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a b s t r a c t 

Most existing approaches address multi-view subspace clustering problem by constructing the affinity 

matrix on each view separately and afterwards propose how to extend spectral clustering algorithm to 

handle multi-view data. This paper presents an approach to multi-view subspace clustering that learns a 

joint subspace representation by constructing affinity matrix shared among all views. Relying on the im- 

portance of both low-rank and sparsity constraints in the construction of the affinity matrix, we introduce 

the objective that balances between the agreement across different views, while at the same time encour- 

ages sparsity and low-rankness of the solution. Related low-rank and sparsity constrained optimization 

problem is for each view solved using the alternating direction method of multipliers. Furthermore, we 

extend our approach to cluster data drawn from nonlinear subspaces by solving the corresponding prob- 

lem in a reproducing kernel Hilbert space. The proposed algorithm outperforms state-of-the-art multi- 

view subspace clustering algorithms on one synthetic and four real-world datasets. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

In many real-world machine learning problems the same data

s comprised of several different representations or views. For ex-

mple, same documents may be available in multiple languages

1] or different descriptors can be constructed from the same im-

ges [2] . Although each of these individual views may be sufficient

o perform a learning task, integrating complementary information

rom different views can reduce the complexity of a given task [3] .

ulti-view clustering seeks to partition data points based on mul-

iple representations by assuming that the same cluster structure

s shared across views. By combining information from different

iews, multi-view clustering algorithms attempt to achieve more

ccurate cluster assignments than one can get by simply concate-

ating features from different views. 

In practice, high-dimensional data often reside in a low-

imensional subspace. When all data points lie in a single sub-

pace, the problem can be set as finding a basis of a subspace

nd a low-dimensional representation of data points. Depending

n the constraints imposed on the low-dimensional representa-

ion, this problem can be solved using e.g. Principal Component

nalysis (PCA) [4] , Independent Component Analysis (ICA) [5] or

on-negative Matrix Factorization (NMF) [6–8] . On the other hand,

ata points can be drawn from different sources and lie in a union
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f subspaces. By assigning each subspace to one cluster, one can

olve the problem by applying standard clustering algorithms, such

s k-means [9] . However, these algorithms are based on the as-

umption that data points are distributed around centroid and of-

en do not perform well in the cases when data points in a sub-

pace are arbitrarily distributed. For example, two points can have

 small distance and lie in different subspaces or can be far and

till lie in the same subspace [10] . Therefore, methods that rely on

 spatial proximity of data points often fail to provide a satisfactory

olution. This has motivated the development of subspace cluster-

ng algorithms [10] . The goal of subspace clustering is to identify

he low-dimensional subspaces and find the cluster membership of

ata points. Spectral based methods [11–13] present one approach

o subspace clustering problem. They have gained a lot of atten-

ion in the recent years due to the competitive results they achieve

n arbitrarily shaped clusters and their well defined mathematical

rinciples. These methods are based on the spectral graph theory

nd represent data points as nodes in a weighted graph. The clus-

ering problem is then solved as a relaxation of the min-cut prob-

em on a graph [14] . 

One of the main challenges in spectral based methods is the

onstruction of the affinity matrix whose elements define the sim-

larity between data points. Sparse subspace clustering [15] and

ow-rank subspace clustering [16–19] are among most effective

ethods that solve this problem. These methods rely on the self-

xpressiveness property of the data by representing each data

oint as a linear combination of other data points. Low-Rank Rep-

esentation (LRR) [16,17] imposes low-rank constraint on the data
rank sparse subspace clustering, Pattern Recognition (2017), 
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Table 1 

Notations and abbreviations. 

Notation Definition 

N Number of data points 

k Number of clusters 

v View index 

n v Number of views 

D ( v ) Dimension of data points in a view v 

X (v ) ∈ IR D (v ) ×N Data matrix in a view v 

C ( v ) ∈ IR N × N Representation matrix in a view v 

C ∗ ∈ IR N × N Centroid representation matrix 

W ∈ IR N × N Affinity matrix 

X = U�V T Singular value decomposition (SVD) of X 

�( X ( v ) ) Data points in a view v mapped into high-dimensional 

feature space 

K ( v ) ∈ IR N × N Gram matrix in a view v 
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representation matrix and captures global structure of the data.

Low-rank implies that data matrix is represented by a sum of

small number of outer products of left and right singular vec-

tors weighted by corresponding singular values. Under assumption

that subspaces are independent and data sampling is sufficient,

LRR guarantees exact clustering. However, for many real-world

datasets this assumption is overly restrictive and the assumption

that data is drawn from disjoint subspaces would be more ap-

propriate [20,21] . On the other hand, Sparse Subspace Clustering

(SSC) [15] represents each data point as a sparse linear combina-

tion of other points and captures local structure of the data. Learn-

ing representation matrix in SSC can be interpreted as sparse cod-

ing [22–27] . However, compared to sparse coding where dictionary

is learned such that the representation is sparse [28,29] , SSC is

based on self-representation property i.e. data matrix stands for a

dictionary. SSC also succeeds when data is drawn from indepen-

dent subspaces and the conditions have been established for clus-

tering data drawn from disjoint subspaces [30] . However, theoreti-

cal analysis in [31] shows that it is possible that SSC over-segments

subspaces when the dimensionality of data points is higher than

three. Experimental results in [32] show that LRR misclassifies dif-

ferent data points than SSC. Therefore, in order to capture global

and the local structure of the data, it is necessary to combine low-

rank and sparsity constraints [32,33] . 

Multi-view subspace clustering can be considered as a part of

multi-view or multi-modal learning. Multi-view learning method

in [34] learns view generation matrices and representation ma-

trix, relying on the assumption that data from all the views share

the same representation matrix. The multi-view method in [35] is

based on the canonical correlation analysis in extraction of two-

view filter-bank-based features for image classification task. Simi-

larly, in [36] the authors rely on tensor-based canonical correlation

analysis to perform multi-view dimensionality reduction. This ap-

proach can be used as a preprocessing step in multi-view learning

in case of high-dimensional data. In [37] low-rank representation

matrix is learned on each view separately and learned represen-

tation matrices are concatenated to a matrix from which a uni-

fied graph affinity matrix is obtained. The method in [38] relies

on learning a linear projection matrix for each view separately.

High-order distance-based multi-view stochastic learning is pro-

posed in [39] , to efficiently explore the complementary character-

istics of multi-view features for image classification. The method in

[40] is application oriented towards image reranking and assumes

that multi-view features are contained in hypergraph Laplacians

that define different modalities. In [41] authors propose multi-view

matrix completion algorithm for handling multi-view features in

semi-supervised multi-label image classification. 

Previous multi-view subspace clustering works [42–45] address

the problem by constructing affinity matrix on each view sepa-

rately and then extend algorithm to handle multi-view data. How-

ever, since input data may often be corrupted by noise, this ap-

proach can lead to the propagation of noise in the affinity matri-

ces and degrade clustering performance. Different from the exist-

ing approaches, we propose multi-view spectral clustering frame-

work that jointly learns a subspace representation by construct-

ing single affinity matrix shared by multi-view data, while at the

same time encourages low-rank and sparsity of the representa-

tion. We propose Multi-view Low-rank Sparse Subspace Clustering

(MLRSSC) algorithms that enforce agreement: (i) between affinity

matrices of the pairs of views; (ii) between affinity matrices to-

wards a common centroid. Opposed to [35,40,46] , the proposed ap-

proach can deal with highly heterogeneous multi-view data com-

ing from different modalities. We present optimization procedure

to solve the convex dual optimization problems using Alternat-

ing Direction Method of Multipliers (ADMM) [47] . Furthermore,

we propose the kernel extension of our algorithms by solving the
Please cite this article as: M. Brbi ́c, I. Kopriva, Multi-view low-
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roblem in a Reproducing Kernel Hilbert Space (RKHS). Experimen-

al results show that MLRSSC algorithm outperforms state-of-the-

rt multi-view subspace clustering algorithms on several bench-

ark datasets. Additionally, we evaluate performance on a novel

eal-world heterogeneous multi-view dataset from biological do-

ain. 

