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Abstract. We present a novel and fast algorithm to estimate penetration depth
(PD) between two polyhedral models. Given two overlapping polyhedra, it com-
putes the minimal translational distance to separate them using a combination of
discretized computations and hierarchical refinement. The algorithm computes pair-
wise Minkowski sums of decomposed convex pieces, performs closest point query
using rasterization hardware, and refines the estimated PD by incremental walking.
It uses bounding volume hierarchies, model simplification, and culling algorithms to
further accelerate the computation and refines the estimated PD in a hierarchical
manner. We highlight its performance on complex models.

1 Introduction

The problem of computing a distance measure between geometric objects
arises in robotics, dynamic simulation, computer gaming, virtual environ-
ments, etc. It includes computation of minimal Euclidean or separation dis-
tance between disjoint geometric objects as well as a measure of penetra-
tion or intersection between two overlapping objects. The separation distance
computation problem has been well-studied in the literature and a number
of efficient and practical algorithms are known for polyhedral models. On the
other hand, there is relatively less work on penetration depth computation
between two intersecting objects

Given two inter-penetrating rigid polyhedral models, the penetration mea-
sure between them can be defined using different formulations. One of the
widely used measures for quantifying the amount of intersection is penetra-
tion depth, commonly defined as the minimum translational distance required
to separate two intersecting rigid models [5,6,8]. Penetration depth (PD) is
often used in motion planning [15], contact resolution for dynamic simulation
[24,26,30], force computation in haptic rendering [12,25], tolerance verifica-
tion for virtual prototyping [29], etc.

The PD between two overlapping objects can be formulated based on
their Minkowski sum. Given two polyhedral models, say P and @, the PD
corresponds to the minimum distance from the origin of the Minkowski sum,
P& (—Q), to the surface of this sum. However, the computational complexity
of computing the Minkowski sum can be O(n®), where n is the number of
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features [8]. In addition to its high computational complexity, the resulting
algorithms are also susceptible to accuracy and robustness problems. Hence,
no practical algorithms are currently known for accurately computing the PD
between general polyhedral models.

Main Results: We present a novel approach to estimate the PD between
general polyhedral models using a combination of discretized computations
and hierarchical representations. Given the global nature of the PD problem,
we systematically decompose the boundary of each polyhedron into convex
pieces, compute the pairwise Minkowski sums of the resulting convex poly-
topes, and use graphics rasterization hardware to perform the closest point
query up to a given discretized resolution. The results obtained are refined
using a local walking algorithm. To further speed up this computation and
improve the estimate, we present a hierarchical refinement technique that
takes advantage of geometry culling, model simplification, and local refine-
ment with greedy walking. The overall approach combines discretized closest
point queries with geometry culling and refinement at each level of the hier-
archy. We also analyze its performance as a function of discretization error.

The resulting algorithm has been implemented and tested on different
benchmarks. Depending on the combinatorial complexity of polyhedra and
their relative configuration, its performance varies from a fraction of a second
to a few seconds on a 1.6 GHz PC with an nVidia GeForce 3 graphics card.

2 Previous Work

In this section, we briefly review previous work related to proximity queries,
penetration depth computation, and the use of discretized computations on
a geometry SIMD machine for geometric applications.

2.1 Collision and Distance Queries

The problems of collision detection and distance computations are well stud-
ied in computational geometry, robotics, and simulated environments. Check
out [22] for a survey.

2.2 Penetration Depth Computation

A few efficient algorithms to compute the penetration depth (PD) between
convex polytopes have been proposed. The simplest exact algorithm is based
on computing their Minkowski sum [13,16] followed by computing the clos-
est point to its boundary from the origin. But its worst case complexity is
O(mn), where m and n are the number of features in each polytope. Dobkin
et al. computed the directional PD using Dobkin and Kirkpatrick polyhedral
hierarchy [8]. For any direction d, it finds the directional PD in O(logn logm)
time. A randomized algorithm to compute the PD is given in [1]. Its running
time is bounded by O(miTenite 4 m!+e 4 nl+e) for any positive constant e.

