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Abstract

Geometric complexity theory (GCT) is an approach towards the P vs. NP and related
problems. The article [GCTflip] describes its defining strategy, called the flip, to resolve the
self referential paradox, which is the root difficulty in these problems. This article describes
an approach based on positivity hypotheses in algebraic geometry and representation theory
to implement the flip and thereby resolve the self referential paradox in the arithmetic setting
wherein the underlying field of computation has characteristic zero. The main result here
is the Decomposition Theorem that decomposes the arithmetic P vs. NP and permanent
vs. determinant problems into such positivity hypotheses and easier hardness hypotheses,
all without the self referential difficulty.

1 Introduction

This article belongs to a series [GCT1]-[GCT8] of articles on the geometric complexity theory
(GCT) approach towards the P vs. NP and related problems. Intuitively, the P vs. NP
problem is formidable because, being a universal statement about mathematics which says that
discovery is hard, it can potentially preclude its own proof and be independent of the axioms
of set theory. Resolution of this self referential paradox is the root difficulty in this problem
as per the Flip Theorem in [GCTflip], which formalizes this intuitive difficulty. As such, the
main conceptual difficulty in any approach towards this problem is to break the circle of self
reference around it by decomposing the problem and its variants into subproblems without the
self referential difficulty. The main result of this article, the Decomposition Theorem 4.9, is
such decomposition of the arithmetic P vs. NP and permanent vs. determinant problems
based on positivity hypotheses in algebraic geometry and representation theory. This result was
announced in the GCT overview [GCTexpo].

We now give a brief overview of this result focussing on the arithmetic permanent vs. de-
terminant problem [V], since this illustrates all the basic ideas. In the arithmetic setting the
underlying field of computation has characteristic zero. The problem is to show that perm(X),
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the permanent of an n × n variable matrix X, cannot be represented linearly as det(Y ), the
determinant of an m ×m matrix Y , if m = poly(n), or more generally, m = 2loga n, for a fixed
constant a > 0, and n → ∞. By a linear representation, we mean that the entries of Y are
(possibly nonhomogeneous) linear functions of the entries of X. The best known lower bound
on m at present is quadratic [MR2].

In [GCT1] and [GCT2], this problem is reduced to the problem of showing existence of ge-
ometric obstructions, which are representation theoretic objects in geometric invariant theory
that serve as proof certificates of hardness of the permanent. Specifically, the geometric ob-
structions are irreducible polynomial representations (Weyl modules) Vλ(G) of G = GLl(C),
l = m2, that occur in the homogeneous coordinate ring Rn,m of a certain projective G-variety
Yn,m associated with the permanent but not in the homogeneous coordinate ring Sm of another
projective G-variety Xm associated with the determinant. Here m is small as above, and Vλ(G)
denotes the Weyl module of G labelled by the partition λ. The definitions of Yn,m and Xm are
given in Section 2. It is conjectured that the problem of proving existence of these geometric
obstructions is equivalent to a stronger form of the permanent vs. determinant conjecture (Con-
jecture 2.6). Thus [GCT1] and [GCT2] basically reformulates the original hardness problem in
the setting of geometric invariant theory. See [BLMW] for further investigation of the mathe-
matical issues that arise here. The main advantage of this reformulation is that the geometric
obstruction Vλ(G) has a natural compact specification (label), namely the partition λ, and this
plays a crucial role in the approach.

But a proof technique cannot be considered an approach if it only provides an equivalent
reformulation of the original hardness problem in the language of its choice. It also has to
show how to break through the circle of equivalences. This essentially amounts to resolving the
self referential paradox mentioned above. The article [GCTflip] describes the defining strategy
of GCT, called the flip, to resolve this paradox. The strategy is to go for an explicit proof
of hardness. By this we essentially mean a proof that provides proof certificates of hardness,
called obstructions, that are easy to verify and construct (in polynomial time). The strategy is
called a flip because it reduces the lower bound problems to upper bound problems: showing
that verification and construction of proof certificates belong to P . The article [GCTexpo]
explains in what sense the flip amounts to an explicit resolution of the self referential paradox.
This article describes an approach to implement the flip, and thereby resolve the self referential
paradox, based on the Positivity Hypotheses (PH) in algebraic geometry and representation
theory. The first positivity hypotheses called PH1 basically say that the multiplicities (number
of occurrences) of the Weyl module Vλ(G) in the homogeneous coordinate rings Rn,m and Sm

can be expressed as the number of integer points in explicitly (cf. Section 4.1) given polytopes,
just as the Littlewood-Richardson coefficient can be expressed as the number of integer points
in the explicitly given Hive polytope [KT1]. Such an expression is positive because there is
no cancellation in it unlike in the classical character formulae for multiplicities. The second
hypotheses called SH (Saturation Hypotheses) say that these multiplicities have a generalized
and relaxed form of the saturation property [KT1] that the Littlewood-Richardson coefficients
have. These are weaker forms of the second positivity hypotheses (PH2) which say that the
stretching functions associated with these coefficients can be expressed, after a small (poly(n,m))
shift, as asymptotic quasipolynomials with nonnegative coefficients.

The self referential difficulty is absent in these positivity hypotheses unlike in the original
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hardness hypothesis (the permanent vs. determinant problem), because (1) m is not required
to be a small function of n in their statements, and (2) they do not depend on the relationship
between the permanent and the determinant (or equivalently, between the complexity classes
#P and NC): because PH1 and SH (PH2) for the variety Yn,m are statements only about the
properties of the permanent and do not depend in any way on the determinant or the complexity
class NC, and similarly PH1 and SH (PH2) for the variety Xm are statements only about the
properties of the determinant and do not depend in any way on the permanent or the complexity
class #P .

Formulation of these positivity hypotheses is the key step in this paper. Assuming them, the
Decomposition Theorem 4.9 reduces the original hardness hypothesis to a fundamentally “easier”
hardness hypothesis called OH (Obstruction Hypothesis). Here ‘easier” means whether a given
geometric obstruction label λ satisfies the condition in OH can be decided in time polynomial
in n,m, and the bitlength of the specification of λ. This ease of verification of an obstruction
label is a crucial step in the resolution of the self referential paradox. Thus the Decomposition
Theorem decomposes the original hardness (lower bound) problem into the positivity hypotheses
(PH1 plus SH), without the self referential difficulty, plus an “easier” hardness hypothesis OH,
which too does not have the self referential difficulty once PH1 and SH are proved. Pictorially:

(Strong) perm. vs. det. conjecture
···>
←− PH1 + SH +OH. (1)

This decomposition breaks the circle of self referential difficulty. Here the left hand side is the
stronger form of the permanent vs. determinant conjecture (Conjecture 2.1) defined in [GCT1].
The solid arrow ←− denotes the formal implication as per the Decomposition Theorem 4.9.
The dotted arrow · · · > indicates evidence for the plausible converse (cf. Section 8) based
on the Strong Flip Theorem 2.3 in [GCTflip]. This result shows that the stronger permanent
vs. determinant conjecture in conjunction with a stronger form of a standard derandomization
conjecture in complexity theory implies solution to a formidable explicit construction problem
in algebraic geometry akin to (but even more explicit than) the explicit construction problems
in the positivity hypotheses. This suggests that these positivity hypotheses may be in essence
implications of the stronger permanent vs. determinant and derandomization conjectures. How
to make the dotted arrow in the decomposition solid, as one would ideally like, is open. There
is a similar decomposition for the P vs. NP problem in characteristic zero; cf. Section 10.

The positivity hypotheses turn out to be formidable because, as explained in Section 5, they
encompass and go much further than the century-old plethysm problem in algebraic geometry
and representation theory. The Strong Flip Theorem mentioned above suggests that problems
of comparable difficulty would arise in any approach, though their concrete forms may be very
different from PH1 and SH here. In this sense positivity is a hidden root difficulty underneath the
fundamental hardness conjectures of complexity theory. This may explain why these conjectures
have turned out to be so hard though they look so elementary at the surface.

The rest of this article is organized as follows. Section 2 recalls from [GCT1] and [GCT2]
the reduction of the permanent vs. determinant problem to the problem of proving existence
of geometric obstructions, and the Strong Flip Theorem from [GCTflip] that formalizes the self
referential paradox in this context. Section 3 instantiates the flip strategy in [GCTexpo, GCTflip]
using the geometric obstructions and states the conjectural flip hypotheses satisfied by them.
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Section 4 states the positivity hypotheses, the resulting decomposition (1) based on the flip
strategy, and the results underlying the solid left arrow in the decomposition (1). Section 5
explains how these positivity hypotheses encompass and go much further than the classical
plethysm problem in algebraic geometry and representation theory. Sections 6 and 7 provide
proofs of the results underlying the solid left arrow in the decomposition (1). Section 8 justifies
the dotted right arrow in the decomposition (1) on the basis of the Strong Flip Theorem in
[GCTflip]. Section 10 addresses the P vs. NP problem in characteristic zero.

It may be helpful (though strictly not necessary) to have some familiarity with the formaliza-
tion of the self referential paradox provided by the Flip Theorem in [GCTflip] and the defining
flip strategy of GCT to resolve this paradox by going for explicit proofs. All this is explained in
the first two sections of [GCTexpo].

Notation: Given a quantity x, we denote the bitlength of its specification by 〈x〉, and poly(n,m, . . .)
means polynomial of a constant degree in n,m, . . ..

2 Geometric obstructions

In this section we recall from [GCT1] and [GCT2] the reduction of the permanent vs. de-
terminant problem in characteristic zero (cf. Section 1) to the problem of proving existence
of geometric obstructions (proof certificates of hardness). These obstructions are crucial for
breaking the circle of self reference as described in the later sections.

2.1 Characterization by symmetries

The article [GCT1] begins with an observation that the permanent and determinant are excep-
tional, i.e., are completely characterized by their symmetries in the following sense.

