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On the extrema and the improper derivatives of
Takagi’s continuous nowhere differentiable function

ABSTRACT. In this paper we derive functional relations for Takagi’s continuous nowhere
differentiable function T , and we give an explicit representation of T at dyadic points. As
application of these functional relations we derive a limit relation at dyadic points which
implies that at these points T attains locally minima. Further, T is maximal on a perfect set
of Lebesgue measure zero. Though the points, where T has a locally maximum, are dense
it is remarkable that there is no point where T has a proper maximum. Moreover, we verify
the existence of the improper derivatives T ′(x) = +∞ or T ′(x) = −∞ for rational x which
have an odd length of period in the binary representation. Finally we investigate one-side
upper and lower derivatives.

KEY WORDS. Takagi’s continuous nowhere differentiable function, functional equations,
improper derivatives, upper and lower derivatives.

1 Introduction

In 1903, T. Takagi [4] discovered an example of a continuous, nowhere differentiable function
that was simpler than a well-known example of K. Weierstrass. Takagi’s function T is defined
by

T (x) =
∞∑

n=0

∆ (2nx)

2n
(x ∈ R) (1.1)

where ∆(x) = dist(x, Z) is an periodic function with period 1. This function T satisfies for
0 ≤ x ≤ 1 the following system of functional equations

T
(x

2

)
=

x

2
+

1

2
T (x), T

(
1 + x

2

)
=

1− x

2
+

1

2
T (x), (1.2)

cf. [3], [2], [7]. The graph of the Takagi function is illustrated in Figure 1.
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Figure 1: The graph of the Takagi function

For Takagi’s function we derive functional relations and give some applications for it. First
we show that at dyadic points x = k

2` , (k, ` ∈ Z), there exists the limit

lim
h→0

T (x + h)− T (x)

|h| log2
1
|h|

= 1. (1.3)

Consequently, T has at all dyadic points a locally minimum, and its point out that only
these points are locally minima of T (Proposition 4.1). It holds max T = 2

3
and the set M

of points x ∈ [0, 1] with T (x) = 2
3

is given by

M =

{
∞∑

k=1

ak

4k
: ak ∈ {1, 2}

}
,

which is a perfect set of measure zero (Proposition 4.2). Further, the set of points where
T is locally maximal is a set of first category with Lebesgue measure zero, and there is no
point where T has a proper locally maximum (Proposition 4.4).

A further consequence of (1.3) is the fact that at each dyadic point x there exist the right-
side improper derivative T ′

+(x) = +∞ and the left-side improper derivative T ′
−(x) = −∞.

We give a simple criterion for the existence of the improper derivatives T ′(x) = +∞ and
T ′(x) = −∞ (Proposition 5.3). In particular, for rational x with odd length of period in the
binary representation always there exists the improper derivative (Proposition 5.4).
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Moreover, we investigate the four derivatives

D+(x) = lim sup
h→+0

T (x + h)− T (x)

h
, D+(x) = lim inf

h→+0

T (x + h)− T (x)

h
,

D−(x) = lim sup
h→−0

T (x + h)− T (x)

h
, D−(x) = lim inf

h→−0

T (x + h)− T (x)

h
,

cf. [5], p. 354. We show that if for x ∈ R the right-side derivatives D+(x) and D+(x) are
finite then

D+(x)−D+(x) ≥ 2. (1.4)

In view of the symmetry T (1 − x) = T (x) this is true also for the left-side derivatives.
Furthermore, if all four derivatives are finite then for the upper and lower derivatives

D(x) = lim sup
h→0

T (x + h)− T (x)

h
= max {D+(x), D−(x)} (1.5)

D(x) = lim inf
h→0

T (x + h)− T (x)

h
= min {D+(x), D−(x)} (1.6)

it holds
D(x)−D(x) ≥ 3. (1.7)

We show that the estimates (1.4) and (1.7) are best possible.

In the textbook [3] you can find in detail investigations on Takagi’s function. Unfortunately
the representation contains errors which we correct in Section 7.3.

2 Functional relations

In order to derive functional relations for Takagi’s function we use the binary sum-of-digit
function s(k) which for integers k ≥ 0 with the dyadic representation k = a0a1 . . . am,
aj ∈ {0, 1}, is defined by

s(k) =
m∑

j=0

aj (2.1)

and which has the properties s(2k) = s(k) and s(2k + 1) = s(k) + 1.

