at the rebar surface

Figure 1. Deterioration process due to corrosion.

exceeds the critical value, a passive film on the surface of rebar is destroyed. Then the onset of corrosion is started. Following the stage, the electrochemical reaction is initiated and continues with supplying oxygen and water. Then, corrosion products on surfaces of rebar grow with time and nucleate micro cracks in concrete. This corresponds to the initiation stage in Figure 1. NDE methods are applied to detect the corrosion at an early stage. Normally, the electrochemical techniques are applicable after the initiation stage. It is reported (Ohtsu, 2003, Ohtsu & Tomoda, 2008) that the onset of corrosion and the nucleation of concrete cracking are qualified from AE activity. Consequently, continuous AE exceeds the critical value, a passive film
face of rebar is destroyed. Then the ons
sion is started. Following the stage,
chemical reaction is initiated and con
supplying oxygen and water. Then, corructs on surfaces of reb document
stage
domainstage
domainstage of rebar
ing oxy
n surface
of crace
to detec
the elemitia
& Tom
nucles
AE ac
AE ac 1. Det
1. Det
5 stages in the stage of t stage
stage
ical value
destroy Follow
on is it
an and v
of reba
in conce
in Figure
on stage
la, 2008
ity. Co
iv. Co
Proceed ion process is described to the coche of the coche of the coche of the coche stage of the coche of the co acceleration
stage
acceleration
stage
and the stage
atted and of
the stage and the stage
of the stage in the stage is reported
at the ons
ete cracking
quently, c
of FraMCoS-
of FraMCoSue to a pass
Then the stated
then the stage of the stage of France
the stage of France
of France of France
of France of France and the definition of the same The correction

orrosion

the initial

orthica

orthica

orthica

orthica

orthical

faction

faces of the

extends in

age in

extends in

lectroc

tiation

omoda,

leation

activity

P ↓

Int initistage

initistage

initial

initial

initial

initial

inverse a face of racks in

inge in lect the electroch

itation s

indication comoda,

ileation cactivity.

Pre concrete cracl

accelerati

stage

accelerati

stage

stage

exacts are then the statiliated and

water. Then

interate and

reference in Superior

interation of the stage

interation of the stage

interation of the stage
 concrete cracking
acceleration
stage
acceleration
stage
example of the stage,
initiated and contraction
in the stage,
nitiated and contraction
of the stage,
in the stage,
in the stage of the stage of the stage
of the stage Time

stage

Time

Time

Time

Time

Time

Time

Time

non the stage

the electron

the electron

the electron

propeds to the stage. Not

the are applical

(Ohtsu, 200

to f corrosing are qualified

to f corrosing are qua n.

m on onset the

stage of the position

internal stage of the stage of the stage of the stage of the stage

is a stage of the stage of the

i g or Concrete Succiuse 8. ft. on et al. examples 8. ft. on et al. examples the transition of the terms in a variable. These corresponds the been exte The matter of the model of the model of the model of the model of and the muchain of contraction of contraction of the model of the model of the model of the corresponding the corresponding the corresponding the correspond moisture permeability and it is a nonlinear function *ami, Kumamoto, JAPAN*

g steel-bars due to severe environ-

slave been extensively applied to

ble been extensively applied to

in an die nucleation of concrete

charge is available. These corrosion-

charges is availabl xami, Kumamoto, JAPAN

g steel-bars due to severe environs

have been extensively applied to

ion and the nucleation of concrete

ring is available. These corrosion-

here kinematics of micro-cracks is

he nucleation of c Example 1. Numamoto, JAPAN

state been extensively applied to

is have been extensively applied to

in an die nucleation of concrete

infere kinematics of micro-cracks is

handysis). Monitoring the corrosion-

the nucleati ann

in Stami, Kumamoto, JAPAN

g steel-bars due to severe environ-

shave been extensively applied to

induction and the nucleation of concrete

in the steel content with the content of content

he nucleation of corresio Example 1.1 Manufor Control Manuforcy APAN

Equality and the nucleation of concreting is available. These corrosion

where the mondities of micro-cracks

analysis). Monitoring the corrosion-

the more extension of corrosi 2 State of the control of ii, *Kumamoto, JAPAN*
teel-bars due to severe environ-
and the nucleation of concrete
a and the nucleation of concrete
g is available. These corrosion-
invisis). Monitoring the corrosion included
of corrosion-induced crack teel-bars due to severe environ-
ave been extensively applied to
a nd the nucleation of concrete
g is available. These corrosion-
in and the nucleation of concretes is
lysis). Monitoring the corrosion-
induced
of corrosion g steel-bars due to severe environ-
s have been extensively applied to
ion and the nucleation of concrete
tring is available. These corrosion-
there kinematics of micro-cracks is
he nucleation of corrosion-induced
cms of c g steel-bars due to severe environ-

Shave been extensively applied to

on and the nucleation of concrete

oring is available. These corrosion-

Anelysis). Monitoring the corrosion-

Analysis). Monitoring the corrosion-

A g steel-bars due to severe environ-
S have been extensively applied to
ion and the nucleation of concrete
ring is available. These corrosion-
there kinematics of micro-cracks is
halysis). Monitoring the corrosion
the nucle s nave been extensively applied to
tion and the nucleation of concrete
pring is available. These corrosion-
there kinematics of micro-cracks is
 $\lim_{h \to 0}$ and the nucleation of corrosion-induced
ms of corrosion-induced cr ion and the nucleation of concrete
Pring is available. These corrosion-
there kinematics of micro-cracks is
 Analysis). Monitoring the corrosion-
Induced on of corrosion-induced cracks are

ms of corrosion-induced cracks ring is available. These corrosion-

Andere kinematics of micro-cracks is

handysis). Monitoring the corrosion

the nucleation of corrosion-induced

ms of corrosion-induced cracks are

multiation of

multiation stage

mu There kinematics of micro-cracks is

denaylsis). Monitoring the corrosion

the nucleation of corrosion-induced cracks are

more of corrosion-induced cracks are

more of corrosion-induced cracks are

more the cracking

on
 \sum_{max}
 \sum_{max} analysis). Monitoring the corrosion-induced

the nucleation of corrosion-induced cracks are
 \sum_{max}
 \sum_{max} The nucleation of corrosion-induced

ms of corrosion-induced cracks are

will concrete cracking

on

mitiation

on growing the stage

will carge

acceleration

Time

stage

on process due to corrosion.

and value, a passiv ms of corrosion-induced cracks are

will define the context cracking

on

the context cracking

the stage

on process due to corrosion.

and value, a passive film on the sur-

Following the stage, the electro-

Following m

on

intitiation

tage

on proces

cal value

lestroye

Followi

n is in

of rebar

in concr

m Figure

corro:

chemic

a, 2008)

n of corro:

p corro where *stage*

where *stage*

initiation acceleration

stage

on process due to corrosion.

al value, a passive film on the sur-

lestroyed. Then the onset of corro-

Following the stage, the electro-

π is initiated and France Controlling and Schemendary

in the stage

in the stage

isotopy on process due to corrosion.

Time

and value, a passive film on the sur-

destroyed. Then the onset of corro-

Following the stage, the electro-

in stage

initiation acceleration Time

tage

tage

on process due to corrosion.

all value, a passive film on the sur-

Following the stage, the electro-

Following the stage, the electro-

in is initiated and continues with Time

initiation acceleration

stage

on process due to corrosion.

al value, a passive film on the sur-

lestroyed. Then the onset of corro-

Following the stage, the electro-

n is initiated and continues with

and water Time

Stage

Time

Stage

Stage

The stage

Stage

The stage film on the sur-

troyed. Then the onset of corro-

Ilowing the stage, the electro-

ind water. Then, corrosion producementar and nucle-

concrete. This correspo nitiation acceleration Time
tage stage Theorem and value, a passive film on the sur-
lestroyed. Then the onset of corro-
Following the stage, the electro-
n is initiated and continues with
and water. Then, corrosion prod-
 stage

stage

stage

stage

stage

can process due to corrosion.

and value, a passive film on the sur-

following the stage, the electro-

in is initiated and continues with

in and water. Then, corrosion prod-

of rebar humidian and the surface of FramCos-7, May 23-28, 2010 Proceedings of FramCos-7, May 23-28, 2010 n process due to corrosion.

Examples are all value, a passive film on the sur-

lestroyed. Then the onset of corro-

Following the stage, the electro-

n is initiated and continues with

n and water. Then, corrosion prodon process due to corrosion.

Eal value, a passive film on the sur-

lestroyed. Then the onset of corro-

Following the stage, the electro-

n is initiated and continues with

1 and water. Then, corrosion prod-

of rebar on process due to corrosion.

real value, a passive film on the sur-

lestroyed. Then the onset of corro-

Following the stage, the electro-

n is initiated and continues with

n and water. Then, corrosion prod-

of rebar real value, a passive film on the sur-
lestroyed. Then the onset of corro-
Following the stage, the electro-
n is initiated and continues with
n and water. Then, corrosion prod-
of rebar grow with time and nucle-
in concre real value, a passive film on the sur-
lestroyed. Then the onset of corro-
Following the stage, the electro-
n is initiated and continues with
n and water. Then, corrosion prod-
of rebar grow with time and nucle-
in concre relatively. Then the onset of corro-
Following the stage, the electro-
Tollowing the stage, the electro-
n is initiated and continues with
n and water. Then, corrosion prod-
of rebar grow with time and nucle-
in concrete. be used according the stage, the electro-
Following the stage, the electro-
n is initiated and continues with
n and water. Then, corrosion prod-
of rebar grow with time and nucle-
in concrete. This corresponds to the
n Fig relativity the stage, the steamed in is initiated and continues with a and water. Then, corrosion prod-
of rebar grow with time and nucle-
in concrete. This corresponds to the
in Figure 1. NDE methods are ap-
ee corrosion is and water. Then, corrosion prod-
of rebar grow with time and nucle-
in concrete. This corresponds to the
n Figure 1. NDE methods are ap-
ne corrosion at an early stage. Nor-
ochemical techniques are applicable
n stage. read water. Then, correction production
of rebar grow with time and nucle-
in concrete. This corresponds to the
n Figure 1. NDE methods are ap-
ne corrosion at an early stage. Nor-
ochemical techniques are applicable
n sta in concrete. This corresponds to the
in concrete. This corresponds to the
n Figure 1. NDE methods are ap-
e corrosion at an early stage. Nor-
ochemical techniques are applicable
n stage. It is reported (Ohtsu, 2003,
a, 200 in Figure 1. NDE methods are ap-
in Figure 1. NDE methods are ap-
ochemical techniques are applicable
in stage. It is reported (Ohtsu, 2003,
a, 2008) that the onset of corrosion
in of concrete cracking are qualified
ty. Co ration, and a ratio are the corrosion at an early stage. Nor-
ochemical techniques are applicable
n stage. It is reported (Ohtsu, 2003,
a, 2008) that the onset of corrosion
m of concrete cracking are qualified
ty. Conseque chemical techniques are applicable
n stage. It is reported (Ohtsu, 2003,
a, 2008) that the onset of corrosion
n of concrete cracking are qualified
ty. Consequently, continuous AE
Proceedings of FraMCoS-7, May 23-28, 2010 entrificant committed are approached in stage. It is reported (Ohtsu, 2003, a, 2008) that the onset of corrosion in of concrete cracking are qualified ty. Consequently, continuous AE
Proceedings of FraMCoS-7, May 23-28, 20 follows, 2008) that the onset of corrosion
in of concrete cracking are qualified
ty. Consequently, continuous AE
Proceedings of FraMCoS-7, May 23-28, 2010 concrete cracking are qualified
in of concrete cracking are qualified
ty. Consequently, continuous AE
Proceedings of FraMCoS-7, May 23-28, 2010 paper the semi-empirical expression of Framework Semi-empirical expression proceedings of FramCoS-7, May 23-28, 2010

measurement is applied to identify the transition periods at the onset of corrosion and at the nucleation cracking. Comparing with diffusion analysis of chloride ions, AE activities are investigated in experiments and result are confirmed by scanning electron micrograph (SEM).