The remainder of the paper is organized as follows.

ection 2 gives a brief overview of the low-rank and sparse

ubspace clustering methods. Section 3 introduces two novel

ulti-view subspace clustering algorithms. In Section 4 we present

he kernelized version of the proposed algorithms by formulating

ubspace clustering problem in RKHS. The performance of the new

lgorithms is demonstrated in Section 5 . Section 6 concludes the

aper. 

. Background and related work 

In this section, we give a brief introduction to Sparse Subspace

lustering (SSC) [15] , Low-Rank Representation (LRR) [16,17] and

ow-rank Sparse Subspace Clustering (LRSSC) [32] . 

.1. Main notations 

Throughout this paper, matrices are represented with bold cap-

tal symbols and vectors with bold lower-case symbols. ‖ · ‖ F de-

otes the Frobenius norm of a matrix. The � 1 norm, denoted by

 · ‖ 1 , is the sum of absolute values of matrix elements; infinity

orm ‖ · ‖ ∞ 

is the maximum absolute element value; and the nu-

lear norm ‖ · ‖ ∗ is the sum of singular values of a matrix. Trace

perator of a matrix is denoted by tr ( · ) and diag ( · ) is the vector

f diagonal elements of a matrix. 0 denotes null vector. Table 1

ummarizes some notations used throughout the paper. 

.2. Related work 

Consider the set of N data points X = 

{
x i ∈ IR 

D 
}N 

i =1 
that lie in

 union of k > 1 linear subspaces of unknown dimensions. Given

he set of data points X , the task of subspace clustering is to clus-

er data points according to the subspaces they belong to. The first

tep is the construction of the affinity matrix W ∈ IR 

N × N whose el-

ments define the similarity between data points. Ideally, the affin-

ty matrix is a block diagonal matrix such that a nonzero distance

s assigned to the points from the same subspace. LRR, SSC and

RSSC construct the affinity matrix by enforcing low-rank, sparsity

nd low-rank plus sparsity constraints, respectively. 

Low-Rank Representation (LRR) [16,17] seeks to find a low-rank

epresentation matrix C ∈ IR 

N × N for input data X . The basic model

f LRR is the following: 

in 

C 

∥∥C 

∥∥
∗ s.t. X = XC , (1)
rank sparse subspace clustering, Pattern Recognition (2017), 

http://dx.doi.org/10.1016/j.patcog.2017.08.024
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here the nuclear norm is used to approximate the rank of C and

hat results in the convex optimization problem. 

Denote the SVD of X as U �V 

T . The minimizer of Eq. (1) is

niquely given by [16] : 

ˆ 
 = VV 

T . (2) 

n the cases when data is contaminated by noise, the following

roblem needs to be solved: 

in 

C 

1 

2 

∥∥X − XC 

∥∥2 

F 
+ λ

∥∥C 

∥∥
∗. (3) 

he optimal solution of Eq. (3) has been derived in [18] : 

ˆ 
 = V 1 

(
I − 1 

λ
�−2 

1 

)
V 1 

T 
, (4) 

here U = [ U 1 U 2 ] , � = diag(�1 �2 ) and V = [ V 1 V 2 ] . Matrices

re partitioned according to the sets I 1 = { i : σi > 

1 √ 

λ
} and I 2 = { i :

i ≤ 1 √ 

λ
} . 

Sparse Subspace Clustering (SSC) [15] requires that each data

oint is represented by a small number of data points from its own

ubspace and it amounts to solve the following minimization prob-

em: 

in 

C 

∥∥C 

∥∥
1 

s.t. X = XC , diag(C ) = 0 . (5)

he � 1 norm is used as the tightest convex relaxation of the � 0 
uasi-norm that counts the number of nonzero elements of the

olution. Constraint diag(C ) = 0 is used to avoid trivial solution of

epresenting a data point as a linear combination of itself. 

If data is contaminated by noise, the following minimization

roblem needs to be solved: 

in 

C 

1 

2 

∥∥X − XC 

∥∥2 

F 
+ λ

∥∥C 

∥∥
1 

s.t. diag(C ) = 0 . (6)

his problem can be efficiently solved using ADMM optimization

rocedure [47] . 

Low-Rank Sparse Subspace Clustering (LRSSC) [32] combines

ow-rank and sparsity constraints: 

in 

C 

∥∥C 

∥∥
∗ + λ

∥∥C 

∥∥
1 

s.t. X = XC , diag(C ) = 0 . (7)

n the case of the corrupted data the following problem needs to

e solved to approximate C : 

in 

C 

1 

2 

∥∥X − XC 

∥∥2 

F 
+ β1 

∥∥C 

∥∥
∗ + β2 

∥∥C 

∥∥
1 

s.t. diag(C ) = 0 . (8)

nce matrix C is obtained by LRR, SSC or LRSSC approach, the

ffinity matrix W is calculated as: 

 = | C | + | C | T . (9)

iven affinity matrix W , spectral clustering [11,12] finds cluster

embership of data points by applying k-means clustering to the

igenvectors of the graph Laplacian matrix L ∈ IR 

N × N computed

rom the affinity matrix W . 

. Multi-view low-rank sparse subspace clustering 

In this section we present Multi-view Low-rank Sparse Sub-

pace Clustering (MLRSSC) algorithm with two different regu-

arization approaches. We assume that we are given a dataset

 = 

{
X 

(1) , X 

(2) , . . . , X 

(n v ) 
}

of n v views, where each X 

(i ) = 

{
x (i ) 

j 
∈

R 

D (i ) }N 

j=1 
is described with its own set of D 

( i ) features. Our objec-

ive is to find a joint representation matrix C that balances trade-

ff between the agreement across different views, while at the

ame time promotes sparsity and low-rankness of the solution. 

We formulate joint objective function that enforces represen-

ation matrices 
{

C 

(1) , C 

(2) , . . . , C 

(n v ) 
}

across different views to be
Please cite this article as: M. Brbi ́c, I. Kopriva, Multi-view low-

http://dx.doi.org/10.1016/j.patcog.2017.08.024 
egularized towards a common consensus. Motivated by [42] , we

ropose two regularization schemes of the MLRSSC algorithm:

i) MLRSSC based on pairwise similarities and (ii) centroid-based

LRSSC. The first regularization encourages similarity between

airs of representation matrices. The centroid-based approach en-

orces representations across different views towards a common

entroid. Standard spectral clustering algorithm can then be ap-

lied to the jointly inferred affinity matrix. 

.1. Pairwise multi-view low-rank sparse subspace clustering 

We propose to solve the following joint optimization problem

ver n v views: 

min 

C (1) , C (2) , ... , C (n v ) 

n v ∑ 

v =1 

(
β1 

∥∥C 

(v ) 
∥∥

∗ + β2 

∥∥C 

(v ) 
∥∥

1 

)

+ 

∑ 

1 ≤v ,w ≤n v , v � = w 

λ(v ) 
∥∥C 

(v ) − C 

(w ) 
∥∥2 

F 

s.t. X 

(v ) = X 

(v ) C 

(v ) , diag(C 

(v ) ) = 0 , v = 1 , . . . n v , (10) 

here C 

( v ) ∈ IR 

N × N is the representation matrix for view v . Param-

ters β1 , β2 and λ( v ) define the trade-off between low-rank, spar-

ity constraint and the agreement across views, respectively. In the

ases where we do not have a prior information that one view is

ore important than the others, λ( v ) does not dependent on a view

 and the same value of λ( v ) is used across all views v = 1 , . . . , n v .

he last term in the objective in (10) is introduced to encourage

imilarities between pairs of representation matrices across views. 