Proposition 2.1 For ` ∈ N, k = 0, 1, . . . , 2` − 1, x ∈ [0, 1], the Takagi function T

satisfies the functional equations

T

(
k + x

2`

)
= T

(
k

2`

)
+

`− 2s(k)

2`
x +

1

2`
T (x) (2.2)

and
T

(
k − x

2`

)
= T

(
k

2`

)
+

2s(k − 1)− `

2`
x +

1

2`
T (x). (2.3)
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Moreover, for x = n
2` with n = 0, . . . , 2` the function T has the representation

T
( n

2`

)
=

n`

2`
− 1

2`−1

n−1∑
k=0

s(k). (2.4)

Proof: Equation (2.2) for ` = 1 turns over into (1.2). Assume that (2.2) is true for an
integer ` ≥ 1. Replacing x by x

2
and applying (1.2) we get

T

(
2k + x

2`+1

)
= T

(
k

2`

)
+

`− 2s(k)

2`

x

2
+

1

2`
T

(x

2

)
= T

(
2k

2`+1

)
+

`− 2s(k)

2`+1
x +

x

2`+1
+

1

2`+1
T (x).

In view of s(2k) = s(k) we obtain (2.2) with 2k instead of k and ` + 1 instead of `. If we
replace x by x+1

2
in (2.2) then in view of (1.2) we obtain

T

(
2k + 1 + x

2`+1

)
= T

(
k

2`

)
+

`− 2s(k)

2`

x + 1

2
+

1

2`
T

(
x + 1

2

)
= T

(
k

2`

)
+

`− 2s(2k)

2`+1
(x + 1) +

1− x

2`+1
+

1

2`+1
T (x).

For x = 0 we find in view of T (0) = 0

T

(
2k + 1

2`+1

)
= T

(
k

2`

)
+

`− 2s(2k)

2`+1
− 1

2`+1

and it follows

T

(
2k + 1 + x

2`+1

)
= T

(
2k + 1

2`

)
+

` + 1− 2s(2k + 1)

2`+1
x +

1

2`+1
T (x)

where we have used s(2k + 1) = s(k) + 1, so that (2.2) is proved by induction.

From (2.2) with k− 1 instead of k and 1− x instead of x we get in view of the symmetry of
T the equation

T

(
k − x

2`

)
= T

(
k − 1

2`

)
+

`− 2s(k − 1)

2`
(1− x) +

1

2`
T (x) (0 ≤ x ≤ 1). (2.5)

It follows for x = 0 that

T

(
k

2`

)
= T

(
k − 1

2`

)
+

`− 2s(k − 1)

2`
,

so that (2.5) can be written as (2.3). Finally, equation (2.4) follows from (2.2) for x = 1 and
by summation in view of T (0) = T (1) = 0. �
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Corollary 2.2 For ` ∈ N, k = 1, . . . , 2` − 1, x ∈ [0, 1], the Takagi function T satisfies

T

(
k + x

2`

)
− T

(
k − x

2`

)
=

`− s(k)− s(k − 1)

2`−1
x. (2.6)

For k = ` = 1 this means the symmetry of T with respect to 1
2
.

It is easy to see that the partial sum

S`(x) =
`−1∑
n=0

∆(2nx)

2n
(2.7)

of Takagi’s function T from (1.1) is linear in the intervals

Ik` =

[
k

2`
,
k + 1

2`

]
(2.8)

where ` ∈ N and k ∈ {0, 1, . . . , 2` − 1}. Moreover, for n ≥ ` and k ∈ {0, 1, . . . , 2`} we have
Sn( k

2` ) = S`(
k
2` ) and hence also T ( k

2` ) = S`(
k
2` ), cf. Figure 2.

Figure 2: The partial sums S1, S2, S3

Proposition 2.3 For ` ∈ N, k = 0, 1, . . . , 2`− 1, the partial sum (2.7) of (1.1) is linear
in the interval (2.8) and it holds

S`

(
k + x

2`

)
= S`

(
k

2`

)
+

`− 2s(k)

2`
x (x ∈ [0, 1]). (2.9)
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Proof: Clearly, S`(x) is linear in Ik` so that

S`

(
k + x

2`

)
= S`

(
k

2`

)
+ ax (x ∈ [0, 1]).

In view of T ( k
2` ) = S`(

k
2` ) and T (k+1

2` ) = S`(
k+1
2` ) we obtain from (2.2) with x = 1 that

S`

(
k + 1

2`

)
− S`

(
k

2`

)
=

`− 2s(k)

2`

which implies the assertion. �

3 A limit relation at dyadic points

In order to derive the limit relation (1.3) first we show

Lemma 3.1 For 0 < x ≤ 1
2

the Takagi function T satisfies the estimate

x log2

1

x
≤ T (x) ≤ x log2

1

x
+ cx (3.1)

with a constant c < 2
3
.