Let Y be an m × m variable matrix. We think of its entries, ordered say rowwise, as
coordinates of Y = Cl, l = m2. Let V = C[Y ]m be the space of homogeneous polynomials of
degree m in the variable entries of Y . It is a representation of G = GL(Y) = GLl(C) with the
following action. Given any σ ∈ G, map a polynomial g(Y ) ∈ V to gσ(Y ) = g(σ−1(Y )):

σ : g(Y ) −→ g(σ−1Y ). (2)

Here Y is thought of as an m2-vector by straightening it rowwise.

We say that a point x ∈ V is characterized by its stabilizer Gx = {σ ∈ G |σx = x} if x is
the only point, up to a constant multiple, in V such that σx = x for all σ ∈ Gx. Then:

(D) [Fr]: The point det(Y ) ∈ V is characterized by its stabilizer Gdet ⊆ G = GL(Y), which
consists of linear transformations in G of the form:

Y → AY ′B, Y ′ = Y or Y t, A,B ∈ GLm(C), (3)

with (det(A) det(B))m = 1. We refer to this characterization by symmetries of the determinant
as property (D).

Similarly, let X be an n × n variable matrix, whose entries we think of as coordinates of
X = Cn2

after ordering them rowwise. Let W = C[X]n be the space of forms (homogeneous
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polynomials) of degree n in the entries of X. It is a representation of H = GL(X ) = GLn2(C).
Then:

(P): [MM] The point perm(X) ∈ W is also characterized by its stabilizer Hperm ⊆ H, which
consists of linear transformations in H of the form:

X → λX ′µ, X ′ = X or Xt,

where λ and µ are products of either diagonal or permutation matrices, with obvious constraints
on the product of the diagonal entries of the diagonal matrices. We refer to this characterization
of the permanent by its symmetries as property (P).

The basic idea now is to exploit the exceptional nature of these polynomials–i.e. the prop-
erties (P) and (D)–to construct appropriate proof certificates of hardness (obstructions).

2.2 Class varieties

Towards this end, [GCT1] associates with the determinant and permanent certain projective
varieties called the class varieties as follows.

Let P (V ) be the projective space of V consisting of the lines in V through the origin.
Let P (W ) be the projective space of W . Identify X with an n × n submatrix of Y , say,
the bottom-right minor of Y , and let z be any variable entry of Y outside X. We use it as a
homogenizing variable. Define an embedding φ : W →֒ V by mapping any polynomial h(X) ∈W
to hφ(Y ) = zm−nh(X). This also defines an embedding of P (W ) in P (V ), which we denote by
φ again.

Let g = det(Y ), thought as a point in P (V ) (strictly speaking the line through det(Y ) is a
point in P (V ), but we ignore this distinction here). Similarly, let h = perm(X) ∈ P (W ), and
f = hφ = permφ(Y ) ∈ P (V ).

Let
∆V [g,m] = ∆V [g] = Gg ⊆ P (V ),

∆W [h, n] = ∆W [h] = Hh ⊆ P (W ),

∆V [f, n,m] = ∆V [f ] = Gf ⊆ P (V ),

(4)

where Gg denotes the projective closure of the orbit Gg of g, and so on. Then ∆V [g,m] and
∆V [f, n,m] are projective G-varieties–i.e., varieties with a natural action of G induced by the
action on the G-orbits–and ∆W [h, n] is a projective H-variety. We call ∆V [f, n,m] the class
variety of the complexity class #P since the permanent is #P -complete [V], and ∆V [g,m] the
class variety of the complexity class NC since the determinant belongs to NC and is almost
complete [V]. The varieties Yn,m and Xm in the introduction (Section 1) are the varieties
∆V [f, n,m] and ∆V [g,m] here, respectively.

It is easy to show (cf. Propositions 4.1 and 4.4 in [GCT1]) that if h = perm(X) can be
expressed linearly as the determinant of an m×m matrix, m > n, then

∆V [f ] = ∆V [f, n,m] ⊆ ∆V [g,m] = ∆V [g]. (5)

Conversely, if ∆V [f, n,m] ⊆ ∆V [g,m], then f can be approximated infinitesimally closely by a
point in P (V ) of the form det(AY ), A ∈ G, thinking of Y as an m2-vector. Since the permanent
is #P -complete, it is conjectured that:
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Conjecture 2.1 (Stronger form of the permanent vs. determinant problem) [GCT1] The point
f ∈ P (V ) cannot be approximated infinitesimally closely as above if m = poly(n), and more
generally, m = 2loga n for any constant a > 0.

It is easy to see that this is equivalent to:

Conjecture 2.2 (cf. Conjecture 4.3 in [GCT1]) If m = poly(n), or more generally, m = 2loga n,
a > 0 fixed, n→∞, then ∆V [f, n,m] 6⊆ ∆V [g,m].

2.3 Strong flip theorem and the self referential paradox

The following result formalizes the self referential paradox in this context. It says that any
proof of Conjecture 2.1 can be transformed into an extremely explicit proof [GCTexpo, GCTflip]
assuming a stronger form of the standard derandomization conjecture [IW, KI], which is regarded
in complexity theory as easier than the target lower bound under consideration. This result is
also crucial for the justification of the flip and positivity hypotheses needed later for breaking
the circle of self reference.

Theorem 2.3 (Strong Flip) (cf. [GCTexpo, GCTflip]) Suppose Conjecture 2.1 (or equiva-
lently, Conjecture 2.2) holds and that black box determinant identity testing [KI] can be deran-
domized in a stronger form as specified in [GCTflip] (cf. Section 8.1 therein).

Then, for any m = poly(n), one can compute in poly(n,m) time a global obstruction set
Sn,m = {X1, . . . , Xl}, l = poly(n,m), of nonnegative integral n × n matrices with the following
property. Fix any homogeneous polynomial p(Y ) ∈ V such that the line in P (V ) corresponding
to p(Y ) belongs to ∆V [g,m]. Let p′(X) denote the polynomial obtained from p(Y ) by substituting
zero for all variables in Y other than z and X, and 1 for z. Then, for any such p(Y ), there exists
a counter example Xi ∈ Sn,m such that p′(Xi) 6= perm(Xi). Thus Sn,m contains a counterexample
against every point in ∆V [g,m] which proves that the point is different from f = permφ(Y ).

More strongly, Conjecture 2.1 has an extremely explicit proof [GCTexpo, GCTflip]. This
means there exists a family O = ∪n,mOn,m of sets of bit strings called obstructions (or ob-
struction labels) satisfying the following Flip properties F0-4 [GCTexpo, GCTflip] and also the
property (G) specified below:

F0 [Short]: The set On,m is nonempty and contains a short obstruction string s if m is small,
i.e., O(poly(n)). Here short means the bitlength 〈s〉 of s is poly(n,m).

F1 [Easy to decode:] Each bit string s ∈ On,m, m small, denotes a global obstruction
set Sn,m(s) (just like Sn,m above) such that given s, n and m, Sn,m(s) can be computed in
poly(〈s〉, n,m) time.

F2 [Rich]: For every n and m = poly(n), On,m contains at least 2Ω(m) pairwise disjoint obstruc-
tions, each of poly(n,m) bitlength. Here we say that two obstructions s, s′ ∈ On,m are disjoint
if Sn,m(s) and Sn,m(s′) are disjoint.

F3 [Easy to verify]: Given n,m, and a string s, whether s is a valid obstruction string for n
and m–i.e., whether s ∈ On,m–can be verified in poly(n, 〈s〉,m) time.
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F4 [Easy to construct]: For each n and m = poly(n) a valid obstruction string sn,m ∈ On,m

can be constructed in poly(n,m) = poly(n) time.

The same result also holds if we replace sequential polynomial time algorithms in all the
statements above by efficient parallel (NC) algorithms that work in polylogarithmic time using
polynomially many processors.

We will justify the terminology flip later (Section 3).

For any short obstruction string s ∈ On,m, m = O(poly(n), let Sn,m(s) = {X1, . . . , Xl}, Xi

nonnegative and integral, l = poly(n), be the global obstruction set as in F1. Let ψ = ψs : V →
Cl be the homogeneous linear map that maps any homogeneous form p(Y ) ∈ V to the point
(p′(X1, ), . . . , p

′(Xl)) ∈ C
l. Let ψ̂ = ψ̂s denote the induced morphism from the projective variety

∆V [g,m] to the projective variety P (Cl). It is not defined when the tuple (p′(X1, ), . . . , p
′(Xl))

is identically zero. Its image is ψ̂(∆V [g,m]) ⊆ P (Cl). It can be ensured that that ψ(f) ∈ Cl,
f = zm−nperm(X), is not an identically zero tuple. Hence it defines a point in P (Cl), which
we denote by ψ̂(f). Then Sn,m(s) is a global obstruction set iff ψ̂s(f) 6∈ ψ̂s(∆V [g,m]). The
property (G) mentioned above is that:

(G): The point ψ̂s(f) does not belong to the projective closure of ψ̂s(∆V [g,m]) ⊆ P (Cl), when
m = poly(n).

The linear map ψ̂s above is called an extremely explicit positive separator between ∆V [g,m]
and f = zm−nperm(X). It is called extremely explicit because (assuming the relevant hardness
and derandomization conjectures): (1) given s, the set Sn,m(s) which specifies ψ̂s can be com-

puted in O(poly(n,m)) time by Theorem 2.3, and (2) each coefficient of the representation of ψ̂s

in the standard basis 1 of V can also be computed in poly(n,m) time; this also follows from Theo-
rem 2.3. It is called positive because each such coefficient is nonnegative. We call l = poly(n,m)
the dimension of ψ̂s. Thus Theorem 2.3 says that, assuming the strong arithmetic permanent
vs. determinant and derandomization conjectures, one can construct a compact specification
Sn,m(s) of an extremely explicit positive linear separator of small dimension between ∆V [g,m]
and f in poly(n,m) time, when m is small.

