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Abstract – In the area of Process Refinement under 
Level 4 Data Fusion of the JDL model [1,2], high-level 
sensor management is often performed by human 
operators manning sensor systems who constantly have 
to monitor the situational and sensor picture for critical 
events and dynamically employ myriad sensors’ 
functions to carry out mission-specific tasks. To assist 
the human operators in dealing better with the intense 
pressure to perform effectively in such environments, 
adaptive knowledge bases capable of capturing human 
operators’ behavioural patterns can be harnessed to 
augment the task-oriented decision making process of 
sensor management. However, the unique problem 
domain in which human operators exercise sensor 
management functions has direct impact on obtainable 
training data and imposes several performance 
requirements on the adaptive knowledge bases. Several 
rule-learning algorithms [4-7] do not readily fulfil the 
identified requirements and selecting a more suitable 
alternative constitutes the focus of this paper. This 
paper selects the adaptive online-learning Evolving 
Fuzzy Neural Network (EFUNN) [8,9] and details two 
algorithmic and one qualitative contribution that 
enhance EFUNN’s ability to realize the construction of 
adaptive knowledge bases. The two algorithmic 
contributions consist of modifications of EFUNN’s 
original learning mechanism to handle training records 
with outlying inputs and those with contradictory class 
outputs that characterise the obtainable training data. 
The qualitative contribution suggests how multiple 
EFUNNs can be mapped to respective task-oriented 
rule-sets giving rise to adaptive knowledge bases that 
assist the human operators in selecting the right 
observation tasks. 
 
Keywords: Data fusion, sensor management, adaptive 
online learning, knowledge capturing, knowledge 
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1 Introduction 
 

In the JDL Data Fusion model, Level 4 Data Fusion or 
Process Refinement is the layer that actively observes the 
inputs from the “lower” level data fusion functions and 
determines what tasks are to be performed based on 

predefined goal settings dependent on the mission 
objectives and assigns the appropriate sensor resources to 
fulfil the pertinent tasks. Selecting the pertinent tasks to 
deal with fast-paced ad-hoc situations in dynamic 
environments requires substantial expertise in the form of 
highly trained human operators. If the knowledge or 
experience possessed by seasoned operators can be 
captured and made readily accessible in the form of 
human-comprehensible knowledge rules, it becomes 
possible to exploit and replicate the same successes that 
are only achievable with the presence of experienced 
operators. 

To assist the operators in dealing better with the intense 
pressure to perform optimally in such demanding fast-
paced environments, adaptive knowledge bases capable of 
capturing users’ behavioural patterns may be harnessed to 
offload some of the operators’ burden by first extracting 
and replicating the tacit decision making logic practised 
by seasoned human operators, and incorporating those 
logic into an adaptive knowledge base. The knowledge 
base subsequently can be queried based on the 
environmental conditions for recommendations that the 
man-in-the-loop can choose to adopt in dealing with new 
situations whose conditions are similar to those 
encountered by the seasoned operators. 
 This paper is structured into the following sections: 
 
Section 2: explains the decision making process involved 
in Sensor Management and how adaptive knowledge 
bases can better assist the human operators in carrying out 
this role. 
 
Section 3: examines the problem nature in the context of 
sensor management and lists the requirements expected 
from the adaptive knowledge bases. 
 
Section 4: lists the possible machine learning techniques 
that may be exploited in the construction of such adaptive 
knowledge bases and explains how the different 
techniques measure up in terms of fulfilling the 
requirements of adaptive knowledge bases for decision-
making in sensor management. 
Section 5: explains why the EFUNN is selected and the 
modifications required to make it more suited to the 
construction of adaptive knowledge bases 
 



Section 6: explains how an EFUNN can be mapped to a 
task-oriented rule-set and how multiple EFUNNs give rise 
to a standalone adaptive knowledge base. 
 
Section 7: summarises the algorithmic and qualitative 
contributions of this paper. 