With all but one C 

( v ) fixed, we minimize the function (10) for

ach C 

( v ) independently: 

min 

C (v ) 
β1 

∥∥C 

(v ) 
∥∥

∗ + β2 

∥∥C 

(v ) 
∥∥

1 
+ λ(v ) 

∑ 

1 ≤w ≤n v , v � = w 

∥∥C 

(v ) − C 

(w ) 
∥∥2 

F 

s.t. X 

(v ) = X 

(v ) C 

(v ) , diag(C 

(v ) ) = 0 . (11) 

y introducing auxiliary variables C 

(v ) 
1 

, C 

(v ) 
2 

, C 

(v ) 
3 

and A 

( v ) , we re-

ormulate the objective: 

min 

 

(v ) 
1 

, C (v ) 
2 

, C (v ) 
3 

, A (v ) 
β1 

∥∥C 

(v ) 
1 

∥∥
∗ + β2 

∥∥C 

(v ) 
2 

∥∥
1 
+ λ(v ) 

∑ 

1 ≤w ≤n v , v � = w 

∥∥C 

(v ) 
3 

−C 

(w ) 
∥∥2 

F 

s.t. X 

(v ) = X 

(v ) A 

(v ) , A 

(v ) = C 

(v ) 
2 

− diag(C 

(v ) 
2 

) , 

A 

(v ) = C 

(v ) 
1 

, A 

(v ) = C 

(v ) 
3 

. (12) 

he augmented Lagrangian is: 

 

({ C 

(v ) 
i 

} 3 
i =1 

, A 

(v ) , { �(v ) 
i 

} 4 
i =1 

)
= β1 

∥∥C 

(v ) 
1 

∥∥
∗ + β2 

∥∥C 

(v ) 
2 

∥∥
1 

+ λ(v ) 
∑ 

1 ≤w ≤n v ,w � = v 

∥∥C 

(v ) 
3 

− C 

(w ) 
∥∥2 

F 
+ 

μ1 

2 

∥∥X 

(v ) − X 

(v ) A 

(v ) 
∥∥2 

F 

+ 

μ2 

2 

∥∥A 

(v ) − C 

(v ) 
2 

+ diag(C 

(v ) 
2 

) 
∥∥2 

F 
+ 

μ3 

2 

∥∥A 

(v ) − C 

(v ) 
1 

∥∥2 

F 

+ 

μ4 

2 

∥∥A 

(v ) − C 

(v ) 
3 

∥∥2 

F 
+ tr 

[
�(v ) 

1 

T (
X 

(v ) − X 

(v ) A 

(v ) 
)]

+ tr 
[
�(v ) 

2 

T (
A 

(v ) − C 

(v ) 
2 

+ diag(C 

(v ) 
2 

) 
)] 

+ tr 
[
�(v ) 

3 

T (
A 

(v ) − C 

(v ) 
1 

)]

+ tr 
[
�(v ) 

4 

T (
A 

(v ) − C 

(v ) 
3 

)]
, (13) 

here { μi > 0 } 3 i =1 are penalty parameters that need to be tuned

nd { �(v ) 
i 

} 4 
i =1 

are Lagrange dual variables. 

To solve the convex optimization problem in (12) , we use Alter-

ating Direction Method of Multipliers (ADMM) [47] . ADMM con-

erges for the objective composed of two-block convex separable

roblems, but here the terms C 

(v ) 
1 

, C 

(v ) 
2 

and C 

(v ) 
3 

do not depend on

ach other and can be observed as one variable block. 
rank sparse subspace clustering, Pattern Recognition (2017), 

http://dx.doi.org/10.1016/j.patcog.2017.08.024
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Update rule for A 

( v ) at iteration k + 1 . Given

{ C 

(v ) 
i 

} 3 
i =1 

, { �(v ) 
i 

} 4 
i =1 

at iteration k , the matrix A 

( v ) that mini-

mizes the objective in Eq. (13) is updated by the following update

rule: 

A 

(v ) = 

[
μ1 X 

(v ) T X 

(v ) + (μ2 + μ3 + μ4 ) I 
]−1 

×
(
μ1 X 

(v ) T X 

(v ) + μ2 C 

(v ) 
2 

+ μ3 C 

(v ) 
1 

+ μ4 C 

(v ) 
3 

+ X 

(v ) T �(v ) 
1 

− �(v ) 
2 

− �(v ) 
3 

− �(v ) 
4 

)
. (14)

The update rule follows straightforwardly by setting the partial

derivative of L in Eq. (13) with respect to A 

( v ) to zero. 

Update rule for C 

(v ) 
1 

at iteration k + 1 . Given A 

( v ) at itera-

tion k + 1 and �(v ) 
3 

at iteration k , we minimize the objective in

Eq. (13) with respect to C 

(v ) 
1 

: 

min 

C (v ) 
1 

L 

(
C 

(v ) 
1 

, A 

(v ) , �(v ) 
3 

)

= min 

C (v ) 
1 

β1 

∥∥C 

(v ) 
1 

∥∥
∗ + 

μ3 

2 

∥∥A 

(v ) − C 

(v ) 
1 

∥∥2 

F 
+ tr 

[
�(v ) 

3 

T (
A 

(v ) − C 

(v ) 
1 

)]

= min 

C (v ) 
1 

β1 

∥∥C 

(v ) 
1 

∥∥
∗ + 

μ3 

2 

∥∥A 

(v ) − C 

(v ) 
1 

∥∥2 

F 
+ tr 

[
�(v ) 

3 

T (
A 

(v ) − C 

(v ) 
1 

)]

+ 

∥∥�(v ) 
3 

∥∥2 

F 

2 μ3 

= min 

C (v ) 
1 

β1 

∥∥C 

(v ) 
1 

∥∥
∗ + 

μ3 

2 

∥∥∥A 

(v ) − C 

(v ) 
1 

+ 

�(v ) 
3 

μ3 

∥∥∥
2 

F 
, (15)

From [48] , it follows that the unique minimizer of (15) is: 

C 

(v ) 
1 

= � β1 
μ3 

(
A 

(v ) + 

�(v ) 
3 

μ3 

)
, (16)

where �β(Y ) = U πβ(�) V 

T performs soft-thresholding operation

on the singular values of Y and U �V 

T is the skinny SVD of Y , here

Y = A 

(v ) + μ−1 
3 

�(v ) 
3 

. πβ(�) denotes soft thresholding operator de-

fined as πβ(�) = (| �| − β) + sgn (�) and t + = max (0 , t) . 

Update rule for C 

(v ) 
2 

at iteration k + 1 . Given A 

( v ) at iteration

k + 1 and �(v ) 
2 

at iteration k , we minimize the L in Eq. (13) with

respect to C 

(v ) 
2 

: 

min 

C (v ) 
2 

L 

(
C 

(v ) 
2 

, A 

(v ) , �(v ) 
2 

)

= min 

C (v ) 
2 

β2 

∥∥C 

(v ) 
2 

∥∥
1 

+ 

μ2 

2 

∥∥∥A 

(v ) − C 

(v ) 
2 

+ 

�(v ) 
2 

μ2 

∥∥∥
2 

F 

C 

(v ) 
2 

= C 

(v ) 
2 

− diag( C 

(v ) 
2 

) . (17)

The minimization of (17) gives the following update rules for ma-

trix C 

(v ) 
2 

[49,50] : 

C 

(v ) 
2 

= π β2 
μ2 

(
A 

(v ) + 

�(v ) 
2 

μ2 

)

C 

(v ) 
2 

= C 

(v ) 
2 

− diag(C 

(v ) 
2 

) , (18)

where πβ denotes soft thresholding operator applied entry-wise to(
A 

(v ) + μ−1 
2 

�(v ) 
2 

)
. 

Update rule for C 

(v ) 
3 

at iteration k + 1 . Given A 

( v ) at iteration

k + 1 and �(v ) 
4 

, 
∑ 

1 ≤w ≤n v ,w � = v C 

(w ) at iteration k , we minimize the
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bjective in Eq. (13) with respect to C 

(v ) 
3 

: 

min 

C (v ) 
3 

L 

(
C 

(v ) 
3 

, A 

(v ) , �(v ) 
4 

)

= min 

C (v ) 
3 

λ(v ) 
∑ 

1 ≤w ≤n v ,w � = v 

∥∥C 

(v ) 
3 

− C 

(w ) 
∥∥2 

F 

+ 

μ4 

2 

∥∥A 

(v ) − C 

(v ) 
3 

∥∥2 

F 
+ tr 

[
�(v ) 

4 

T (
A 

(v ) − C 

(v ) 
3 

)]
. (19)

he partial derivative of L in Eq. (13) with respect to C 

(v ) 
3 

: 

∂L 

∂C 

(v ) 
3 

= 

[
2 λ(v ) (n v − 1) + μ4 

]
C 

(v ) 
3 

− 2 λ(v ) 

×
∑ 

1 ≤w ≤n v ,w � = v 
C 

(w ) − μ4 A − �(v ) 
4 

. (20)

etting the partial derivative in (20) to zero: 

 

(v ) 
3 

= 

[
2 λ(v ) (n v − 1) + μ4 

]−1 (
2 λ(v ) 

∑ 

1 ≤w ≤n v ,w � = v 
C 

(w ) + μ4 A 

(v ) + �(v ) 
4 

)
.