Given the worst-case O(mn) complexity of PD computation between con-
vex polytopes, a number of approximation approaches have been proposed for
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interactive applications. All of them either compute a subset of the bound-
ary or a simpler approximation of the Minkowski sum and compute an upper
or lower bound to the PD [4,5,18,27]. Some of them also take advantage of
frame-to-frame coherence and perform incremental computations.

Other approximation approaches for general polygonal models are based
on discretized distance fields. These include algorithms based on fast march-
ing level-sets for 3D models [10] and others based on graphics rasterization
hardware and multi-pass rendering for 2D objects [14].

2.3 Hardware-Assisted Algorithms for Geometric Applications

Interpolation-based polygon rasterization hardware is increasingly being used
for geometric applications. A recent survey on different applications is given
in [31]. The rasterization hardware performs discretized computations and
the resolution is typically determined by the number of pixels in the frame-
buffer or depth-buffer. The main benefit comes from speed and dealing with
relatively few degenerate configurations.

3 Background and Overview

In this section, we give a brief overview of the PD computation problem and
our approach to solve it.

3.1 Penetration Depth and Minkowski Sums

Let P and @ be two intersecting polyhedra. The PD of P and Q, PD(P,Q), is
the minimum translational distance that one of the polyhedra must undergo
to render them disjoint. Formally, PD(P, Q) is defined as:

min{|| d || | interior(P+d) N Q = 0} (1)

The Minkowski sum, P® @, is defined as a set of pairwise sums of vectors
from P and Q. In other words, P® Q = {p+ q| p € P,q € Q}. Similarly,
P @ (—Q) can be defined as P® (—Q) ={p—gq|p € P,q € Q}.

A general framework to compute the PD is based on Minkowski sums.
Without loss of generality, let us assume that two polyhedra P and @ are
defined with respect to the global origin O. If two polyhedra P and @ in-
tersect, then the origin O is inside P @ —Q. The PD(P,Q) is defined as a
minimum distance from O to the surface of P & —Q [5].

It is relatively easier to compute Minkowski sums of convex polytopes as
compared to general polyhedral models. One possible approach for computing
Minkowski sums for general polyhedra is based on decomposition. It uses
the following property of Minkowski computation. If P = P; U Ps, then
PoQ =P dQ) U (P ®Q). The resulting algorithm combines this
property with convex decomposition for general polyhedral models:

1. Compute a convex decomposition for each polyhedron
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2. Compute the pairwise convex Minkowski sums between all possible pairs
of convex pieces in each polyhedron
3. Compute the union of pairwise Minkowski sums.

After the second step, there can be O(n?) pairwise Minkowski sums and their
union can have O(n%) complexity [2].

This approach provides an algorithmic framework to compute the Minkowski
sum. However, its practical utility is unclear. Besides the combinatorial com-
plexity, it is a major challenge to have a robust implementation of an algo-
rithm for union computations in 3D.

3.2 Our Approach

Our algorithm to estimate the PD is based on the decomposition approach
described in Section 3.1. In order to overcome its combinatorial and com-
putational complexity, we use a surface-based convex decomposition of the
boundary and perform discretized computations and local walking to esti-
mate the PD. We do not explicitly compute the boundary of the union or
any approximation to it. Rather, we perform the closest point query using
hardware-assisted massive ray shooting that estimates the closest point from
the origin to the boundary of the union of pairwise Minkowski sums. The
resulting maximum depth fragment at each pixel computes an approxima-
tion to the PD, up to the pixel resolution used for this computation. Given
this PD estimate, we further refine it using an incremental algorithm that
performs a local walk on the Minkowski sum. Each step of our approach is
relatively simple to implement. However, its worst case complexity can be as
high as O(n?) because of the number of pairwise Minkowski sums and the
computational complexity of the closest point query.

We improve the performance of the algorithm using a number of accel-
eration techniques. These include hierarchical representation based on con-
vex bounding volumes, use of model simplification algorithms, and geometry
culling approaches applied to both Minkowski sum computation and hard-
ware assisted ray-shooting. These are explained in detail in Section 5.