Proof: For 0 < x ≤ 1
2

we put

C(x) =
T (x)

x log2
1
x

and we show that for 1
2`+1 < x ≤ 1

2` (` ∈ N) it holds

1 ≤ C(x) ≤ 1 +
c

` + 1
. (3.2)

Applying (1.2) we obtain

C
(x

2

)
log2

2

x
=

2

x
T

(x

2

)
= 1 + C(x) log2

1

x

which implies {
C

(x

2

)
− 1

}
log2

2

x
= {C(x)− 1} log2

1

x
. (3.3)

1. First we show that C(x) ≥ 1 for 1
4
≤ x ≤ 1

2
. We use the estimate T (x) ≥ S3(x) where

the partial sum S3(x) from (2.7) has for 1
4
≤ x ≤ 1

2
the form

S3(x) =


1
2

+ x for 1
4
≤ x ≤ 3

8

1− x for 3
8
≤ x ≤ 1

2
,
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cf. Figure 2. For 1
4

< x < 3
8

we have for the function f(x) = x log2
1
x

f ′(x) =
−1 + log 1

x

log 2
<

log 4
e

log 2
< 1 = S ′

3(x)

so that from S3(
1
4
) = f(1

4
) = 1

2
it follows S3(x) ≥ f(x). For 3

8
< x < 1

2
we have

f ′(x) =
−1− log x

log 2
>
− log e

2

log 2
> −1 = S ′

3(x)

so that from S3(
1
2
) = f(1

2
) = 1

2
it follows S3(x) ≥ f(x). So we have T (x) ≥ S3(x) ≥ f(x) for

1
4
≤ x ≤ 1

2
, i.e. C(x) ≥ 1 for these x. The relation (3.3) implies that C(x) ≥ 1 is valid for

all x ∈ (0, 1
2
].

2. Next we show that (3.2) is valid for ` = 1. Since 1
f(x)

is increasing for 0 < x < 1
e

and
decreasing for 1

e
< x, it follows that in interval [1

4
, 1

2
] the function 1

f(x)
is maximal for x = 1

4

or for x = 1
2
. Because of f(1

4
) = f(1

2
) = 1

2
it follows in view of T (1

4
) < 2

3
and T (1

2
) < 2

3
that

C(x) < 4
3

for 1
4
≤ x ≤ 1

2
, i.e. (3.2) is true for ` = 1 with a constant c < 2

3
. If (3.2) is true for

a certain ` ∈ N then by (3.3) we have

C
(

x
2

)
− 1

C(x)− 1
=

log2
1
x

1 + log2
1
x

= 1− 1

1 + log2
1
x

≤ 1− 1

` + 2

for 1
2`+1 ≤ x ≤ 1

2` . This implies

C
(x

2

)
− 1 ≤ {C(x)− 1}` + 1

` + 2
≤ c

` + 2

for 1
2`+2 ≤ x

2
≤ 1

2`+1 , i.e. (3.2) is valid also for ` + 1 and hence by induction for all ` ∈ N.

Finally, for 1
2`+1 < x we have ` + 1 > log2

1
x
, so that for the right hand side of (3.2) we get

C(x) ≤ 1 +
c

` + 1
≤ 1 +

c

log2
1
x

which yields the assertion. �

Proposition 3.2 The Takagi function T satisfies at each dyadic point x = k
2` the limit

relation
lim
h→0

T (x + h)− T (x)

|h| log2
1
|h|

= 1.

Proof: For x = 0 the limit relation is a consequence of Lemma 3.1. Let x = k
2` (` ∈ N, 0 ≤

k ≤ 2` − 1), and 0 < h < 1
2` . According to (2.2) we have

T (x + h)− T (x) = {`− 2s(k)}h +
1

2`
T (2`h)
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and
T (x + h)− T (x)

h log2
1
h

=
`− 2s(k)

log2
1
h

+
1

2`h

T (2`h)

log2
1
h

With t = 2`h the last term can be written as
T (t)

t log2
2`

t

=
T (t)

t log2
1
t
(1− `

log2 t
)
→ 1 (t → +0).

We obtain the same limit for
T (x− h)− T (x)

−h log2
1
h

by means of (2.3) which yields the assertion. �

4 The extreme values of Takagi’s function

Clearly, since Takagi’s function T is continuous and nowhere differentiable there is no interval
where T is monotone. The function T has at the point x0 a locally maximum if T (x0) ≥ T (x)

for all x of a certain neighbourhood U of x0. If even T (x0) > T (x) for x ∈ U with x 6= x0

then T has at x0 a proper locally maximum. Analogous notations are used for a proper
locally minimum, cf. e.g. [3].

Proposition 4.1 The Takagi function T attains its locally minima exactly at the dyadic
points x = k

2` where all these T (x) are proper minima.