(21)

Update rules for dual variables { �(v ) 
i 

} 4 
i =1 

at iteration k + 1 .

iven A 

(v ) , { C 

(v ) 
i 

} 3 
i =1 

at iteration k + 1 , dual variables are updated

ith the following equations: 

(v ) 
1 

= �(v ) 
1 

+ μ1 

(
X 

(v ) − X 

(v ) A 

(v ) ) 

(v ) 
2 

= �(v ) 
2 

+ μ2 

(
A 

(v ) − C 

(v ) 
2 

)
(v ) 
3 

= �(v ) 
3 

+ μ3 

(
A 

(v ) − C 

(v ) 
1 

)
(v ) 
4 

= �(v ) 
4 

+ μ4 

(
A 

(v ) − C 

(v ) 
3 

)
. 

(22)

If data is contaminated by noise and does not perfectly lie in

he union of subspaces, we modify the objective function as fol-

ows: 

min 

 

(1) , C (2) , ... , C (n v ) 

n v ∑ 

v =1 

(
1 

2 

∥∥X 

(v ) − X 

(v ) C 

(v ) 
∥∥2 

F 
+ β1 

∥∥C 

(v ) 
∥∥

∗ + β2 

∥∥C 

(v ) 
∥∥

1 

)

+ 

∑ 

1 ≤v ,w ≤n v , v � = w 

λ(v ) 
∥∥C 

(v ) − C 

(w ) 
∥∥2 

F 

s.t. diag(C 

(v ) ) = 0 , v = 1 , . . . n v . 

(23)

Update rule for A 

( v ) at iteration k + 1 for corrupted data.

iven { C 

(v ) 
i 

} 3 
i =1 

, { �(v ) 
i 

} 4 
i =1 

at iteration k , the matrix A 

( v ) is obtained

y equating to zero partial derivative of the augmented Lagrangian

f problem (23) : 

 

(v ) = 

[
X 

(v ) T X 

(v ) + (μ2 + μ3 + μ4 ) I 
]−1 

×
(
X 

(v ) T X 

(v ) + μ2 C 

(v ) 
2 

+ μ3 C 

(v ) 
1 

+ μ4 C 

(v ) 
3 

−�(v ) 
2 

−�(v ) 
3 

− �(v ) 
4 

)
(24)

Update rules for { C 

(v ) 
i 

} 3 
i =1 

and dual variables { �(v ) 
i 

} 4 
i =2 

are the

ame as in (16), (18), (21), (22) , respectively. 

These update steps are then repeated until the convergence or

ntil the maximum number of iteration is reached. We check the

onvergence by verifying the following constraints at each iteration

 : 
∥∥A 

(v ) − C 

(v ) 
1 

∥∥
∞ 

≤ ε, 
∥∥A 

(v ) − C 

(v ) 
2 

∥∥
∞ 

≤ ε, 
∥∥A 

(v ) − C 

(v ) 
3 

∥∥
∞ 

≤ ε and

A 

(v ) 
k 

− A 

(v ) 
k −1 

∥∥
∞ 

≤ ε, for v = 1 , . . . , n v . After obtaining representa-

ion matrix for each view 

{
C 

(1) , C 

(2) , . . . , C 

(n v ) 
}
, we combine them

y taking the element-wise average across all views. The next step

f the algorithm is to find the assignment of the data points to

orresponding clusters by applying spectral clustering algorithm to
rank sparse subspace clustering, Pattern Recognition (2017), 
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Algorithm 1 Pairwise MLRSSC. 

Input: X = { X 

(v ) } n v v =1 
, k , β1 , β2 , { λ(v ) } n v v =1 

, { μi , } 4 i =1 
, μmax , ρ

Output: Assignment of the data points to k clusters 

1: Initialize: { C 

(v ) 
i 

= 0 } 3 
i =1 

, A 

(v ) = 0 , { �(v ) 
i 

= 0 } 4 
i =1 

, i = 1 , . . . , n v 
2: while not converged do 

3: for v = 1 to n v do 

4: Fix others and update A 

(v ) by solving (14) in the case 

of clean data or (24) in the case of corrupted data 

5: Fix others and update C 

(v ) 
1 

by solving (16) 

6: Fix others and update C 

(v ) 
2 

by solving (18) 

7: Fix others and update C 

(v ) 
3 

by solving (21) 

8: Fix others and update dual variables �(v ) 
2 

, �(v ) 
3 

, �(v ) 
4 

by 

solving (22) and also �(v ) 
1 

in the case of clean data 

9: end for 

10: Update μi = min (ρμi , μ
max ) , i = 1 , . . . , 4 

11: end while 

12: Combine 
{

C 

(1) , C 

(2) , . . . , C 

(n v ) 
}

by taking the element-wise 

average 

13: Apply spectral clustering [12] to the affinity matrix 

W = | C a v g | + | C a v g | T 

t  

r  

s  

d  

v  

d  

t  

t

 

a  

s  

p  

n  

n  

t  

o  

t  

p

t

3

 

f  

s  

f

C

w

 

i  

S  

s  

a

 

p

m

A  

i  

l

T

L

U  

k  

E  

C

C  

 

j  

c

C

I  

d  

b

 

d  

f

C  

n  

M

 

i  

d  

A  

c  

p

he joint affinity matrix W = | C a v g | + | C a v g | T . Algorithm 1 summa-

izes the steps of the pairwise MLRSSC. Due to the practical rea-

ons, we use the same initial values of { μi } 4 i =1 
, ρ and μmax for

ifferent views v and update { μi } 4 i =1 
after the optimizations of all

iews. However, it is possible to have more general approach with

ifferent initial values of { μi } 4 i =1 
, ρ and μmax for each view v , but

his significantly increases the number of variables for optimiza-

ion. 

The problem in (10) is convex subject to linear constraints and

ll its subproblems can be solved exactly. Hence, theoretical re-

ults in [51] guarantee the global convergence of ADMM. The com-

utational complexity of Algorithm 1 is O ( Tn v N 

3 ), where T is the

umber of iterations, n v 	 N is the number of views and N is the

umber of data points. In the experiments, we set the maximal T

o 100, but the algorithm converged before the maximal number

f iterations is exceeded ( T ≈ 15 − 20 ). Importantly, the computa-

ional complexity of spectral clustering step is O ( N 

3 ), so the com-

utational cost of the proposed representation learning step is Tn v 
imes higher. 

.2. Centroid-based multi-view low-rank sparse subspace clustering 

In addition to the pairwise MLRSSC, we also introduce objective

or the centroid-based MLRSSC which enforces view-specific repre-

entations towards a common centroid. We propose to solve the

ollowing minimization problem: 

min 

 

(1) , C (2) ,.., C (n v ) 

n v ∑ 

v =1 

(
β1 

∥∥C 

(v ) 
∥∥

∗ + β2 

∥∥C 

(v ) 
∥∥

1 
+ λ(v ) 

∥∥C 

(v ) − C 

∗∥∥2 

F 

)

s.t. X 

(v ) = X 

(v ) C 

(v ) , diag(C 

(v ) ) = 0 , v = 1 , . . . n v , 

(25) 

here C 

∗ denotes consensus variable. 

This objective function can be minimized by the alternat-

ng minimization cycling over the views and consensus variable.

pecifically, the following two steps are repeated: (1) fix consen-

us variable C 

∗ and update each C 

( v ) , v = 1 , . . . , n v while keeping

ll others fixed and (2) fix C 

(v ) , v = 1 , . . . , n v and update C 

∗. 
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By fixing all variables except one C 

( v ) , we solve the following

roblem: 

in 

C (v ) 
β1 

∥∥C 

(v ) 
∥∥

∗ + β2 

∥∥C 

(v ) 
∥∥

1 
+ λ(v ) 

∥∥C 

(v ) − C 

∗∥∥2 

F 

s.t. X 

(v ) = X 

(v ) C 

(v ) , diag(C 

(v ) ) = 0 . 