The identification of fracture process zone by strain gages and displacement transducers are limited, whereas AE techniques are able to estimate these zones by taking into account AE source cluster. As for the progress of micro-cracks in concrete, SiGMA (Simplified Green's functions for Moment SiGMA (Simplified Green's functions for Moment
tensor Analysis) procedure has been successfully applied (Ohtsu 1991 Ohtsu & Shigeishi, Ohno et al. 2008). Such kinematics of an AE source, as crack location, crack type and crack orientation are identified by AE parameter and SiGMA analysis from detected AE waveforms. cron sirtusta 21.1 ft 21.1 red 4 sastroning R 4 sa

2 AE PARAMETER ANALYSIS

Figure 2. AE measurement.

AE is detected by micro-cracking due to the corrosion as shown in Figure 2 (Ohtsu, 1996). AE events are associated with cracking and are detected by AE sensors as electrical signals, which are amplified, filtered, and processed. An AE signal is characterized by employing AE parameters such as energy, counts, event, amplitude, rise time and duration as illustrated in Figure 3. Characteristics of AE signals are estimated by using two indices of RA value and average frequency, which are defined from wave parameters as, ro-nts
AE
fil-zed
testi-age
sti-age (1)
(2) Steel

Steel

Steel

Sigure 2. AE measurement.

AE is detected by micro-cracking due to the corro-

sion as shown in Figure 2 (Ohtsu, 1996). AE events

are associated with cracking and are detected by AE

steensors as ele Steel

Figure 2. AE measurement.

AE is detected by micro-cracking due to the corro-

sion as shown in Figure 2 (Ohtsu, 1996). AE events

sion as shown in Figure 2 (Ohtsu, 1996). AE events

sion as shown in Figure 2 (Ohtsu Concrete

Sigure 2. AE measurement.

AE is detected by micro-cracking due to the corro-

sion as shown in Figure 2 (Ohtsu, 1996). AE events

are associated with cracking and are detected by AE

sensors as electrical signal Concrete

Figure 2. AE measurement.

AE is detected by micro-cracking due to the comparent associated with cracking and are detected b

sensors as electrical signals, which are amplifiered, and processed. An AE signal is c Concrete

re 2. AE measurement.

is detected by micro-cracking due to the corro-

nas shootn in Figure 2 (Ohtsu, 1996). AE events

associated with cracking and are detected by AE

sors as electrical signals, which are amp Figure 2. AE measurement.

AE is detected by micro-cracking due to the corro-

Signer associated with racking and are detected by AE

sensors as electrical signals, which are amplified, fil-

erected by AE parameters such Figure 2. AE measurement.

AE is detected by micro-cracking due to the corro-

sion as shown in Figure 2 (Ohtsu, 1996). AE events

are associated with cracking and are detected by AE

sensors as electrical signals, which Also EX: Also micro-cracking due to the corro-
Sion as shown in Figure 2 (Ohtsu, 1996). AE events
are associated with cracking and are detected by AE
sensors as electrical signals, which are amplified, fil-
tered, and pro AE is detected by micro-cracking due to the corro-
sion as shown in Figure 2 (Ohtsu, 1996). AE events
are associated with cracking and are detected by AE
sensors as electrical signals, which are amplified, fil-
tered, and AE is detected by micro-cracking due to the corro-
sion as shown in Figure 2 (Ohtsu, 1996). AE events
are associated with cracking and are detected by AE
sensors as electrical signals, which are amplified, fil-
tered, and sion as shown in Figure 2 (Ohtsu, 1996). AE events
are associated with cracking and are detected by AE
sensors as electrical signals, which are amplified, fil-
tered, and processed. An AE signal is characterized
by employi are associated with cracking and are detected by AE
sensors as electrical signals, which are amplified, fil-
tered, and processed. An AE signal is characterized
by employing AE parameters such as energy, counts,
event, amp sensors as electrical signals, which are amplified, fil-
tered, and processed. An AE signal is characterized
by employing AE parameters such as energy, counts,
event, amplitude, rise time and duration as illustrated
in Fig relation, and processed. An AE signal is characterized
by employing AE parameters such as energy, counts,
event, amplitude, rise time and duration as illustrated
in Figure 3. Characteristics of AE signals are esti-
mated b by employing AE parameters such as energy, counts,
event, amplitude, rise time and duration as illustrated
in Figure 3. Characteristics of AE signals are esti-
mated by using two indices of RA value and average
frequency, event, amplitude, rise time and duration as illustrated
in Figure 3. Characteristics of AE signals are esti-
mated by using two indices of RA value and average
frequency, which are defined from wave parameters
as,
RA = Ris in Figure 3. Characteristics of AE signals are esti-
mated by using two indices of RA value and average
frequency, which are defined from wave parameters
as,
RA = Rise time/Amplitude (1)
Average Frequency = Counts/Duratio mated by using two indices of RA value and average
frequency, which are defined from wave parameters
as,
RA = Rise time/Amplitude (1)
Average Frequency = Counts/Duration (2)
Proceedings of FraMCoS-7, May 23-28, 2010 1 requency, which are defined from wave parameters
as,
RA = Rise time/Amplitude (1)
Average Frequency = Counts/Duration (2)
Proceedings of FraMCoS-7, May 23-28, 2010 1

 $RA =$ Rise time/Amplitude (1) as,
RA = Rise time/Amplitude (1)
Average Frequency = Counts/Duration (2)
Proceedings of FraMCoS-7, May 23-28, 2010 1 RA = Rise time/Amplitude (1)
Average Frequency = Counts/Duration (2)
Proceedings of FraMCoS-7, May 23-28, 2010 1

$$
RA =
$$
 Rise time/Amplitude (1)
Average Frequency = Counts/Duration (2)
Proceedings of FraMCoS-7, May 23-28, 2010

According to the JCMS-III B5706 standard (JCMS-III, 2003), a crack type is classified from the relationship between RA value and the average frequency, which is given in Figure 4. A tensile-type

Figure 3. AE signal parameters.

Figure 4. Classification of cracks by AE indices. ure 4. Classification of cracks by A

crack is referred to as AE signal with high average Frequency and low RA value. In the other way, an othertype crack than a tensile-type crack is identified.

3 THEORY OF SIGMA ANALYSIS

Since AE signals are generated due to micro-cracks, detected AE waveforms correspond to the microfracture in a material. Therefore, AE waveforms analysis is carried out to obtain kinematics of AE source (Grosse et al., 1997, Katsage & Young, 2007). One powerful waveform analysis is SiGMA age
her
mms
AF
MA
MA

Figure 5. Detected AE waveform. Figure 5. Detected AE waveform.

<u>Figure 5.</u> Detected AE waveform.

procedure. The SiGMA analysis consists of AE source location procedure and the moment tensor analysis of AE source. In the SiGMA analysis, two parameters of the arrival time (P1) and the amplitude of the first motion (P2) shown in Figure 5 are applied to the analysis. These two parameters are determined by automated detection method (Ohno et al., 2008).

AE source location ν is determined from the arrival time differences t_i between the observation point x_i and x_{i+1} , solving equations,

$$
R_i - R_{i+1} = |x_i - y| - |x_{i+1} - y| = v_p t_i
$$
 (3)

Here, R is the distance between the source y and the observation point x. v_p is the velocity of P-wave.

After determining the location of AE source, the amplitude of the first motion (P2) are substituted into following equation based on the generalized theory of AE (Ohtsu and Ono, 1984).

$$
A(x) = C_s \frac{\text{Ref}(t, \gamma)}{R} \cdot \gamma_p \gamma_q M_{pq} DA \tag{4}
$$

Here, $A(x)$ is the amplitude of the first motion. C_s is the calibration coefficient of the sensor sensitivity and material constants. The reflection coefficient Ref (t, y) is obtained as t is the direction of sensor sensitivity. DA is area of crack surface, M_{pq} is the moment tensor and ν is the direction vector of distance R from source to observation point x as shown in Figure 6.

The moment tensor M_{pq} consists of the crackmotion vector l and unit normal vector n on crack surface. In an isotropic material, the moment tensor is represented as,

$$
M_{pq} = (\lambda l_k n_k \delta_{pq} + \mu l_p n_q + \mu l_q n_p) \Delta V \tag{5}
$$

where λ and μ are Lame constants.

Although concrete is microscopically heterogeneous material, in the case that the wave-lengths are larger than the sizes of aggregates, the effect of het-

Figure 6. Crack nucleation and AE detection.

tensor.

erogeneous becomes minor (Ohtsu et al., 1998). Since the velocity of P-wave in concrete is about 4000 m/s, the wave-length becomes around 40 mm at 100 kHz. It results in the fact that concrete consisting of normal aggregate is reasonably referred to as isotropically homogeneous. In an isotropic material, as the moment tensor is symmetric and of the second order, the number of independent unknown components is six. Eventually, multi-channel observation of the first motions at more than six channels provides sufficient information to solve Equation 4 and to determine all moment tensor components. Since the SiGMA procedure requires only relative values of moment tensor components, the calibration by the relative coefficients is sufficient enough. insist 7. eo he Ki o de Santa de -X Doins In Time age in the control of the co eigen

(Ohts in experience)

(Ohts in experience)

inder asyminder

in a syminder

in a syminder

in the requence of the requence of the syminment

is show X
 $= 0$ -
 $\frac{1}{2}$ - X

source 40 %

to a

d-mc

integrance

in Fundamental Deviation of the property of the property of the property of the property in the egate energy and property of the property of the property of the property of the property as more during the property as more dur [y le al | 」 n | "at al i al al o de i , n e ts r n v ' Y | / / s a a a s | e r : ・ 、 n - 、 n - 、 n - 、 n - w Y / S a a a i v - 、) Z III tatif at the mixed that at the conduction of the condu Shear and the tensile components is seen closed of the presentation of the presentation of the velocity of P-wave in concrete of the velocity of P-wave in concrete k RLz. It results in the fact that components is k , t of tensile

7. Unified d

eous becc

the veloci

m/s, the wike

kHz. It responsibly he mommarropically he mommorder, the

nents is si

of the firs

sufficie

determin

the SiGM

of momen

relative cosify crack

alues of t 7. Unifie

eous b

the velle

the velle

the KHz. If

of norr

ropicall

the moder,

the sufficient of the figure SiG

of momentaive

sify crass

sify crass

sify crass

the SiG

of momentaire

in tense of the present

as of tensile
osition of e
minor (
P-wave
ength bec
in the fa
egate is r
depate is r
geneous.
msor is s
observed in entially,
ions at m
oment pormation
moment or compo
ents is su the eiger
leveloped
ment tens
component tensi
 osition o

minor

P-wave

egate is

in the

egate is

geneous

ension is

the entually

formatic

moment is

starting the eig

evelope

ents is

the eig

levelope

ment te

compent te

competed in

the competed

startive r mean of tens
values of the
values of the
u et al.,
concrete is
a round at concrete is
a round to concrete in a star concret
in isotropic
means in the star different control of the
solve Equ sor comp
res only ts, the cali
 values of the m

u et al., 1

concrete is a

s around 40

nat concrete in a d

nat concrete

m isotropic r

metric and o

endent unkt

ti-channel o

than six chan

solve Equati

solve Equati

solve Equati

solve Equati

n Fig. 1.1

The components

J = -0.51

The Constantine Hydrotatic Hydrotatic of tensile

of tensile Hydrotatic Hydrotatic Hydrotatic

of tensile mean of tensile

of tensile mean of tensile

of P-wave in concrete is about

y こく e りじれ いくうみしにくせん へんりょう construit ……no outrains or F The proportionality coefficient of the setter of the setter of the setter of the proportion of eigenvalues of the moment of the moment of the moment of the coefficient of the setter of the coefficient of the setter of the **Example 12**
 $\frac{1}{\sqrt{1-0.31}}$
 $\frac{1}{\sqrt{1-0.31}}$