2 Task-Oriented Decision-Making 
 

An important function within sensor management is the 
decision-making process that is primarily concerned with 
the making of critical decisions to determine the right 
actions to direct and control based on the inputs coming 
from the lower fusion layers namely Situational 
Awareness and Threat Assessment [3]. 

The human operator performs the high level sensor 
management function by observing the situational and 
sensor picture, monitors dynamic changes that are 
constantly developing and carefully decide what 
observation tasks need to be performed to fulfil the 
mission objectives. Examples of observation tasks include 
Target-Search, Track-Update and Identify-Friend-Foe 
(IFF). This is followed by the human sensor manager 
assigning the most appropriate sensor functions to support 
the pertinent tasks in response to developments in the 
input picture. In this paper, the emphasis is placed solely 
on devising the adaptive knowledge base component to 
support the human operator in selecting the right 
observation tasks. 

An adaptive knowledge base that is capable of 
supporting the human operator in selecting the right task 
has to be able to capture human decision logic into 
comprehensible knowledge rules that can be queried for 
recommendations to handle situations whereby human 
expertise is not readily available. The knowledge 
capturing also needs to be able to handle idiosyncratic 
behaviours exhibited by different human operators while 
they go about carrying out the mission objectives. For 
instance, experienced operators can anticipate critical 
events better and perform actions at the appropriate timing 
while the less experienced ones tend to over-react 
prematurely when suspicious activities are first detected. 

Because different human operators will potentially 
respond differently to different scenarios, each human 
operator tends to use a unique and different set of decision 
logic. For long-term maintenance of the captured 
knowledge rules, it becomes important that the adaptive 
knowledge base offers knowledge management functions 
to enable different operators to share and exchange with 
one another their own expertise in the form of knowledge 
bases. This can be done by allowing the human operators 
to have personal ownership of the knowledge bases whose 
rules can be accessed, exchanged and modified subjected 
to security policies. This way, different operators can 
continue to contribute to a central repository of knowledge 
bases and the shared expertise can be better leveraged 
upon within a larger knowledge management framework 
hence ensuring the longevity of decision-making expertise 
and experiences used for sensor management purposes. 

The next section elaborates on the unique problem 
nature and spells out the special requirements that are 
expected from the adaptive knowledge bases. 

3 Problem Nature and Requirements 
 

Due to the complexities of military operations, it can be 
both expensive and counter-productive to simulate all 
possible scenarios and have trained human operators to 
sit-through and provide the most appropriate responses to 
all possible cases. This characteristic of the problem 
domain therefore tends to limit the amount of collectable 
training data and causes the data to be sparse in nature. 

In capturing behavioural patterns of the human 
operators, the adaptive knowledge base needs to do it 
responsively and allows ad-hoc querying of its rules as 
and when an external user wishes to view the internal 
contents of the knowledge base. Therefore the learning 
algorithm that is chosen to realize the knowledge base has 
to adopt the online and incremental learning approach and 
it should not require many iterations just to converge on 
the training data. This is particularly relevant in cases 
where the human operator wants to interactively check the 
decision logic newly captured by the knowledge base 
during the training session without the need to wait for 
offline processing. 
 The adaptive knowledge base also has to be able to cope 
with contradictory training data and still produces a 
consistent set of rules eventually. Otherwise, undesirables 
in the form of ambiguous rules will proliferate within the 
knowledge base. An effective knowledge base when 
queried should produce recommendations that are 
consistent without any ambiguity to avoid confusing the 
human operator. 
 For the purpose of subsequent maintenance of multiple 
adaptive knowledge bases, special functions such as 
combining rules from multiple knowledge bases 
contributed by different individuals into consistent ones 
will become essential in the longer term. 