(26) 

gain, we solve the convex optimization problem using ADMM. We

ntroduce auxiliary variables C 

(v ) 
1 

, C 

(v ) 
2 

, C 

(v ) 
3 

and A 

( v ) and reformu-

ate the original problem: 

min 

C (v ) 
1 

, C (v ) 
2 

, C (v ) 
3 

, A (v ) 
β1 

∥∥C 

(v ) 
1 

∥∥
∗ + β2 

∥∥C 

(v ) 
2 

∥∥
1 

+ λ(v ) 
∥∥C 

(v ) 
3 

− C 

∗∥∥2 

F 

s.t. X 

(v ) = X 

(v ) A 

(v ) , A 

(v ) = C 

(v ) 
2 

− diag(C 

(v ) 
2 

) , 

A 

(v ) = C 

(v ) 
1 

, A 

(v ) = C 

(v ) 
3 

. (27) 

he augmented Lagrangian is: 

 

({ C 

(v ) 
i 

} 3 
i =1 

, A 

(v ) , { �(v ) 
i 

} 4 
i =1 

)
= β1 

∥∥C 

(v ) 
1 

∥∥
∗ + β2 

∥∥C 

(v ) 
2 

∥∥
1 

+ λ(v ) 
∥∥C 

(v ) 
3 

− C 

∗∥∥2 

F 
+ 

μ1 

2 

∥∥X 

(v ) − X 

(v ) A 

(v ) 
∥∥2 

F 

+ 

μ2 

2 

∥∥A 

(v ) − C 

(v ) 
2 

+ diag(C 2 ) 
∥∥2 

F 
+ 

μ3 

2 

∥∥A 

(v ) − C 1 

∥∥2 

F 

+ 

μ4 

2 

∥∥A 

(v ) − C 

(v ) 
3 

∥∥2 

F 
+ tr 

[
�(v ) 

1 

T 
(X 

(v ) − X 

(v ) A 

(v ) ) 
]

+ tr 
[
�(v ) 

3 

T 
(A 

(v ) − C 

(v ) 
1 

) 
]

+ tr 
[
�(v ) 

2 

T 
(A 

(v ) − C 

(v ) 
2 

+ diag(C 

(v ) 
2 

) 
]

+ tr 
[
�(v ) 

4 

T 
(A 

(v ) − C 

(v ) 
3 

) 
]
. 

(28) 

pdate rule for C 

(v ) 
3 

at iteration k + 1 . Given A 

( v ) at iteration

 + 1 and C 

∗, �(v ) 
4 

at iteration k , minimization of the objective in

q. (28) with respect to C 

(v ) 
3 

leads to the following update rule for

 

(v ) 
3 

: 

 

(v ) 
3 

= 

(
2 λ(v ) + μ4 

)−1 (
2 λ(v ) C 

∗ + μ4 A 

(v ) + �(v ) 
4 

)
. (29)

Update rule for C 

∗. By setting the partial derivative of the ob-

ective function in Eq. (25) with respect to C 

∗ to zero we get the

losed-form solution to C 

∗: 

 

∗ = 

∑ n v 
v =1 λ

(v ) C 

(v ) 
∑ n v 

v =1 λ
(v ) 

. (30) 

t is easy to check that update rules for variables A 

( v ) , C 

(v ) 
1 

, C 

(v ) 
2 

and

ual variables { �(v ) 
i 

} 4 
i =1 

are the same as in the pairwise similarities

ased multi-view LRSSC (equations (14), (16),(18) and (22) ). 

In order to extend the model to the data contaminated by ad-

itive white Gaussian noise, the objective in (25) is modified as

ollows: 

min 

C (1) , ... , C (n v ) 

n v ∑ 

v =1 

1 

2 

∥∥X 

(v ) − X 

(v ) C 

(v ) 
∥∥2 

F 
+ β1 

∥∥C 

(v ) 
∥∥

∗ + β2 

∥∥C 

(v ) 
∥∥

1 

+ λ(v ) 
∥∥C 

(v ) − C 

∗∥∥2 

F 

s.t. diag(C 

(v ) ) = 0 , v = 1 , . . . n v . 

(31) 

ompared to the model for clean data, the only update rule that

eeds to be modified is for A 

( v ) , which is the same as in pairwise

LRSSC given in Eq. (24) . 

In centroid-based MLRSSC there is no need to combine affin-

ty matrices across views, since the joint affinity matrix can be

irectly computed from the centroid matrix i.e. W = | C 

∗| + | C 

∗| T .
lgorithm 2 summarizes the steps of centroid-based MLRSSC. The

omputational complexity of Algorithm 2 is the same as the com-

lexity of Algorithm 1 . 
rank sparse subspace clustering, Pattern Recognition (2017), 
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Algorithm 2 Centroid-based MLRSSC. 

Input: X = { X 

(v ) } n v v =1 
, k , β1 , β2 , { λ(v ) } n v v =1 

, { μi , } 4 i =1 
, μmax , ρ

Output: Assignment of the data points to k clusters 

1: Initialize: { C 

(v ) 
i 

= 0 } 3 
i =1 

, C 

∗ = 0 , A 

(v ) = 0 , { �(v ) 
i 

= 0 } 4 
i =1 

, 

i = 1 , . . . , n v 
2: while not converged do 

3: for v = 1 to n v do 

4: Fix others and update A 

(v ) by solving (14) in the case 

of clean data or (24) in the case of corrupted data 

5: Fix others and update C 

(v ) 
1 

by solving (16) 

6: Fix others and update C 

(v ) 
2 

by solving (18) 

7: Fix others and update C 

(v ) 
3 

by solving (29) 

8: Fix others and update dual variables �(v ) 
2 

, �(v ) 
3 

, �(v ) 
4 

by 

solving (22) and also �(v ) 
1 

in the case of clean data 

9: end for 

10: Update μi = min (ρμi , μ
max ) , i = 1 , . . . , 4 

11: Fix others and update centroid C 

∗ by solving (30) 

12: end while 

13: Apply spectral clustering [12] to the affinity matrix 

W = | C 

∗| + | C 

∗| T 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Statistics of the multi-view datasets. 

Dataset Samples Views Clusters 

UCI Digit 20 0 0 3 10 

Reuters 600 5 6 

3-sources 169 3 6 

Prokaryotic 551 3 4 

Synthetic 10 0 0 2 2 
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1 http://archive.ics.uci.edu/ml/datasets/Multiple+Features . 
2 http://mlg.ucd.ie/datasets/3sources.html . 
4. Kernel multi-view low-rank sparse subspace clustering 

The spectral decomposition of Laplacian enables spectral clus-

tering to separate data points with nonlinear hypersurfaces. How-

ever, by representing data points as a linear combination of other

data points, the MLRSSC algorithm learns the affinity matrix that

models the linear subspace structure of the data. In order to re-

cover nonlinear subspaces, we propose to solve the MLRSSC in

RKHS by implicitly mapping data points into a high dimensional

feature space. 

We define � : X → F to be a function that maps the origi-

nal input space X to a high (possibly infinite) dimensional feature

space F . Since the presented update rules for the corrupted data

of both pairwise and centroid-based MLRSSC depend only on the

dot products 
〈
X 

(v ) , X 

(v ) 
〉
= X 

(v ) T X 

(v ) , v = 1 , . . . , n v , both approaches

can be solved in RKHS and extended to model nonlinear manifold

structure. 

Let �(X 

(v ) ) = 

{
�( x (v ) 

i 
) ∈ F 

}N 

i =1 
denote the set of data points

X 

(v ) = 

{
x (v ) 

i 
∈ IR 

D 
}N 

i =1 
mapped into high-dimensional feature space.