Deviatoric Hydrotatic Hydrotatic oftensile

oftensile mean of tensile

composition of eigenvalues of the moment

sults in the fact that converte is about

sults in the f **Example 19**

For the relation of the relationship

Deviatoric Exploration of the moment of the moment

of the relation of the moment of the moment

sylv of P-wave in concrete is about

sylv of P-wave in concrete is about ¹⁹ SY

The via the Hydroxide Hean of tensile

Deviatoric Elydrostatic of tensile

of the figer values of the m The visitance of the main of tensile in the variance in the variance of the moment of the water mass and the moment end of the number of independent tensor is a part **Fig. 19** The Equal to Hydrostatic of tensile $\frac{1}{\sqrt{10}}$. By denotratic of tensile mean of tensile mean of tensile mean of tensile exemposition of eigenvalues of the moment meas minitor (Ohstar et al., 1998). yo f P-wa **EVALUAT SET ASSAMULT AND SET AND DEVIABLE THE TRANSISE OF THE MOREON DEVISION OF P-WAVE IN (POSINGLE 100) TO P-WAVE in CONTINUE AND SURVER THE SURVER THE SURVER THE SURVER THE SURVER THE MANUT COMPORENT DESCRIPTION DEVIS** n active the child parties of the community of the c or tensile
mean of tensile
mean of tensile
mean of tensile
prosition of eigenvalues of the moment
s minor (Ohtsu et al., 1998).
I-length becomes around 40 mm
is in the fact that concrete con-
gregate is reasonably referre es die 19 de Kirki en 19 de 19 de 19 de 19 de 20 d is minor (Ohtsu et al., 1998).

of P-wave in concrete is about

-length becomes around 40 mm

-length becomes around 40 mm

its in the fact that concrete con-

gregate is reasonably referred to

tensor is a misoropic mate Ity of P-wave in concrete is about
we-length becomes around 40 mm
sults in the fact that concrete con-
aggregate is reasonably referred to
comogeneous. In an isotropic mate-
number of independent unknown
x. Eventually, mu ive-length becomes around 40 mm
sults in the fact that concrete con-
aggregate is reasonably referred to
amogeneous. In an isotropic mate-
ent tensor is symmetric and of the
non-evaporation and the non-evaporation and the sults in the fact that concrete con-
aggregate is reasonably referred to
omogeneous. In an isotropic mate-
ent tensor is symmetric and of the
number of independent unknown.
Eventually, multi-channel obser-
motions at more aggregate is reasonably referred to
omogeneous. In an isotropic mate-
ent tensor is symmetric and of the
ent tensor is symmetric and of the
involtons at nore than six channels
in information to solve Equation 4
e all mome assume the symmetric and of the

number of independent unknown

as mumber of independent unknown

as Eventually, multi-channel obser-

as Eventually, multi-channel obser-

and moment tensor components.

A procedure requir relative humiding multimative and of the number of independent unknown.

Eventually, multi-channel obser-

relations at more than six channels

relations at more than six channels

the all moment tensor components.

A pr e number of independent unknown

x. Eventually, multi-channel obser-

motions at more than six channels

motions at more than six channels

all moment tensor components.

A procedure requires only relative

tensor compon x. Eventually, multi-channel obser-
motions at more than six channels
that information to solve Equation 4
e all moment tensor components.
A procedure requires only relative
tensor components, the calibration
efficients i c s when \mathcal{L} & + & + & ensor components, the calibration $\frac{1}{2}$

To classify crack type, the eigenvalue analysis of the moment tensor was developed (Ohtsu, 1981). The eigenvalues of the moment tensor for a general case are represented by the combination of the shear crack and the tensile crack as shown in Figure 7. From Figure 7, the relative ratios X, Y and Z are obtained as,

$$
1.0 = X + Y + Z,
$$

the intermediate eigenvalue the maximum eigenvalue $= 0 - Y/2 + Z$,

the minimum eigenvalue
the maximum eigenvalue =
$$
-X - Y/2 + Z
$$
. (6)

In the present code, AE sources of which the shear ratios X are smaller than 40 $\%$ are classified as tensile cracks. AE sources of shear ratios X are greater than 60 % are referred to as shear cracks. In the case of the ratios between 40 $\%$ and 60 $\%$, AE sources are classified as mixed-mode cracks. In the eigenvalue analysis, three eigenvectors e_1 , e_2 and e_3 , t motions at more than six channels
the all moment tensor components.
A procedure requires only relative
tensor components.
the synce different tensor components.
the synce different enduced the synce of the
vas developed nt information to solve Equation 4

e all moment tensor components.

A procedure requires only relative

tensor components, the calibration

efficients is sufficient enough.

type, the eigenvalue analysis of the

as devel e all m
A proce
t tensor
type, th
was dev
was dev
mome by the
nife creating
the mailer
expension of
expensional
genvalu
genvalu
genvalu
t code,
smaller sour
6 are re
ified as
ified as
ified as
ified as
ified as
Proceeding e moment tensor for a general case
by the combination of the shear
msile crack as shown in Figure 7.
ne relative ratios X, Y and Z are ob-
eigenvalue = $0 - Y/2 + Z$,
genvalue = $-X - Y/2 + Z$. (6)
t code, AE sources of which the
 by the combination of the shear
nsile crack as shown in Figure 7.
e relative ratios X, Y and Z are ob-
eigenvalue = $0 - Y/2 + Z$,
genvalue = $-X - Y/2 + Z$. (6)
t code, AE sources of which the
smaller than 40 % are classified as
 maile crack as shown in Figure 7.

i.e relative ratios X, Y and Z are ob-

eigenvalue = $0 - Y/2 + Z$, (6)

genvalue = $-X - Y/2 + Z$. (6)

t code, AE sources of which the

smaller than 40 % are classified as

AE sources of shear be relative ratios X, Y and Z are ob-

eigenvalue

eigenvalue

genvalue
 $= 0 - Y/2 + Z$. (6)

t code, AE sources of which the

smaller than 40 % are classified as

de sources of shear ratios X are

of are referred to as shea genvalue $= 0 - Y/2 + Z$,

<u>Ivalue</u> $= -X - Y/2 + Z$. (6)

ode, AE sources of which the

naller than 40 % are classified as

sources of shear ratios X are

re referred to as shear cracks. In

so between 40 % and 60 %, AE

d as mix eigenvalue $= 0 - Y/2 + Z$,
genvalue $= -X - Y/2 + Z$. (6)
t code, AE sources of which the
smaller than 40% are classified as
AE sources of shear ratios X are
6 are referred to as shear cracks. In
titios between 40% and 60%, AE
fi eigenvalue $= 0 - Y/2 + Z$,
genvalue $= -X - Y/2 + Z$. (6)
t code, AE sources of which the
smaller than 40 % are classified as
SE sources of shear ratios X are
6 are referred to as shear cracks. In
atios between 40 % and 60 %, AE
 eigenvalue $= 0 - Y/2 + Z$,
genvalue $= -X - Y/2 + Z$. (6)
t code, AE sources of which the
smaller than 40% are classified as
AE sources of shear ratios X are
6 are referred to as shear cracks. In
tios between 40% and 60%, AE
ifie eigenvalue $= 0 - Y/2 + Z$,
genvalue $= -X - Y/2 + Z$. (6)
t code, AE sources of which the
smaller than 40 % are classified as
AE sources of shear ratios X are
6 are referred to as shear cracks. In
atios between 40 % and 60 %, AE
 Example $= 0 - Y/2 + Z$,

genvalue $= -X - Y/2 + Z$. (6)

t code, AE sources of which the

smaller than 40 % are classified as

AE sources of shear ratios X are

6 are referred to as shear cracks. In

thios between 40 % and 60 %, genvalue $= -X - Y/2 + Z$. (6)
t code, AE sources of which the
smaller than 40 % are classified as
AE sources of shear ratios X are
6 are referred to as shear cracks. In
tios between 40 % and 60 %, AE
ified as mixed-mode crack genvalue $= -X - Y/2 + Z$. (6)
t code, AE sources of which the
smaller than 40 % are classified as
AE sources of shear ratios X are
6 are referred to as shear cracks. In
tios between 40 % and 60 %, AE
ified as mixed-mode crack genvalue $= -X - Y/2 + Z$. (6)
t code, AE sources of which the
smaller than 40 % are classified as
AE sources of shear ratios X are
6 are referred to as shear cracks. In
tios between 40 % and 60 %, AE
ified as mixed-mode crack relation, AE sources of which the esmaller than 40 % are classified as \overline{RE} sources of shear ratios X are 6 are referred to as shear cracks. In the sits, three eigenvectors e_1 , e_2 and e_3 , three eigenvectors t code, AE sources of which the

i smaller than 40 % are classified as

AE sources of shear ratios X are

6 are referred to as shear cracks. In

atios between 40 % and 60 %, AE

ified as mixed-mode cracks. In the

sis, th relativity than 40 % are classified as
AE sources of shear ratios X are
6 are referred to as shear cracks. In
thatios between 40 % and 60 %, AE
ified as mixed-mode cracks. In the
sis, three eigenvectors e_1 , e_2 and AE sources of shear ratios X are
6 are referred to as shear cracks. In
atios between 40 % and 60 %, AE
ified as mixed-mode cracks. In the
sis, three eigenvectors e_1 , e_2 and e_3 ,
(7)
Proceedings of FraMCoS-7, May 2 % are referred to as shear cracks. In
this between 40 % and 60 %, AE
ified as mixed-mode cracks. In the
sis, three eigenvectors e_1 , e_2 and e_3 ,
(7)
Proceedings of FraMCoS-7, May 23-28, 2010 atios between 40 % and 60 %, AE
ified as mixed-mode cracks. In the
iss, three eigenvectors e_1 , e_2 and e_3 ,
(7)
Proceedings of FraMCoS-7, May 23-28, 2010

ources are classified as mixed-mode cracks. In the
\nigenvalue analysis, three eigenvectors
$$
e_1
$$
, e_2 and e_3 ,
\n $e_1 = l + n$
\n $e_2 = l \times n$
\n $e_3 = l - n$,
\nProceedings of FraMCoS-7, May 23-28, 2010

Figure 8. 3-D display models for tensile, mixed-mode and shear cracks.

are also determined. Vector l and n, which are interchangeable, are recovered. In order to visualize these kinematical information of AE sources, the Light Wave 3D software (New Tek) is introduced. Crack modes of tensile mixed-mode and shear are given in Figure 8 tensile, mixed-mode and shear are given in Figure 8. ∂ Here, an arrow vector indicates a crack motion vector *l*, and a circular plate corresponds to a crack surface which is perpendicular to a crack normal vector \boldsymbol{n} . r.c.c.d.c.k.m.c.k.m.c.k.m.c.k.m.c.k.m.c.k.m.c.k.m.c.k.m.c.k.m.c.k.m.c.k.m.c.k.m.c.k.m.c.k.m.c.k.m.c.k.m.c.k.m.c

4 EXPERIMENTAL PROCEDURE

RC slabs of dimensions $100 \times 100 \times 400$ mm were made. Configuration of specimen is illustrated in Figure 9. Rebars of 13 mm diameter were embedded with 45mm cover-thicknesses for longitudinal arrangement. Mixture proportion of concrete is given in Table 1. Following the standard curing for 28 $\ddot{}$ slabs of dimensions $100 \times 100 \times 400$ n RC slabs of dimensions $100 \times 100 \times$ imonsi ere in ded
ar-ven 28
28
,,,,
,,,
))

Figure 9. Sketch of Reinforced concrete slab tested.

