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Abstract

Automatic categorization of web documents (e.g. HTML documents) denotes the task of automatically finding
relevant categories for a (new) document which is to be inserted into a web catalogue likeYahoo!. There exist
many approaches for performing this difficult task. Here, special kinds of web catalogues, those whose category
scheme is hierarchically ordered, are regarded. A method for using the knowledge about the hierarchy to gain better
categorization results is discussed. This method can be applied in a post-processing step and therefore be combined
with other known (non-hierarchical) categorization approaches.

1 Introduction

The Internet, mainly the World Wide Web and the Usenet, offers a lot of information to the interested user. The
number of documents accessible via the net is growing rapidly. To manage this chaotic state, engines like AltaVista1

or Yahoo!2 offer mechanisms to search for the documents that the user needs. Some of them, like AltaVista, let the
user type in keywords describing the desired document. Others, likeYahoo!, put the documents into a hierarchically
ordered category scheme so that the user can browse through these categories to satisfy his information needs.

Categorization of web documents (e.g. HTML documents) denotes the task of finding relevant categories for a
(new) document which is to be inserted into such a web catalogue. This is mostly done manually. But the large number
of new documents which appear on the World Wide Web and need to be categorized raises the question of whether
and how this task can be performed automatically. Since information filtering and categorization are closely related,
and information filtering and information retrieval are two sides of the same coin ([1]), automatic categorization can
be done using well-known means of classical IR. If there is a category scheme and documents that are sorted into
this given scheme, a document which is to be categorized can be regarded as a query (thequery document) to this
collection.

The categorization of web documents is performed in two steps. In the indexing step, the documents in the
collection as well as the query documents are transformed into their document description, which can be e.g. a
vector of term weights for each document. In the classification step, one possibility is to create a ranking of the
categories according to the query document. From this ranking, a classification decision is made (e.g. to assign the
first ranked categories to the query document). There are many approaches for performing the tasks in these two
steps. For example, the documents can be indexed using the well-knowntf � idf approach ([12]), or by using a
probabilistic, description-oriented approach as described in [6], where relevance descriptions and linear regression are
used to achieve an indexing function which calculates the desired term weights. The classification is performed by a
classifier. A classifier inputs a document and outputs a category. In [15], ak-nearest-neighbour (kNN) classifier is
presented. A probabilistic interpretation of this is introduced in [6]. Here, a ranking of categoriesC with respect to a
the query documentd is created by estimating the probabilityP (d! C), using the non-classical logic described in
[13] and [14]. [16] contains a survey of other known classifiers.

All the methods described above lack the consideration of an underlying hierarchical structure. But Internet
collections likeYahoo!provide a hierarchical category scheme. The question is whether and how the knowledge about