Proof: The limit relation (1.3) implies

lim
h→0

T (x + h)− T (x)

|h|
= +∞

so that T has at each dyadic point a proper locally minimum. Now let x ∈ [0, 1] be a
nondyadic point then for arbitrary ` ∈ N there is k ∈ {0, 1, . . . , 2`−1} such that k

2` < x < k+1
2` ,

i.e. x = t k
2` + (1 − t)k+1

2` with a certain t ∈ (0, 1). For the partial sum S`(x) from (2.7) it
holds T ( k

2` ) = S`(
k
2` ) and T (k+1

2` ) = S`(
k+1
2` ), and T (x) > S`(x) = tS`(

k
2` ) + (1 − t)S`(

k+1
2` ).

This implies T (x) > min {T ( k
2` ), T (k+1

2` )} so that T cannot have a proper minimum at x. �

Next we investigate the global maxima of Takagi’s function.

Proposition 4.2 We have max T = 2
3

and the set M of points x ∈ [0, 1] with T (x) = 2
3

is given by

M =

{
x =

∞∑
k=1

ak

4k
: ak ∈ {1, 2}

}
. (4.1)

M is a perfect set of measure zero with min M = 1
3

and max M = 2
3
.
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Proof: By means of the partial sum S2(x) from (2.7) the series (1.1) can be written as

T (x) =
∞∑

n=0

S2(4
nx)

4n
(x ∈ R). (4.2)

Since S2(x) is 1-periodic and has in [0, 1] the form

S2(x) =


2x for 0 ≤ x < 1

4

1
2

for 1
4
≤ x < 3

4

2− 2x for 3
4
≤ x ≤ 1,

(4.3)

cf. Figure 2, it follows that

T (x) ≤ 1

2

∞∑
n=0

1

4n
=

2

3

and that T (x) = 2
3

if and only if S2(4
nx) = 1

2
for all n ∈ N. According to (4.3) this is

valid for x ∈ [0, 1] exactly for x ∈ M from (4.1). M is a perfect set since for x ∈ M with
given ak in (4.1) also xn = x + 3−2an

4n ∈ M (exchange of the digits 1 and 2) and xn → x

as n → ∞. Moreover, M has the measure zero, since the representations of x ∈ M do not
contain at least one digit, here 0 and 3, cf. [5], p. 329-330. From (4.1) we get min M = 1

3

and max M = 2
3
. �

In order to investigate the locally maxima of Takagi’s function we determine the maxima of
it in the closed intervals (2.8).

Proposition 4.3 For ` ∈ N, k = 0, 1, . . . , 2` − 1 the set Ak` of points in Ik` from (2.8),
where T (x) is maximal, is a perfect set of measure zero so that it is nowhere dense in [0, 1].
For the maximum it holds

max
x∈Ik`

T (x) =

 T
(

k
2`

)
+ 2

3·4s(k) 2s(k) ≥ `

T
(

k+1
2`

)
+ 2

3·4`−s(k) 2s(k) < `

with s(k) from (2.1).

Proof: According to Proposition 2.3 in the interval Ik` it holds relation (2.9), so that S` is
linear in Ik` with the slope p = `− 2s(k). In case p = 0 we get from (2.2) that

T

(
k + x

2`

)
= T

(
k

2`

)
+

1

2`
T (x) (x ∈ [0, 1]).

According to Proposition 4.2 it follows that T attains its maximum in Ik` on a nowhere dense
perfect set Ak` with measure |Ak`| = 0, and for the maximal value we have

max
x∈Ik`

T (x) = T

(
k

2`

)
+

2

3

1

2`
.
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This is the assertion in case ` = 2s(k).

In case p < 0 the partial sum S` is strictly decreasing in Ik`. The partial sum S`+|p| is
decreasing in Ik`, where more precisely we have S`+|p|(x) = S`(

k
2` ) for x ∈ I2|p|k,`+|p| ⊂ Ik`

and S`+|p|(x) < S`(
k
2` ) for all another x in Ik`. Therefore, the maximum of T in Ik` we find

in I2|p|k,`+|p| where in view of Proposition 2.1 we have

T

(
2|p|k + x

2`+|p|

)
= T

(
k

2`

)
+

1

2`+|p|T (x) (x ∈ [0, 1]).

Thus, for the maximum of T in Ik` we have in view of ` + |p| = 2s(k) and Proposition 4.2
that

max
x∈Ik`

T (x) = T

(
k

2`

)
+

2

3

1

4s(k)
.