3.3 Notation

We use bold-faced letters to distinguish a vector from a scalar value (e.g. the
origin, O). In Table 1, we enumerate the notations that we use throughout
the paper.

4 Penetration Depth Computation

In this section, we present our algorithm for estimating global PD.
4.1 Object Decomposition

We decompose the boundary of each polyhedron P into a collection of convex
patches ¢;. These ¢;’s are mutually disjoint, and the union of all the ¢;’s covers
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lNotation[ Meaning ‘
oP The boundary of P
cFf A decomposed convex piece of P
Cf A decomposed convex piece of P at level [
M;; Minkowski sum between C; and C)
dr., kth refinement of the PD estimation

Table 1. Notation Table

the entire boundary of P, 0P. Computing an optimal decomposition is NP-
hard and different heuristics to compute such decompositions are well-known
[7,9].

Furthermore, we compute a convex hull of each surface patch, ¢;, and
denote the resulting polytope by C;. The union of these C;’s completely covers
the boundary of the original polyhedron P. Notice that our decomposition
strategy is merely a partition of 9P, not of P. This surface decomposition
is sufficient for PD computation, because we are only concerned with the
surface of Minkowski sums between polyhedra.

4.2 Pairwise Minkowski Sum Computation

Our PD computation algorithm is based on the decomposition approach
described in Section 3.1. The first step involves computing the pairwise
Minkowski sums between all possible pairs of convex polytopes, CiP and C]Q,
belonging to P and @), respectively. Let us denote the resulting Minkowski
sum as M;;. Various algorithms are known for computing Minkowski sums
of convex polytopes. Using the topological sweep, we can compute M;; in
O(nlogn + k) time, where n is the number of features in C}” and CJQ and k
is the number of features in M;; [13].

4.3 Closest Point Query Using Rasterization Hardware

Given all the pairwise Minkowski sums, Mj;;, let
ij

Our goal is to compute the closest point on the boundary of M, i.e. OM,
from the origin. We perform discretized computations to estimate the closest
point on M. It involves using polygon rasterization hardware to perform
this query up to a given pixel resolution. The main idea is to rasterize M
from the origin without computing a surface representation of 9M explicitly.
After that we compute the closest point, distance and direction.

Rasterization Hardware The discretized computations are performed on
two dimensional pixel data in parallel. The underlying model corresponds
to an abstract geometric SIMD machine which switches between different
states [21]. Typical instruction sets allowed in the geometric SIMD model
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include simple arithmetic, logical and relational operations on the pixel data,
also known as the frame buffer. Current graphics rasterization hardware is a
close realization of this model. From the viewpoint of our PD algorithm, the
rasterization hardware is a multi-processor system that performs massive ray-
shooting operations onto geometric primitives in parallel. We take advantage
of these massive ray-shooting functionality of the rasterization hardware to
perform the closest point query.

(a) (b) (o) (d)

Fig. 1. Rendering the Boundary of the Union From Inside. In (a), V is the current
view-frustum. In (b), Mo is rendered, and a new OM is constructed (thick line). In
(¢), when M;1 is rendered, it opens up a new window (dotted line), and the update
region (thick gray line) on the current OM is established. Thus a new OM (thick
line) is constructed. In (d), we perform the same procedure for M;s.

Rasterizing the Boundary of the Union Our algorithm for rasterizing
OM from a point inside is essentially a massive ray-shooting procedure from
the origin to M by incrementally expanding the front of 9M. The algorithm
can require m? passes, where m is the number of convex polytopes, M;;.

The algorithm maintains the current boundary of M, OMF, where k is
the current iteration, and incrementally expands it with M;; that intersects
OMP*. We attempt to add M,; by drawing the front faces of M;;. The front
faces that “pierce” the current IM* open up a window through which the
origin can see OM. After that we draw the backfaces of M;; into the opened
window using the maximum depth test.