The objective function of pairwise kernel MLRSSC for data contam-

inated by noise is the following: 

min 

C (1) , C (2) , ... , C (n v ) 

n v ∑ 

v =1 

(
1 

2 

∥∥�(X 

(v ) ) − �(X 

(v ) ) C 

(v ) 
∥∥2 

F 
+ β1 

∥∥C 

(v ) 
∥∥

∗

+ β2 

∥∥C 

(v ) 
∥∥

1 

)
+ 

∑ 

1 ≤v ,w ≤n v , v � = w 

λ(v ) 
∥∥C 

(v ) − C 

(w ) 
∥∥2 

F 

s.t. diag(C 

(v ) ) = 0 , v = 1 , . . . n v . (32)

Similarly, the objective function of centroid-based MLRSSC in

feature space for corrupted data is: 

min 

C (1) , C (2) , ... , C (n v ) 

n v ∑ 

v =1 

(
1 

2 

∥∥�(X 

(v ) ) − �(X 

(v ) ) C 

(v ) 
∥∥2 

F 
+ β1 

∥∥C 

(v ) 
∥∥

∗

+ β2 

∥∥C 

(v ) 
∥∥

1 
+ λ(v ) 

∥∥C 

(v ) − C 

∗∥∥2 

F 

)

s.t. diag(C 

(v ) ) = 0 , v = 1 , . . . n v . 

(33)

Since A 

( v ) is the only variable that depends on X 

( v ) , the update

rules for { C 

(v ) 
i 

} 3 and dual variables { �(v ) 
i 

} 4 remain unchanged. 

i =1 i =2 
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Update rule for A 

( v ) at iteration k + 1 . Given

 C 

(v ) 
i 

} 3 
i =1 

, { �(v ) 
i 

} 4 
i =2 

at iteration k , the A 

( v ) is updated by the

ollowing update rule: 

 

(v ) = 

[
�(X 

(v ) ) T �( X 

(v ) ) + (μ2 + μ3 + μ4 ) I 
]−1 

×
[
�( X 

(v ) ) T �( X 

(v ) ) + μ2 C 

(v ) 
2 

+ μ3 C 

(v ) 
1 

+ μ4 C 

(v ) 
3 

− �(v ) 
2 

− �(v ) 
3 

− �(v ) 
4 

]
. 

(34)

ubstituting the dot product 〈 �( X 

( v ) ), �( X 

( v ) ) 〉 with the Gram ma-

rix K 

( v ) , we get the following update rule for A 

( v ) : 

 

(v ) = 

[
K 

(v ) + (μ2 + μ3 + μ4 ) I 
]−1 

×
[
K 

(v ) +μ2 C 

(v ) 
2 

+μ3 C 

(v ) 
1 

+μ4 C 

(v ) 
3 

−�(v ) 
2 

− �(v ) 
3 

− �(v ) 
4 

]
. 

(35)

pdate rule for A 

( v ) is the same in pairwise and centroid-based

ersions of the algorithm. 

. Experiments 

In this section we present results that demonstrate the ef-

ectiveness of the proposed algorithms. The performance is mea-

ured on one synthetic and three real-world datasets that are com-

only used to evaluate the performance of multi-view algorithms.

oreover, we introduce novel real-world multi-view dataset from

olecular biology domain. We compared MLRSSC with the state-

f-the-art multi-view subspace clustering algorithms, as well as

ith two baselines: best single view LRSSC and feature concate-

ation LRSSC. 

.1. Datasets 

We report the experimental results on synthetic and four real-

orld datasets. We give a brief description of each dataset. Statis-

ics of the datasets are summarized in Table 2 . 

UCI Digit dataset is available from the UCI repository. 1 This

ataset consists of 20 0 0 examples of handwritten digits (0–9) ex-

racted from Dutch utility maps. There are 200 examples in each

lass, each represented with six feature sets. Following experi-

ents in [45] , we used three feature sets: 76 Fourier coefficients

f the character shapes, 216 profile correlations and 64 Karhunen-

ove coefficients. 

Reuters dataset [52] contains features of documents available

n five different languages and their translations over a common

et of six categories. All documents are in the bag-of-words repre-

entation. We use documents originally written in English as one

iew and their translations to French, German, Spanish and Italian

s four other views. We randomly sampled 100 documents from

ach class, resulting in a dataset of 600 documents. 

3-sources dataset 2 is news articles dataset collected from

hree online news sources: BBC, Reuters, and The Guardian. All ar-

icles are in the bag-of-words representation. Of 948 articles, we
rank sparse subspace clustering, Pattern Recognition (2017), 
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sed 169 that are available in all three sources. Each article in the

ataset is annotated with a dominant topic class. 

Prokaryotic phyla dataset contains 551 prokaryotic species de-

cribed with heterogeneous multi-view data including textual data

nd different genomic representations [53] . Textual data consists

f bag-of-words representation of documents describing prokary-

tic species and is considered as one view. In our experiments we

se two genomic representations: (i) the proteome composition,

ncoded as relative frequencies of amino acids (ii) the gene reper-

oire, encoded as presence/absence indicators of gene families in

 genome. In order to reduce the dimensionality of the dataset,

e apply principal component analysis (PCA) on each of the three

iews separately and retain principal components explaining 90%

f the variance. Each species in the dataset is labeled with the phy-

um it belongs to. Unlike previous datasets, this dataset is unbal-

nced. The most frequently occurring cluster contains 313 species,

hile the smallest cluster contains 35 species. 

Synthetic dataset was generated in a way described in [42,54] .

0 0 0 points are generated from two views, where data points for

ach view are generated from two-component Gaussian mixture

odels. Cluster means and covariance matrices for view 1 are:
(1) 
1 

= (1 1) , �(1) 
1 

= (1 0 . 5 ; 0 . 5 1 . 5) , μ(1) 
2 

= (2 2) , �(1) 
2 

=
(0 . 3 0 ; 0 0 . 6) , and for view 2 are: μ(2) 

1 
= (2 2) , �(2) 

1 
=

(0 . 3 0 ; 0 0 . 6) , μ(2) 
2 

= (1 1) , �(2) 
2 

= (1 0 . 5 ; 0 . 5 1 . 5) . 

.2. Compared methods and parameters 

We compare pairwise MLRSSC, centroid-based MLRSSC and ker-

el extensions of both algorithms (KMLRSSC) with the best per-

orming state-of-the-art multi-view subspace clustering algorithms,

ncluding Co-regularized Multi-view Spectral Clustering (Co-Reg)

42] , Robust Multi-view Spectral Clustering (RMSC) [44] and Con-

ex Sparse Multi-view Spectral Clustering (CSMSC) [45] . Moreover,

e also compare MLRSSC algorithms with two LRSSC baselines:

i) best single view Low-rank Sparse Subspace Clustering (LRRSC)

32] that performs single view LRSSC on each view and takes the

ndividual view that achieves the best performance, and (ii) feature

oncatenation LRRSC that concatenates features of each individual

iew and performs single-view LRSSC on the joint view represen-

ation. 

Co-regularized multi-view SC has a parameter α that we vary

rom 0.01 to 0.05 with step 0.01 [42] . We choose λ in RMSC from

he set of the values: {0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}, as

ested in [44] . Parameter α in CSMSC is chosen from { 10 −1 , 10 −2 }
nd parameter β from { 10 −3 , 10 −4 , 10 −5 } [45] . For all these algo-

ithms the standard deviation of Gaussian kernel used to build

imilarity matrix is set to the median of the pairwise Euclidean

istances between the data points [42,44,45] . The number of it-

rations of the Co-Reg SC is set to 100, but it converged within

ess than 10 iterations. The number of iterations of the CSMSC is

et to 200 [45] and of the RMSC to 300, as set in the available

ource code provided by the authors. All other parameters of these

lgorithms are set to values based on the respective source codes

rovided by their authors. 

For LRSSC and MLRSSC we first choose penalty parameter μ
rom the set of values {10, 100, 10 0 0, 10 0 0 0} with fixed β1 , β2 and
( v ) . We set the same value μ for all constraints (μi , i = 1 , . . . , 4) ,

ut one can also optimize μ for each of the constraints. In each

teration we update μ to be ρμ with fixed ρ of 1.5 and till the

aximal value of μ (set to 10 6 ) is reached. For single-view LRSSC

is set to 1. Low-rank parameter β1 is tuned from 0.1 to 0.9 with

tep 0.2 and sparsity parameter β2 is set to (1 − β1 ) . Consensus

arameter λ is tuned from 0.3 to 0.9 with step 0.2. It is also possi-

le to use different λ( v ) for each view v , but since we did not have

ny prior information about the importance of views, we use the
Please cite this article as: M. Brbi ́c, I. Kopriva, Multi-view low-
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ame λ = λ(v ) for each view v . For all datasets we use the variant

djusted for the corrupted data, except for the UCI digit dataset. In

he kernel extension of MLRSSC, we use Gaussian kernel and opti-

ize standard deviation for each view separately in range {0.5, 1,

, 10, 50} times the median of the pairwise Euclidean distances be-

ween the data points, while holding other parameters fixed. Best

igma for pairwise MLRSSC was also used for centroid MLRSSC

ithout further optimization. The maximum number of iterations

s set to 100 and the convergence error tolerance to ε = 10 −3 for

inear MLRSSC and ε = 10 −5 for kernel MLRSSC. We tune the pa-

ameters of each algorithm and report the best performance. 