Theorem 2.3 formalizes the self referential paradox in the following sense. Given Xi and
p(Y ), to check if Xi is a counterexample against p(Y ), we have to check if p′(Xi) 6= perm(Xi).
This cannot be checked efficiently for general Xi, assuming that the permanent is hard to
compute. Yet, by F1 and F3, whether Sn,m(s) contains a counterexample against every p(Y ) ∈
∆V [g,m] can be checked efficiently even in parallel. This seems to contradict the very hardness
of the permanent that we are trying to prove. See [GCTexpo] for further discussion of this
self referential paradox. Theorem 2.3 says that extremely explicit resolution of this paradox is
forced by the strong permanent vs. determinant conjecture, modulo derandomization. In view
of this result, the main conceptual difficulty in proving this conjecture is to break the circle of
self reference by decomposing it into subproblems without the self referential difficulty. This is
the goal for the rest of this paper.

Theorem 2.3 critically depends on the exceptional nature of f and g = det(Y ). It will almost
never hold for general f and g in place of the permanent and determinant. For general f and g,
a global obstruction set Sn,m that gives a linear separator ψ between ∆V [g,m] = Gg and f can

1The standard basis representation of any form f ∈ V = C[Y ]m is given by its coefficients.
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be constructed (if it exists) using general purpose algorithms for elimination theory in algebraic
geometry for computing multivariate resultants and Gröbner bases of the ideals of algebraic
varieties. But these algorithms take Ω(2dim(V )) time. Since dim(V ) is exponential in n and m,
the time taken is at least double exponential in n and m. Nothing better can be expected for
general f and g, because elimination theory is intractable in general. For example, the problem
of computing the Gröbner basis is EXPSPACE-complete [MM2]. This means it takes in general
space that is exponential in the dimension of the ambient space, which is P (V ) here. In contrast,
Theorem 2.3 says that, assuming the underlying hardness and derandomization conjectures, a
short specification Sn,m of a linear separator between ∆V [g,m] and f = zm−nperm(X) can
be computed in poly(n,m) time exploiting the exceptional nature of the permanent and the
determinant. This may seem impossible and out of reach of the existing algebraic geometry, and
this may explain why the fundamental hardness conjectures of complexity theory, which seem
so elementary at the surface, have turned out to be so hard.

Theorem 2.3 also suggests the law of conservation of difficulty: namely, that any proof of the
(strong) permanent vs. determinant conjecture would have to overcome problems of difficulty
comparable to the explicit construction of such linear separators. The various flip and positivity
hypotheses (FH and PH) described in Sections 3 and 4 are such problems encountered in GCT.

Remark: The self referential difficulty and the strong flip Theorem 2.3 are relevant only for lower
bound problems harder than derandomization of polynomial or determinant identity testing.
The permanent vs. determinant problem is such a problem as per the existing evidence in
complexity theory [KI]. The self referential difficulty is not issue in proving the quadratic
lower bound for the permanent [LMR, MR2], which has a relatively simple proof. Indeed, the
analogue of Theorem 2.3 in this case will be a statement about the difficulty of the additional
derandomization conjecture, not the difficulty of proving the quadratic lower bound.

2.4 Obstructions

We now recall the notion of geometric obstructions to the embedding (5) from [GCT2]. This
will be crucial for breaking the circle of self reference.

For that let us examine Conjecture 2.2 closely. To prove it and thereby solve the original
permanent vs. determinant problem in characteristic zero, we have to prove that the inclusion

∆V [f, n,m] = ∆V [f ] ⊆ ∆V [g] = ∆V [g,m] (6)

is not possible when m is small. Suppose to the contrary. Let RV [f ] = RV [f, n,m] and RV [g] =
RV [g,m] denote the homogeneous coordinate rings of ∆V [f, n,m] and ∆V [g,m], respectively.
These rings were denoted by Rn,m and Sm, respectively, in the introduction (Section 1). Let
RV [f ]d = RV [f, n,m]d and RV [g]d = RV [g,m]d be their degree d components. These are finite
dimensional G-modules since ∆V [f ] and ∆V [g] are G-varieties. If (6) holds then there is a
surjective G-homomorphism from RV [g]d to RV [f ]d obtained by restriction. By dualizing, we
get an injective G-homomorphism from the dual RV [f ]∗d of RV [f ]d to the dual RV [g]∗d of RV [g]d:

RV [f, n,m]∗d = RV [f ]∗d →֒ RV [g]∗d = RV [g,m]∗d. (7)

Let Vλ(G) be the Weyl module [FH] (polynomial irreducible representation) of G labelled

8



by the partition λ = (λ1, . . . , λk), i.e., a nondecreasing integer sequence λ1 ≥ λ2 ≥ · · ·λk > 0,
with length k ≤ l. Let |λ| =

∑

i λi denote the size of λ.

Definition 2.4

(1) [GCT2] A Weyl module S = Vλ(G), for a given partition λ, is called an incidence-based
geometric obstruction for the inclusion (6) if Vλ(G) occurs as a G-submodule in RV [f, n,m]∗

but not in RV [g,m]∗. By occurring in RV [f, n,m]∗, we mean in RV [f, n,m]∗d for some d, which,
it is easy to see, has to be |λ|/m. We call λ an obstruction label, and sometimes by abuse of
notation, an obstruction as well.

(2) We say that a Weyl module S = Vλ(G) is a multiplicity-based geometric obstruction if its
multiplicity in RV [f, n,m]∗ (that is, in RV [f, n,m]∗d for d = |λ|/m) exceeds the multiplicity in
RV [g,m]∗.

(3) We call Vλ(G) a threshold-based geometric obstruction if there exists a small k = O(poly(n,m)
such that the multiplicity of Vλ(G) in RV [g,m]∗ is bounded by k and the multiplicity in RV [f, n,m]∗

exceeds k.

In [GCT2] (1) is stated in terms of SLl(C) but keeping track of the grading information.
This is the same as using GLl(C) instead.

If a geometric obstruction exists, for given n and m, then the inclusion (6) is not possible,
and hence, perm(X) cannot be linearly represented as a determinant of an m×m matrix. Thus
a geometric obstruction is a proof certificate of hardness of the permanent. It has a natural
short specification, namely, the partition λ. This is crucial in what follows.

Conjecture 2.2 or equivalent Conjecture 2.1 is now implied by the following conjectural
Geometric Obstruction Hypothesis (GOH).

Hypothesis 2.5 (GOH) [GCT2] Incidence-based geometric obstructions exist in the perma-
nent vs. determinant problem when m = poly(n), or more generally, m = 2loga n, a > 0 a
constant.

Furthermore:

Conjecture 2.6 (Equivalence) The stronger form of the permanent vs. determinant problem
(cf. Conjecture 2.1 and 2.2) is equivalent to the problem of proving existence of threshold-based
geometric obstructions. Specifically, for given n and m, ∆V [f, n,m] 6⊆ ∆V [g,m] iff a threshold-
based geometric obstruction exists.

See Section 8.1 for justification of GOH and this conjecture based on the Strong Flip Theo-
rem 2.3. Also see [BI] for nontrivial computer based numerical evidence for the analogue of
GOH in GCT of matrix multiplication.

For simplicity, we focus on incidence-based geometric obstructions in what follows, though
GCT can be extended to threshold-based geometric obstructions as well by augumenting the var-
ious hypotheses suitably. So when we say geometric obstructions, we henceforth mean incidence-
based geometric obstructions unless stated otherwise.
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3 The flip: going for explicit construction of obstructions

The goal now is to prove GOH by constructing (incidence based) geometric obstructions ex-
plicitly. This is natural in view of the Strong Flip Theorem 2.3, which forces an explicit
proof, modulo derandomization. This strategy is instantiation of the abstract flip strategy from
[GCTexpo, GCTflip]. It is called a flip, because it converts the lower bound problem under
consideration into an upper bound problem of constructing the obstructions efficiently. We will
get a more or less explicit proof in GCT whether we care for explicitness or not (cf. Section 4.5),
not surprisingly in view of Theorem 2.3.

3.1 Flip hypotheses

We begin by formulating the Flip Hypotheses (FH) that specify what explicit means in this
context.

Let OG = ∪n,mO
G
n,m be the family of (incidence-based) geometric obstruction labels, i.e.,

partitions λ’s (cf. Definition 2.4), where OG
n,m consists of all geometric obstruction labels for

given n and m.

The following is a conjectural extremely explicit form of Hypothesis 2.5 (GOH). It says that
geometric obstructions can be constructed explicitly just like the global obstruction sets Sn,m(s)
in the Strong Flip Theorem 2.3.

Hypothesis 3.1 (General FH) The family OG = ∪n,mO
G
n,m of geometric obstruction labels

is extremely explicit. This means it satisfies the analogues of the properties F0-4 satisfied by the
family of obstructions in the Strong Flip Theorem 2.3. Specifically:

1. F0 [Short]: OG
n,m is nonempty and contains a short obstruction label (partition) λ if m is

small, i.e., O(poly(n)), or more generally O(2loga n), a > 0 a constant. Here short means
the size |λ| =

∑

i λi is O(poly(n,m)).

2. F1 [Easy to decode]: Given n,m ≥ n, and an obstruction label λ ∈ OG
n,m, we can

construct a global obstruction set Sn,m(λ) (like Sn,m(s) in Theorem 2.3) against all forms
in ∆V [g,m] in poly(〈λ〉, n,m) time, where 〈λ〉 =

∑

i log2 λi is the bitlength of λ.

3. F2 [Rich]: For every n and m = poly(n), OG
n,m contains at least 2Ω(m) distinct partitions,

each of poly(n,m) bitlength.

4. F3 [Easy to verify]: Given n,m and a partition λ, whether λ is a valid geometric
obstruction label for n and m–i.e., whether λ ∈ OG

n,m–can be verified in poly(n, 〈λ〉,m)
time.