4 Machine Learning Techniques 
 

When selecting the right learning algorithm, the 
following have been identified as key issues and 
requirements that need to be addressed and met by the 
prospective algorithm before it can be considered as 
suitable for the construction of adaptive knowledge bases: 
a. training data issues – limited and sparse, contradictory 

training records (similar input conditions but opposing 
class outputs) 

b. training pace – fast, online and incremental learning 
c. maintenance functions – rules’ extraction, aggregation 

and pruning 
 Machine learning techniques capable of generating 
human comprehensible rules are first examined [4-7] and 
their corresponding advantages or shortcomings in 
relation to the above issues are indicated below. 
 Decision tree algorithms namely ID3 and C4.5 have to 
be retrained whenever new training data are available. 
These algorithms do not readily have provisions for online 
and incremental learning. 
 Knowledge based neural networks based on the 
traditional multi-layered feed-forward neural network 
requires many iterations for convergence. Fuzzy neural 
networks also goes for global optimisation of its weights 
which requires multiple-pass weight updating that makes 
it less suitable for learning in an online and incremental 
manner.  
 The EFUNN [8,9] is an extension to the fuzzy neural 
approach with a flexible connectionist structure that 
dynamically adapts to the characteristics of the training 



data. The EFUNN operates in an online learning manner, 
offers rules’ extraction, aggregation and pruning features 
and therefore is a suitable candidate but its ability to 
handle training records with outlying inputs and training 
records with contradictory class outputs can still be further 
enhanced. The next section elaborates on the original 
EFUNN algorithm and explains the modifications 
performed on its learning mechanism to better handle the 
above issues. 

5 Evolving Fuzzy Neural Network 
  

The EFUNN [9] is an enhancement on top of the 
traditional fuzzy neural networks that switches from 
global optimisation to local element tuning, from 
multiple-pass learning to one-pass learning, from a fixed 
connectionist structure to a fluctuating one that allows for 
growing through insertion of nodes and shrinking through 
node aggregation and pruning. 

The EFUNN comprises the lower layers that performs 
unsupervised clustering of the fuzzy input space and the 
upper layers that performs supervised learning or 
association of clusters to teacher-specified class outputs. 

The unsupervised clustering attempts to tackle sparse 
training data and both the unsupervised and supervised 
learning require only single pass for the weights to be 
updated. The EFUNN also offers aggregation of rule 
nodes to facilitate merging of different rules as well as 
pruning of rule nodes in order to age out unwanted ones 
that are captured by the rule learning mechanism. 
 

5.1 EFUNN’s Network Structure 
 

Figure 1 below illustrates the network structure of the 
EFUNN and this section explains the mathematical 
workings of the algorithm. 
A  is the vector of activation outputs emerging from J  

rule nodes in the rule layer. The individual rule node’s 
activation output is based on: 

( )( )jj wXDfa ,1 ′=  (1) 

where { }Jj ...1∈  and ( )21,ddD is a distance function 

that quantifies the degree of difference between 1d  and 

2d  fuzzy membership degree vectors. One such distance 
function is the local normalised fuzzy distance which is 
based on the Euclidean norm. 

( ) 212121 /, ddddddD +−=  (2) 

The function 1f  in Equation 1 can take the form of a 

linear function such as ( ) uuf −= 11 . Y ′  is the vector of 

activation outputs emerging from K  fuzzy output nodes 
in the fuzzy output layer. 
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Figure 1 

The individual fuzzy output node’s activation is based on  

( )k
T

k Afy ω2=′  (3) 

where { }Kk ...1∈ . The function 2f  can take the form 

of a linear function such as ( ) uuf =2 . For every training 

record, the input x  is fuzzified into '
trainX  form and its 

corresponding output y  is fuzzified into '
trainY  form as 

illustrated in Figure 2 below. 
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Figure 2 

 
 For a better understanding of the EFUNN algorithm, 

special attention needs to be paid to the kω  weight vector 

whose dimension equals J  number of rule nodes. This 

implies that the kω  vector has a distinct weighting value 

)( jkω  that associates with the thj  rule node in the 

lower rule layer. 
 