Figure 10. Test set up for accelerated corrosion test.

days in 20° C water, all surfaces of the specimen were coated by epoxy, except the bottom surface for one-dimensional diffusion. 3% NaCl solution
Figure 10. Test set up for accelerated corrosion test.
days in 20[°]C water, all surfaces of the specimen
were coated by epoxy, except the bottom surface for
one-dimensional diffusion.
Proceedings of F 3% NaCl solution

Figure 10. Test set up for accelerated corrosion test.

days in 20[°]C water, all surfaces of the specimen

were coated by epoxy, except the bottom surface for

one-dimensional diffusion.

Proceedings of Figure 10. Test set up for accelerated corrosion test.
days in 20° C water, all surfaces of the specimen
were coated by epoxy, except the bottom surface for
one-dimensional diffusion.
Proceedings of FraMCoS-7, May 23-Figure 10. Test set up for accelerated corrosion test.
days in 20° C water, all surfaces of the specimen
were coated by epoxy, except the bottom surface for
one-dimensional diffusion.
Proceedings of FraMCoS-7, May 23days in 20 $^{\circ}$ C water, all surfaces of the specimen
were coated by epoxy, except the bottom surface for
one-dimensional diffusion.
Proceedings of FraMCoS-7, May 23-28, 2010 1 were coated by epoxy, except the bottom surface for
one-dimensional diffusion.
Proceedings of FraMCoS-7, May 23-28, 2010 1 one-dimensional diffusion.
Proceedings of FraMCoS-7, May 23-28, 2010
1

Figure 11. Set of AE sensors.

In an accelerated corrosion test, the specimen was placed on a copper plate in a container filled with 3% NaCl solution as shown in Figure 10. Between rebar and the copper plate, 40mA electric current was continuously charged.

Table 2. Coordinates of AE sensors.

	x(m)	Y(m)	z(m)
1CH	0.090	0.090	0.100
2CH	0.010	0.030	0.100
3CH	0.085	0.000	0.033
4CH	0.030	0.000	0.085
5CH	0.090	0.100	0.075
6CH	0.020	0.100	0.033

AE measurement was continuously conducted by using $Disp (PAC)$, during the corrosion process along with the electrochemical measurements. Six AE sensors were attached as shown in Figure 11 and AE sensors were attached as shown in Figure 11 and
coordinates of AE sensors given in Table 2. AE sensors of type $R-15$ (150 kHz resonance) were used. Frequency range of the measurement was 10 kHz \sim 2MHz and total gain was 60 dB. The threshold level was set to 40 dB. Every day, AE measurement was temporarily stopped for the electrochemical measurement. ³¹⁵ S₁ C₁ .
T ne corrosion p

Half-cell potentials at the surface of the specimen were measured by a portable corrosion meter, SRI-CM-ІІ (Yokota al., 1999). Potentials were measured at three locations on the bottom surface of the specimen. The specimen was measured every day until the average potential reached to -350mV (CSE). Then results of the half-cell potentials were converted to the probability of corrosion by ASTM C876 standard (ASTM, 1991), which is prescribed in Table 3. Explicitly action of the evolution of the evolution of the evolution of the evolution of a compute in a content of hydration of a content of the evolution of the evolution of the evolution of the evolution of the evolutio Figure 11. Set of ALS centers.

Figure 11. Set of ALS sensors.

In an accelerated corrosion test, the specimen was

3F content and compress place in a content of Figure 10. Herecan

reaction and compress place of AF exerc Figure In a
placed S⁹ N
rebar
mas contained and the set of all along the set of the set pt 1 c and the contribution of the contrib $\frac{1}{x}$ est, the

a contain

in Figure

40mA el
 $\frac{1}{x}$
 $\frac{1$ - S V tt · sm | C in de "s - H it et i ensors
correlated to the plane of the plane of the series of the series of the correlation of the was a pool of the was a pool of the pool K h extributed to the speed of e ensor

ensor

densor

densor
 $\begin{array}{c} \bigcirc \qquad A \qquad \text{rsp} \qquad \text{if} \qquad \text{isp} \qquad \text{if} \qquad \$ SCH (

x 4

1. Se n accon i

cl s n accon i

cl s n atinu

coor

mea

mea

Disperime with

sors ates

with sors

and the post

(Yol le leasure of leasure of leasure of leasure

Post

Post

200

mV

E <

200

E <

200

E < h e Find only explored the state of the stat (4) 1. II C _ w S _ 11 _ 11 _ 12 _ 14 _ 14 _ 12 _ 2 _ 15 _ 14 _ 6 _ H _ 15 _ 16 _ 14 _ 15 _ 16 _ 17 _ I _ _ 1 _ _ 1 In an accelerated corrosion test, the specimen was
glaced on a copper plate in a container filled with
 $3^{3/6}$ NaCl solution as shown in Figure 10. Hetween
rebar and the copper plate, 40mA electric current
was continuous man activerated convision itsel, the specimal expertation of the second of the second of the second referse and the copper plate in a container filled with replace and the copper plate, 40mA electric current was continuou places of a copie-

place of a copies and a container interest wind the copper

place of a container of the copper place, $40mA$ electric current

replace 2. Coordinates of AL sensors.

Name and the copper place and the c 70 Tach (10 Monther as Subwar in Figure 10. Detween 18 and the opper plate, 40mA electric current was continuously charged.

Table 2. Coordinates of AF, sensors.

Water 3 and the opper plate, 40mA electric current

was co Evaluation (1991) Primary (1991) Primary (1991) That evaporation and the evaporation of AL sensors.

Was continuously charged.

Table 2. Coordinates of AE sensors.

1CH 0.009 0.090 0.090 0.100

3CH 0.036 0.000 0.037

3CH Was commologizy charged.

Table 2. Coordinates of AE sensors.

with 0.090 0.090 0.000 0.100

2CH 0.010 0.030 0.000 0.033

3CH 0.030 0.000 0.033

3CH 0.030 0.000 0.033

3CH 0.020 0.100 0.033

3CH 0.020 0.100 0.033

3CH 0 Table 2. Coordinates of AE sensors.
 $x(m)$ $Y(m)$ $z(m)$

1CH 0.090 0.090 0.100

3CH 0.000 0.030 0.100

3CH 0.030 0.000 0.033

4CH 0.030 0.000 0.035

4CH 0.090 0.100 0.035

6CH 0.020 0.100 $x(n)$

1 CH 0.09

2 CH 0.01

2 CH 0.00

3 CH 0.03

4 CH 0.05

5 CH 0.02

6 CH 0.02

6 CH 0.02

AE measuremene

using Disp (PAC

along with the el-

AE sensors were a

coordinates of AE

2 CMHz and total gainset to 40 dB. - Custra wert about the win by interval or all the win by interval or all the contract of the contract of the c s | バイロ ch osi o w o i o o i o o i o o i o o i o o i o o i o o i o o i o o i o o i o o i o o o i o o o o o o o o vg c k c | [c] re f c n zh z t c e t i t e r t l d | [n | l , n | l , h | c | c | t i t e r t l d | | _ _ r | n | l , n vertice the control of the | u tl e a ti Freo xi r v l i i i l e | r n j 3| c s 2CH 0.010 0.030 0.030 0.010

2CH 0.010 0.030 0.010 0.037

3CH 0.085 0.000 0.033

4CH 0.030 0.000 0.035

6CH 0.030 0.000 0.035

6CH 0.020 0.100 0.037

6CH 0.020 0.100 0.037

4CH 0.020 0.100 0.037

2CH 0.020 0.100 0.037

2 where k c 0
 $\frac{0}{0}$
 $\frac{0}{0}$
 $\frac{0}{0}$
 $\frac{0}{0}$
 $\frac{1}{0}$ start of the 030 0.000 0.000 0.085

090 0.000 0.075

020 0.000 0.075

020 0.000 0.075

ent was continuously conducted by

C), during the corrosion process

electrochemical measurements. Six

attached as shown in Figure 11 and

5 (150 SCH 0.090 0.100 0.100 0.755

6CH 0.020 0.100 0.133

6CH 0.020 0.100 0.033

6CH 0.020 0.100 0.033

AE measurement was continuously conducted by

susing Disp (PAC), during the corrosion process of type R-15 (150 kHz resonan 6CH 0.020 0.100 0.33

AE measurement was continuously conducted by

using Disp (PAC), during the corrosion process

along with the electrochemical measurements. Six

AE sensors were attached as shown in Figure 11 and

coo AE measurement was continuing Disp (PAC), during the
along with the electrochemica
AE sensors were attached as sh
coordinates of AE sensors gives
sors of type R-15 (150 kHz re
Frequency range of the measure
2MHz and total to given in

kHz reson

kHz reson

60 dB. The

E measure

nemical measure

the surface

table corr

). Potentia

the botton

n was measured in the half-condition

1991), w

l potential (1

Corr

90

9 e rosion pi
surement:
n Figure 1
able 2. Al
ce) were
i was 10 1
reshold lev
nt was tem
urement.
of the specifical experience cured ever;
potentials
sion by A
is prese and to -3;
potentials
h is prese
expecified by A
h is pre ctrochemical m
ached as shown
ensors given in
(150 kHz resor
if the measurem
was 60 dB. The
ay, AE measurem
expansive ctrochemical measurements
als at the surface
on the bottor
cimen was measurements
of the half-ce
obabili A the ele s were att

s were att

s of AE s

pe R-15 (range of

total gain

3. Every d

for the ele ll potentis

sured by

skota al.,

locations

The spe

average

en result:

to the pr

dard (AS

erion for ha

Potential
 coordin
Sors of
Trequer
PMHz a
Set to 40
Morp Half
Mere m
Interpecime and the pecimential three
CSE).
CSE convert
CSE and Table
Sance and Table 3.
Table 3. ancentries and the search of the search ・ ン S ー ― N ー H シ 〃 〃 ^ P U H Fiz and total gam was 60 dE
to 40 dB. Every day, AE me
stopped for the electrochemic
Half-cell potentials at the
re measured by a portable
1-II (Yokota al., 1999). Pc
three locations on the l
cimen. The specimen wa
il the contracts of the c The university
all measurement
all measurement
tentials
ottom measurement
reache
alf-cell point measurement
by the corrol point of the Uring Offersion
90% n
Uring Offersion s shold level was
t was temporar-
rement.
f the specimen
n meter, SRI-
were measured
urface of the
red every day
1 to -350mV
ootentials were
ion by ASTM
is prescribed
CSE).
probability
corrosion
certain
corrosion set to 40 dB. Every day, AE measurement was temporar-
ily stopped for the electrochemical measurement.
Half-cell potentials at the surface of the specimen
were measured by a portable corrosion meter, SRI-
CM-II (Yokota al Frid potentials at the surface of the speciment
Haf-cell potentials at the surface of the specimen
were measured by a portable corrosion meter, SRI-
CM-II (Yokota al., 1999). Potentials were measured
at three locations on Francell potentials at the surface of the
were measured by a portable corrosion in
CM-II (Yokota al., 1999). Potentials were
at three locations on the bottom surfa
specimen. The specimen was measured
until the average pot CM-II (Yokota al., 1999). Pat three locations on the
specimen. The specimen w
until the average potentia
(CSE). Then results of the
converted to the probability
C876 standard (ASTM, 199
in Table 3.
Table 3. Criterion for spectimen. The spectiment was measured every day
until the average potential reached to -350mV
(CSE). Then results of the half-cell potentials were
converted to the probability of corrosion by ASTM
C876 standard (ASTM, 19

Figure 12. Cumulation AE hits and AE events.

5.1 AE activity in the accelerated corrosion test
 $\frac{350000}{20000}$
 $\frac{350000$ Cumulative AE hits and AE events for all 6 channels are shown in Figure 12. An AE event is the phenomenon which one AE hit was measured by out of five sensors from among six sensors. AE hits start to increase at the period from 47 hours to 92 hours. From 189 hours elapsed to 214 hours, another AE activity is observed. After 229 hours elapsed, a very active period of AE generation is found. Then, at 324 hours elapsed, the test was terminated and cracks and rust stain were observed as seen in Figure 13. Comparing the curve of cumulative AE hits with that of deterioration process due to corrosion in Figure 1 corresponds to the initiation stage and the acceleration stage. Thus, onset of corrosion and nucleation of concrete cracking of AE activity are assigned in Figure 12. n
pl
it n
P n
D.