1http://www.altavista.digital.com/
2http://www.yahoo.com/
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the hierarchy can be exploited for improving effectiveness in document classification. There exist several approaches
on this task. Ruiz and Srinivasan ([11]) use a hierarchical neural network, consisting of gate and expert nodes. Each
internal node in the hierarchy is a gate node, andeach leafnode in the hierarchy an expert node. Beginning from the
root node,each gatenode receives an inputx (the document vector) and is set to true or false, depending whether
the document contains the concept represented by the node or not. On a path from the root node to a leaf node, the
expert is activated if every gate node on this path is set to true. Then, the activated expert node decides if it assigns
the document to the category (represented by the expert node) or not. Chakrabarti et. al. ([2]) exploit the hierarchy
for the estimation of the probabilityP (Cjd) for every leaf categoryC. Here, for a pathC1; : : : ; Ck = C from a root
nodeC1 to a leaf nodeC, P (C1jd) = 1 since the root category subsumes all other categories.P (Cjd) is calculated
with P (Cijd) = P (Ci�1jd)P (CijCi�1; d) (see [2] for further details). Furthermore, their approach filters out shared
jargon at each level of the hierarchy. For example, the term ”sport” might be useful to distinguish between the ”Sports”
and the ”Computers” category on a high level in the hierarchy. For the subcategories of the ”Sports” category, this term
is nearly useless for discrimination. Thus, on this lower level, other terms must be found to distinguish between the
”Sports” subcategories. A similar idea is used by Koller and Sahami ([8]). The classification task is divided into a set
of smaller classification tasks by producing some split in the classification hierarchy. For the ”Sports” example above,
the classifier would first distinguish documents about sports from documents about computers. Then, if the classifier
has decided that a document is about sports, a decision in the subcategories of ”Sports” is made (using another, adapted
set of terms for discrimination, filtering shared jargon). This approach has the advantage that subcategories of rejected
top-level-categories will not be considered. The drawback is that once a wrong decision on the top level is made, this
can not be corrected. McCallum et. al. ([9]) use a technique called ”shrinkage” for achieving better classification
results. Hierarchy information is used for the estimation of the probabilityP (wtjCj) of word wt given the class
Cj. On a path from a parent nodeC to Cj in the hierarchy, all nodes on this path are involved in the estimation
of P (wtjCj). P (wtjCj) itself is used to calculate the probabilityP (Cjjd); the class with the highest probability is
selected by the classifier. The advantage of this approach is that it deals well with collections having only a small
number of training examples. Dumais and Chen ([3]) use Support Vector Machines with a decision thresholdp. The
hierarchy is exploited by using a multiplicative scoring function and a sequential Boolean approach. For example, if
there are two hierarchy levels,P (C1) �P (C2) (withC1 on the first (top) level andC2 direct subcategory) is calculated;
this is the multiplicative approach. The category on the second level with the highest multiplicative probability is
chosen by the classifier. In the sequential Boolean approach,P (C1)&&P (C2) is computed. Similar to the approach
in [8], large numbers of second level categories do not need to be tested, since both of the constraintsP (C1) > p and
P (C2) > p must be satisfied.

The hierarchical approach described in this paper is different from those presented above. All of these approaches
deal with hierarchies that have a tree structure. Our approach can theoretically deal with all hierarchies forming
an acyclic graph3. Furthermore, in the hierarchical approaches described above, documents are only classified into
categories that are leaf nodes in the underlying hierarchy tree. But collections likeYahoo!also have documents inserted
into their inner categories. The approach presented here considers this fact, being able to categorize a document into an
inner category. Another difference between our approach and the other approaches is that the hierarchy is considered
in a post-processing step. Given the results achieved by a non-hierarchical classifier, our hierarchical classifier can
calculate new results based on which a (hopefully) better classification decision can be made. This has advantages and
disadvantages. The advantage is that the results of other, non-hierarchical classifiers might be reused and improved.
The disadvantage is that a pre-classification by a non-hierarchical classifier is needed, which has a negative effect on
overall performance.

The classifier estimates and uses the probabilityP (C ! C0) that a categoryC implies another categoryC0 (also
using the non-classical logic from [13, 14]). The classifier has been evaluated using the results gained with the
megadocument approach introduced in [7]. So this approach will be described first. Then, the notion of global and lo-
cal implication probability is defined, which is used for estimatingP (C ! C0). It is shown how these approximations
of P (C ! C0) can be calculated. Finally, experiments and their results are described and conclusions are presented.

3Theoretically because, for efficiency reasons, we had to use a tree-structured collection for our experiments.
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Figure 1: Documents merged to a megadocument

2 The Megadocument Approach

The megadocument approach is introduced in [7]. The basic idea is to merge all positive examples of a category into
a so-calledmegadocumentwhich represents the category. Figure 1 illustrates the approach. Web documents can be
merged so that the features of a term in the document do not get lost. For example, a feature of a termt in a web
document might be that this term appears in the title of this document. All terms in the titles of the web documents
building the megadocument form the title of the megadocument. Ift belongs to such a web document, it would
appear in the title of the megadocument and would not lose its feature of appearing in the title. By this means, the
probabilistic, description-oriented approach can be used for indexing megadocuments ([4]).

In [7], tf � idf indexing is used for the experiments. If we have a collection of indexed megadocuments, the
new document can be regarded as a query to this collection (as mentioned above). Thus, methods used in information
retrieval like the vector space model can be used for the classification task. We thus achieve a ranking of megadocu-
ments with respect to the certain query document. For instance, we could choose the categories represented by the top
ranked megadocuments to be the categories the query document belongs to.