5. F4 [Easy to construct]: Given n and m = poly(n), a valid geometric obstruction label
λ in OG

n,m of poly(n,m) size can be constructed in poly(n,m) = poly(n) time.

The family of threshold-based geometric obstruction labels is also extremely explicit.
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Just like the conclusion of the strong flip Theorem 2.3, this hypothesis too may seem im-
possible at the surface, since the existing algorithms in algebraic geometric and representation
theory take at least double exponential time to construct a geometric obstruction label for given
n and small m (for the same reasons as in Section 2.3). See Section 8.1 for the justification of
this hypothesis based on the Strong Flip Theorem 2.3, which suggests that this hypothesis may
in essence be an implication of the hardness and derandomization conjectures mentioned in the
statement of Theorem 2.3.

Next we formulate a weaker form of this hypothesis.

Let G(λ,m) denote the multiplicity of Vλ(G) in RV [g,m]∗, i.e, in RV [g,m]∗d, with d = |λ|/m.
Here |λ| is assumed to be divisible by m. Otherwise the multiplicity is zero. Similarly let
F (λ, n,m) be the multiplicity of Vλ(G) in RV [f, n,m]∗. To decide if Vλ(G) is a geometric
obstruction, we have to decide if these multiplicities are zero or nonzero. Specifically, Vλ(G) is
a geometric obstruction iff G(λ,m) is zero and F (λ, n,m) is nonzero.

Let Ĝ = SLl(C), and Ĝdet ⊆ Ĝ be the stabilizer of det(Y ) ∈ V under the action of Ĝ on V
given by eq.(2). Let G′(λ,m) denote the multiplicity of the Ĝdet-invariant in the Weyl module
Vλ(Ĝ) of Ĝ. It is known (cf. Theorem 1.1 in [GCT2]) that Vλ(Ĝ) occurs in the coordinate ring
RV [g,m] iff G′(λ,m) is nonzero. The multiplicity G′(λ,m) is much easier than G(λ,m), because
its definition is purely representation theoretic, unlike the definition of G(λ,m) which involves
algebraic geometry in an essential way. We shall also study G′(λ,m) concurrently, because this
provides in a much simpler setting a glimpse of the difficulties underlying G(λ,m).

Hypothesis 3.2 (FH)

Permanent FH (1): The multiplicity F (λ, n,m) belongs to #P , i.e., has a positive #P -formula
(with λ specified in binary, and n and m in unary).

Permanent FH (2): The problem of deciding if F (λ, n,m) is nonzero belongs to the complexity
class P ; i.e., has an algorithm that works in poly(〈λ〉, n,m) time.

Determinant FH (1) and (2): The situation for G(λ,m) and G′(λ,m) is similar.

For justification of this hypothesis based on the Strong Flip Theorem 2.3, see Section 8.2.

Proposition 3.3 Assuming Determinant and Permanent FH (2) (cf. Hypothesis 3.2), the prob-
lem of verifying a geometric obstruction (label) in the permanent vs. determinant problem belongs
to P : i.e., given λ, n and m, whether λ is a valid geometric obstruction label (cf. Definition 2.4)
can be decided in poly(n,m, 〈λ〉) time (as per F3 in Hypothesis 3.1).

This follows trivially from the definitions.

Permanent FH crucially depends on the characterization by symmetries of the permanent
(the property (P)), because this is crucial in the proof of the strong Flip Theorem 2.3, which is
the basis for its justification (Section 8.2). Similarly, Determinant FH crucially depends on the
characterization by symmetries of the determinant (the property (D)). If we were to replace the
determinant and permanent with general functions without symmetries, FH and General FH
would almost certainly fail. This is why GCT can work for only exceptional functions such as
the permanent and determinant.

11



3.2 Breaking of the circle and the flip

The self referential difficulty (Section 2.3) is present in the permanent vs. determinant problem
because: (1) m is required to be a small function of n in its statement, and (2) the problem is
based on the relationship between the permanent and the determinant, or equivalently, between
the complexity classes #P and NC. This difficulty is absent in Determinant and Permanent
FH because (1) m is not required to be a small function of n in their statements, and (2) they
do not depend on the relationship between the permanent and the determinant (or equivalently,
between the complexity classes #P and NC). This is because Permanent FH is a statement
only about the properties of the permanent and does not depend in any way on the determinant
or the complexity class NC, and Determinant FH is a statement only about the properties of
the determinant and does not depend in any way on the permanent or the complexity class #P .

Furthermore, once Determinant and Permanent FH (2) are proved, geometric obstructions
are easy to verify (cf. Proposition 3.3). As we saw in Section 2.3, the self referential paradox
is the main obstacle in the implementation of the flip condition for verification (F3). The
above discussion says that once Determinant and Permanent FH are proved, F3 is satisfied for
geometric obstructions. This means GOH then becomes “easy to verify” and does not have
the self referential difficulty anymore. Thus we get the decomposition of the original permanent
vs.determinant conjecture as Determinant FH (2) plus Permanent FH (2) plus GOH, all without
the self referential difficulty. Pictorially,

(Strong) Perm. vs. Det.
···>
←− Determinant FH (2) + Permanent FH (2) +GOH. (8)

Though Proposition 3.3 underlying the solid arrow ←− is trivial, such decomposition into
subproblems without self referential difficulty is possible because of the exceptional nature of
geometric obstructions. For example, this is not possible using the global obstructions sets
Sn,m(s) in the strong flip Theorem 2.3. The dotted arrow · · · > here denotes the evidence for
the plausible converse given in Sections 8.1 and 8.2.

The decomposition (8) breaks the circle of self reference and suggests the following flip
strategy for showing existence of geometric obstructions (GOH). It is a partial instantiation of
the abstract flip strategy [GCTexpo, GCTflip] in this concrete setting:

Step I: Find “easy” algorithms needed in Determinant and Permanent FH (2) to get an “easy”
criterion for verifying an obstruction label as in Proposition 3.3.

Step II: Use this “easy” verification criteria to guess and construct a geometric obstruction label
λ explicitly, thereby solving the permanent vs. determinant problem.

4 How to prove FH?

In this section we state the main results and positivity hypotheses in this paper that provide an
approach to prove a relaxed form of Determinant and Permanent FH (2). This will lead to a
decomposition that is more refined than (8).
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4.1 Definitions

For this, we need several definitions.

Let P ⊆ Rn be a rational polytope specified by a system of linear inequalities

Ax ≤ b, (9)

where A is anm×n rational matrix, b a rationalm-vector, and x a variable n-vector. Its bitlength
〈P 〉 is defined to be n plus the maximum bitlength of any linear constraint in the system (9). Now
let {Pα,β,···} be a family of polytopes where α, β, · · · are the specification parameters on which
A = Aα,β,··· and b = bα,β,··· depend. We say that this family of polytopes is explicit–or simply
that the polytope P = Pα,β,··· is explicit–if (1) the bitlength 〈Pα,β,···〉 = O(poly(〈α〉, 〈β〉, · · · )),
and (2) there is a separation oracle [GLS] which, given the parameters α, β, · · · , and a rational
point x, tells whether x belongs to P = Pα,β,··· in poly(〈P 〉, 〈x〉) = poly(〈α〉, 〈β〉, · · · , 〈x〉) time,
and if x 6∈ P , also gives a hyperplane separating x from P in the same time. In particular,
this implies that the membership problem for the polytope Pα,β,··· belongs to the complexity
class P . Here the number of constraints m in (9) can be exponential in n. For example, the
family of perfect matching polytopes of graphs (with a graph as a parameter) is explicit [GLS],
though the number of defining constraints of such a polytope can be exponential if the graph is
nonbipartite.

The Ehrhart quasipolynomial fP (k) of P is defined to be the number of integer points in the
dilated polytope kP . It is known to be a quasipolynomial [St3]. Here a function f(k) is called
a quasi-polynomial if there exist l polynomials fj(k), 1 ≤ j ≤ l, such that f(k) = fj(k) if k = j
mod l. Here l is supposed to be the smallest such integer, and is called the period of f(k).

More generally, we say that a function f(k) is an asymptotic quasipolynomial, if there exist
l polynomials fj(k), 1 ≤ j ≤ l, for some l, such that f(k) = fj(k) for all nonnegative integral
k = j modulo l for k ≥ a(f), for some nonnegative integer a(f) depending on f . The minimum
a(f) for which this holds is called the deviation from quasipolynomiality. Thus f(k) is a (strict)
quasipolynomial when this deviation is zero.

A basic example of an asymptotic quasi-polynomial is the following. Let P (k) be a rational
polytope parametrized by nonnegative integral k: i.e., defined by a linear system of the form:

Ax ≤ kb+ c, (10)

where A is a rational m×n matrix, x a variable n-vector, and b and c rational m-vectors. We say
the polytope is homogeneous if c = 0, and nonhomogeneous otherwise. Let fP (k) be the number
of integer points in P (k). It is known to be an asymptotic quasi-polynomial (cf. Theorems 2.3
and 3.2 in [St] and Chapter 4 in [St3]). We call it the asymptotic Ehrhart quasi-polynomial of
the polytope P (k). When c = 0 (the homogeneous case) fP (k) is the Ehrhart quasi-polynomial
of P (1). Let

b(P ) = min{k ∈ N|dim(P (k)) = lim
k→∞

dim(P (k))} − 1. (11)

Let δ(P ) = max{a(fP ), b(P )}. We call it the defect of fP (k). It can be shown that in the worst
case it is exponential in the bitlength 〈P 〉 of P . In what follows, we denote the polytope P (k)
by just P . From the context it should be clear whether P is homogeneous or nonhomogeneous.
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4.2 Quasipolynomiality result

Now we state the basic quasipolynomiality result (Theorem 4.1) which forms a basis for the
positivity hypotheses (cf. Section 4.3) in this paper.