Figure 13. End test specimen of a test.

5.2 *AE activity and Half-cell potentials*
Cumulative AE hits are compared with
tentials in Figure 14. Although the hal-
tials started as positive values, they reacrease at the 1st period. Then, potentia Cumulative AE hits are compared with half-cell potentials in Figure 14. Although the half-cell potentials started as positive values, they reasonably decrease at the 1st period. Then, potentials gradually

Figure 14. Cumulation AE hits and Half-cell potentials.

increase at the 2nd phase in Figure 1 and begin to decrease at the 2nd period. During the 3rd period, the potentials become more negative than -350mV. Thus, AE activity during the corrosion process is in good agreement with the decrease trend of the halfcell potentials. ra
cere
pus
p urerer
US
d $\lim_{t\to 0} \frac{1}{t}$ in $\lim_{t\to 0} \frac{1}{t}$ $\begin{array}{c} \n\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots\n\end{array}$ $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 21 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{array}{c} \n\vdots \n\vdots \n\end{array}$ $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

From compatibility between Figure 1 and Figure 14, it is considered that the onset of corrosion in Figure 1 corresponds to the 1st period in Figure 14 and the nucleation of concrete cracking to the 2nd period. Accordingly, at the 1st period, rust layer surperiod. Accordingly, at the 1st period, rust
face created on rebar could be destroyed.

e created on repar could be destroyed.
The corrosion further penetrates inside and at the 2nd period, rust break and other internal cracks inside rebar could occur. At the 3rd period, concrete cracks are nucleated due to expansion of corrosion products in rebar.

5.3 *SEM observation in the accelerated corrosion test* By SEM (JEOL JSM-5600), observation of rebar was conducted, taking rebar out of the specimen af ter the 1st period, the 2nd, the 3rd, and at the end Rust could not b By SEM (JEOL JSM-5600), observation of rebars was conducted, taking rebar out of the specimen after the 1st period, the 2nd, the 3rd, and at the end. Rust could not be found at the 1st period, while thin rust layer could be identified at the 2nd period by visual observation. The rebar corrosion is distinctively observed at the 3rd period by visual observation. Then, the elements were analyzed by using energy-dispersion typed x-ray spectroscope (EDX). In Figure 15 SEM photos of the end of 1st period are shown. Figure 16 shows the photos of SEM of the end of the 2nd period and Figure 17 shows the photos of SEM of the end of the 3rd period. The state of the proportion of the decrease term of the barrier o and the state of the state in the direction of the permeterior of the permeterior of the state of the state of the bility between Figure 1 and 356 and
366 and
366 and
366 and
366 and
366 and
368 and Half 22 240 288 336
1methour)
2000
 $\frac{32}{35}$
38 96 144 192 240 288 336
1methour)
and phase in Figure 1 and begin to
not phase in Figure 1 and Figure
1000 more more 356 m
 356 m
 356 m
 $400 \frac{3}{42}$
 $90 \frac{3}{42}$
 $100 \frac{3}{42}$
 $200 \frac$ **1000**
 Example 100
 Example 10
 Example 1
 Example 1
 Example 1
 Exam 1990
 1990
 1990 divergence of the moisture flux J 36

14 192 240 288 336

14 192 240 288 336

14 192 240 288 336

16 144 192 240 288 336

17 Time(hour)

E hits and Half-cell potentials.

phase in Figure 1 and begin to

period, During the 3rd period,

ne more negative tha The 192 240 260 350

Time(hour)

Ehits and Half-cell potentials.

phase in Figure 1 and begin to

period. During the 3rd period,

ne more negative than -350mV.

In the decrease ternd of the half-

tily between Figure 1 an on the matroon
in AE his and Half-cell potentials.

and phase in Figure 1 and begin to

chal period. During the 3rd period,

come more negative than -350 mV.

y during the corrosion process is in

with the decrease tren m AE mis and itali-eal potentias.

Ind phase in Figure 1 and begin to

Ind period, Come more negative than -350mV.

y during the corrosion process is in

with the decrease trend of the half-

bility between Figure 1 and F nd phase in Figure 1 and begin to

2nd period, During the 3rd period,

come more negative than -350mV.

cy during the corrosion process is in

with the decrease trend of the half-

bility between Figure 1 and Figure

red t in a phase in Figure 1 and begin to the particular pherical During the 3rd period, come more negative than -350mV. γ during the corrosion process is in with the decrease trend of the half-
bility between Figure 1 and Fi Enoting the 511 period,
come more negative than -350mV.
Form period, During the corrosion process is in
with the decrease trend of the half-
bility between Figure 1 and Figure
red that the onset of corrosion in
on of conc come more negaure than - 5 born of the half-billity between Figure 1 and Figure red that the onset of corrosion in onds to the 1st period in Figure 14 and Higure red that the onset of c degree of the totes is in
twith the decrease trend of the half-
bility between Figure 1 and Figure
red that the onset of corrosion in
onds to the 1st period, rust layer sur-
and of concrete cracking to the 2nd
gly, at the winn the declease trend of the han-
bility between Figure 1 and Figure
red that the onset of corrosion in
onds to the 1st period in Figure 14
and so the 1st period, rust layer sur-
bar could be destroyed.
There periods an bility between Figure 1 and Figure
red that the onset of corrosion in
onds to the 1st period in Figure 14
and of concrete cracking to the 2nd
gly, at the 1st period, rust layer sur-
bar could be destroyed.
further penetrat by bueween rigue 1 and rigue
ored that the onset of corrosion in
onds to the 1st period in Figure 14
on of concrete cracking to the 2nd
gly, at the 1st period, rust layer sur-
substar could be destroyed.
further penetrates red that
onds to
on of cc
gly, at the
bar cou
further break a
occur...
atted due
divided and of
tiom in the 3
photos (shows
be iden
photos (shows
photos (shows
eriod an end of in H
ightly e:
At the 2
and in H
ightly e:
At orcax and other Internal cracks in-
occur. At the 3rd period, concrete
occur. At the 3rd period, concrete
tied due to expansion of corrosion test
JSM-5600), observation of rebars
aking rebar out of the specimen af-
1, the occur. At the 3rd period, concrete
tied due to expansion of corrosion test
JSM-5600), observation of rebars
akking rebar out of the specimen af-
 l , the 2nd, the 3rd, and at the end.
 l , the 2nd at the 1st period, while from in the accelerated corrosion of corrosion

15M-5600), observation of rebars

aking rebar out of the specimen af-

1, the 2nd, the 3rd, and at the end.

1, the 2nd at the 1st priod, while thin

be identified at the 2n tion in the accelerated corrosion test
JSM-5600), observation of rebars
aking rebar out of the specimen af-
1, the 2nd, the 3rd, and at the end.
2 found at the 1st period, while thin
be identified at the 2nd period by
n. *n* in the accelerated corrosion test
M-5600), observation of rebars
ng rebar out of the specimen af-
he 2nd, the 3rd, and at the end.
uund at the 1st period, while thin
identified at the 2nd period by
The rebar corrosion tion in the accelerated corrosion test
JSM-5600), observation of rebars
aking rebar out of the specimen af-
1, the 2nd, the 3rd, and at the end.
2 found at the 1st period, while thin
be identified at the 2nd period by
n. T JSM-5600), observation of rebars
aking rebar out of the specimen af-
1, the 2nd, the 3rd, and at the end.
2 found at the 1st period, while thin
be identified at the 2nd period by
n. The rebar corrosion is distinc-
t the 3 $JshN=3600$, observation of reoats
aking rebar out of the specimen af-
1, the 2nd, the 3rd, and at the end.
Formal at the 1st period, while thin
be identified at the 2nd period by
n. The rebar corrosion is distinc-
t the 3 aking reoat out of the specimen and, the 2nd, the 3rd, and at the end.

E found at the 1st period, while thin

be identified at the 2nd period by

m. The rebar corrosion is distinc-

t the 3rd period by visual observa-

em the following and at the Unit.

Following at the 1st period, while thin

be identified at the 2nd period by

m. The rebar corrosion is distinc-

the 3rd period by visual observa-

ements were analyzed by using en-

yped x Fround at the Tst period, while time
be identified at the 2nd period by
n. The rebar corrosion is distinc-
t the 3rd period by visual observa-
ements were analyzed by using en-
yped x-ray spectroscope (EDX). In
bhotos of t be identified at the 2nd period by
in. The rebar corrosion is distinc-
it the 3rd period by visual observa-
ements were analyzed by using en-
yped x-ray spectroscope (EDX). In
bhotos of the end of 1st period are
5 shows th in: The reoar corrosion is unsime-
t the 3rd period by visual observa-
ements were analyzed by using en-
yped x-ray spectroscope (EDX). In
photos of the end of 1st period are
5 shows the photos of SEM of the
eriod and Figu

At the 1st period in Figure 15, the oxide film at the surface has slightly exfoliated but no corrosion is identified inside. At the 2nd period, the surface oxide film almost exfoliated. As see in Figure 16, the rust on the superficial of a rebar under an oxide film has been identified. With the 3rd period, rust break and other internal cracks inside rebar could occur. relative state of the state of the state of the end of the end of 1st period are 5 shows the photos of SEM of the eriod and Figure 17 shows the photos of SEM of the eriod and Figure 17 shows the photos the photos of SEM of ements were anaryzed by using en-
yped x-ray spectroscope (EDX). In
bhotos of the end of 1st period are
5 shows the photos of SEM of the
eriod and Figure 17 shows the pho-
end of the 3rd period.
iod in Figure 15, the oxide provided a Figure CDA). In
photos of the end of 1st period are
5 shows the photos of SEM of the
eriod and Figure 17 shows the pho-
end of the 3rd period.
iod in Figure 15, the oxide film at
ightly exfoliated but no corros binotos of the end of 1st period are
5 shows the photos of SEM of the
eriod and Figure 17 shows the pho-
end of the 3rd period.
iod in Figure 15, the oxide film at
ightly exfoliated but no corrosion is
At the 2nd period, because the photos of SEW of the
eriod and Figure 17 shows the pho-
end of the 3rd period.
iod in Figure 15, the oxide film at
ightly exfoliated but no corrosion is
At the 2nd period, the surface ox-
exfoliated. As see in Eriod and Figure 17 shows the pho-
e end of the 3rd period.
iod in Figure 15, the oxide film at
ightly exfoliated but no corrosion is
At the 2nd period, the surface ox-
xfoliated. As see in Figure 16, the
ficial of a reba structure and period.

iod in Figure 15, the oxide film at

ightly exfoliated but no corrosion is

At the 2nd period, the surface ox-

exfoliated. As see in Figure 16, the

ficial of a rebar under an oxide film

ed. With ration, Triguit 15, the oxide film at
ightly exfoliated but no corrosion is
At the 2nd period, the surface ox-
exfoliated. As see in Figure 16, the
ficial of a rebar under an oxide film
ed. With the 3rd period, rust break
 gnity extortated but no corrossion is
At the 2nd period, the surface ox-
exfoliated. As see in Figure 16, the
ficial of a rebar under an oxide film
ed. With the 3rd period, rust break
al cracks inside rebar could occur.
Pr At the 2nd period, the surface ox-
exfoliated. As see in Figure 16, the
ficial of a rebar under an oxide film
ed. With the 3rd period, rust break
al cracks inside rebar could occur.
Proceedings of FraMCoS-7, May 23-28, 201 Alonated. As see in Figure 10, the
ficial of a rebar under an oxide film
ed. With the 3rd period, rust break
al cracks inside rebar could occur.
Proceedings of FraMCoS-7, May 23-28, 2010 richard of a rebard under an oxide film
ed. With the 3rd period, rust break
all cracks inside rebard could occur.
Proceedings of FraMCoS-7, May 23-28, 2010 paper to set of the semi-empirical expression proceedings of Fram CoS-7, May 23-28, 2010

Figure 15.1st period Surface SEM.