3 Using the Hierarchy

We will now present how an underlying hierarchy in a category scheme can be used for the categorization task. The
hierarchy can be seen as a directed, acyclic graph as shown in figure 2.

The prerequisite for the approach introduced below is a non-hierarchical classifier which is able to assign weights
to every category in the category scheme. The megadocument approach is an example of such a classifier. There, the
calculated weights of every category are used for the classification decision. Another example is the probabilistic, de-
scription oriented approach in [6] where the classification is performed on the probabilityP (d! C) that a document
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Figure 2: A hierarchy graph
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C1
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Figure 3: Ranking example

d implies a categoryC. So if we are talking about ”non-hierarchical classifiers”, we mean classifiers like these.

3.1 Motivation and Basic Idea

The motivation for using the hierarchy is reflected in figure 3. Let us assume that the non-hierarchical classifier has
chosenC8 to be the category that should be assigned to the query documentd (C8 is the top ranked category). And
let us further assume that the categories shaded grey are weighted only slightly less thanC8. One can argue that a
category in the area aroundC6 would be more appropriate ford, because thenon-hierarchical classifier has assigned
relatively high weights to the categories nearC6. In contrast, the categories nearC8 in the hierarchy graph have
lesser weights. We now say that if for a categoryC there are categories with high weights around it, this is a positive
proposition ford belonging toC. Vice versa if there are categories aroundC with low weights. The basic idea is that
for estimating the final (i.e. considering the hierarchy) weight of a categoryC, all other categoriesC0 in the category
setC contribute their weights to the one forC, according to their proximity toC. For instance, if we calculate the final
weight forC6, the non-hierarchical weight (calculated by the non-hierarchical classifier) ofC11 should be considered
more than the non-hierarchical weight ofC4.

3.2 Exploiting the Hierarchy

To use the hierarchy, we estimate the probabilityP (C ! C0) that a categoryC implies another categoryC0. In other
words, if there is a document in categoryC, to which extent could this document be assigned toC0 as well? This
value might be provided externally, when the category scheme is defined. Another way, based on documents already
in the collection, is to present the documents of a categoryC to a user who can then determine the probability in the
following way:

For every documentd, decide whether this document might belong to the categoryC0 as well. So we see a category
as a set of documents and the user now creates a subset containing the documents inC that might also be assigned to
C0. Using the non-classical logic described in [13], we now get

P (C ! C0) = P (C0jC) =
jC \ C0j

jCj
:

Unfortunately, in most collections it won’t be realistic to perform this estimation for every category pair. InYahoo!
Computers & Internetfor example, we would have more than 7.8 million category pairs. So another way to approx-
imateP (C ! C0) has to be found. To this purpose, we will later define the notions of local and global implication
probabilities. The local implication probabilities are used for computing the global implication probabilities which
can be used as an approximation forP (C ! C0).

If we have an estimation ofP (C ! C0), and a non-hierarchical classifier yieldsP (d! C) as a weight for a
categoryC in the category setC with respect to a query documentd, thenPH(d! C), the weight considering the
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hierarchy, is defined as

PH(d! C) =
X

C02C

P (d! C0) �P (C0) �P (C0 ! C) (1)

whereP (C0) is a normalization factor and can be set to1=jCj.

3.3 Local Implication Probability

Thelocal implication probabilityP (C
�
! C0) is the probability that a categoryC implies another categoryC0 whereat

these categories must be neighbours. Two categories are neighbours if there is an edge between them in the hierarchy
graph (e.g. the categoriesC6 andC11 in figure 3 are neighbours, whereasC11 andC12 are not). So this probability
is not defined for every category pair, but only for categories together with their direct super- and subcategories in
the hierarchy graph. Depending on the number of categories in the category scheme and their relations, it might be
possible that users estimate everyP (C