5.2  EFUNN’s Original Rule-Learning    
Mechanism 
 

When a new training record ( x , y ) is available, it is 

fuzzified first into the ( trainX ′ , trainY ′ ) fuzzy form before 

being introduced to the EFUNN. This is then passed to the 
EFUNN’s weight-updating procedure which is 
summarised into the following: 
 
Step 1: Determine if the training record has already been 
learnt by the network. This is achieved by first 



determining if any of its rules nodes satisfy two distinct 
criteria: 
 
Criterion I 

The first criterion requires the rule node’s internal jw  

and the fuzzified input trainX ′  to achieve a strong enough 

activation based on Equation 1 exceeding an adaptive 

sensitivity threshold jS  (refer to Equation 7 below). 

Criterion II 
The second criterion requires the corresponding difference 
ξ  between the network’s resultant Y ′  versus the training 

record’s desired output trainY ′  to be below a fixed 

predefined error threshold. The difference is expressed as: 

trainYY ′−′=ξ  (4) 

Note that criteria I and II therefore ensure the training pair 
of fuzzy input-output vectors exemplified in 

( trainX ′ , trainY ′ ) to be allocated to the thj  rule node if 

trainX ′  and trainY ′  both fall into the thj  rule node’s input 

and output receptive fields (hyper-spheres) respectively. 
 
Step 2: Assuming that only one rule node is found to 

satisfy the two criteria, then the rule node’s internal jw  

and all the )( jkω  weight values whose k ranges over 

[ ]K..1  and j pointing to the specific rule node will be 

updated based on the following where jl  is the learning 

rate associated with the thj  rule node. 
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If none of the existing rule nodes satisfies the two criteria 
above, the rule-learning mechanism will proceed to learn 
the new training record by memorizing it, which is 
achieved based on the following steps: 

trainXJw ′=+1  (8) 

where 1+J  refers to the insertion of a new rule node into 
the existing rule layer. 

( ) )(1 kYJ traink ′=+ω  (9) 

where k ranges over [ ]K..1  and every kω  weight vector 

embedded in the thk  fuzzy output node has its dimension 
expanded by one to its new 1+J  dimension to 

accommodate the corresponding thk  value in the trainY ′  

vector. 
 
5.3 Issues with EFUNN’s Original Rule-Learning 
Mechanism 
 

The issues underlying the rule learning mechanism have 
to do with its handling of training records with outlying 
inputs and training records with contradictory class 

outputs. These issues are elaborated in the following 
subsections. 

5.3.1 Training Records with Outlying 
Inputs 

 
It is possible that during the training stage, the rule 

learning mechanism may come across training records 
whose input values are superficially near to a rule node’s 

jw weight center but in reality, these training records’ 

inputs may in fact be outliers that are not statistically close 
to the inputs of the past training records that were 

associated to this particular rule node’s jw weight center 

during the earlier stage. 
According to Equations 1, 2 and 5, any training record 

whose input vector appears in the vicinity of a rule node’s 

jw weight center can assert an influence over it and this 

may be an undesirable outcome of the rule learning 

mechanism in that the particular rule node’s jw weight 

center may undergo unnecessary adjustments owing to 
Equation 5. 

5.3.2 Training Records with Contradictory 
Class Outputs 

 
Based on the weight updating steps mentioned in 

section 5.2, the EFUNN tends to end up memorizing 
multiple rules whose antecedents are near identical but 
whose consequents are contradictory. This results in the 
EFUNN generating rules with contradictory class outputs 
during the rules-extraction stage. This can be illustrated by 
way of a simple example. 

Assuming that two training records with identical 
antecedents but contradictory consequents are fed into a 
fresh untrained binary-classed EFUNN classifier with no 
prior rule node. The two training records are represented 
as: 

Training record 1: ( )0(trainX ′ , )0(trainY ′ ) 

Training record 1’s input: [ ]01)0( =′trainX  

Training record 1’s output: [ ]01)0( =′trainY  

Training record 2: ( )1(trainX ′ , )1(trainY ′ ) 

Training record 2’s input: 
)0()1( traintrain XX ′=′  

Training record 2’s output: [ ]10)1( =′trainY  

The first training record will result in the EFUNN 
memorizing the first training record. The second training 
record will result in the EFUNN also memorizing it 
because the two criteria highlighted in the weight-
updating procedure are not satisfied. The final EFUNN 
ends up with two rule nodes whose associated values are 