Let F (λ, n,m), G(λ,m), andG′(λ,m) be the multiplicities in Hypothesis 3.2. Let Fλ,n,m(k) =
F (kλ, n,m), Gλ,m(k) = G(kλ,m), and G′

λ,m(k) = G′(kλ,m) be the stretching functions asso-
ciated with them. Here kλ denotes the partition obtained by multiplying each part of λ by k.
Then:

Theorem 4.1 (1) The stretching function G′
λ,m(k) is a quasi-polynomial.

(2) The stretching functions Fλ,n,m(k) and Gλ,m(k) are asymptotic quasi-polynomials.

This follows (cf. Section 6) from the works and ideas of Hilbert, Boutot [Bt], Brion (cf.
[D]), Kempf, Flenner [F] and others. The crucial tool in the proof of (1)–the work of Boutot
[Bt]–is based on the resolution of singularities in characteristic zero [H]. As such, this proof
is highly nonconstructive. It gives no effective bound on the period of the quasipolynomials.
It only says the period is finite. The functions Fλ,n,m(k) and Gλ,m(k) are not expected to be
quasipolynomials since the varieties ∆V [f, n,m] and ∆V [g,m] are not normal [Ku]. But their
deviations from quasipolynomiality are expected to be small in view of (1); cf. Hypothesis 4.2
below for a precise conjecture.

4.3 Positivity hypotheses

Using Theorem 4.1 we can now state the basic positivity and saturation hypotheses PH1, SH
and PH2 that were mentioned in the introduction. Justification for why they should hold, and
why they may be in essence implications of the hardness and derandomization conjectures in
the statement of the Strong Flip Theorem 2.3, is given later in Section 8.3.

The following Positivity Hypothesis (PH1) says that the (asymptotic) quasipolynomials in
Theorem 4.1 can be realized as (asymptotic) Ehrhart quasipolynomials of explicit polytopes
(with small defect), just as in the case of Littlewood-Richardson coefficients [BZ, DM] (where
the defect as well as the deviation from quasipolynomiality are zero).

Hypothesis 4.2 (PH1)

Permanent PH1: For every λ, n,m ≥ n, there exists an explicit possibly nonhomogeneous
polytope P (k) = Pλ,n,m(k) (with specification parameters n and m in unary, and λ and k in
binary) of specification bitlength 〈P (k)〉 = poly(n,m, 〈λ〉, 〈k〉) such that

Fλ,n,m(k) = fP (k), (12)

the asymptotic Ehrhart quasipolynomial of P (k), and the defect δ(P ) of fP (k) is O(poly(m, 〈λ〉)).
If such a polytope exists it is guaranteed by the proof of Theorem 4.1 that its dimension is poly(n)
regardless of what m is.

Determinant PH1 (a): For every m, there exists an explicit (possibly nonhomogeneous) poly-
tope Q(k) = Qλ,m(k) (with specification parameters m in unary and λ and k in binary) of
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specification bitlength 〈Q〉 = poly(m, 〈λ〉, 〈k〉) such that

Gλ,m(k) = fQ(k), (13)

the asymptotic Ehrhart quasi-polynomial of Q, and the defect δ(Q) of fQ(k) is O(poly(m, 〈λ〉)).
If such a polytope exists it is guaranteed by the proof of Theorem 4.1 that its dimension is poly(n)
regardless of what m is as long as the length of the partition λ is poly(n) (as it will be in our
applications).

Determinant PH1 (b): A similar explicit polytope Q′
λ,m(k) exists for G′

λ,m(k).

PH1 implies #P -formulae for F (λ, n,m), G(λ,m) and G′(λ,m) as needed in FH (1) (Hy-
pothesis 3.2).

It has to be stressed here that Permanent and Determinant PH1 are expected to hold only
because of the exceptional nature of the permanent and the determinant (cf. Section 8.3). If
we replace the permanent and the determinant with general functions with no symmetries, they
would almost surely fail for the reasons given in Section 8.3.

To state the next positivity and saturation hypotheses we need a few definitions.

Definition 4.3 We say that a quasi-polynomial (cf. Section 4.1) f(k) is strictly positive, if all
coefficients of fj(k), for all j, are nonnegative. In general, we define the positivity index p(f)
of f to be the smallest nonnegative integer such that f(k + p(f)) is strictly positive.

Here and below it is assumed that the leading coefficient of each fj(k) is nonnegative, as it is in
the case of an Ehrhart quasipolynomial; otherwise the positivity index is not defined. Clearly
f(k) is strictly positive if and only if its positivity index is zero.

Definition 4.4 We say that f(k) is strictly saturated if for any j: fj(k) > 0 for every k ≥ 1,
k = j mod l, whenever the polynomial fj(k) is not identically zero. The saturation index s(f)
of f is defined to be the smallest nonnegative integer such that f(k + s(f)) is strictly saturated.

Thus f(k) is strictly saturated if and only if its saturation index is zero, and if f(k) is strictly
positive, it is strictly saturated. Clearly the saturation idex is bounded above by the positivity
index.

By the saturation theorem [KT1], the stretching function associated with the Littlewood-
Richardson coefficient (which is known to be a polynomial [Rs]) is strictly saturated. It is
conjectured in [KTT] on the basis of considerable evidence that it is strictly positive as well.

Next we extend the definitions of saturation and positivity indices to asymptotic Ehrhart
quasipolynomials.

Definition 4.5 Let f = fP (k) be the asymptotic Ehrhart quasi-polynomial of a possibly nonho-
mogenoeus polytope P (k), δ(P ) its defect and l its period. Then the positivity index p(f) is the
smallest nonnegative integer ≥ δ(P ) such that f(k + p(f)) is strictly positive. The saturation
index s(f) is the smallest nonnegative integer ≥ δ(P ) such that f(k + s(f)) is strictly satu-
rated. Equivalently, s(f) is the smallest nonnegative integer ≥ δ(P ) such that, for any k ≥ s(f),
fj(k) > 0, j = k mod l, if the polynomial fj(k) is not identically zero.
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By PH1 (Hypothesis 4.2), Fλ,n,m(k) and Gλ,m(k) are asymptotic Ehrhart quasi-polynomials,
whose defects and saturation (positivity) indices are thus well defined2.

With this in mind we can now state for F (λ, n,m), G(λ,m) and G′(λ,m) a conjectural gener-
alized and relaxed form of the saturation property [KT1] for Littlewood-Richardson coefficients.

Hypothesis 4.6 (SH)

[Permanent SH]: The saturation index of Fλ,n,m(k) is poly(m, 〈λ〉).

[Determinant SH] (1): The case of Gλ,m(k) is similar.

[Determinant SH] (2): The case of G′
λ,m(k) is also similar.

This follows from:

Hypothesis 4.7 (PH2)

[Permanent PH2]: The positivity index of Fλ,n,m(k) is poly(m, 〈λ〉).

[Determinant PH2] (1): The case of Gλ,m(k) is similar.

[Determinant PH2] (2): The case of G′
λ,m(k) is also similar.

4.4 A relaxed form of FH

The following result proves a relaxed form of Determinant and Permanent FH (2) (cf. Hypoth-
esis 3.2) assuming PH1.

Theorem 4.8 Assuming Permanent PH1 (Hypotheses 4.2), and given λ, n,m, and k′ greater
than the saturation index of Fλ,n,m(k) (polynomially bounded in Permanent SH (Hypothesis 4.6)),
whether Fλ,n,m(k′) is nonzero can be decided in poly(〈λ〉, n,m, 〈k′〉) time. Similar results hold
for Gλ,m(k) and G′

λ,m(k) assuming Determinant PH1 and SH.

This is proved in Section 7.3. SH is needed so that this result holds for small k′.

To prove Determinant and Permanent FH (2) in full generality, one would presumably need
some strengthening of PH1 and SH.

4.5 Decomposition

The following result leads to the decomposition (1) of the permanent vs. determinant problem
in terms of positivity; cf. Section 4.6.

Theorem 4.9 (Decomposition) There exists an explicit family O = On,m of obstruction
labels for the permanent vs. determinant problem in characteristic zero (cf. Hypothesis 2.5), for
m = 2loga n, a > 0 fixed, n→∞, assuming,

1. Permanent PH1 and Determinant PH1 (a) (cf. Hypothesis 4.2), and

2Conjecturally, the choice of the polytopes in PH1 does not matter in what follows.
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2. OH (Obstruction Hypothesis):

For all n → ∞, m = 2loga n, a > 0 fixed, there exist λ and k greater than the saturation
index bound in Permanent SH (Hypothesis 4.6) such that

(a) The affine span of the polytope P = Pλ,n,m(k) (in Permanent PH1 (a)) contains an
integer point. Here by an affine span we mean the smallest dimensional affine space
containing the polytope.

(b) The affine span of the polytope Q = Qλ,m(k) (in Determinant PH1 (a)) does not
contain an integer point.

The set On,m here consists of obstruction specifications of the form (λ, k), where λ and k
satisfy OH for given n and m. In this case Vkλ(G) is an incidence-based geometric obstruction
for given n and m, and (λ, k) is a specification of this obstruction. The family O = ∪n,mOn,m

is explicit in the sense that whether a given obstruction specification (λ, k) satisfies OH can be
verified in poly(n,m, 〈λ〉, 〈k〉) time. This is the analogue of F3 in Hypothesis 3.1. The analogue
of F0 (shortness) also holds if there exist λ and k of poly(m) bitlength satisfying OH. The
other flip properties F1,F2, and F4 in Hypothesis 3.1 are not required in this weaker form of
explicitness.

This is proved in Section 7.3. Though SH does not appear explicitly in the statement of
Theorem 4.9, it is critical for OH to hold; cf. Section 8.4. OH does not test if the polytope
P or Q contains an integer point. This test is hard since the integer programming problem
is NP -complete. We need k to be larger than the saturation index bound in Permanent SH
precisely to avoid this test.