�
! C0) manually. Another way would be to use global values� and� for all

P (CU
�
! CO) andP (CO

�
! CU ) with CO as a direct supercategory ofCU . To match the hierarchical character of a

category scheme so thatCO is a generalization ofCU , P (CO
�
! CU) < P (CU

�
! CO) should be proposed. Because

of the generalization, it is reasonable to assume that the probability that a document belonging toCU might also belong
to CO is higher than the probability the other way round. For example, inYahoo! Computers & Internetexists the
categoryLinux with the direct subcategoryLinux Kernel Source . A document about Linux kernel source is
a document about Linux (but not necessary a document about Linux in general), whereas a document about Linux in
general does not have to be a document about Linux kernel source. Thus, it would be less dramatic if a document
about Linux kernel source is found in the category about Linux, whereas a document about Linux in general shouldn’t
be categorized in a category about Linux kernel source (this is our point of view). Now, one might efficiently estimate
two global constants� and� with � < � andP (CO

�
! CU) � � andP (CU

�
! CO) � �. Furthermore, the fan-out

and fan-in of a category node in the hierarchy graph could be considered.P (CO ! CU) might decrease with the
number of direct subcategories ofCO, as well asP (CU ! CO) with the number of direct supercategories ofCU .

Motivated by the megadocument approach, we can regard a category as a set of terms. Thus, the local implication
probabilities can be calculated on a term basis as ([13])

P (CO
�
! CU ) =

jCO \CU j

jCOj
(2)

and

P (CU
�
! CO) =

jCU \ COj

jCU j
: (3)

The problem here is thatP (CO
�
! CU ) < P (CU

�
! CO) is violated ifjCU j > jCOj.

Using the hierarchy graph and the local implication probabilities, we can now define theprobabilistic hierarchy
graph. Let C be the set of categories.G = (C; E) is the hierarchy graph withE � C � C. Now the probabilistic
hierarchy graphH = (C; E0) with E0 � C � C can be developed like this:

� If (C;C0) 2 E, then(C;C0) 2 E0 and(C0; C) 2 E0.

� If w : E0 �! [0; 1] is a function assigning the edge value to every edge, thenw(C;C0) = P (C
�
! C0) and

w(C0; C) = P (C0 �
! C).

Figure 4 shows an example of a probabilistic hierarchy graph.
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Figure 4: Exemplary probabilistic hierarchy graph

3.4 Global Implication Probability

Theglobal implication probabilityP (C
�
! C0) is calculated from the local implication probabilities and the proba-

bilistic hierarchy graph. We use this as an approximation forP (C ! C0), so

P (C ! C0) � P (C
�
! C0):

For the computation ofP (C
�
! C0), we regard each local implication as a single event and assume their inde-

pendence. This way, we can use probabilistic Datalog (pDatalogI) for the calculation. Datalog is a function-free
Horn clause predicate logic.pDatalogI enhances Datalog with probability theory, assuming the independence of
events (see ([5] for further details onpDatalogI). With HySpirit4, there exists an implementation ofpDatalogI .
A program that calculatesP (C

�
! C0) written in pDatalogI is shown in figure 5. Here, the probabilistic hierar-

chy graph from figure 4 is implemented withP (CO
�
! CU) = 0:3 andP (CU

�
! CO) = 0:5. The ground fact

0.3 localimply o(c1,c2). says that C1 is supercategory of C2 and P (C1
�
! C2) is 0:3.

0.5 localimply u(c2,c1). says thatC2 is subcategory ofC1 andP (C2
�
! C1) is 0:5. These two kinds

of ground facts code the local implication probabilities. Theglobalimply rule describes howP (C
�
! C0) is cal-

culated.C impliesC0 globally if C impliesC0 locally orC implies a categoryC� globally andC� impliesC0 locally.
The input?- globalimply(c1,c6) would yieldP (C1

�
! C6) = 0.13095. This value is computed bypDatalogI

in the following way ([5]):

4http://www.hyspirit.com/

1 0.3 localimply_o(c1,c2). 0.5 localimply_u(c2,c1).
2 0.3 localimply_o(c2,c5). 0.5 localimply_u(c5,c2).
3 0.3 localimply_o(c6,c5). 0.5 localimply_u(c5,c6).
4 0.3 localimply_o(c1,c3). 0.5 localimply_u(c3,c1).
5 0.3 localimply_o(c3,c6). 0.5 localimply_u(c6,c3).
6 ...
7

8 globalimply(C1,C2) :- localimply_o(C1,C2).
9 globalimply(C1,C2) :- localimply_u(C1,C2).