Computing the Closest Point For a given view, we can compute the
closest point on the boundary by simply finding the pixel with the minimum
distance value. The algorithm transforms the pixel depth values into distance
values based on their (z,y) coordinate positions on the viewing plane. Each
pixel depth value is divided by cos 6, where 6 is the angle between the vector
to the (x,y) position on the viewing plane and the center viewing direction.
The minimum distance and direction to the closest point are derived from the
pixel position containing the minimum transformed depth value. In order to
examine views in all directions, we construct six views on the faces of a cube
around the origin and repeat the operation. For more information about the
closest point query, we refer the readers to see our companion paper [17].
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(a) (b)

Fig. 2. Local Refinement by Walking. We refine the PD by iteratively minimizing
the distance between the origin and a line (a triangle in 3D) on the Minkowski sum
M;o. Thus, in (a), there is a transition from to to t1, since the distance from the
origin to t1 is smaller than that to to. In (b), the feature t3 can reduce the PD even
further, the transition of the Minkowski sum from Mo to M1 is followed.

4.4 Local Refinement

The accuracy of the closest point query and PD estimate is limited by the
pixel resolution of the rasterization hardware. We further refine it and im-
prove the PD estimate by performing local walks on the boundary of the
Minkowski sum of P and Q.

Initially the refinement algorithm starts with identifying the features of
P and @ that contribute to the current PD estimate. Each triangle in M;;
is generated by only three possible sets of feature combinations from P and
@. These include vertex/face (VF), face/vertex (FV) and edge/edge (EE)
combinations [13], and we use that relationship to compute the actual PD
features from each polyhedron that correspond to the current PD estimate.
At any time, the algorithm also maintains a notion of current-Minkowski-sum,
which contains the current PD features.

Once the PD features and the Minkowski sum (M;;) which contains them
have been identified, the algorithm refines the current PD estimate by locally
walking on the surface of M;;, the current-Minkowski-sum. This walk pro-
ceeds by iteratively minimizing the distance from the origin to the surface
of M;;. We repeat this process until the algorithm reaches a local or global
minimum.

As shown in Fig. 2 the algorithm needs to avoid features that are inside
the volume of other Minkowski sums. Although it walks towards the interior
of the volume, it sets the current-Minkowski-sum accordingly. Therefore, each
time the algorithm is walking, it keeps track of which M;;’s might intersect
with the current PD features. We accomplish this by keeping track of a subset
of Minkowski sums that can potentially intersect with the current PD features
and the current-Minkowski-sum.

Let us denote the current-Minkowski-sum as M;;, and also denote the sub-
set of Minkowski sums that potentially intersect with M;; as M;;,, Myj;,, ...,

Joo
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M;;,. Here, we conservatively determine M;;,’s by intersection checks based
on an axis-aligned bounding box (AABB) of the Minkowski sum. Moreover,
for each M;;,, we also keep track of a closest triangle t;, to the current PD
feature t; in M;;. The overall refinement algorithm proceeds as:

1. Let the triangle t¢; in M;; correspond to the PD features computed
based on the closest point query. Compute the set of Minkowski sums
M;jo, Mij,, ..., Myj, that intersect M;; based on checking their AABBs
for overlap. Also compute tg,,t,, ..., tg,, which is a set of triangles re-
spectively on M;;,’s that is closest to ¢, on M;;.

2. Identify the triangles incident to t; on M;;.

3. Find a neighboring triangle, say tx41, that results in maximum decrease
in the PD estimate and does not intersect with ¢;,’s. Change the current
PD features from ¢; to ¢511. Also update ti, on each M;;, to the closest
feature to tgy1.

4. If step 4 fails, check whether there exists ¢, in M;;, such that it intersects
with the triangles incident to t, or ¢, itself but reduces the PD. If it exists,
repeat the walk from step 1 by setting ¢y, as t; and M;j;, as M;;.

5. Repeat the steps 2-4 until there is no more improvement in the PD.

Eventually the algorithm computes a local minimum on the boundary of the
Minkowski sum, M.

5 Acceleration Techniques

The global PD computation algorithm described in Section 4 computes an
upper bound on the amount of PD between two polyhedral models. However,
its running time can vary based on the underlying models as well as their
relative configuration. In this section, we present a number of acceleration
techniques to improve its performance. These include hierarchical culling,
model simplification, and geometry culling for closest point query.