We said in Section 3 that in GCT we would end up constructing obstructions more or
less explicitly, whether we care for explicitness or not. This is because proving OH would
not be feasible unless we know the polytopes P and Q in PH1 explicitly. And once we know
the polytopes P and Q explicitly, the existence of an explicit family of obstructions follows
(Theorem 4.9) without much additional difficulty, as a bonus, whether we care for explicitness
or not.

4.6 Breaking the circle

Theorem 4.9 decomposes the original hardness hypothesis (Conjecture 2.2) as PH1 plus SH plus
OH. We denote this pictorially as:

Strong perm. vs. det. conjecture←− PH1 + SH +OH. (14)

Here the self referential difficulty is absent in PH1 and SH for the same reasons that it
is absent in Determinant and Permanent FH (cf. Section 3.2). Furthermore, once PH1 and
SH are proved, by Theorem 4.9 OH is easy to verify in polynomial time for given obstruction
specification (λ, k), and hence, the self referential difficulty is absent in OH, just as in GOH (cf.
Section 3.2). This decomposition breaking the circle of self reference is more refined than the
earlier decomposition (8). The subproblems on the right hand side here are simpler than the
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ones in (8) because PH1, SH, and OH here are polyhedral conditions in contrast to the earlier
Determinant and Permanent FH or GOH. The ultimate goal is to continue this refinement until
we get a decomposition into subproblems simple enough to be solved.

Theorem 4.9 addresses the solid left arrow in the decomposition (1). The dotted right arrow
will be addressed in Sections 8.2 and 8.4.

5 Positivity in algebraic geometry and representation theory

In this section we explain in what sense the positivity hypotheses in this paper encompass and
go much further than the classical plethysm and related problems in algebraic geometry and
representation theory.

5.1 Plethysm problem

The multiplicities G′(λ,m) defined in Section 3 are essentially the Kronecker coefficients [FH] in
representation theory. These are defined as follows. Let H = GLn(C) ×GLn(C) be embedded
naturally in G = GL(Cn ⊗ Cn). Given partitions λ, µ and π, the Kronecker coefficient kπ

λ,µ

is the multiplicity of the irreducible H-module Vλ(GLn(C)) ⊗ Vµ(GLn(C)) in the G-module
Vπ(G), considered as an H-module via the natural embedding of H in G. Since, by (3), the
stabilizer Ĝdet ⊆ Ĝ = SLl(C) of det(Y ) ∈ V is (modulo the discrete part) SL(Cm) × SL(Cm)
embedded naturally in SL(Cm ⊗ Cm), it can be shown that G′(λ,m) is essentially kλ

δ,δ, where
δ = (m, . . . ,m)–the partition with m parts each of size m.

The Kronecker coefficients, in turn, are known to be special cases of the fundamental
plethysm constants in representation theory [FH]. Given partitions λ, µ and π, the plethysm
constant aπ

λ,µ is the multiplicity of the irreducible representation (Weyl module) Vπ(H) of
H = GLn(C) in the irreducible representation Vλ(G) of G = GL(Vµ), where Vµ = Vµ(H) is
an irreducible representation of H. Here Vλ(G) is considered as an H-module via the represen-
tation map

ρ : H → G = GL(Vµ). (15)

The coefficients G′(λ,m) are special cases of the plethysm constants, whereas the coefficients
F (λ, n,m) and G(λ,m) are akin to the plethysm constants, but much harder. Thus the plethysm
constants are basic prototypes of the multiplicities G′(λ,m), F (λ, n,m) and G(λ,m).

Let us define the bitlength of the input specification of aπ
λ,µ as

〈λ, µ, π〉 = 〈λ〉+ 〈µ〉+ 〈π〉+ min{dim(Vµ), |λ|}.

It follows from Klimyk’s formula (cf. page 428 in [FH]) that aπ
λ,µ can be expressed as a difference

between two #P -formulae:

aπ
λ,µ =

∑

a

χ1(a)−
∑

a

χ2(a),

where a ranges over bitstrings of poly(〈λ, µ, π〉) bitlength, and χ1 and χ2 are poly(〈λ, µ, π〉)-time
computable 0-1 functions. There is a similar formula for the Kronecker coefficient kπ

λ,µ defining
the bitlength of its specification to be 〈λ〉+ 〈µ〉+ 〈π〉.
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The following is the analogue of Determinant and Permanent FH (Hypothesis 3.2) for the
plethysm constants.

Hypothesis 5.1 (Plethysm FH) (1) There is a #P -formula for the plethysm constants aπ
λ,µ

(and hence for the Kronecker coefficients).

(2) The problem of deciding nonvanishing of plethysm constants (and hence, in particular, Kro-
necker coefficients) belongs to P . This means, given partitions λ, µ and π, whether aπ

λ,µ is
nonzero can be decided in poly(〈λ, µ, π〉) time.

Let ãπ
λ,µ(k) = akπ

kλ,µ be the stretching function associated with the plethysm constant aπ
λ,µ.

Note that µ is not stretched here. It was asked in [Ki] if it is a polynomial. It can be shown
that this is not so, even in the special case of Kronecker coefficients. But:

Theorem 5.2 The stretching function ãπ
λ,µ(k) is a quasi-polynomial.

This generalizes Theorem 4.1 (1), since G′(λ,m) is essentially a special case of the Kronecker
coefficient.

The following is the analogue of Determinant and Permanent PH1 (Hypothesis 4.2) for the
plethysm constants. It implies a #P formula for aπ

λ,µ as per Plethysm FH (1) (Hypothesis 5.1).

Hypothesis 5.3 (Plethysm PH1) There exists an explicit possibly nonhomogeneous polytope
P (k) = P π

λ,µ(k) with specification bitlength 〈P 〉 = poly(〈λ, µ, π〉, 〈k〉) such that

ãπ
λ,µ(k) = fP (k), (16)

the asymptotic Ehrhart quasi-polynomial of P (with deviation from quasipolynomiality zero),
and P has a specification of the form

Ax ≤ bk + c,

where A depends only on µ and n (the rank of the group H = GLn(C) in the definition of the
plethysm constant), but not on λ and π, and b and c are piecewise homogeneous linear functions
of λ and π.

In particular,

aπ
λ,µ = #(P (1)), (17)

where #(P (1)) denotes the number of integer points in P (1).

It is known [Ki] that fP (k) need not satisfy the Ehrhart reciprocity [St3] that the Ehrhart
quasipolynomials of homogeneous polytopes must satisfy. This is so even for Kronecker coeffi-
cients. Hence P (k) need not be homogeneous in general.

PH1 is a complexity theoretic version of the fundamental plethysm problem in representation
theory [FH] that has been intensively studied in the last century and is known to be formidable.
And now, as we can see, it lies at the heart of this approach towards the P vs. NP problem. In
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the classical plethysm problem [FH] the complexity theoretic issue of explicitness in Plethysm
PH1 was not addressed. This is crucial here.

The quasi-polynomial ãπ
λ,µ(k) need not be strictly saturated or positive, contrary to what was

conjectured in the earlier version [GCT6] of this paper, even for the special case of Kronecker
coefficients [BOR]. But its positivity and saturation indices are conjecturally small (as was also
verified in [BOR] for the Kronecker coefficient kπ

λ,µ when the heights of λ and µ are at most two,
and that of π at most three):

Hypothesis 5.4 (Plethysm SH) The saturation index (Definition 4.4) of ãπ
λ,µ(k) is poly(〈λ, µ, π〉).

This is an analogue of Permanent and Determinant SH for plethysm constants. It follows from
the following stronger:

Hypothesis 5.5 (Plethysm PH2) The positivity index (Definition 4.3) of ãπ
λ,µ(k) is poly(〈λ, µ, π〉).

The following result says that a relaxed form of Plethysm FH (2) (Hypothesis 5.1) holds
assuming Plethysm PH1 and Plethysm SH.

Theorem 5.6 Assuming Plethysm PH1, and given λ, µ, π, and k′ greater than the saturation
index of ãπ

λ,µ(k) (polynomially bounded as in Plethysm SH), whether ak′π
k′λ,µ is nonzero can be

decided in poly(〈λ, µ, π〉, 〈k′〉) time.

This is proved in Section 7.3.

5.2 Subgroup restriction problem

The plethysm constants can be generalized further as follows.

Let H and G be connected reductive groups, and ρ : H → G a homomorphism. Here H will
generally be a subgroup of G, and ρ its embedding. Let Vπ(H) be an irreducible representation
of H, and Vλ(G) an irreducible representation of G. Here π and λ denote dominant weights of
H and G. Let mπ

λ be the multiplicity of Vπ(H) in Vλ(G), considered as an H-module via ρ. The
plethysm constant is its special case obtained by letting H = GLn(C), G = GL(Vµ(H)), and ρ
the representation map (15).

We associate with mπ
λ the stretching function

m̃π
λ(n) = mnπ

nλ. (18)

The following is a generalization of Theorem 5.2.

Theorem 5.7 The stretching function m̃π
λ(n) is a quasi-polynomial function of n.

This is proved in Section 6.

One can also formulate analogues of PH1, SH, PH2, and FH for mπ
λ when H and ρ : H → G

are explicitly given–we omit the details.
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5.3 Multiplicities associated with G-varieties

The multiplicities mπ
λ can be generalized further as follows. The resulting generalization include

all the multiplicities in this paper: aλ
µ,π,m

π
λ, F (λ, n,m), G(λ,m), and G′(λ,m).

Let H be a connected reductive group, X a projective H-variety i.e., a variety with H-action.
Let ρ denote this H-action. Let R = ⊕dRd be the homogeneous coordinate ring of X. Let Vπ(H)
be an irreducible representation of H, where π denotes a dominant weight of H. Let sπ

d be the
multiplicity of Vπ(H) in Rd, considered as an H-module via the action ρ.

We associate with sπ
d the stretching function:

s̃π
d (n) = snπ

nd . (19)

Then:

Theorem 5.8 (1) The stretching function s̃π
d (n) is an asymptotic quasi-polynomial.