10 globalimply(C1,C2) :- globalimply(C1,C) & localimply_o(C,C2).
11 globalimply(C1,C2) :- globalimply(C1,C) & localimply_u(C,C2).

Figure 5: pDatalog
I

program for calculating P (C
�

! C
0)
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All loopless paths betweenC1 andC6 in the probabilistichierarchy graph are considered. These are:C1�C3�C6

andC1 � C2 � C5 � C6. As said before, every local implication is seen as a single event with a specific prob-
ability. Let the expression lio(c,c0) describe the event ”c implies c0 locally and is the direct subcategory of c0” ( lo-
calimply o(c,c’). would be the according ground fact). Analogical liu(c,c0) (and localimply u(c,c’).
as the according ground fact). WithK1 = lio(c1,c2)^ lio(c2,c5)^ liu(c5,c6) andK2 = lio(c1,c3)^ lio(c3,c6),
K1 _K2 is a so-calledevent expressionin disjunctive normal form. Using the sieve formula,pDatalogI now calcu-
latesP (C1

�
! C6) as

P (C1
�
! C6) = P (K1 _K2)

= P (K1) + P (K2)� P (K1 ^K2)

= P (lio(c1,c2)) � P (lio(c2,c5)) � P (lio(c5,c6)) + P (lio(c1,c3)) � P (lio(c3,c6)) �

P (lio(c1,c2)) � P (lio(c2,c5)) � P (lio(c5,c6)) � P (lio(c1,c3)) � P (lio(c3,c6))

= 0:3 � 0:3 � 0:5 + 0:3 � 0:3� 0:3 � 0:3 � 0:5 � 0:3 � 0:3 = 0:13095

More generally, given an event expressionK1 _ : : :_Kn, the sieve formula computes

P (K1 _ : : :_Kn) =
nX
i=1

(�1)i�1

0
B@
X

1�j1<:::

<ji�n

P (Kj1 ^ : : :^Kji)

1
CA : (4)

Note thatpDatalogI eliminates all non-loopless paths betweenC1 andC6 by applying the absorbation law. For
example, the pathC1 � C3 � C7 � C3 �C6 would result inK3 = lio(c1,c3)^ lio(c3,c7)^ lio(c7,c3)^ lio(c3,c6).
K2 _K3 is the same asK2, soK3 will be removed bypDatalogI .

3.5 Alternative Computation ofP (C
�

! C
0)

Since the computation ofP (C
�
! C0) may be very expendable and one might want to be independent of HySpirit or

otherpDatalogI implementations, other ways of calculatingP (C
�
! C0) will be shown. If we have a probabilistic

hierarchy graphH, we can define thepath implication probabilityP (C
PF
�! C0) as the probability thatC implies

C0 regarding only the acyclic pathPF betweenC andC0. Let us take the example shown in figure 4. Here, we
have the pathPF = C1 �C2 �C5 �C6 as one possible path betweenC1 andC6. If we haveP (C1

�
! C2) = 0.3,

P (C2
�
! C5) = 0.3 andP (C5

�
! C6) = 0.5,P (C1

PF
�! C6) would be0:3 � 0:3 � 0:5 = 0:045. Let E(i;j) denote the

event thatCi impliesCj locally. � is a function that has an edge sequence as input and calculates the probability that
all events represented by the edges in the sequence occur. For instance, ifS = ((Ci; Cj); (Ck; Cl); (Cm; Cn)) then
�(S) = P (E(i;j) ^E(k;l) ^E(m;n)).

With these definitions, we can now present an algorithm that calculatesP (C
�
! C0) according to the sieve for-

mula:

Input:

� Category nodesC andC0.

� Matrix H asn � n array representing the probabilistic hierarchy graph.n is the number of nodes inH.
Elements are the local implication probabilities (used by�).

� List P = (PF1; : : : ; PFk) of cycle-free paths betweenC andC0.