5.1 Geometry Culling

A significant fraction of the time of the PD estimation algorithm is spent in
pairwise Minkowski sum computation. The algorithm presented in Section
4.2 considers all pairs of convex polytopes, Cf and C]-Q, and computes their
Minkowski sum, M;;. If we are given an upper bound on the PD, dc, we can
eliminate some pairs of convex polytopes without computing their Minkowski
sum. This is based on the following lemma:

Lemma 1. Let d;; be the separation or Euclidean distance between CF and

CJQ ) If dij > dest, then the closest point from the origin to OM lies on O(M —

Based on the Lemma 1, we can cull away all pairs of convex polytopes,
CF and C’jQ, whose separation distances are more than d.s;. Computing sep-
aration distance between convex polytopes is relatively cheap as compared to
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Minkowski sum computation and a number of efficient algorithms are known
[5,23]. The efficiency of this culling approach depends on the quality of the
estimate, d.s;. Furthermore, checking all possible pairs for separation dis-
tance can take O(n?) time. We improve their performance using a bounding
volume hierarchy to perform hierarchical culling.

5.2 Bounding Volume Hierarchy

We compute a bounding volume (BV) hierarchy for each polyhedron using a
convex polytope as the underlying BV. Each convex polytope obtained using
the decomposition algorithm explained in Section 4.1 becomes a leaf node
in the hierarchy. We recursively compute the internal nodes in a bottom-up
manner, by merging the children nodes and computing the convex hull of the
union of their vertices. Let us define the nodes of polyhedron P at level [ as
CiP " The resulting hierarchy is a hierarchy of convex hulls.

This hierarchy is used in our runtime algorithm to speed up the intersec-
tion and separation distance queries for the culling algorithm. Furthermore,
each level of the hierarchy provides an approximation of the model, which is
used by the PD estimation algorithm.

5.3 Hierarchical Culling

We use the BV hierarchy to speed up the performance of the object-space
culling algorithm. The goal is to start with an initial estimate to the PD and
refine it at every level of the tree. We denote the estimate computed using
level k of each BV tree as d¥,.

We initially start with the root nodes of each hierarchy, CéD 0 and C’(? ’0,
which correspond to the convex hulls of P and Q, respectively. We compute
the PD between those convex polytopes [5,4,18] and use that as the estimated
PD at level 0. The algorithm proceeds in a hierarchical manner through the
levels in each tree:

1. Consider all the pairwise nodes at level k in each tree, CZ-P * and C]-Q’k.
For each (i,7) pair, compute the separation distance between them. If
the nodes overlap, the separation distance is zero.

2. Discard all the node pairs whose separation distances are more than d,
Compute the Minkowski sum for the rest of the pairs.

3. Perform the closest point query on the Minkowski sum pairs and compute
the new PD estimate, d*}! using rasterization hardware.

est
4. Refine the estimate, d*;! using the object space walking algorithm pre-

est
sented in Section 4.4.

k
est*

During each iteration, we go down a level in each tree. If we reach the maxi-
mum level in one of the trees, we do not traverse down in that tree any further.
The algorithm computes an upper bound on the PD in an iterative manner
and refines the bound with every traversal as: d°,, > d!,, > ... > d",,, where
h is the maximum height. Finally, the algorithm returns d’,, as the estimated

PD between P and Q.
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5.4 Model Simplification

Some internal nodes of the hierarchy may have a high number of vertices
and that affects the complexity of pairwise Minkowski sum computation. We
pre-compute a single convex simplification for each internal node in the BV
tree. The simplifications at each level of the BV tree provide a low polygon
count approximation to the original models. We compute a simplification for
each internal node in the following manner:

1. Simplify the node using any simplification error metric.

2. Compute the convex hull of each simplified node.

3. Scale the resulting convex polytope to enclose the internal node or the
underlying geometry as tightly as possible.

We use the simplified BVs to improve the performance of the computa-
tions in step 2 (pairwise Minkowski sum computation) and step 3 (closest
point query) of the hierarchical culling algorithm presented in Section 5.3.
The simplified BVs can increase the estimated PD value, d.g, as compared
to the original nodes computed by the BV hierarchy computation algorithm.
As a result, the number of pairwise Minkowski sums that can be culled at
intermediate levels of the hierarchy based on d.s; may be reduced. However,
the running time of the algorithm is significantly reduced. Also, it does not
change the accuracy of the final result, as the algorithm does not simplify
the leaf nodes in the BV tree.