[ ]011 =w , [ ]011 =ω , [ ]012 =w  and 

[ ]102 =ω  respectively. 
So when the network is consulted with an input 

[ ]01=′queryX , the resultant activation vector A  

becomes [ ]11  because both 1w  and 2w  have their 



weight centers or exemplars identical to queryX ′ . And 

because 1ω  and 2ω  already memorized two direct 
opposite class outputs based on Equation 9, the activation 

at the fuzzy output layer Y ′  then becomes [ ]11  which 
makes it difficult for a clear-cut decision to be made 
during the defuzzification stage. Such is the undesirable 
outcome of the rule learning mechanism that learns rules 
with near identical antecedents but with contradictory 
class outputs. 
 

5.4 Modifications to EFUNN to Address Issues 
 

In order for the EFUNN to better handle training 
records with outlying inputs and training records with 
contradictory class outputs, two modifications are 
introduced to address these issues and are elaborated in 
the next two sub-sections. 

5.4.1 Modification to address Outlying 
Inputs 

 
Instead of allowing training records with outlying inputs 

to assert undesirable influence on a rule node’s jw weight 

center, the original Equations 1, 2 and 5 need to be 
replaced with alternative substitutes. 

The original rule learning mechanism of the EFUNN 
adopts the local normalised fuzzy distance measure in 
Equation 2, which is essentially a form of Euclidean 
distance. It is inherently not very resilient against training 
records whose input attributes may be correlated and may 
have different variances such as track’s numerical speed 
versus track’s ordinal/qualitative identification status. A 
more suitable distance measure will be the statistical 
Mahalanobis distance (MD) measure that takes into 
account the possible correlations among the attributes with 
their different variances.  

The MD measure is expressed as ( ) ( )xxxx
t

−Φ− −1  

where Φ  is the covariance matrix, which is a square 

symmetric matrix whose individual element ijx  is the 

covariance between two attributes expressed as 

( )( )
∑

= −
−−n

i

jjii

n
xxxx

1 1
 where n is the number of 

accumulated training records that are associated to the rule 
node’s weight center. 

Equation 5 does not fully take into account the past 
training records that have been associated to it during the 

training process. The way the jw  weight center embedded 

in the thj  rule node is being updated is based heavily on 

the difference between jw  and the trainX ′  fuzzified input 

of the training record. Therefore, it is susceptible to 
outliers since practically any fuzzified input 
accompanying a new training record can assert a direct 

influence on the jw  weight center as long as the 

activation output ja  is sufficiently strong. This issue is 

further exacerbated by Equation 7 because the sensitivity 

threshold decreases monotonically as training progresses 
and it becomes gradually easier for outliers in the vicinity 

to assert undesirable influence on the jw  weight center. 

To augment the EFUNN with greater resilience against 
outliers, the Fuzzy c-means clustering (FCM) technique is 
proposed and its use with the EFUNN is explained in the 
next subsection. 

5.4.1.1 Fuzzy c-means Clustering  
 
Before explaining FCM, it is important to note that the 

learning process occurring in the fuzzy input layer and 

among the rule nodes’ weight centers jw  in the original 

EFUNN is essentially achieved by unsupervised clustering 
that holds some resemblance to Self-Organizing Maps 
[10]. But as explained in section 5.3, the original learning 
method adopted by the EFUNN does not fully distinguish 
between statistically significant training data and outliers. 

The new method however uses the unsupervised 
clustering method called Fuzzy c-means clustering (FCM) 
which is based on the concept of fuzzy c-partition [11] but 
with a minor alteration. It replaces the fuzzy input layer 
and the rule layer, including all the accompanying weight 

centers jw . In their place, each rule node’s new center is 

realized with a cluster-center jc  whose dimension equals 

the dimension of the input x . Each jc  in turn is 

dependent on its [ ]1..0 -valued cluster-membership 

function )(iu j  where i  here refers to the thi  training 

record that has been associated to the cluster as opposed to 
all the training records from the training data pool based 
on the original definition of FCM. This distinction arises 
because in the original FCM, the number of clusters is 
pre-fixed and remains static throughout the entire 
clustering process and all the training data has to be 
available before the clustering commences. This is 
different from the unsupervised clustering portion of the 
EFUNN algorithm where the rule layer is flexible. A 
decision criterion is therefore needed to decide when to 
grow and when to reuse an existing rule node. 