Output: P (C
�
! C0)

1: p = 0
2: for i = 1 to k do

23rd European Colloquium on Information Retrieval Research, 2001 7
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Figure 6: Yahoo! Computers & Internet

3: s = 0
4: for all i-tuple(PFj1; : : : ; PFji) of loopless paths fromP with 1 � j1 < : : : < ji � k do
5: calculate edge sequenceSPFj1 ; : : : ; SPFji so that there is no duplicate edge.
6: s = s +

�
�(SPFj1 ) � : : : � �(SPFji )

�
7: end for
8: p = p+ (�1)i�1 � s
9: end for

The sequenceSPFj1 ; : : :SPFji in line 5 is built to eliminate duplicate edges in the according path list(PFj1; : : : ; PFji)
which would be duplicate events. For example, if we have two paths with the edges(C1; C2) and(C2; C3) in path 1,
and(C4; C2) and(C2; C3) in path 2, one possible edge sequence would be(C1; C2); (C2; C3); (C4; C2), eliminating
one occurrence of(C2; C3).

For efficiency reasons (the sieve formula has exponential complexity), the number of paths might have to be
limited. One way to do this in a reasonable manner is to sort the loopless paths between two categories by decreasing
path implication probabilities and choose thek first paths from this sorted list, neglecting the others. Ak-shortest-path
algorithm as described in [10] can be adapted to this problem and used for the calculation ([4]).

4 Experiments

4.1 Test Collection

Some experiments have been performed to evaluate our hierarchical classifier. To evaluate the effectiveness of a
categorization method, a test collection is needed which is split into two parts, the training documents (in our case
the documents building the megadocuments), and the test documents. Our test collection wasYahoo! Computers &
Internet, a subset ofYahoo!. This is a hierarchical collection; an excerpt can be seen in figure 6. Our frozen mirror
of Yahoo! Computers & Internetconsists of 2806 categories on 9 levels with 18639 documents. Besides having
direct sub- and supercategories, a category might be linked to other categories as well. In the figure, the dashed lines
between categories represent such links. There are 893 such links in the test collection, but for efficiency reasons
we don’t consider them. Thus, the resulting hierarchy graph is a tree, so there is only one acyclic path between two
category nodes in the probabilistic hierarchy graph.

On level 1 of theYahoo! Computers & Internetcategory scheme, there are 25 top-level categories (thetop25
categories, see figure 6.). These are regarded in particular.C is top25 category ofC0 if C is in level 1 ofYahoo!
Computers & Internet(according to the levels seen in figure 6) andC0 is a subcategory ofC, or if C0 itself is the top25
category, i.e.C0 = C. For instance,Operating Systems is the top25 category ofLinux , AmigaOS, Kernel
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Source , and of all others of its subcategories.

4.2 Evaluation Techniques

In this section, the techniques used for evaluating our approach are described. These are the same methods as used in
[6].

4.2.1 Top Ranked and Average Precision

For the evaluation, the test collection is split into two parts, the set of training documents (the documents building
the megadocuments), and the setT of test documents. For each test documentd, we get a ranking of the categories
with respect tod. The top ranked categoriesare the categories in the first rank of the ranking; our classifier decides
to assign them tod. We calculate thetop ranked precisionTR which is defined as the fraction of the total number of
correct decisions to the total number of decisions taken:

TR =
#correct decisions

#decisions
(5)

We want to see how the approach performs with respect to lower ranks. To do this, we merge all rankings to one
global ranking and mark all categories as relevant that are the correct categories with respect to the appropriate test
document. So there are multiple entries of categories in the global ranking, whereat one category might be marked
relevant in one case (because it was the relevant category to a specific test document) and not marked relevant in
another case. For example, if we have three test documentsd1, d2 andd3, and four categoriesC1; : : : ; C4, we might
get the rankingsR1 = (C1; C4; C3; C2), R2 = (C3; C2; C4; C1) andR3 = (C3; C2; C4; C1). A category is relevant
to a test document if this document belongs to the category. Relevant categories are underlined. The classifier has
assigned weights to every category in a ranking. So by merging the three rankings, we would get one global ranking
determined by the weights of the categories. In this new global ranking, a category is seen as a relevant category
if it was relevant in the ranking it comes from. In our example, one possible ranking derived fromR1, R2 andR3