5.5 Culling for Closest Point Query

The algorithm also spends a considerable fraction of its time in performing the
closest point query using the rasterization hardware (as described in Section
4.3). Here we present a number of techniques to improve its performance.

First of all, we compute a subset of the pairs, M;;’s, that contain the
origin and render them only once in the algorithm described in Section 4.3.
All the pairwise Minkowski sums in this subset have a zero hop. We identify
this subset, say [ out of total of m pairs of M;;’s, by checking whether the
corresponding convex polytopes, C¥ and C'JEQ, overlap [5,9,23]. Once we have
computed these [ M;;’s, we first render them using the maximum depth
test and then the remaining (m —[) pairwise Minkowski sums, M;;’s, (m—
{) times using the incremental algorithm.

Secondly, when we repeat the closest point query six times, once for each
face of the cube, we apply a culling technique similar to the one discussed
in Section 5.1. At each view, the algorithm maintains the current minimum
depth value, d.q, and then as it proceeds to the next view, it culls away the
M;;’s whose distance from the origin is more than des, as shown in Lemma 1.
Finally, for each query, when we render the M;;’s, we perform view-frustum
culling by checking whether the axis aligned bounding box of each M;; lies in
the current view. This view frustum culling significantly reduces the number
of primitives rendered during each iteration of the algorithm.
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6 Analysis of PD algorithm
In this section, we analyze the performance of our PD algorithm and discuss
its accuracy.

6.1 Performance Analysis

The basic PD algorithm presented in Section 4 has the following computa-
tional complexity at run-time:

e Each non-convex object can have O(n) convex pieces using the convex
surface decomposition presented in Section 4.1. Thus, each convex piece
has O(C) complexity on the average. In practice, C' is a small number of
less than 10.

e The pairwise Minkowski sum computation has an input of n? combi-
nations of convex pieces from two non-convex objects, and each M;;
computation requires O(C'logC) time. Therefore, the overall pairwise
Minkowski sum computation requires O(n?C'log C') running time.

e The closest point query requires m? iterations, where m = n? is the
number of M;;’s. Each iteration requires rasterizing O(C?) triangles in
the worst case, and we assume that the triangle rasterization takes con-
stant time 7. The transformation for the perspective correction requires
O(RW?) time, where W is the pixel resolution and R is a cost of a sin-
gle read-back from the frame buffer. Therefore, the total computational
complexity of the closest point query is O(TC?*n* + RW?).

e Each refinement walk step requires O(C?n?) time in the worst case, since
it needs to keep track of all the potential intersectors of the current-
Minkowski-sum. In practice, each step requires a small number of con-
stant iterations as opposed to the worst case complexity.

e In summary, the object space computation requires O(n?C'log C) time,
and the image space computation (i.e. closet point query) requires
O(TC?n* + RW?) time.

The performance of the basic algorithm is improved by different tech-
niques highlighted in Section 5. However, the performance of the resulting al-
gorithm using hierarchical refinement depends heavily on the extent of object-
space culling, which is directly related to the amount of inter-penetration be-
tween the objects. As a result, when the penetration between two polyhedra
is relatively shallow, the algorithm is able to cull away a very high percent-
age of Minkowski pairs (as shown in Table 2 in Section 7.2) and quite fast in
practice. However, it is very hard to analyze the culling performance quan-
titatively, since the performance depends on various parameters of objects
such as its complexity, aspect ratios, the amount of interpenetration between
the objects, and their relative configuration.