All compared methods have k-means as the last step of the

lgorithm. Since k-means depends on the initial cluster centroid

ositions and can yield different solution with different initializa-

ions, we run k-means 20 times and report the means and stan-

ard deviations of the performance measures. We evaluate cluster-

ng performance using five different metrics: precision, recall, F-

core, normalized mutual information (NMI) and adjusted rand in-

ex (Adj-RI) [55] . For all these metrics, the higher value indicates

etter performance. 

.3. Results 

Table 3 compares the clustering performance of the MLRSSC

ith other algorithms on four real-world datasets and one syn-

hetic dataset. Results indicate that MLRSSC consistently outper-

orms all other methods in terms of all tested measures. On all five

atasets, MLRSSC improves performance to a large extent which

emonstrates the importance of combined low-rank and sparsity

onstraints. More specifically, the average NMI of the MLRSSC is

igher than the second best method by 7%, 9%, 4%, 12% and 2%

n the 3-sources, Reuters, UCI digit, Prokaryotic and synthetic

atasets, respectively. Similar improvements can also be observed

hen using other metrics for measuring clustering performance. 

Pairwise and centroid-based MLRSSC perform comparably, ex-

ept on Prokaryotic dataset where pairwise MLRSSC is significantly

etter than the centroid-based MLRSSC, except in recall. When

omparing linear MLRSSC with the kernel MLRSSC, linear MLRSSC

erforms better on 3-sources and Reuters datasets. Kernel MLRSSC

utperforms linear MLRSSC on UCI Digit, Prokaryotic and synthetic

atasets, although the difference on the UCI Digit dataset is not

ignificant. However, this comes with the cost of tuning more pa-

ameters for computing the kernel. Better performance of linear

LRPPSC on 3-sources and Reuters datasets is not surprising, since

hese datasets are very sparse (more than 95% values are zeros)

nd have a large number of features, much higher than the num-

er of data points. On the other hand, UCI Digit, Prokaryotic and

specially synthetic datasets have dense lower-dimensional feature

ectors and benefit from the projection to a high-dimensional fea-

ure space. 

.4. Parameter sensitivity 

MLRSSC trades-off low-rank, sparsity and consensus parame-

ers: β1 , β2 and λ( v ) , respectively. In this section, we test the ef-

ect of these parameters on the performance of the MLRSSC. In all

xperiments, we set the sparsity parameter β2 to 1 − β1 , i.e. the

igher value of a low-rank parameter leads to the lower value of

 sparsity parameter and vice versa. This depends on whether the

roblem being solved requires exploiting more global or the local

tructure of the data. 

Fig. 1 shows how the NMI metrics changes with different values

f low-rank parameter β1 for both pairwise and centroid-based

LRSSC, while keeping λ( v ) parameter fixed. On the 3-sources,

euters and UCI Digit, MLRSSC algorithm outperforms the second

est algorithm regardless of the choice of β . On the Prokaryotic
1 

rank sparse subspace clustering, Pattern Recognition (2017), 
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Table 3 

Performance of different algorithms on five multi-view datasets. The mean and standard deviation of 20 runs of k-means clustering 

algorithm with different random initializations are reported. 

Dataset Method F-score Precision Recall NMI Adj-RI 

3-sources Best Single View LRSSC 0.569 (0.039) 0.604 (0.015) 0.541 (0.058) 0.496 (0.024) 0.449 (0.042) 

Feat Concat LRSSC 0.579 (0.048) 0.593 (0.031) 0.571 (0.078) 0.521 (0.015) 0.455 (0.054) 

Co-Reg Pairwise 0.463 (0.020) 0.504 (0.049) 0.437 (0.033) 0.519 (0.036) 0.315 (0.033) 

Co-reg Centroid 0.505 (0.032) 0.551 (0.052) 0.467 (0.025) 0.514 (0.026) 0.370 (0.045) 

RMSC 0.477 (0.033) 0.515 (0.034) 0.453 (0.036) 0.517 (0.024) 0.330 (0.045) 

CSMSC 0.482 (0.026) 0.518 (0.056) 0.464 (0.027) 0.518 (0.026) 0.335 (0.039) 

Pairwise MLRSSC 0.659 (0.049) 0.707 (0.051) 0.619 (0.056) 0.594 (0.025) 0.565 (0.060) 

Centroid MLRSSC 0.654 (0.042) 0.696 (0.055) 0.619 (0.052) 0.595 (0.021) 0.557 (0.053) 

Pairwise KMLRSSC 0.541 (0.025) 0.619 (0.032) 0.482 (0.033) 0.529 (0.020) 0.424 (0.029) 

Centroid KMLRSSC 0.556 (0.045) 0.622 (0.049) 0.503 (0.044) 0.533 (0.031) 0.439 (0.056) 

Reuters Best Single View LRSSC 0.333 (0.003) 0.313 (0.007) 0.357 (0.019) 0.245 (0.008) 0.191 (0.005) 

Feat Concat LRSSC 0.347 (0.005) 0.319 (0.010) 0.384 (0.022) 0.283 (0.006) 0.204 (0.008) 

Co-Reg Pairwise 0.371 (0.009) 0.344 (0.016) 0.410 (0.023) 0.300 (0.014) 0.233 (0.017) 

Co-reg Centroid 0.362 (0.017) 0.331 (0.022) 0.409 (0.020) 0.291 (0.014) 0.221 (0.023) 

RMSC 0.361 (0.019) 0.325 (0.012) 0.412 (0.023) 0.297 (0.018) 0.217 (0.015) 

CSMSC 0.365 (0.005) 0.327 (0.010) 0.420 (0.014) 0.295 (0.020) 0.220 (0.008) 

Pairwise MLRSSC 0.428 (0.012) 0.389 (0.024) 0.486 (0.019) 0.390 (0.018) 0.300 (0.021) 

Centroid MLRSSC 0.432 (0.010) 0.395 (0.023) 0.482 (0.025) 0.394 (0.015) 0.306 (0.017) 

Pairwise KMLRSSC 0.429 (0.013) 0.415 (0.018) 0.446 (0.016) 0.380 (0.018) 0.311 (0.017) 

Centroid KMLRSSC 0.426 (0.013) 0.410 (0.018) 0.443 (0.015) 0.373 (0.016) 0.307 (0.017) 

UCI digit Best Single View LRSSC 0.702 (0.033) 0.659 (0.033) 0.755 (0.027) 0.754 (0.020) 0.666 (0.038) 

Feat Concat LRSSC 0.698 (0.038) 0.671 (0.046) 0.728 (0.032) 0.751 (0.021) 0.663 (0.043) 

Co-Reg Pairwise 0.694 (0.057) 0.671 (0.068) 0.718 (0.047) 0.739 (0.036) 0.658 (0.065) 

Co-reg Centroid 0.754 (0.067) 0.735 (0.082) 0.775 (0.050) 0.783 (0.033) 0.726 (0.075) 

RMSC 0.742 (0.070) 0.728 (0.080) 0.757 (0.061) 0.778 (0.040) 0.713 (0.079) 

CSMSC 0.775 (0.045) 0.725 (0.069) 0.836 (0.015) 0.819 (0.019) 0.748 (0.051) 

Pairwise MLRSSC 0.830 (0.048) 0.809 (0.070) 0.854 (0.027) 0.851 (0.023) 0.810 (0.054) 

Centroid MLRSSC 0.835 (0.047) 0.819 (0.066) 0.854 (0.027) 0.854 (0.023) 0.817 (0.053) 