Finally, if p > 0 then the partial sum S` is strictly increasing in Ik`, and S`+p is increasing.
Now, in this case we have S`+p(x) = S`(

k+1
2` ) for x ∈ I2p(k+1)−1,`+p and S`+p(x) < S`(

k+1
2` ) for

all another x in Ik`. Therefore, the maximum of T in Ik` we find in I2p(k+1)−1,`+p where in
view of Proposition 2.1 we have

T

(
2p(k + 1)− x

2`+p

)
= T

(
k + 1

2`

)
+

1

2`+p
T (x) (x ∈ [0, 1]).

As before it follows in view of ` + p = 2`− 2s(k) that

max
x∈Ik`

T (x) = T

(
k + 1

2`

)
+

2

3

1

4`−s(k)
.

According to Proposition 4.2 the set Ak` where T is maximal in Ik` is a nowhere dense set
of measure zero. �

It follows from Proposition 4.3 and (2.4) that the maximum of T in Ik` has the form 1
3

m
2n

with certain integers m, n. As consequence we get

Proposition 4.4 The set A ⊆ [0, 1], where T attains its locally maxima, is a set of
first category, i.e. it is representable as union of at most countable many perfect nowhere
dense sets. This set A has the power c and the measure zero. For x ∈ A the values are
T (x) = 1

3
m
2n with certain n ∈ N0 and m ∈ {1, 2, . . . , 2n+1}. There is no point where T has a

proper maximum.

5 Improper derivatives

As already mentioned in the introduction formula (1.3) implies that for dyadic points x = k
2`

it holds
lim

h→+0

T (x + h)− T (x)

h
= +∞
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and
lim

h→−0

T (x + h)− T (x)

h
= −∞.

Hence, T has at all dyadic points x the one-side improper derivatives T ′
+(x) = +∞ and

T ′
−(x) = −∞.

For arbitrary numbers x, y ∈ [0, 1] we consider the dyadic representations

x = ξ0, ξ1ξ2 . . . , y = η0, η1η2 . . . (5.1)

with ξ0 = η0 = 0 and ξn, ηn ∈ {0, 1}, and we put

xn = 0, ξnξn+1 . . . , yn = 0, ηnηn+1 . . . (5.2)

for n ≥ 0.

Proposition 5.1 Let x and y are different points in [0, 1] with ξν = ην for ν < n ∈ N.
Then also xn and yn are different, and we have

T (x)− T (y)

x− y
=

n−1∑
ν=0

(−1)ξν +
T (xn)− T (yn)

xn − yn

. (5.3)

In particular, if ην = 1− ξν for ν ≥ n, i.e. xn + yn = 1, then we have |x− y| ≤ 1
2n and

T (x)− T (y)

x− y
=

n−1∑
ν=0

(−1)ξν . (5.4)

Proof: We put kn = [2n−1x], i.e. kn =
∑n−1

ν=0 2n−νξν then we have

x =
2kn + xn

2n
, y =

2kn + yn

2n

and
x− y =

xn − yn

2n
. (5.5)

From equation (2.2) we get

T (x) = T

(
2kn + xn

2n

)
= T

(
2kn

2n

)
+

n− 2s(2kn)

2n
xn +

1

2n
T (xn)

and
T (y) = T

(
2kn + yn

2n

)
= T

(
2kn

2n

)
+

n− 2s(2kn)

2n
yn +

1

2n
T (yn).

It follows
T (x)− T (y)

x− y
= n− 2s(2kn) +

T (xn)− T (yn)

xn − yn

and the relations (5.5) and 1− 2ξν = (−1)ξν for ν = 0, . . . n− 1 yield the assertion (5.3). In
case yn = 1− xn we have T (xn) = T (1− xn) = T (yn), and hence (5.4). �
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Corollary 5.2 Formula (5.4) implies:
1. There is no point where T has a finite derivative since as n → ∞ the right-hand side is
not convergent to a finite value.
2. If there exists the improper derivative T ′(x) = +∞ then

∞∑
k=0

(−1)ξk = +∞ (5.6)

and if T ′(x) = −∞ then
∞∑

k=0

(−1)ξk = −∞. (5.7)

Proposition 5.3 If in the dyadic representation of the number x the number of both
zeros and ones which occur one after the other is bounded then (5.6) implies the existence of
the improper derivative T ′(x) = +∞, and (5.7) implies T ′(x) = −∞.

Proof: For y 6= x let n be the smallest integer such that ηn = ξn, cf. (5.1). Then by
Proposition 5.1 it holds∣∣∣∣∣T (x)− T (y)

x− y
−

n−1∑
ν=0

(−1)ξν

∣∣∣∣∣ =

∣∣∣∣T (xn)− T (yn)

xn − yn

∣∣∣∣
with xn, yn from (5.2). If d denotes the maximal number of equals digits ξν which occur one
after the other then in case ξn = 1, ηn = 0 we have xn > 1

2
+ 1

2d+3 and yn < 1
4

+ 1
8

+ . . . = 1
2

so that |xn − yn| > 1
2d+3 . In case ξn = 0, ηn = 1 we have xn < 1

4
+ . . . + 1

2d+2 = 1
2
− 1

2d+3 and
yn ≥ 1

2
so that |xn − yn| > 1

2d+3 , too. Hence∣∣∣∣T (xn)− T (yn)

xn − yn

∣∣∣∣ <
2

3
2d+3.