6.2 Error Analysis

Our algorithm always computes an upper estimate to the PD. In other words,
the algorithm may be conservative and the computed answer may be more
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than the global minimum defined in Equation 1. The rasterization errors and
precision of discretized computations governs the tightness of the resulting
answer. The main sources of these errors are as follows:

1. The discretization of ray directions to lie on a pixel grid for each view.
2. The fixed precision of the Z-buffer.

oM

PD,

est

Fig. 3. (a) Ray Shooting Error. The true PD wvalue is pdo, which is the minimum
distance from O to O(M;; U My;). However, due to the discretized ray shooting,
the reported PD value pdy can be arbitrarily larger than pdoy. (b) Error Bound. PD
is optimal, and PDest is closest to PD computed by our algorithm. d is the upper
bound of the length of an edge in OM. Then, PDesy < PDcosa++/d? + PD?sin’a.

Increasing the resolution of the grid decreases the possibility of the worst-case
angular error. Moreover, constructing tighter bounds on the minimum and
maximum distances in each view (near and far plane distances) decreases the
Z-buffer precision error. However, as illustrated in Fig. 3-(a), the worst case
error can be arbitrarily large regardless of the resolution of the grid.

In practice, we can assume that the massive ray-shooting assisted by
rasterization hardware is dense enough that every face in M is hit by at least
one ray. Furthermore, since we explicitly compute M;;, we know the upper
bound d of the length of an edge in M. In this case, as shown in Fig. 3-(b),
the upper bound on the estimate, PD,4; is:

PD,.st < PD cosa + \/d? + (PD)? sin2a

by using the cosine law, where « is the smallest angle between rays and PD
is the optimal penetration depth between the underlying polyhedra.

We also observed that the PD value is rapidly converging as the pixel
resolution increases. The convergence rate also depends on the relative con-
figuration between the objects. Fig. 4 shows a typical convergence behavior of
our PD algorithm. The figure shows the convergence rates of two intersect-
ing tori in different configurations, touching and interlocked. More specific
data about these models and their relative configuration are given in Fig. 5
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and Table 2 in Section 7.2. In practice, we are able achieve a reasonably
converging PD value when the pixel resolution is set to 256 x 256.

—=— Interlocked
1l ¢ Touching

0.9r

PD

0.81

0.7r

0.61

0.5F 00

0.4 . . . . .
0 100 200 300 400 500 600

Pixel Resolution

Fig. 4. PD Convergence Rate With Respect To the Pixel Resolution. Two different
configurations of two intersected tori, touching and interlocked, are given.

7 Implementation and Results

In this section, we describe the implementation of our PD computation algo-
rithm and demonstrate its performance on different benchmarks and appli-
cations. We also refer the readers to see [19,20] where we have used our PD
computation algorithm for dynamic simulation of rigid bodies and tolerance
verification for rapid prototyping of complex structures.

7.1 Implementation Issues

We use the SWIFT++4 implementation of the Voronoi marching technique
[9] to efficiently perform the separation distance query. It performs distance
queries between non-convex polyhedra by using a hierarchy of convex hulls.
We use the public domain QHULL package [3] for convex hull computation
in 3D. QHULL is particularly efficient for dealing with a relatively small
number of points, which is the case in our algorithm. We use the QSlim
implementation [11] of the quadric error metric simplification algorithm to
ensure that the intermediate nodes of the bounding volume trees do not have
more than 50 vertices.

We implement the closest point query operation using OpenGL graphics
library. Also, we typically set the screen space resolution to 128 x 128 at the
intermediate step of the hierarchical refinement, then at the finest level of the
refinement, we set the resolution to 256 x 256. For our benchmarking models,
these different resolution schemes provide us with results of a reasonable
accuracy, and they also balance the computation time between the object
space and the image space.
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S
" 4

Fig. 5. PD Benchmark Models. From left to right: interlocked tori, touching tori,
interlocked grates, and letters.

7.2 Benchmark Results

We benchmark our PD algorithm with four models: interlocked tori, touching
tori, interlocked “grates” and a pair of alphabet models, with their relative
configuration shown in Fig. 5. We used the tori models because it is relatively
difficult to compute a good convex decomposition for them. The interlocked
“grates” model was chosen because the combinatorial complexity of its exact
Minkowski sum is O(m3n?) [28]. In our benchmarks, m and n are 1134 and
444, respectively. Therefore, it is a very challenging scenario for any PD
computation algorithm. Earlier approaches based on localized computations
or convex volumetric decomposition are unable to compute the PD efficiently
and accurately on these benchmarks.