Figure 16.2nd period Surface SEM.

Figure 17.3rd period Surface SEM.

Furthermore, it is identified clearly that the crack inside rebar has occurred at the center. Here, the magnification of the photo of Figure 15 is 1,500. In Figure 16, in contrast, the magnification of a photo is 10,000. Consequently, it is found that expansion pressure is fairly large at the 3rd period. At 1st period, the oxide film on the surface of rebar is broken. At 2nd period, the oxide film was lost, and rust is generated inside rebar. At the 3rd period, the cracks occur inside rebar, and the corrosion becomes accelerated. According to SEM photos, it is realized that at the 1st period, only the surface of rebar is corroded due to permeation of chloride ions. The corrosion penetrates and is nucleated in a whole crosssection at the 3rd period. It is confirmed that the corrosion occurred on the whole rebar surface in the accelerated corrosion test. Further, at the 3rd period, Tigure 15.1st period Surface SEM.

Tigure 17.3rd period Surface SEM.

Tigure 17.3rd period Surface SEM.

Tigure 17.3 If If If Shulful Clear Ssre The proportional is the proportional in the proportion of the proportion of the proportion of the pro Figure 13.3 a period Studies SEM.

The state of state of state SEM.

Figure 16.2nd period Surface SEM.

Figure 16.2nd period Surface SEM.

Figure 17.3rd period Surface SEM.

The state of the permeability and the center. H Figure 15.1 at period Surface SEM.

Figure 15.1 at period Surface SEM.

Figure 16.2 and period Surface SEM.

Figure 16.2 and period Surface SEM.

Figure 17.3 at period Surface SEM.

Furthermore, it is identified clearly t Figure 15.1s period Surface SEM.

Triggere 15.1s period Surface SEM.

Triggere 16.2nd period Surface SEM.

The moisture mass balance SEM.

The moisture of the photo of the moisture mass balance requires

Figure 17.3rd per Figure 15.1 st period Surface SFM.

Tigure 15.1 st period Surface SFM.

Tigure 16.2 st period Surface SFM.

Tigure 16.2 and period Surface SFM.

Tigure 17.3 of period Surface SEM.

Tigure 17.3 of period Surface SEM.

Turk Figure 15.1st period Surface SEM.

Figure 16.2nd period Surface SEM.

Value 16.2nd period Surface SEM.

Figure 17.3rd period Surface SEM.

Figure 17.3rd period Surface SEM.

Figure 17.3rd period Surface SEM.

Figure 17.3r Figure 15.1st period Surface SEM.

Figure 15.1st period Surface SEM.

Figure 16.2nd period Surface SEM.

Figure 16.2nd period Surface SEM.

Figure 17.3rd period Surface SEM.

Furthermore, it is identified clear

surface o are 15.1st period Surface SFM.

we be 2nd period Surface SFM.

we be 2nd period Surface SFM.

We be 2nd period Surface SFM.

We can be conserved at the centre. Here, the magnificant

thermore, it is identified clearly that u Telu C w S T i w S T i w S T i w S T i w S T i w S T i w S T i w S T i w T i w T i w T i w T i w T i w T i w The water is in the sum of the sum Figure 16.2nd period Surface SEM.

Figure 16.2nd period Surface SEM.

Figure 17.3rd period Surface SEM.

Figure 17.3rd period Surface SEM.

Furthermore, it is identified clearly that the crack in-

inficiation of the phot Figure 16.2nd period Surface SEM.

Figure 16.2nd period Surface SEM.

Value 17.3d period Surface SEM.

Figure 17.3d period Surface SEM.

Figure 17.3d period Surface SEM.

Furthermore, it is identified clearly that the cra Figure 16.2nd period Surface SEM.

Figure 16.2nd period Surface SEM.

Figure 17.3rd period Surface SEM.

Figure 17.3rd period Surface SEM.

Figure 17.3rd period Surface SEM.

Surface respectively. The interest of the phot Figure 16.2nd period Surface SEM.

Figure 16.2nd period Surface SEM.
 Example 1996 Surface SEM.

Figure 17.3rd period Surface SEM.

Furthermore, it is identified clearly that the crack inside rebar has occurred at the c Figure 16.2nd period Surface SEM.

Figure 16.2nd period Surface SEM.

Figure 17.3rd period Surface SEM.

Furthermore, it is identified clearly that the crack in-

Figure 17.3rd period Surface SEM.

Furthermore, it is iden Figure 16.2nd period Surface SEM.

Figure 16.2nd period Surface SEM.

Figure 16.2nd period Surface SEM.

Furthermore, it is identified clearly that the crack in-

Furthermore, it is identified clearly that the crack in-
 Figure 16.2nd period Surface SEM.

Tigure 16.2nd period Surface SEM.

Tigure 17.3rd period Surface SEM.

Furthermore, it is identified clearly that the crack inside reaches and the contrast of the contrast infilication of Figure 16.2nd period Surface SEM.

Figure 16.2nd period Surface SEM.

Figure 17.3rd period Surface SEM.

Figure 17.3rd period Surface SEM.

Furthermore, it is identified clearly that the crack in-

figure 17.3rd period Su Figure 16.2nd period Surface SEM.

(Northern 1997). The state of the photo of Figure 15 is 1,500. In Figure 16, in contrast, the m Figure 16.2nd period Surface SEM.
 Example 18.2nd period Surface SEM.
 Example 2 one of the photo of Figure 17.3rd period Surface SEM.

Furthermore, it is identified clearly that the crack inside rebar has occurred at Figure 17
Furtherr
side reb.
nificatio
ure 16,
10,000.
pressure
and 2 and 2 and 16.
and 16.
secure in 16.
secure in 16.
secure in 16.
secure in 16.
rosion 16.
celerate u deli Cashi, ivit ti fi cashi cashi a ta ta ana cashi a cashi a ta ta ana cashi a cashi a cashi a c 【 【 】 】 】 】 , [] ,] il e a , (e n) ,] il e a , (e n in-
ag-
ig-
ision
pe-
en. is
colomoss-
cor-
ac-
od, Figure 17.3rd period Surface SEM.

Furthermore, it is identified clearly that the crack in-

identication of the photo of Figure 15 is 1,5000. In Figure

ure 16, in contrast, the magnification of a photo is

ure 16, in co Figure 17.3rd period Surface SEM.

Furthermore, it is identified clearly that the crack inside rebar has occurred at the center. Here, the magnification of the photo of Figure 15 is 1,500. In Figure 16, in contrast, the m Figure 17.3rd period Surface SEM.

Figure 17.3rd period Surface SEM.

Furthermore, it is identified clearly that the crack in-

infication of the photo of Figure 15 is 1,500. In Figure

lure 16, in contrast, the magnifica Figure 17.3rd period Surface SEM.

Furthermore, it is identified clearly that the craside rebar has occurred at the center. Here, the infication of the photo of Figure 15 is 1,500. In

ture 16, in contrast, the magnificat IT and period Surface SEM.

Thermore, it is identified clearly that the crack in-

thermore, it is identified clearly that the crack in-

erebar has occurred at the center. Here, the mag-

ication of the photo of Figure 15 Figure 17.3rd period Surface SEM.

Furthermore, it is identified clearly that the crack in-

side reban has occurred at the center. Here, the mag-

infication of the photo of Figure 15 is 1,500. In Figure 16, in contrast, Figure 17.3rd period Surface SEM.

Furthermore, it is identified clearly that the crack in-

side rebar has occurred at the center. Here, the mag-

initication of the photo of Figure 15 is 1,500. In Fig-

ure 16, in contr Furthermore, it is identified clearly that the crack in-
side rebar has occurred at the center. Here, the mag-
infication of the photo of Figure 15 is 1,500. In Figure 16, in contrast, the magnification of a photo is
10,0 Furthermore, it is identified clearly that the crack inside rebar has occurred at the center. Here, the magnification of the photo of Figure 15 is 1,500. In Figure 16, in contrast, the magnification of a photo is 10,000. C vancement, as incentioned centry want the cluster
side rebar has occurred at the eneter. Here, the mag-
infication of the photo of Figure 15 is 1,500. In Figure 16, in contrast, the magnification of a photo is
10,000. Cons From the societical and the current. Free, the magnification of the photo of Figure 15 is 1,500. In Figure 16, in contrast, the magnification of a photo is 10,000. Consequently, it is found that expansion pressure is fair Finded the more proto of the proton of the proton in the proton of a photo is the magnification of a photo is $10,000$. Consequently, it is found that expansion pressure is fairly large at the 3rd period. At 1st period, t and 10,000. Consequently, it is found that expansion
10,000. Consequently, it is found that expansion
pressure is fairly large at the 3rd period. At 1st pe-
riod, the oxide film on the surface of rebar is broken.
At 2nd p relation. The state of relative the state of relative to the oxide film on the surface of rebar is broken.
At 2nd period, the oxide film on the surface of rebar is broken.
At 2nd period, the oxide film was lost, and rust pressare is rainly large at the 5td period. The is period, the oxide film on the surface of rebar is broken.
At 2nd period, the oxide film was lost, and rust is generated inside rebar. At the 3rd period, the cracks occur i At 2nd period, the oxide film was lost, and rust is
At 2nd period, the oxide film was lost, and rust is
generated inside rebar. At the 3rd period, the cracks
occur inside rebar, and the corrosion becomes accel-
erated. Acc Figure 2nd period, the oxide film was lost, and rast is
generated inside rebar. At the 3rd period, the cracks
occur inside rebar, and the corrosion becomes accel-
erated. According to SEM photos, it is realized that
at the because the state is the state of the state of the state of the society inside rebar, and the corrosion becomes accelerated. According to SEM photos, it is realized that at the 1st period, only the surface of rebar is corr occur inside reading to SEM photos, it is realized that
erated. According to SEM photos, it is realized that
at the 1st period, only the surface of rebar is cor-
roded due to permeation of chloride ions. The corro-
sion pe structure and the 1st period, only the surface of rebar is corroded due to permeation of chloride ions. The corrosion penetrates and is nucleated in a whole cross-
section at the 3rd period. It is confirmed that the corros ration is beind, only the sanade of feat is entired that the TSt period, only the sanade of feat is enfroded due to permeation of chloride ions. The corrosion penetrates and is nucleated in a whole cross-
section at the 3r Fraction penetrates and is nucleated in a whole cross-
section at the 3rd period. It is confirmed that the cor-
rosion occurred on the whole rebar surface in the ac-
celerated corrosion test. Further, at the 3rd period,
Pr section at the 3rd period. It is confirmed that the corrosion occurred on the whole rebar surface in the accelerated corrosion test. Further, at the 3rd period,
Proceedings of FraMCoS-7, May 23-28, 2010 1 found the star period. It is committed that the corrosion occurred on the whole rebar surface in the accelerated corrosion test. Further, at the 3rd period,
Proceedings of FraMCoS-7, May 23-28, 2010 1 concrete (Xi et al. 1994). However, in the proceeding of Fram CoS-7, May 23-28, 2010
Proceedings of Fram CoS-7, May 23-28, 2010 the Cl ion was identified from the surface of a rebar by EDX, suggesting high corrosion rate.

Comparing these SEM photos with AE activity, it is summarized that the 1st period AE activity corresponds to the transition from the dormant stage to the initiation, and the 2nd AE activity is associated with the transition from the initiation to the deterio-
ration. Eventually at the 3rd period AE activity, the
acceleration stage starts as active AE generation and with the transition from the initiation to the deterioration. Eventually at the 3rd period AE activity, the ration. Eventually at the 51d period AE activity, the acceleration stage starts as active AE generation and rust stain are observed. Communists is sure sure the interval of the interval of the interval of the series $(\mathbf{r} \times \mathbf{r})$ $\frac{1}{2}$ 11 and $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ 11 $\frac{1}{2}$ 11 $\frac{1}{2}$ 11 $\frac{1}{2}$ 12 $\frac{1}{2}$ t: cos
.cos
.ge wide
race
Fi
Fi

ι

Figure 19. 2nd period.