This implies the assertion. �

So for rational x we summarize

Proposition 5.4 For the Takagi function T we have the following statements at rational
points x:
1. If x = k

2` is a dyadic point then T ′
+(x) = +∞ and T ′

−(x) = −∞.
2. If x 6= k

2` has a dyadic representation with the period ξk+1 . . . ξk+p then it holds:

ξk+1 + ξk+2 + . . . + ξk+p


< p

2
=⇒ T ′(x) = +∞

> p
2

=⇒ T ′(x) = −∞

= p
2

=⇒ T ′(x) does not exists.

In the last case, where p must be even, D(x) from (1.5) and D(x) from (1.6) are finite.
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Remark 5.5 It follows from Proposition 5.4 that for rational x with an odd length of
period in the dyadic representation always there exists the improper derivative T ′(x). For
instance x1 = 1

7
= 0, 001001 . . . has the period 001 and hence there exists the improper

derivative T ′(x1) = +∞, and x2 = 6
7

= 0, 110110 . . . has the period 110 and hence there
exists the improper derivative T ′(x2) = −∞.

Remark 5.6 We know that for dyadic points x = k
2` there exists the limit (1.3). Let us

mention that a similar argument as in the proof of Proposition 5.3 also yields (1.3) and
moreover, that for rational x 6= k

2` it holds

lim
h→0

T (x + h)− T (x)

h log2
1
|h|

= 1− 2(ξk+1 + . . . + ξk+p)

p

where ξk+1 . . . ξk+p is a period in the dyadic representation of x.

6 Upper and lower derivatives

Finally, we investigate the four derivatives D+(x), D+(x), D−(x), D−(x) of Takagi’s function
T , which are defined in the introduction. We begin with

Lemma 6.1 For 0 < x < 1
3

the T satisfies the inequality T (x) ≥ 2x where we have
equality if and only if x = xm with

xm =
m∑

µ=1

1

4µ
=

4m − 1

3 · 4m
(m ∈ N). (6.1)

Proof: First we show by induction on m that T (xm) = 2xm. For m = 1 we have x1 = 1
4
,

and according to (2.4) it holds T (1
4
) = 1

2
. Formula (6.1) implies xm = km

4m with km =

1 + 4 + . . . + 4m−1 so that s(km) = m, cf. (2.1). Moreover, we have

xm+1 = xm +
1

4m+1
=

4km + 1

4m+1
. (6.2)

Assume that for a fixed m it holds

T (xm) = 2xm =
2(4m − 1)

3 · 4m

then by (2.2) with k = 4km, ` = 2m + 2 and x = 1 we get in view of s(4km) = m and
T (1) = 0 that

T

(
4km + 1

22m+2

)
= T (xm) +

2m + 2− 2s(4km)

22m+2

=
2(4m − 1)

3 · 4m
+

2

4m+1
=

2(4m+1 − 1)

3 · 4m+1
,
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i.e. T (xm+1) = 2xm+1. It follows that T (xm+1) = T (xm) + 2(xm+1 − xm). Since xm = 4km

22m+2

and xm+1 = 4km+1
22m+2 the equation (2.2) implies in view of T (t) > 0 for 0 < t < 1

4m+1 that
T (xm + t) > T (xm) + 2t.

Lemma 6.2 The Takagi function has at the point x = 1
3

the derivatives

D+

(
1

3

)
= 0, D+

(
1

3

)
= −1, D−

(
1

3

)
= 2, D−

(
1

3

)
= 1.

Proof: We know that T (x) ≤ T (1
3
) = 2

3
and that the set M of points x in [0, 1] with T (x) = 2

3

is a perfect set. Since 1
3

= min M it follows D+(1
3
) = 0. The symmetry T (1 − x) = T (x)

implies D−(2
3
) = 0, too.