could beR = (C1; C3; C2; C4; C4; C3; C2; C4; C1; C3; C2; C1). As said before, there are multiple occurrences of a
category in the ranking. InR, the firstC1 might be taken fromR1, the secondC1 from R2 etc. All (occurrences
of) C1 would be considered as different categories inR. Once we have this global ranking, we can use well-known
evaluation techniques from information retrieval. Thus, if one chooses the firstn categories5 from a ranking,precision
is the number of relevant categories chosen divided byn. Recall is the fraction of the relevant categories found to
all relevant categories in the ranking. If we assume a strong order in our example rankingR (i.e. no category has
the same weight as another one) and choose the first four categories, we would get a precision of0:25 (one relevant
category within four categories chosen) and a recall of1=3 (one relevant category found in the four categories, three
relevant categories total in the ranking). One can determine a fixed number of recall points and calculate the precision
for every recall point. In our experiment, the precision values for the 100 recall points1=100; 2=100; : : :; 1 were
computed. Using these precision values, anaverage precisioncan be calculated.

4.2.2 Top25 Matches

In [6] and [7], not only the exact matching of a category (i.e. if exactly the same category is assigned to the document
as in the test collection) is regarded, but it is also recognized if a test document has matched the appropriate top25
category. So besides the selection of the exact category for a test document, another strategy is to select a top25
category only. This has been done in two ways:

1. Choose the top25 categories of the top ranked categories. This means that every category is relevant to the test
document that belongs to the same top25 category as the test document. This way, our ranking is the same, but
we have more categories marked relevant with respect to the test document.

5Usually, information retrieval deals with rankings of documents. We take the unusual path of dealing with rankings of categories and applying
IR evaluation methods to them.
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Figure 7: Considering the different kinds of fan-out with adaptation

2. Determine a new ranking of top25 categories using akNN-like method. Given a rankingR of categories w.r.t.
a test documentd, we consider thek top ranked categories inR, which build the setNN . With this set, we
compute weights for each top25 category:

w25
d;C25 =

X
C2NN

wd;C � P (C ! C25)

jNN j
(6)

with wd;C as the weight of a categoryC w.r.t. a documentd (calculated by the hierarchical classifier), and
P (C ! C25) = 1 if C25 is top25 category ofC, and 0 else. Using the calculated weightsw25 (which are
defined for top25 categories only), the top25 categories are rankedaccording to decreasing weightw25.

The top ranked and average precision are retrieved for the exact match and for the two possible top25 matches.

4.3 Description of the Experiments

Eight experiments have been performed. The ninth experiment, the baseline, was performed by C.P.-Klas in [7] using
the megadocument approach withtf � idf indexing. We chose the experiment in which the top 10 terms according
to their idf values were regarded for each test document, since this experiment was the most effective one of those
described in [7]. The results of this experiment are the term weights calculated by the non-hierarchical classifier and
are used as an input for the hierarchical classifieraccording to (1)6.

Our experiments can be sorted into two classes: those with an intellectual (i.e. manual) estimation ofP (C
�
! C0),

and those where the local implication probabilities are computed. Each experiment was performed using and not
usingadaptation. Adaptation means that the fan-out of eachnode in the probabilistic hierarchy graph is considered.
There are two different kinds of fan-out: the number of direct subcategories and the number of direct supercategories
(which is 1 in our case). Figure 7 shows the effect of the adaptation. The edge values of the probabilistic hierarchy
graph are divided by the number of subcategories or supercategories, respectively. In this example, the category has
two supercategories and three subcategories. So the values of the edges from the category to its supercategories are
divided by 2 (from 0.4 to 0.2), and the values of the edges to its subcategories are divided by 3 (from 0.3 to 0.1). Thus,
the local implication probabilities decrease if the number of direct supercategories (or subcategories, respectively)
increases.