(2) It is a quasipolynomial if spec(R) is normal with rational singularities.

This is proved in Section 6.

Lemma 5.9 (a) Theorem 5.8 (2) implies Theorem 5.7 (and hence also Theorem 5.2).

(b) Theorem 5.8 (1) implies Theorem 4.1 (2).

Proof: (a) Observe that the multiplicity mπ
λ in Section 5.2 is a special case sd

π. To see this, let
H, ρ and G be as in Section 5.2, and let X be the closed G-orbit of the point vλ corresponding
to the highest weight vector of Vλ(G) in the projective space P (Vλ(G)). Then

X = Gvλ
∼= G/Pλ, (20)

where P = Pλ = Gvλ
is the parabolic stabilizer of vλ. We have a natural action of H on X via

ρ. Let R be the homogeneous coordinate ring of X. By the Borel-Weil theorem [FH], the degree
one component R1 of R is Vλ(G). Hence, sπ

1 in this special case is precisely mπ
λ in Section 5.2.

By [MR, R, S] (e.g. see Theorem 3.1 in [S]), spec(R) is normal and its singularities are rational.
Now (a) follows.

(b) Observe that F (λ, n,m) and G(λ,m) are special cases of sd
π, d = |λ|/m, by letting X be

∆V [f, n,m] or ∆[g,m] and H be G = GL(Y) = GLm2(C) as in Section 2. Now (b) follows.
Q.E.D.

One can also formulate analogues of PH1, SH, PH2, FH when X is the orbit closure of a
point that is characterized by an explicitly given stabilizer–we omit the details.

6 Quasipolynomiality

In this section we prove the basic quasi-polynomiality Theorems 4.1, 5.2, 5.7 and 5.8. They all
follow from the following general result.
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Let R = ⊕kRd be a graded C-algebra with an action of a reductive group H. Let H0 be the
connected component of H containing the identity. Let HD = H/H0 be its discrete component.
Given a dominant weight π of H0, we consider the module Vπ = Vπ(H0), an H-module with
trivial action of HD. Let sπ

d denote the multiplicity of the H-module Vπ in Rd. Let s̃π
d (n) be

the multiplicity of the H-module Vnπ in Rnd. This is a stretching function associated with the
multiplicity sπ

d . Let Sπ
d (t) =

∑

n≥0 s̃
π
d (n)tn be the generating function of s̃π

d (n).

Theorem 6.1 (a) (Rationality) The generating function Sπ
d (t) is rational, and more strongly,

s̃π
d (n) is an asymptotic quasipolynomial (cf. Section 4.2).

Now assume that spec(R) is normal and that its singularities are rational. Then:

(b) (Quasi-polynomiality) The stretching function s̃π
d (n) is a quasi-polynomial.

(c) (Positivity) The rational function Sπ
d (t) can be expressed in a positive form:

Sπ
d (t) =

h0 + h1t+ · · ·+ hkt
k

∏

j(1− t
a(j))k(j)

, (21)

where a(j)’s and k(j)’s are positive integers,
∑

j k(j) = k + 1, where k is the degree of the
quasi-polynomial s̃π

d (n), h0 = 1, and hi’s are nonnegative integers.

Theorem 5.8 follows from this result by letting R be the homogeneous coordinate ring of X
as in Section 5.3. By Lemma 5.9, Theorems 5.7, 5.2 and 4.1 (2) follow as well. Theorem 4.1
(1) follows similarly, since G′(λ,m) is essentially a special case of the plethysm (Kronecker)
constant.

6.1 Proof of Theorem 6.1

The proof is an extension of M. Brion’s proof (cf. page 520 in [D])) of quasi-polynomiality of
the stretching function associated with a Littlewood-Richardson coefficient of any semisimple
Lie algebra.

(b): Assume that spec(R) is normal and that its singularities are rational.

Let Cd be the cyclic group generated by the primitive root ζ of unity of order d. It has a
natural action on R: x ∈ Cd maps z ∈ Rk to xkz. Let B = RCd =

∑

n≥0Rnd ⊆ R be the subring
of Cd-invariants. Since spec(R) is normal and has rational singularities, by Boutot [Bt], B is
also a normal C-algebra and spec(B) has rational singularities.

Assume that H0 is semisimple; extension to the reductive case being easy. Let π∗ be the
dominant weight of H0 such that V ∗

π = Vπ∗ ; here V ∗
π denotes the dual of Vπ. By the Borel-Weil

theorem [FH],
Cπ∗ := ⊕n≥0V

∗
nπ = ⊕n≥0Vnπ∗ ,

is the homogeneous coordinate ring of the H0-orbit of the point vπ∗ ∈ P (Vπ∗) corresponding to
the highest weight vector of Vπ∗ . This H0-orbit is isomorphic to H0/Pπ∗ , where Pπ∗ ⊆ H0 is
the parabolic stabilizer of vπ∗ . Hence Cπ∗ is normal and spec(Cπ∗) has rational singularities;
cf. [MR, R, S] (e.g. see Theorem 3.1 in [S]). It follows that B ⊗ Cπ∗ is also normal, and
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spec(B ⊗ Cπ∗) has rational singularities. Consider the action of C∗ on B ⊗ Cπ∗ given by:

x(b⊗ c) = (x · b)⊗ (x−1 · c),

where x ∈ C∗ maps b ∈ Bn to xnb, the action on Cπ∗ being similar. Consider the invariant ring

S = (B ⊗ Cπ∗)C∗

= ⊕nSn = ⊗n≥0Rnd ⊗ V
∗
nπ. (22)

By Boutot [Bt], it is a normal, and spec(S) has rational singularities.

Since Vnπ is an H-module, the algebra S has an action of H. Let

T = SH = ⊕n≥0Tn (23)

be its subring ofH-invariants. By Boutot [Bt], it is normal, and spec(T ) has rational singularities–
this is the crux of the proof. By Schur’s lemma, the multiplicity of the trivial H-representation
in Sn = Rnd ⊗ V

∗
nπ is precisely the multiplicity s̃π

d (n) of the H-module Vnπ in Rnd. Hence, the
Hilbert function of T , i.e., dim(Tn), is precisely s̃π

d (n), and the Hilbert series
∑

n≥0 dim(Tn)tn is
Sπ

d (t). Quasipolynomiality of s̃π
d (n) now follows by applying the following lemma:

Lemma 6.2 (cf. Lemma 5.4 in [D] and also [F]) If T = ⊕∞
n=0Tn is a graded C-algebra, such

that spec(T ) is normal and has rational singularites, then dim(Tn), the Hilbert function of T , is
a quasi-polynomial function of n.

(c): Since spec(T ) has rational singularities, T is Cohen-Macauley. Let t1, . . . , tu be its homo-
geneous sequence of parameters (h.s.o.p.), where u = k + 1 is the Krull dimension of T . By the
theory of Cohen-Macauley rings [St], it follows that its Hilbert series Sπ

d (t) is of the form

h0 + h1t+ · · ·+ hkt
k

∏k+1
i=1 (1− tdi)

, (24)

where (1) h0 = 1, (2) di is the degree of ti, and (3) hi’s are nonnegative integers. This proves
(c).

(a): A careful examination of the proof of (b) shows that T is a finitely generated ring for
an arbitrary graded C-algebra R with the action of a reductive H–this follows from Hilbert’s
classical result on finite generation of the algebra of invariants of a reductive-group action.
(Boutot’s result is not required here.) Now rationality of Sπ

d (t), and more strongly, asymptotic
quasi-polynomiality of s̃π

d (n) as n → ∞, follows from Hilbert’s another classical result since
s̃π
d (n) is the Hilbert function of the finitely generated ring T .

This proves Theorem 6.1. Q.E.D.

7 Saturated integer programming

Integer programming problem is NP -complete. In this section we give (cf. Section 7.1) a
polynomial time algorithm for its special case, called saturated integer programming, and use
it (cf. Section 7.3) to prove Theorem 4.9, 4.8 and 5.6. We also prove (Section 7.2) a worst
case upper bound for the saturation index of an Ehrhart quasipolynomial of a polytope. These
results together say that the saturation index of the Ehrhart quasipolynomial of a polytope is a
good measure of the computational complexity of the associated integer programming problem.
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7.1 A polynomial time algorithm

In the saturated integer programming problem we are given an explicit parametrized polytope
P (k) (possibly nonhomogeneous) specified as a separation oracle (cf. Section 4.2), a nonnegative
integer sie(P ), called a saturation index estimate, guaranteed to be higher than or equal to the
the saturation index s(fP ) (Definition 4.5) of the asymptotic Ehrhart quasipolynomial fP (k) of
P (k), and an integer k′ > sie(P ). The problem is to decide if P (k′) contains an integer point.

Theorem 7.1 The saturated integer programming problem above can be solved in poly(〈P (k′)〉, 〈k′〉)
time, where 〈P (k′)〉 denotes the bitlength of the specification of P (k′) in the form of a separation
oracle (cf. Section 4.2), 〈k′〉 the bitlength of k′.

Proof: Let fP (k) be the asymptotic Ehrhart quasi-polynomial of P (k). Let span(P (k)) denote
the affine span of P (k), i.e., the smallest dimensional affine space containing P (k). It follows from
the definitions of the saturation index s(fP ) (Definition 4.5) and the defect δ(P ) that dim(P (k))
remains the same for all k > s(fP ) and the equations of span(P (k)) are stable for k > s(fP );
i.e., there exist an integral matrix C and integral vectors d and e such that span(P (k)), for any
k > s(fP ), is defined by

Cx = dk + e. (25)

Lemma 7.2 Suppose k > s(fP ). Then P (k) contains an integer point iff span(P (k)) contains
an integer point.

Before proving the lemma, let us prove Theorem 7.1 using it.