Let xν be a sequence with xν → x as ν → ∞. From the first equation in (1.2) with 2x

instead of x we get for xν 6= x and xν , x < 1
2

that

T (xν)− T (x)

xν − x
= 1 +

T (2xν)− T (2x)

2(xν − x)
. (6.3)

It follows D−(1
3
) = 1 since D−(2

3
) = 0. Moreover, Lemma 6.1 implies D−(1

3
) = 2 so that

D+(2
3
) = −2 since the symmetry of T . Now, (6.3) implies D+(1

3
) = −1. �

Proposition 6.3 If for x ∈ R the right-side derivatives D+(x) and D+(x) of the Takagi
function T are finite then we have

D+(x)−D+(x) ≥ 2

where we have equality if x has the form

x =
k

2n
+

1

3 · 2n

with k, n ∈ N0. Moreover, the upper and lower derivatives D(x) and D(x) of T satisfy the
inequality

D(x)−D(x) ≥ 3

where we have equality if x has above form.

Proof: For dyadic x = k
2` we know from Proposition 3.2 that D+T (x) = +∞. Let x be a

nondyadic point with the representation x = 0, ξ1ξ2 . . . and for n ∈ N let be y = 0, η1η2 . . .

with ην = ξν for ν ≤ n and ην = 1 − ξν for ν > n. In case ξn+1 = 0 we have y > x

since y ≥ 0, ξ1 . . . ξn1 > 0, ξ1 . . . ξn0 . . . = x and x is notdyadic. Equation (5.4) implies that
Dr(x) := D+(x)−D+(x) ≥ 1 where Dr(x) ≥ 2 and the case Dr(x) = 1 may be only possible
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if there is an integer n such that for ν ≥ 0 it holds ξn+2ν = 1 and ξn+2ν+1 = 0. This means
that x = x0 necessarily must be of the form x0 = 0, ξ1 . . . ξn0101 . . ., i.e.

x0 =
n∑

ν=1

ξν

2ν
+

1

2n+2

∞∑
k=0

1

4k
=

k

2n
+

1

3 · 2n

and according to (2.2) we get for 0 < |h| < 1
3·2n that

T (x0 + h)− T (x0)

h
= n− 2s(k) +

T (1
3

+ 2nh)− T (1
3
)

2nh
.

It follows Dr(x0) = Dr(
1
3
) = 2 by Lemma 6.2. Consequently, for an arbitrary nondyadic

point x we have Dr(x) ≥ 2.

As before formula (5.4) implies that S = D(x) − D(x) ≥ 2 where the case S = 2 may be
only possible if there is an integer n such that for ν ≥ 0 it holds ξn+2ν = 1 and ξn+2ν+1 = 0,
i.e. if x = x0. But for x0 we get from Lemma 6.2 as before that D(x0)−D(x0) = 3. �

7 Supplements

Finally we give three supplements.

7.1. Improper derivatives at irrational points. There exists irrational points such that
there exists the improper derivative. In order to give an example first we put x = ξ0, ξ1ξ2 . . .

where ξk is s(k) mod 2 with values from {0, 1} which is the Morse sequence, cf. [1]. Relations
s(2k) = s(k) and s(2k + 1) = s(k) + 1 imply that d = 2 is the maximal number of the same
digit which occur one after the other. For k = 2` + 1 (` = 1, 2, . . .) we have s(k) = 2 and
hence ξk = 0. We put y = η0, η1η2 . . . , where ηk = 1 for k = 2` +1 and ηk = 0 elsewhere. We
show that z = x + y is irrational and that Takagi’s function has at this point the improper
derivative T ′(z) = −∞. First we show that x is irrational. Assume the representation
x = ξ0, ξ1ξ2 . . . contains a period, i.e. there is an integer p > 1 such that ξk+p = ξk for
k ≥ k0. If s(p) ≡ 0 mod 2 then for k = 2n ≥ k0 we have s(k) = 1 but s(kp) = s(p) 6≡ s(k)

mod 2 which is impossible. In case s(p) ≡ 1 mod 2 we note that ξk+p′ = ξk for each multiply
p′ of p. In particular for p′ = (2n + 1)p with 2n > p we get s(p′) = 2s(p), and as before we
get an contradiction so that x cannot be rational. Now it follows easy that also z = ζ0, ζ1 . . .

with ζk = ξk + ηk does not have a period in view of 2`+1 + 1− (2` + 1) →∞ as ` →∞. In
order to apply Proposition 5.3 we have to show that

∞∑
k=0

(−1)ξk+ηk = −∞. (7.1)
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But the sequence
∑n

k=0(−1)ξk ∈ {0, +1,−1} is bounded and ηk = 1 only for k = 2` + 1

where ξk = 0. This implies (7.1), and by Proposition 5.3 it holds T ′(z) = −∞.

7.2. An example for the case D(x) = +∞ and D(x) = −∞. In order to show that the
condition (5.6) is not sufficient for the existence of the improper derivative T ′(x) = +∞ we
use the following

Lemma 7.1 Assume that x = k+r
2n and y = k−2r

2n where k is an odd integer and 0 < r < 1
4
.