We measure the timings on a PC equipped with an Intel Pentium IV 1.6
GHz processor, 512 MB main memory and GeForce 3 graphics card. The
complexity of the models varies from a few hundred faces to a few thousand
faces. The number of leaf nodes, computed using the convex surface decom-
position algorithm, vary from 67 pieces to 409 pieces. The running times vary
based on the model complexity and the relative configuration of two polyhe-
dra. It can vary from a fraction of a second, for the touching tori and a pair
of alphabet models, to a few seconds for models that have deep penetration
(e.g. interlocked tori and interlocked “grates”). Most of the time is spent in
pairwise Minkowski sum computations and closest point queries using the
graphics hardware. The local refinement based on the walking algorithm is
quite fast and takes only a few milliseconds. Detailed timings for some levels
of the hierarchy are given in Table 2. The acceleration techniques and hier-
archical refinement result in several orders of magnitude improvement in the
overall running time. Furthermore, the algorithm is able to compute accurate
PD estimates in these cases.

7.3 Performance Speedup by Acceleration Techniques

In Table 3, we have compared the performance of our accelerated PD algo-
rithm presented in Section 5 with the basic algorithm presented in Section
4. As the table illustrates, the basic algorithm suffers from O(n*) computa-
tional costs, and our accelerated algorithm outperforms it by several orders
of magnitude. The result is even more dramatic in a very complex scenario
such as the interlocking grates model.
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lLevel[Cull Ratio[Min. Sum[HW Query[dﬁstl
3 31.2 % |0.219 sec | 0.220 sec [0.99
5 96.7 % |0.165 sec | 0.146 sec [0.53
7 98.3 % |1.014 sec| 1.992 sec [0.50
(a) Interlocked Tori (2000 faces, 67 convex pieces each)

lLevel‘Cull Ratio‘Min. Sum‘HW Query‘dest‘

3 98.4 % |0.135 sec | 0.014 sec [0.29
7 99.9 % |0.105 sec | 0.032 sec [0.29
(b) Touching Tori (2000 faces, 67 convex pieces each)

Level|Cull Ratio|Min. Sum|HW Query|des:

3 0 %| 0.66 sec | 0.29 sec |6.41
7 96.9 %| 0.43 sec | 0.39 sec |0.63
9 99.9 %| 0.03 sec | 0.07 sec |0.63

(c) Grates (444 & 1134 faces, 169 & 409 pcs)

Level|Cull Ratio|Min. Sum|HW Query|dest
2 50.0 % |0.055 sec | 0.021 sec [0.06
4 56.2 % |0.099 sec | 0.062 sec |0.03
6 97.6 % |0.080 sec | 0.161 sec |0.01
(d) Alphabets (144 & 152 faces, 42 & 43 pcs)

Table 2. Benchmark Results. We show the performance of our PD algorithm for
various models. We also break down the performance to the object space culling
rate, the pairwise Minkowski computation time and the closest point query time on
some of the levels of the hierarchy.

Type Without Accel.|With Accel.
Interlocked Tori 4 hr 3.7 sec
Touching Tori 4 hr 0.3 sec
Grates 177 hr 1.9 sec
Alphabets 7 min 0.4 sec

Table 3. Performance Speedup by Acceleration Techniques

8 Summary and Future Work

We present a fast, global algorithm to estimate penetration depth between
polyhedra using both image-space acceleration techniques and object-space
culling and refinement algorithms. The resulting algorithm has been tested
on difficult benchmarks.

There are several areas for future work. The performance of our algo-
rithm can be further improved by exploring more optimizations. These in-
clude faster implementations of the closest point query using new features
of the high-end graphics cards, as well as better hierarchical decompositions.
Currently our algorithm only computes the minimum translational distance
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to separate two overlapping objects. It would be useful to extend it to handle
rotational penetration depth.

9
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