Proceedings of FraMCoS-7, May 23-28, 2010 proceedings of FraMCoS-7, May 23-28, 2010
Proceedings of FraMCoS-7, May 23-28, 2010 Proceedings of FraMCoS-7, May 23-28, 2010

According to the JCMS-III B5706 standard, a crack type is classified from the relationship between RA value and the average frequency, which is given in Figure 18, Figure 19 and Figure 20. Results of the AE parameter analysis implies that micro-cracks are first accumulated to create the fracture-process zone, and then cracks are visually generated. Furthermore, although tensile cracks are dominantly nucleated at 1st and the 3rd periods, shear-type cracks as well as tensile activity are generated at the 2nd period.

Figure 21. Cumulation Cracks of classify crack type.

Surface $(x - z)$ Surface $(y - z)$ Figure 22. SiGMA analysis (250-263 hours).

Surface $(x - z)$ Surface $(y - z)$

Figure 23. SiGMA analysis (After 250 hours).

It is noted that positions of shear cracks are plotted higher than those of tensile cracks. In the SiGMA analysis, the event definition time (EDT) is set to 30 µsec. EDT uses to recognize waveforms occurring within the specified time from the first-hit waveform and to classify them as part of the current event. Therefore, this time might have influence on AE source locations.

Crack modes of tensile cracks, mixed-mode cracks and shear cracks are given in Figure 21. AE SiGMA analysis during the corrosion process shows in agreement with the increase trend of the tensile cracks and mixed-mode cracks. Later, shear cracks increase more than other cracks. At the initial AE events activities, tensile cracks and mixed-mode cracks increase. After the concrete cracks was observed (229 hours elapsed), generation of shear cracks is confirmed. Accordingly, at the initial concrete cracks, tensile cracks and mixed-mode cracks were generated. Then generation of shear cracks is confirmed. confirmed. or entable carcas, muxer-muxer-muser
oracks are given in Figure 21. AE
oracks are given in Figure 21. AE
through the increase trend of the tensile
-mode cracks. Later, shear cracks and moder reacks. Later, shear cracks
ten (时17.4,2.4.1.2m) 【1.5.2m) 【1.6.2m) 【1.6.2m) 【1.6.2m) 【1.6.2m) 【1.6.2m) 【1.6.2m) 【1.6.2m) 【1.6.2m) 【1 the increase trend of the tensile
onde cracks. Later, shear cracks
other cracks. At the initial AE
ensile cracks and mixed-mode
proportion of shear
ensile cracks and mixed-mode cracks are
proportion of shear
cracks and mix

From 250 hours elapsed to 263 hours, Results of 3-D source location are shown in Figure 22. At the period, internal cracks inside rebar occur were estimated. 3-D source location clearly shows that the crack occurred around rebar. After 250 hours elapsed, results of 3-D source location are shown in Figure 23. Large numbers of micro-cracks are observed around rebar. At this stage, surface cracks were not visually found yet. d-mode cracks. Later, shear cracks
an other cacks. At the initial AE
an other tecacks and mixted-mode
After the concete cracks was ob-
After the concete cracks was ob-
and Accordingly, at the initial con-
three the concete an other cracks. At the initial AE

tensile cracks and mixed-mode

After the concrete cracks was ob-

ars elapsed), generation of shear

end. Accordingly, at the initial con-

sile cracks and mixed-mode cracks is

Then gen then the concrete reacks and mixed-mode
After the concrete reacks was ob-
After the concrete reacks was ob-
tra-elaboraligly, at the initial con-
islic-cracks and mixed-mode cracks is
Then generation of shear cracks is
re After the concrete cracks was ob-
nrs elapsed), generation of shear
red. Accordingly, at the initial con-
ide reacks and mixed-mode cracks is
Then generation of shear cracks is
from are shown in Figure 22. At the
reack ins rs elapsed), generation of shear
ed. Accordingly, at the initial con-
sile cracks and mixed-mode cracks is
Then generation of shear cracks is
Then generation of shear cracks is
are aloned reacks in the proper 22. At the
pr ied. Accordingly, at the initial co
sile cracks and mixed-mode crack
Then generation of shear cracks
rs elapsed to 263 hours, Results
ion are shown in Figure 22. At this
cracks inside rebar occur were es
ce location clearl e e giorum ctif di, nek nahin yerenya git ko en generation of shear cracks is
elapsed to 263 hours, Results of
are shown in Figure 22. At the
ks inside rebar occur were esti-
location clearly shows that the
Docation clearly shows that the
Docation clearly shows that e 引 c c t c t i d ,n e k t f l i ya t a h x r g t c c c

6 CONCLUSION

In order to evaluate the deterioration process due to corrosion of reinforced concrete, AE method is applied to the accelerated corrosion test. The following conclusions are obtained expressions are obtained. on test.

- 1 In the accelerated corrosion test, on deterioration process of a RC, the onset of corrosion and the nucleation of concrete cracking are distinguished from AE activity.
- 2 From SEM, at the 1st period, it is observed that a passive film on the surface of rebar is destroyed. Then, corrosion products on surfaces of rebar grow with time and nucleate micro-cracks in concrete. Further, at the 3rd period, chloride ion penetration accelerates rebar surface corrosion. The corrosion finally is nucleated in a whole cross-section. are shown in Figure 22. At the
sis inside rebar occur were esti-
location clearly shows that the
Dund rebar. After 250 hours
and rebar. After 250 hours
in the sum of continent w can be sum in
umbers of micro-cracks are obracks inside rebar occur were esti-
ce location clearly shows that the
a round rebar. After 250 hours
f 3-D source location are shown in
the f 3-D source location are shown in
there. The micro-cracks are ob-
but this stage ce location clearly shows that the

around rebar. After 250 hours

around reach and the 3.50 hours

of 3-D source location are shown in

rumbers of micro-cracks are ob-

bar. At this stage, surface cracks

found yet.

N

a around rebar. After 250 hours
f 3-D source location are shown in
f numbers of micro-eracks are ob-
bar. At this stage, surface cracks found yet.
N
M
forced concrete, AE method is ap-
forced concrete, AE method is ap-
prace f 3-D source location are shown in

numbers of micro-cracks are ob-

numbers of micro-cracks are ob-

behar. At this stage, surface cracks

found yet.

N

ate the deterioration process due to

forced concrete, AE method is assume that the evaporable water is a function of bar. At this stage, surface cracks
found yet.
N
N
ate the deterioration process due to
forced concrete, AE method is ap-
erated corrosion test, on deterioration
ated corrosion test, on deterioration
ac, and exhaused corro found yet.

N

ate the deterioration process due to

forced concrete, AE method is ap-

erated corrosion test. The following

btained.

ated corrosion test, on deterioration

aC, the onset of corrosion and the

concrete c N

ate the deterioration process due to

forced concrete, AE method is ap-

erated corrosion test, The following

btained.

ated corrosion test, on deterioration

aC, the onset of corrosion and the

the 1st period, it is o N

N

ate the deterioration process due to

forced corrosion test. The following

btained.

Ated corrosion test, on deterioration

RC, the onset of corrosion and the

concrete cracking are distinguished

ity.

the 1st peri N

ate the deterioration process due to

forced concrete, AE method is ap-

erated corrosion test, The following

btained.

Rect of corrosion and the

Rect of corrosion and the

divity.

the 1st period, it is observed that ate the deforced deforced contracted contracted contracted contracted at a state of the last on the sum and produced at the deformed and recepted the state of the state o cti di chi di nu yeredwanti c ated corrosion test, on deterioration RC, the onset of corrosion and the concrete cracking are distinguished concrete cracking are distinguished ity.

the 1st period, it is observed that a n the surface of rebar is destro RC, the onset of corrosion and the
concrete cracking are distinguished
ity.
the lst period, it is observed that a
n the surface of rebar is destroyed.
on products on surfaces of rebar
e and nucleate micro-cracks in con-
at concrete cracking are distinguished
ity.
the 1st period, it is observed that a
n the surface of rebar is destroyed.
on products on surfaces of rebar
e and nucleate micro-cracks in con-
at the 3rd period, chloride ion
crecl ity.

the 1st period, it is observed that a

n the surface of rebar is destroyed.

on products on surfaces of rebar

e and nucleate micro-cracks in con-

at the 3rd period, chloride ion

ccelerates rebar surface corrosion. e 1st period, it is observed that a
he surface of rebar is destroyed.
products on surfaces of rebar
md nucleate micro-cracks in con-
t the 3rd period, chloride ion
lerates rebar surface corrosion.
inally is nucleated in a n the surface of rebar is destroyed.

on products on surfaces of rebar

e and nucleate micro-cracks in con-

at the 3rd period, chloride ion

coelerates rebar surface corrosion.

i finally is nucleated in a whole

nalysis
- 3 AE SiGMA analysis during the corrosion process shows in agreement with the increase trend of the tensile cracks and mixed-mode cracks. Later, shear cracks increase more than other cracks.
- 4 At the initial AE hits activities, internal cracks inside rebar occur were estimated. 3-D source location clearly shows that the crack occurred around rebar. At this stage, surface cracks were not visually found yet. At the final, from rebar to surface are observed. on products on surfaces of rebar
e and nucleate micro-cracks in con-
at the 3rd period, chloride ion
ccelerates rebar surface corrosion.
I finally is nucleated in a whole
nalysis during the corrosion process
ement with the e and nucleate micro-cracks in con-

at the 3rd period, chloride ion

ccelerates rebar surface corrosion.

1 finally is nucleated in a whole

nalysis during the corrosion process

ement with the increase trend of the

1 an at the 3rd period, chloride ion
ccelerates rebar surface corrosion.
I finally is nucleated in a whole
nalysis during the corrosion process
ement with the increase trend of the
and mixed-mode cracks. Later,
acrease more th celerates rebar surface corrosion.

I finally is nucleated in a whole

nalysis during the corrosion process

ement with the increase trend of the

and mixed-mode cracks. Later,

AE hits activities, internal cracks in-

ur It finally is nucleated in a whole
halysis during the corrosion process
ement with the increase trend of the
and mixed-mode cracks. Later,
ncrease more than other cracks.
Le hits activities, internal cracks in-
ur were est nalysis during the corrosion process
ement with the increase trend of the
and mixed-mode cracks. Later,
ncrease more than other cracks.
AE hits activities, internal cracks in-
ur were estimated. 3-D source loca-
ows that t nalysis during the corrosion process
ement with the increase trend of the
and mixed-mode cracks. Later,
orcease more than other cracks.
AE hits activities, internal cracks in-
ur were estimated. 3-D source loca-
ows that t example with the increase trend of the
i and mixed-mode cracks. Later,
increase more than other cracks.
AE hits activities, internal cracks in-
in were estimated. 3-D source loca-
ows that the crack occurred around
stage, and mixed-mode cracks. Later,
nerease more than other cracks.
AE hits activities, internal cracks in-
ur were estimated. 3-D source loca-
ows that the crack occurred around
stage, surface cracks were not visu-
At the final ncrease more than other cracks.