Then we have
T (x)− T (y)

x− y
= n + 2− 2s(k)− T (r)

3r
(7.2)

with s(k) from (2.1).

Proof: According to equation (2.2) we have

T (x) = T

(
k + r

2n

)
= T

(
k

2n

)
+

n− 2s(k)

2n
r +

1

2n
T (r)

and by equation (2.3) we get

T (y) = T

(
k − 2r

2n

)
= T

(
k

2n

)
+

2s(k)− 2− n

2n
2r +

1

2n
T (2r)

where we have used that s(k − 1) = s(k)− 1 since k is an odd integer. It follows

T (x)− T (y) =
n− 2s(k)

2n
3r +

4r

2n
+

T (r)− T (2r)

2n

and in view of x− y = 3r
2n we find

T (x)− T (y)

x− y
= n− 2s(k) +

4

3
+

T (r)− T (2r)

3r

From the first equation in (1.2) we get for 0 < r < 1
4

that

T (r)− T (2r)

3r
=

T (r)− {2T (r)− 2r}
3r

= −T (r)

3r
+

2

3

and hence it follows the assertion. �

Example 7.2 For

x =
∞∑

n=1

1

2an

with an ∈ N such that an+1 ≥ 4an. Then
∑

(−1)ξν = +∞ and hence D(x) = +∞. We show
that D(x) = −∞. For this we put

x =
kn + rn

2an
, y =

kn − 2rn

2an
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with

kn = 2an

n∑
k=1

1

2ak
, rn = 2an

∞∑
k=n+1

1

2ak
,

i.e. y = x + hn with hn = − 3
2αn rn. By Lemma 7.1 we have in view of s(kn) = n that

T (x)− T (x + hn)

−hn

= an − 2n− T (rn)

3rn

and by Proposition 3.1 it holds

T (rn)

rn

≥ log2

1

rn

≥ an+1 − an

since 1
rn
≥ 2an+1−an . In view of an+1 ≥ 4an we get

T (x)− T (x + hn)

−hn

≤ an − 2n− an+1 − an

3
≤ −2n

i.e. D(x) = −∞.

7.3. Some remarks to the representations in textbook [3]. The textbook [3] of
K. Strubecker: ”EINFÜHRUNG IN DIE HÖHERE MATHEMATIK”, vol. II, contains a
beautiful introduction in the foundations of the analysis. So you can find in detail a treatise
on the function f = T of T. Kakagi, among other things very interested investigations due to
W. Wunderlich [6]. Unfortunately, in the passage on Takagi’s function are misrepresentations
and since it is not planed a new edition of [3], we want to make here two remarks.

1. The first remark concern the formula (56.45) in [3]:

Dν =
f(xν)− f(x)

xν − x
=

ν∑
n=1

(−1)τn = (−1)τ1 + (−1)τ2 + . . . + (−1)τν (7.3)

where
x = 0, τ1τ2 . . . τν . . .

and
xν = 0, τ1τ2 . . . τν−1τ

′
ντν+1 . . .

with τ ′ν = 1−τν are the dyadic representations of x and xν , respectively. This formula cannot
be correct as the following example shows. In case x = 2

3
= 0, 10101 . . . we have τ2ν = 0 and

τ2ν−1 = 1 for ν ≥ 1 and x1 = 0, 0010101 . . . = 1
6
. Now, f(x) = 2

3
and f(x1) = 1

6
+ 1

2
f(1

3
) = 1

2
,

cf. (1.2), so that
f(x1)− f(x)

x1 − x
=

1

3
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but formula (7.3) yields integer values. Let us mention that instead of (7.3) it holds

f(xν)− f(x)

xν − x
= 1 +

ν−1∑
n=1

(−1)τn −
∞∑

k=0

τν+k+1

2k
(7.4)

which follows from Proposition 5.1.

2. The second remark concern Satz 3 and Satz 4 on p. 255. Both theorems base on formula
(7.3) which we have recognize as not correct. Moreover, xν is only a special sequence which
converges to x so that the fact lim

ν→∞
Dν = +∞ does not imply the existence of (one-side)

improper derivatives. Therefore the statements in Satz 3 and Satz 4 concerning the existence
of (one-side) improper derivatives are not proved.

On p. 255 it says literal: ”Zum Beispiel hat f(x) an der Stelle

x =
1

7
= 0, 001001001 . . . (periodisch)

nach (56.45) (i.e. (7.3)) die uneigentliche Ableitung f ′(x) = lim
ν→∞

Dν = +∞ und . . .”. By
Proposition 5.4 indeed f ′(x) = +∞, cf. also Remark 5.5. But this a not a consequence of
lim

ν→∞
Dν = +∞ as Example 7.2 shows.
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