Since there wasn’t any hint in the category scheme ofYahoo! Computers & Internetfor the estimation of
P (C

�
! C0), we used intellectual estimation to see how our approach performs with different edge weights in the

probabilistic hierarchy graph. The following estimations were made (with the experiment name in parentheses and
CO as direct supercategory ofCU):

6The weights calculated by the megadocument approach can not be interpreted asP (d! C). Nevertheless, we take the calculated weights
instead of this probability.
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� P (CO
�
! CU) = 0.1 andP (CU

�
! CO) = 0.2 (0102 ). Here we test what happens if there is a low influence of

the hierarchy.

� P (CO
�
! CU) = 0.2 andP (CU

�
! CO) = 0.8 (0208 ). The local implication from a supercategory to a subcat-

egory is low, but high in the other direction.

� P (CO
�
! CU) = 0.7 andP (CU

�
! CO) = 0.8 (0708 ). High influence of the hierarchy.

To see what happens if we try to calculate the local implication probabilities using the data material in the
collection, we performed another experiment, using the megadocuments formed for the experiments in [7] before.
P (CO

�
! CU) was calculated using equation (2) and for the calculation ofP (CU

�
! CO) equation (3) was used. But

we did not consider all terms in a megadocument, only the top 50 terms by theiridf value. Therefore the name of
the experiment isIDF50 . In most cases, the local implication probabilities have been estimated as0, because the
intersection of the according megadocuments was empty. The advantage of this method is that these estimations are
less rigid than the ones achieved by the intellectual estimations described above.

Every experiment was repeated using adaptation; this is indicated by the postfixadapt in the name of the ex-
periment. The computations of the global implication probabilities were done in a pre-processing step. For the
calculation of a global implication probability to a categoryC, we only considered those categoriesC0 2 C with
P (C0 �

! C) > 0:01 (this was done for efficiency reasons).
The name of the baseline experiment isOH.

4.4 Results

Finally, we present the results of the experiments. TR indicates the top ranked precision, AV the average precision.
In the first column is the name of the experiment. In columns 2 and 3 are the results with respect to the exact match,
in the next two columns are the results of the experiments regarding top25 categories and the last two columns show
the results of thekNN selection of top25 categories. Results that were better than the appropriate baseline results are
highlighted.

Experiment TR AV T25 TR T25 AV T25k TR T25k AV

OH 14,45% 18,13% 52,74% 18,93% 54,12% 62,73%
IDF50 14,47% 18,2% 52,12% 18,97% 54,36% 62,92%
IDF50 adapt 14,54% 18,24% 52,14% 18,95% 54,34% 62,9%
0102 13,58% 17,41% 51,83% 19,04% 55,03% 63,19%
0102 adapt 14,45% 18,13% 52,74% 18,93% 54,12% 62,72%
0208 8,23% 11,31% 39,3% 18,54% 53,15% 60,34%
0208 adapt 9,74% 13,58% 49,51% 18,68% 53,21% 61,4%
0708 6,75% 9,45% 34,22% 18,46% 49,39% 57,22%
0708 adapt 9,71% 13,57% 48,54% 18,79% 53,23% 61,22%

Table 1: Results of the experiments

We can see that the usage of hierarchy information can improve precision values. For the exact match, the IDF50
experiments achieve better results than the baseline. Here, adaptation had a positive effect in every experiment. All the
other experiments had a more or less detrimental effect with respect to the baseline. For the top25 experiments,0102
performed best, followed by the IDF50 experiments. It is interesting that for both of these experiments, adaptation
often had a negative effect on precision (in contrast to the exact match). We achieve better results according to the
top25 categories if we choose the top25 categories using thekNN selection.

5 Conclusions

The results of the experiments show that using hierarchy information for the categorization task can improve classifica-
tion quality, although the improvement observed in the experiments is very small. The results of the IDF50 experiment
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show that the idea of calculating the local implication probabilities is a way to consider the local conditions between
two neighbouring categories. This way of estimatingP (C

�
! C0) is more flexible than the presented intellectual esti-

mation, although the0102 experiment yielded the best results for top25 categories. Since in the IDF50 experiments
P (C

�
! C0) was0 in most cases, other ways (if there) of using the knowledge provided by the category scheme and

the previously assigned documents should be considered in order to achieve better estimations ofP (C
�
! C0).

The results also show that thekNN selection is a good way to choose a top25 category for a new document to be
inserted into the collection.
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