Pairwise KMLRSSC 0.827 (0.063) 0.800 (0.078) 0.861 (0.022) 0.855 (0.027) 0.807 (0.072) 

Centroid KMLRSSC 0.840 (0.043) 0.820 (0.065) 0.862 (0.019) 0.858 (0.020) 0.822 (0.048) 

Prokaryotic Best Single View LRSSC 0.579 (0.057) 0.551 (0.016) 0.634 (0.100) 0.233 (0.026) 0.280 (0.051) 

Feat Concat LRSSC 0.584 (0.054) 0.542 (0.015) 0.644 (0.092) 0.218 (0.029) 0.275 (0.057) 

Co-Reg Pairwise 0.468 (0.023) 0.568 (0.023) 0.398 (0.022) 0.286 (0.021) 0.213 (0.031) 

Co-reg Centroid 0.459 (0.010) 0.567 (0.010) 0.386 (0.012) 0.296 (0.018) 0.206 (0.012) 

RMSC 0.447 (0.027) 0.567 (0.038) 0.369 (0.023) 0.315 (0.041) 0.198 (0.044) 

CSMSC 0.462 (0.026) 0.565 (0.024) 0.391 (0.026) 0.269 (0.022) 0.206 (0.033) 

Pairwise MLRSSC 0.591 (0.016) 0.624 (0.003) 0.566 (0.036) 0.322 (0.002) 0.345 (0.016) 

Centroid MLRSSC 0.574 (0.028) 0.530 (0.014) 0.756 (0.124) 0.202 (0.018) 0.258 (0.032) 

Pairwise KMLRSSC 0.591 (0.056) 0.725 (0.068) 0.4 99 (0.04 8) 0.437 (0.039) 0.398 (0.082) 

Centroid KMLRSSC 0.582 (0.070) 0.712 (0.079) 0.492 (0.062) 0.424 (0.046) 0.384 (0.100) 

Synthetic Best Single View LRSSC 0.624 (0.0 0 0) 0.560 (0.0 0 0) 0.704 (0.0 0 0) 0.182 (0.0 0 0) 0.152 (0.0 0 0) 

Feat Concat LRSSC 0.682 (0.0 0 0) 0.682 (0.0 0 0) 0.682 (0.0 0 0) 0.283 (0.0 0 0) 0.364 (0.0 0 0) 

Co-Reg Pairwise 0.660 (0.0 0 0) 0.637 (0.0 0 0) 0.685 (0.0 0 0) 0.260 (0.0 0 0) 0.295 (0.0 0 0) 

Co-reg Centroid 0.646 (0.0 0 0) 0.630 (0.0 0 0) 0.664 (0.0 0 0) 0.229 (0.0 0 0) 0.274 (0.0 0 0) 

RMSC 0.715 (0.0 0 0) 0.715 (0.0 0 0) 0.715 (0.0 0 0) 0.338 (0.0 0 0) 0.430 (0.0 0 0) 

CSMSC 0.730 (0.0 0 0) 0.729 (0.0 0 0) 0.731 (0.0 0 0) 0.366 (0.0 0 0) 0.459 (0.0 0 0) 

Pairwise MLRSSC 0.689 (0.0 0 0) 0.689 (0.0 0 0) 0.689 (0.0 0 0) 0.294 (0.0 0 0) 0.379 (0.0 0 0) 

Centroid MLRSSC 0.690 (0.002) 0.690 (0.002) 0.690 (0.002) 0.296 (0.003) 0.380 (0.004) 

Pairwise KMLRSSC 0.742 (0.0 0 0) 0.742 (0.0 0 0) 0.742 (0.0 0 0) 0.385 (0.0 0 0) 0.484 (0.0 0 0) 

Centroid KMLRSSC 0.743 (0.0 0 0) 0.743 (0.0 0 0) 0.805 (0.0 0 0) 0.388 (0.002) 0.487 (0.0 0 0) 

Fig. 1. The performance of the MLRSSC w.r.t. NMI measure when varying low-rank parameter β1 and keeping consensus parameter λ( v ) fixed. Sparsity parameter β2 is set 

to 1 − β1 . Blue line shows the best performing algorithm besides MLRSSC, among the algorithms listed in Table 3 . PMLRSSC stands for pairwise MLRSSC and CMLRSSC for 

centroid-based MLRSSC. 
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Fig. 2. The performance of the MLRSSC w.r.t. NMI measure when varying consensus parameter λ( v ) and keeping low-rank parameter β1 and sparsity parameter β2 fixed. 

Blue line shows the best performing algorithm besides MLRSSC, among the algorithms listed in Table 3 . 

Fig. 3. Average computational time in seconds as a function of the number of data 

points, measured on the UCI Digit dataset. For the Co-Reg and MLRSSC algorithm 

times for pairwise regularization are shown, but they are similar for the centroid 

regularization. The difference between Co-Reg and RMSC can not be seen on this 

scale, so these two algorithms are shown together. 
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ataset, pairwise MLRSSC performs comparably to RMSC, but again

he algorithm is insensitive to the β1 parameter. On the other

and, centroid-based MLRSSC lags behind on this dataset with re-

pect to NMI measure, but consistently improves its performance

ith the higher values of β1 . 

Next, we vary consensus parameter λ( v ) and keep the low-rank

arameter β1 and sparsity parameter β2 fixed. Fig. 2 shows the

erformance of the MLRSSC with respect to NMI measure for dif-

erent values of λ( v ) . Similarly as when varying β1 parameter, the

LRSSC performs consistently better than other algorithms regard-

ess of the choice of λ( v ) . Again, the only exception is the centroid-

ased MLRSSC on the Prokaryotic dataset. These results prove that

LRSSC is pretty stable regardless of the choice of its parameters

1 , β2 and λ( v ) , as long as the parameters are chosen in an appro-

riate range. 

.5. Computational time and convergence 

In order to check how computational time of the MLRSSC scales

ith the increase of the number of data points, we perform experi-

ents on the UCI digit dataset and compare MLRSSC with other al-
Fig. 4. Sum of normalized errors across views for pairwise M

Please cite this article as: M. Brbi ́c, I. Kopriva, Multi-view low-

http://dx.doi.org/10.1016/j.patcog.2017.08.024 
orithms. Computational time depends on the number of iterations

nd convergence conditions. We use the same number of iterations

nd error tolerance as when comparing performance of the algo-

ithms. Fig. 3 shows the computational time averaged over 10 runs

s a function of the number of data points. Figure 3 demonstrates

hat MLRSSC is more efficient than CSMSC. Compared to Co-Reg SC

nd RMSC, the better performance of MLRSSC comes with a higher

omputational cost. 

Fig. 4 demonstrates the behavior of convergence conditions for

airwise MLRSSC. For ease of illustration, the errors are normal-

zed and summed across views. It can be seen that on all four

eal-world datasets, the algorithm converges within 20 iterations.

entroid MLRSSC exhibits very similar behavior. Fig. 5 shows ob-

ective function value for both pairwise and centroid MLRRSC with

he respect to number of iterations. 

. Concluding remarks 

In this paper we proposed multi-view subspace clustering al-

orithm, called Multi-view Low-rank Sparse Subspace Clustering

MLRSSC), that learns a joint subspace representation across all

iews. The main property of the algorithm is to jointly learn an

ffinity matrix constrained by sparsity and low-rank. We defined

ptimization problems and derived ADMM-based algorithms for

airwise and centroid-based regularization schemes. In addition,

e extended the proposed MLRSSC algorithm to nonlinear sub-

paces by solving the related optimization problem in reproducing

ernel Hilbert space. Experimental results on multi-view datasets

rom various domains showed that proposed algorithms outper-

orms state-of-the-art multi-view subspace clustering algorithms. 

High computational complexity presents serious drawback of

pectral clustering algorithms. In the future work, we plan to ex-

lore how to improve the efficiency of the proposed approach to

e applicable to large-scale multi-view problems. Moreover, we

ay consider how to extend the MLRSSC algorithm to handle in-

omplete data. 
LRSSC. Behavior is very similar for centroid MLRSSC. 
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Fig. 5. Objective function value with the respect to number of iterations for pairwise and centroid MLRSSC. 
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