The jc  center is computed based on: 

( )

( )∑

∑
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where N  refers to the number of training records that are 
previously associated to that particular cluster and i  

ranges over [ ]N..1 . 
Because it is important that given a single training 

record, all the respective cluster-membership degrees with 
respect to it need to sum to 1 in order to be consistent with 
the principle behind fuzzy logic, the following equation is 
used to formulate the cluster-membership function: 
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where D  is based on the MD measure. 
 

5.4.1.2 Use of FCM for Unsupervised 
Clustering in EFUNN 

 
Replacing Equations 1, 2 and 5 of the EFUNN, the 

FCM technique is applied according to the following 
procedure: 
 
Step 1: During the initialisation stage, existing Equations 
8 and 9 are reused to incorporate an initial rule node into 

the rule layer. In the newly formed rule node, ( )iu j  is set 

to an arbitrary value close to 1.0. This signifies that given 
an initial sample point, the newly created cluster has its 
center placed near it. 
Step 2: For the subsequent training record, the cluster-
membership degree function in Equation 11 is used to 
compute the cluster membership degree value. If the 

cluster membership degree ( )xu j  exceeds a pre-fixed 

user-defined sensitivity parameter jS ′ , the new training 

record will be associated to the cluster. Every time a new 
training record is associated to the same cluster, the 

cluster center jc  based on Equation 10 needs to be re-

computed. If the membership degree is below the jS ′  

sensitivity parameter, repeat step 1 to insert a new rule 
node. 
 

In the original unsupervised clustering method of the 
EFUNN, the dynamic sensitivity parameter in Equation 7 
is decreased every time a new training record is associated 

to a rule node’s jw  weight center. With such a 

monotonically decreasing sensitivity parameter, it 
becomes progressively easier for outliers to assert 

undesirable influence on the jw  center. 

In the new method, a rule node’s center jc  is based on 

past input sample points appropriately weighted with their 
corresponding cluster membership degrees. In addition, 
these cluster membership degrees are computed based on 
Equation 11, resulting in the rule node’s new weight 
center to become more resilient against possible outliers. 

While protecting the existing rule nodes’ centers from 
training records with outlying inputs, it is still possible for 
a new rule node to be inserted into the rule layer to 
accommodate an outlier in Step 2 whereby none of the 
rule nodes’ centers are statistically near it. However, this 
does not impose a significant problem because if it is 
indeed an outlier case, the simple lack of training records 
being associated to it will cause the rule node to age out 
and become pruned off after a prolonged time period via 
EFUNN’s inherent pruning feature. 

5.4.2 Modification to address Contradictory 
Class Output 

 
The modification involves a simplified method that first 

checks whether the new training record’s input trainX ′  is 

strongly similar to an existing rule node’s weight center 

jw  and if so, perform the weight updating step in 

Equation 6 regardless of the size of ξ  in Equation 4. In 
other words, the new method essentially focuses on 

updating the existing weights )( jkω  in the fuzzy output 

layer to adapt to the contradictory class output instead of 

directly inserting a new rule node whose kω values are set 

directly just to memorize the contradictory class output 
whenever the error difference ξ  exceeds the predefined 
fixed error threshold. 

6 EFUNN for Knowledge Management 
 

In order for the adaptive knowledge base to assist the 
human operator in deciding whether to exercise the 
respective observation tasks, the individual knowledge 
base needs to be equipped with multiple rule-sets whereby 
each rule-set governs the decision making behind each 
respective task. A rule-set therefore comprises multiple 
rules that need to be consistent with one another.  