AE hits activities, internal cracks in-

ur were estimated. 3-D source loca-

ows that the crack occurred around

stage, surface cracks were not visu-

At the final, from rebar to surface
 LE hits activities, internal cracks in-
ur were estimated. 3-D source loca-
ows that the crack occurred around
stage, surface cracks were not visu-
. At the final, from rebar to surface
Proceedings of FraMCoS-7, May 23-28, ur were estimated. 3-D source loca-
ows that the crack occurred around
stage, surface cracks were not visu-
At the final, from rebar to surface
Proceedings of FraMCoS-7, May 23-28, 2010 ows that the crack occurred around
stage, surface cracks were not visu-
. At the final, from rebar to surface
Proceedings of FraMCoS-7, May 23-28, 2010 stage, surface cracks were not visu-
At the final, from rebar to surface
Proceedings of FraMCoS-7, May 23-28, 2010 . At the final, from rebar to surface
Proceedings of FraMCoS-7, May 23-28, 2010

- ASTM C876. 1991. Standards test method for half-cell potentials of uncoated reinforcing steel in concrete. Annual book of ASTM standard.
- Dubravka, B. Dunja, M. and Dalibor, S. 2000. Non-Destructive Corrosion Rate Monitoring for Reinforced Concrete Structures. 15^{th} WCNDT.
- Grosse, U. C. Reinhardt, H. and Dahm, T. 1997. Localization and classification of fracture types in concrete with quantitative acoustic emission measurement techniques. $NDT \& E$ International. Vol.30. No.4: 223-230.
- JCMS-III B5706. 2003. Monitoring method for active cracks in concrete by AE. Japan Construction Material Standards. Forther the Second Specification Material Standards.
JSCE. 2001. Standerd Specification for Concrete Structures on
- Maintenance. Japan Society of Civil Engineers.
- Katsage, T. and Young, R. P. 2007. Acoustic emission and Xray tomography imaging of shear fracture formation in large reinforced concrete beam. Proc. of ICAE-6 (CD- ROM : 396-401.
- Ohtsu, M. 2003. Detection and Identification of Concrete Cracking in Reinforced Concrete by AE. Review of Progress in Quantitative NDE. AIP conference 2003. Proc.657. 22B: 1455-1462.
- Ohtsu, M. and Tomoda, Y. 2008. Phenomenological model of corrosion process in reinforced concrete identified by acoustic emission. ACI Materials Journal, Vol.105. No.2: 194-199. LET EXACTO LET THE CONSTRAINT (SYS) and and the state method for half-cell potential brokes in the stress of the stress of the stress of the coronal brokes is a Domin Dailbour, S. 2000. Num-Destructive terms of Constrai A L C J K C C C This by uncoof tentoring steel in concrete. *Amual book*

risk/smaken, B. Dumja M. and Dailbook 5, 2000. Nim-Describeriums
 $7/3$ for $\sqrt{3}$ FCM) T in And Dailbook 5, 2000. Nim-Describeriums

turns $7/3$ in Coefficient by 23.3 an smoked on the Dallbor, S. 2000, Non-Destructive
Convertis Structure (Convertis Proposition (Fig. 100). Non-Destructive
Convertis Proposition and clusion and it is a nonlinear function and it is a nonlinear func Convenient Rate Mon and Southern, 2000, 1.0 to Senior And The relative the relative humidity in the relative humidity in the relative humidity in the relative humidity of the relative humidity of the relative humidity of trace, 15° Proxident contents and Dahm, T. 1997. Localization

interactive and elissification of fracture types in concrete with quantities and the motivation interactive interactive that

antive anouative environmen Trues U.C. Reinhardt, H. and Dahm, T. 1997. Localization in the solution in the variation is considered with current techniques. *NDT & E International*. Vb.30. No.4: 222-230.
 International. *NDT & F International.* and classification of fracture types in concrete with quanti-

rative necoustic emission measurement techniques. $NDT \& E$
 MCMS-III B5706. 2003. Noad : 223-230.

CCMS-III B5706. 2003. Monitoring method for active cracks tative acoustic emission measurement measurement

International. Vol.30. No.4: 223-230

ICMS-III B5706. 2003. Monitoring met

concrete by AE. Japan Construction

SISCE. 2001. Standard Specification for

Maintenance. *Japa* (1) 11 c T N s r; l; K s U d N d H N s r; L; K s U d N d H N s r; L; K s U d N d H N d U d U concerte by AE. *Journa* Construction Marchal Students.

concert Structure Marchal Students (and Marchal Students of Concert Structures on

distinctance. *Japans Yosety of Civil Engineer* Structures on

any tomography ima sage, 1. an a roung K. P. 2007. Acoustic emission and X -
tay tomography imaging of shear fracture formation in
 ROM_3 : 396-401.
 ROM_3 : 396-401.
 X . 2003. Detection and leathification of Concrete as the sum, X . X a Figure and some the evaporation of CoM₁, 30-401.

Inggr embivored connected beam. *Prote. of ICAE-6 (CD-*

RoM₁, 30-401).

Cracking in Renifercted Connected by A.E. Review of Pro-

gress in Quantitative NDE. *AIP conf* $Z(020)$
 $Z(020)$: 396-401.
 $Z(020)$: 396-401.

Cheking in Reinforced Concrete by AE. Review of Pro-eraps in Quantity NDE.
 $Z(020)$: 2018. Parameterova, 2003. Proference 2003. Process 7.
 $Z(020)$: 2018. And 10 modes A Oblasu, M. 2003. Detection and Identification of Concrete by AF. Review of Progrese in Quantitative NDE. *AIP conference 2003*. Proc*657*.

278: 1455.1462.

278: 1455.1462.

278: 1455.1462.

278: 1455.1462.

278: 1455.1462 Cracking in Reinforced Concrete by AE. Review of Pro-
gress in Quantitative NDE. *AIP* conference 2003. Proc.657.
22B: 1455-1462.
Unha, M. and Tomoda, Y. 2008. Phenomenological model of
corostion process in reinforced conc gress in Quantitative NDE. *AIP congerence 2003*. Proc.057.

22H: 145S-1462.

and Tomoda, Y. 2008. Phenomenological model of corresion process in reinforced concrete identified by

acoustic emission. *ACI Materials Journal* 2.26: 1433-1442.

2.26: H42. The order of hydratic scheme in the form of the solution, M. and Tomoda, Y. 2008. Phenomenological model of acoustic emission. *ACI Materials Journal*, Vol.105. No.2:

acoustic emission. *ACI* degree of silica functions, i.e. www.i.e. webcome reaction, and the corresponding to the solution process in restricted controls control of the solution of t acoustic emission. *ACI Materials Journal*, Vol.105. No.2:
194-199.
Proceedings of FraMCoS-7. May 23-28. 2010 194-199.

(Norlings of FramCoS-7, May 23-28, 2010).
 \blacksquare
- Ohtsu, M. 1991. Simplified moment tensor analysis and unified decomposition of acoustic emission source : Application to in situ hydrofracturing test. J. of Geophysical Research. Vol.96. No.B4: 622-6221.
- Ohtsu, M. and Shigeishi, M. Virtual reality presentation of moment tensor analysis by SiGMA. J. of Korean Soc. for NDT. Vol.23. No.3: 189-199. NDT. Vol.23. No.3: 189-199. ⎡
- Ohtsu, M. 1996. The history and development of acoustic

emission in concrete engineering. *Magazine of Concrete*
 Research. 48(177): 321-330. emission in concrete engineering. *Magazine of Concrete Research*. 48(177): 321-330. $Research. 48(177): 321-330.$, M. 1996. The history and development
ission in concrete engineering. *Magazin*
regards 48(177): 221, 220
- Research. 48(177): 321-330.
Ohtsu, M. and Ono, K. 1984. A generalized theory of acoustic emission and green's functions in a half space. *J. of Acous-*
tic Emission. Vol.3. No.1: 124-133.
Ohtsu. M. Okamoto. T. and Yuvama. S. 1998. Moment tensor tic Emission. Vol.3. No.1: 124-133.
- Ohtsu, M. Okamoto, T. and Yuyama, S. 1998. Moment tensor ⎥ analysis of acoustic emission for cracking mechanisms in concrete. ACI Structural Journal. Vol.95. No.2: pp.87-95. ζ
- Ohno, K. Shimozono, S. Sawada. 2008. Y. and Ohtsu, M. Mechanisms of diagonal-shear failure in reinforced concrete beams analyzed by AE-SiGMA. J. of Solid Mechanics and Materials Engineering. Vol.2. No.4: 462-472. decomposition of accounts from the evolution of the evolution of the evolution of the evolution of the evolution. M. The evolution of NDF. No LaS No Red streamly by SiGMA. J. of *Koremi Soc. for NDF*. With a result of the in similar
distribution and Nuclei and Nuclei and Shipkins in Manufacturing terms
into the and SH content tensor analysis by SFOMA. J. of Korean Soc. for
the anomal strategy and development of accounts in NoT. Vor(12), No Vol

Ohtsu, mor
 ND

Ohtsu, emi
 Res.

Ohtsu, emi
 tic l

Ohtsu, anal con

Mecret and

Ohno, Aut

pick 531

stee
 ret

Vokata stee S ロハ S e ん S e れ S a い N 2 ル / pS S C S C cs N n n . a a b l c d l b V g tr in a nair sp:
33.
33.
cor cracking
l. Vol.95. N
. 2008. Y.
failure in
.2. No.4: 46
.
7. No.4: 46
of JSNDI.
on monitorial concrete
64. e c s K or K v / J nr c H f d / z, se l f t c t *magazine*
alized theor
a half space
S. 1998. M
cracking m
molo.95. No.2
008. Y. an interview in the No.4: 462-4
7. and Ohts
motion base of JSNDI. Venonitoring of
oncrete structure oncrete structure. ee; 11
completed in the polar fraction of fraction of the control of fraction of fraction of fraction of the control ete en 321-1
321-1
198 's fur
's fur
No.l. and c em
agona by S.
standard by S.
and price in and y on of anal y on the ar-ol E. 33 control of the second second second to the second second to the second second to the second seco sion
arch.
1. anon anisonia
1. Oksis on mission
tected:
1. Shannision
Matter for the matter of the bars
libra
libra h e DH
DH
DH
DH coustic
dcous-
tensor
tensor
in 1-95.
Su, M.
d con-
hanics
2008.
AIC 2008.
Con-
Conc n N c a n A p S c s C
- Ohno, K. Shimozono, S. Sawada, Y. and Ohtsu, M. 2008. Automatic detection of AE first motion based on AIC picker for SiGMA analysis. J. of JSNDI. Vol.57. No.11: 531-536 Ohno, K. Shimozono, S. Sawada. 2008. Y. and Ohlsti, M.

Mechanisms of diagonal-shear fulture in terifored con-

and Materials Engineering. Vol.2. No.4: 462-472.

and Materials Engineering. Vol.2. No.4: 462-472.

Althous, Necessaris of suagemal-stear Tautier in tentincese con-
orde beams analyzed by AF-SiGMA. J_a of Solid Mechanics
and Motervials Engineering, Vol.2. No.4: 462-472.
Obmo, K. Shimozono, S. Sawaida, Y. and Ohsta, M. 2008.
Aut executions analyzes of Arcsochouse. A cylonic state of the capital strength (b) and *Macretais Engineering*, Vol.2, No.4 462-472.
A state of the capital celection of AF. First metrion has d on AIC picker for SGMA analysis Obno, K. Shimozono, S. Sawada, V. and Obtsu, M. 2008.
Addinative detection of AE first motion based on AIC picker for SiGMA analysis. *L. of JSND*, Vol.57. No.11: Yokola, M. 1999. Study on eorrosion monitoring of reinforc
- Yokota, M. 1999. Study on corrosion monitoring of reinforcing steel bars in 36-year-old actual concrete structures. Concrete library of JSCE. 33: 155-164. Automatic detection of AE first motion based on AIC
picker for SiGMA analysis. *J. of JSNDL*. Vol.57. No.11:
S1-536
Vokota M. 1999. Study on corrosion monitoring of reinforcing
steel hars in 36-year-old actual concrete st picker for SiGMA analysis. *J. of JSNDI*. Vol.57. No.11:
531-536
Yokota, M. 1999. Study on corression mentioring of reinforcing
steel burs in 36-year-old actual concrete structures. Con-
crete library of JSCE. 33: 155-1 34.736
obta, M. 1999. Study on corrosion monitoring of reinforcing
steel bars in 36-year-old actual concrete structures. Concrete library of JSCE. 33: 155-164. Tokota, M. 1999. Still
steel bars in 36-y
*crete library of JS*C \overline{C}