A single EFUNN can be mapped to one rule-set and the 
figure below illustrates the internal structure of an 
EFUNN capturing the rule-set that governs whether to 
exercise the Track-Update Task in the form of a binary 
classifier. Example rules are: 

 
Track-Update Rule-Set’s Rule 1: 

If 
the track’s quality is DEGRADING, 
the track’s encroachment of critical assets is INFRINGING, 
the track’s identification is UNKNOWN 

Then 
 Perform Track-Update task. 
 

Track-Update Rule-Set’s Rule 2: 
If 

the track’s quality is NORMAL, 
the track’s encroachment of critical assets is NEGLIGIBLE,  
the track’s identification is FRIENDLY 

Then 
 Refrain Track-Update task. 
 

1c

1ω

2c

2ω

 
Figure 3 

 
As for other observation tasks such as Target-Search 

and IFF, two separate EFUNNs are needed to represent 



the two rule-sets respectively.  The multiple rule-sets or 
EFUNNs therefore make up one adaptive knowledge base. 

 

 
Figure 4 

To enable the EFUNNs to start capturing the decision 
logic exhibited by the human operators, training records 
need to be made available first. Whenever the human 
operator interacts with a test scenario and reacts to 
changes in the dynamic situational picture, there should be 
system provisions to capture the situational picture inputs 
and the corresponding human operator’s responses as 
outputs. Reusing the above example based on the Track-
Update task, a sample training record’s inputs can be track 
quality, track’s encroachment of critical assets and track 
identification. The corresponding output can be perform  
task or refrain from task. 

Each EFUNN is therefore responsible for capturing the 
decision logic for one observation task. A single 
knowledge base therefore will have multiple rule-sets with 
one-to-one correspondence to an equal number of 
EFUNNs. These EFUNNs observe in the background the 
different behavioural patterns exhibited by the human 
operator’s interaction with a C2 system. As human 
operators interact with more test scenarios, the EFUNNs 
become better attuned and eventually able to replicate 
some of the decision-making logic of the human 
operators. Because the human operators can also view the 
rule-sets that are learnt by the EFUNNs, the operators can 
check whether the learnt rules are consistent with actual 
operational requirements. 

When a less experienced operator undergoes 
experiential training using the same set of test scenarios, 
the operator can choose to be assisted by a knowledge 
base that is previously trained by more seasoned human 
operators. During the running of the test scenario, the 
EFUNNs governing the rule-sets that make up the 
adaptive knowledge base will be queried periodically to 
determine which rule-sets are to be triggered. When a 
rule-set is triggered with the outcome indicating perform 
task, a non-obstructing visual display recommending the 
performance of the observation task can be shown to the 
human operator to prompt for further action. 

To further promote the sharing of operators’ expertise, 
each personnel can contribute to a single knowledge base. 
A knowledge base owned by a particular individual can be 
further refined (or trained) using training records 
contributed by other individuals through EFUNN’s rule-
learning feature augmented with the FCM technique. By 
leveraging on the existing EFUNN’s rule extraction and 
aggregation features, it is possible to perform viewing and 
merging functions on the different knowledge bases. 
 

6.1 Refine (Training) function 
 

By collecting the training records explained in section 6, 
these records can be used to train the human operator’s 
knowledge base. Each operator can own a set of training 

records that log down the responses asserted by the 
operator during the operator’s interaction with a test 
scenario. The operator can then train one’s own 
knowledge base with the logged training records so that 
the experiences can possibly be captured and translated 
into knowledge rules by the EFUNNs. 

A human operator’s experience can vary greatly from 
others. An operator upon seeing one’s own set of rules 
would like to learn from other operators in terms of how 
they handle the various critical situations in test scenarios. 
Because the other operators’ training records can be 
captured and stored offline, it is possible for the first 
operator to take the second operator’s training records and 
use them to train one’s own knowledge base. 

After the operator has trained up one’s own knowledge 
base, the operator will want to inspect the captured 
knowledge in human comprehensible rules. The viewing 
function of the EFUNN is explained in the next section. 
 

6.2 View function 
 

The EFUNN comes readily with a rule extraction 
feature that allows its learnt rules to be examined. 
Examples of learnt rules come in the form of Rule 1 and 
Rule 2 in section 6. 

With the option to view the rules learnt by the EFUNNs, 
the human operators can check the correctness of the rules 
and upon coming across interesting ones contributed by 
others, the human operator can attempt to merge one’s 
own knowledge base with knowledge bases from others. 
The rule-aggregation feature is an inherent part of the 
EFUNN but with the introduction of the FCM technique, 
the original rule-aggregation needs to undergo certain 
modification which is explained in the next section. 
 

6.3 Merge function 
 

The merge function is facilitated by EFUNN’s rule 
aggregation feature to merge or combine two dissimilar 
knowledge bases by allowing rule-sets from one 
knowledge base to merge with those found in the second 
knowledge base in strict accordance to their task-types. 
An EFUNN can only merge with another EFUNN that 
represents the same rule-set type because it is not possible 
to combine rule nodes whose antecedents or consequents 
differ in the attributes’ makeup. 

Due to the adoption of the FCM technique, the merging 
of the rule nodes requires modification. The original 
method used in merging the weight centers is based on the 
average of the rule nodes’ centers individually weighted 
by the number of training records associated to the cluster 
and is expressed as: 

∑∑
=

j jj

j
j

aggregated numw
num

w 1
 

(12) 

where j  ranges over those rule nodes whose weight 
centers are considered near to each other based on the 
original normalized fuzzy distance measure. 

With the introduction of the FCM technique, the 
following procedures are adopted instead: 
 
Step 1: Go through all the rule nodes’ centers to first 
partition them into groups with high similarities. Two 



centers jc  and lc  can be compared by feeding the latter 

into Equation 11 to see the score achieved by ( )lj cu . The 

two centers are considered similar and deemed as 
belonging to the same partition if the score exceeds a pre-

fixed user-defined parameter jS ′ . 

 

Step 2: Assuming jc  and lc  belong to the same partition, 

retrieve every training record x  from cluster center lc  

and attempt to transfer and associate it to cluster center 

jc . If the ( )xu j  score exceeds the jS ′  parameter, apply 

Equation 6 to update the )( jkω  weights in case the class 

output learnt by cluster center jc  is different from the one 

learnt by cluster center lc . Equation 10 is then used to 

update jc  since the training record from lc  has just been 

associated to the cluster center jc . Those training records 

whose ( )xu j  scores did not exceed the jS ′  parameter 

will be left intact within the lc  cluster. After all the 

training records from lc  have been considered and if there 

are still remaining training records within lc , apply 

Equation 10 to update the lc  cluster center. 

 
Step 3: If all the training records previously associated to 

cluster center lc  are completely assimilated by the cluster 

center jc , lc  and as well as all the ( )lkω  elements 

among the K  fuzzy output nodes can be removed.  
Repeat step 2 until all the cluster centers in the current 
partition have been considered for merging. Repeat steps 2 
and 3 for the remaining partitions. 

7 Conclusion 
 
This paper spells out the advantages of employing 

adaptive knowledge bases to support the decision-making 
processes of the human operators when dealing with 
dynamic situation/sensor picture in the context of sensor 
management. The EFUNN learning algorithm has been 
identified to be suitable for this purpose and this paper has 
suggested the use of the FCM technique to enhance the 
EFUNN’s clustering ability coupled with modifications to 
the weight-updating procedures to better handle training 
records with outlying inputs and training records with 
contradictory class outputs. 

This paper also suggests an innovative use of the 
EFUNN in representing a rule-set, which is an important 
component in the make-up of a knowledge base. Since 
each EFUNN comes readily with features namely training, 
rule-extraction, rule-aggregation and rule-pruning, these 
functions fulfil the goals of adaptive knowledge bases 
whereby individual rule-set (embodied in an EFUNN) can 
be refined, viewed and merged with other rule-sets. 
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