First we decide if P (k′) is nonempty in poly(〈P (k′)〉, 〈k′〉) time using the GLS (Grötschel,
Lovász and Schrijver) algorithm for linear programming [GLS] over polytopes given in the form
of a separation oracle (cf. Theorem 6.4.1 in [GLS]). If P (k′) is empty, then P (k′) does not
contain an integer point, and we can stop. So assume that it is nonempty.

A simple extension of the GLS algorithm also yields specifications of C, d and e in (25) in
poly(〈P (k′)〉, 〈k′〉) time (cf. Theorems 6.4.9, and 6.5.5 in [GLS]). This final specification of C,
d and e is exact, even though the first part of the GLS algorithm in [GLS] uses the ellipsoid
method. Indeed, the use of simultaneous diophantine approximation based on basis reduction
in lattices in [GLS] is precisely to ensure this exactness in the final answer. This is crucial for
the next step of our algorithm.

Since k′ > sie(P ) ≥ s(fP ), by Lemma 7.2, it suffices to check if span(P (k′)) contains an
integer point; i.e., if the linear diophantine system (25) has an integral solution x for k = k′.
This can be done in poly(〈P (k′)〉, 〈k′〉) time using a polynomial time algorithm for solving linear
diophantine systems (cf. Corollary 5.4.9 in [GLS]). This proves Theorem 7.1.

Proof of Lemma 7.2: Clearly, if P (k) contains an integer point, then span(P (k)) contains an
integer point. So assume that k > s(fP ) and span(P (k)) contains an integer point. We want to
show that P (k) contains an integer point.

Consider the system (25) defining span(P (k)), k > s(fP ). Let C̄ be the Smith normal form
of C; i.e., C̄ = ACB for some unimodular matrices A and B, where the leftmost principal
submatrix of C̄ is a diagonal, integral matrix, and all other columns are zero; the matrices C̄, A
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and B can be computed in polynomial time using the algorithm in [KB] for computing the Smith
normal form. After a unimodular change of coordinates, by letting z = B−1x, span(P (k)) is
specified by the linear system C̄z = d̄k + ē, where d̄ = Ad and ē = Ae. The equations in this
system are of the form:

c̄izi = d̄ik + ēi, (26)

i ≤ codim(P (k)), for some integers c̄i, d̄i and ēi. By removing common factors if necessary, we
can assume that c̄i, d̄i and ēi are relatively prime for each i.

By (26), span(P (k)) contains an integer point for given k > s(fP ) iff

d̄ik + ēi = 0, mod c̄i (27)

for all i. If c̄i and d̄i have a common prime factor pi > 1 for some i, then, since ēi is not divisible
by pi by our assumption, (27) cannot be satisfied for any integral k, and hence span(P (k)) cannot
contain an integer point, contrary to our assumption. So assume without loss of generality that
c̄i and d̄i are also relatively prime for all i. Then, for each i, there exist integers ai and bi such

aid̄i + bic̄i = 1, (28)

and (27) implies

aid̄ik + aiēi = (1− bic̄i)k + aiēi = 0 mod c̄i. (29)

Thus if span(P (k)) contains an integer point for k > s(fP ) then

k = −aiēi mod c̄i, (30)

for all i.

Let fj,P (k), 1 ≤ j ≤ l, be the polynomials such that fP (k) = fj,P (k) if k = j mod l and
k ≥ a(fP ), the deviation from quasipolynomiality of fP (k).

Claim 7.3 The polynomial fj,P (k) is not identically zero if j = −aiēi, mod c̄i, for all i.

Before proving the claim, let us verify that Lemma 7.2 follows from it. Suppose span(P (k))
contains an integer point for some k > s(fP ). We want to show that P (k) contains an integer
point.

Since span(P (k)) contains an integer point, by (30), k = −aiēi, mod c̄i, for all i. This means,
j = −aiēi, mod c̄i, for all i, for j = k, mod l, since, as we shall see below, l is divisible by each
c̄i. By the claim, the polynomial fj,P is not identically zero for this j. Since k > s(fP ), it follows
from Definition 4.5 of the saturation index that fP (k) = fj,P (k) is not zero for this j and k.
That is, P (k) contains an integer point. This proves Lemma 7.2.

Proof of Claim: Fix any r such that

r = −aiēi, modc̄i (31)
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for all i. If such an r does not exist, then no j as in the claim can exist, and the claim is
vacuously true. Let Q(s) = P (s+ r). Then, by (26), (28) and (31), the equations of span(Q(s))
are

c̄iz
′
i = d̄is, (32)

for all i, where z′i = zi + ti, for some fixed integer ti. Since c̄i and d̄i are relatively prime for all
i, span(Q(s)) contains an integer point iff

s = 0 mod c̄i, (33)

for all i; i.e., if s is divisible by the l.c.m. c̃ of c̄i’s.

Let fQ(s) be the asymptotic Ehrhart quasipolynomial of Q(s). It is just a shifted form of
fP (k): ft,Q(s) = ft+r,P (s+r), for 1 ≤ t ≤ l–here t+r is taken modulo l. So to show that fj,P (k)
is not identically zero, when j = −aiēi, mod c̄i, for all i, it suffices to show, in view of (31), that
ft,Q(s) is not identically zero when t = 0, mod c̄i, for all i, i.e., when t is divisible by the l.c.m.
c̃ of c̄i’s.

Now consider the dilated polytope Q̄(s) = Q(c̃s). Let fQ̄(s) be its asymptotic Ehrhart
quasipolynomial. By (33), Q(s) contains no integer point unless c̃ divides s. Hence c̃ divides its
period l. By eq.(32), the equations defining Q̄(s) are:

z′i = d̄i(c̃/c̄i)s. (34)

Thus ft,Q(s) = ft/c̃,Q̄(s/c̃), if c̃ divides t, and it is identically zero otherwise. Hence, to show
that ft,Q(s) is not identically zero when t is divisible by c̃, it suffices to show that fj,Q̄(s) is not
identically zero for any 1 ≤ j ≤ l(Q̄), where l(Q̄) = l/c̃ is the period of fQ̄(s).

For a fixed j, this is equivalent to showing that Q̄(1) contains an integer point z′ with
z′i = xi/b, for some integers xi’s and b such that b = j modulo l(Q̄). Let us call such a point
j-admissible. Because of the form that the equations (34) defining span(Q̄(s)) take at s = 1, we
can assume, without loss of generality, that Q̄(1) is full dimensional. This means the system (34)
is empty. Then this follows from denseness of the set of j-admissible points–specifically, that
any point in the interior of Q̄(1) can be approximated infinitesimally closely by a j-admissible
point. This proves the claim. Q.E.D.

7.2 A general estimate for the saturation index

Now we give a general estimate for the saturation index of the Ehrhart quasipolynomial fP (k)
(cf. Section 4.1) of any polytope P with a specification of the form

Ax ≤ b, (35)

where A is an m × n matrix, m possibly exponential in n. Let ‖P‖ = n + ψ, where ψ is the
maximum bitlength of any entry of A. Trivially, ‖P‖ ≤ 〈P 〉. We do not assume that we know
the specification (35) of P explicitly. We only assume that it exists, and that we are told ‖P‖.
Then:

Theorem 7.4 The saturation index of fP (k) is O(2poly(‖P‖)).
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Conjecturally, this also holds for the positivity index and also for the asymptotic Ehrhart
quasi-polynomial of a nonhomogeneous polytope (Section 4.2).

In the worst case the saturation index of the Ehrhart quasipolynomial of a polytope is thus
exponential and integer programming over a polytope also takes exponential time–nothing better
is expected since this problem is NP -complete. On the other hand when the saturation index is
small a relaxed form of integer programming can be solved in polynomial time (Theorem 7.1). In
this sense the saturation index of a polytope is a good measure of the computational complexity
of the associated integer programming problem.

Proof: Given a quasipolynomial f(k), let F (t) be its generating function

F (t) =
∑

k≥0

f(k)tk.

In the proof below we will use a basic fact [St3] that F (t) is a rational function, whose numerator
has smaller degree than the denominator, and the roots of the denominator are roots of unity.

Fix a polytope P . There exists a triangulation of P into simplices such that every vertex of
any simplex is also a vertex of P . Then

fP (k) =
∑

∆

f∆(k),

where ∆ ranges over all open simplices in this triangulation; a zero-dimensional open simplex is
a vertex. The saturation index of fP (k) is clearly bounded by the maximum of the saturation
indices of f∆(k).

Hence, we can assume, without loss of generality, that P is an open simplex. Let v0, . . . , vn

be its vertices. Then, by Ehrhart’s result (cf. Theorem 1.3 in [St2]),

FP (t) =

∑

i hit
i

∏n
j=0(1− t

aj )
, (36)

where h0 = 1, hi’s are nonnegative, and aj is the least positive integer such that ajvj is integral.
By Cramer’s rule, the bit length of each aj is poly(‖P‖). Without loss of generality, we can also
assume that aj ’s are relatively prime. Otherwise, the estimate on the saturation index below
has to be multiplied by the g.c.d. of aj ’s. Then the result follows by applying the following

lemma to FP (t), since 〈aj〉 = O(poly(‖P‖)); i.e., aj = O(2O(poly(‖P‖))). Q.E.D.

Lemma 7.5 Let f(k) be a quasipolynomial whose generating function F (t) has a positive form

F (t) =

∑

i hit
i

∏n
j=0(1− t

aj )
, (37)

where h0 = 1, hi’s are nonnegative, and aj’s are positive and relatively prime. Let a = max{aj}.
Then the saturation index s(f) of f(k) is O(poly(a, n)).

Proof: Let g(k) be the quasi-polynomial whose generating functionG(t) =
∑

g(k)tk is 1/
∏n

j=0(1− t
aj ).

It is known that this is the Ehrhart quasipolynomial of the polytope N(a0, . . . , an) defined by
the linear system

∑

ajxj = 1, xj > 0.
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The saturation index s(g) of g(k) is bounded by the Frobenius number associated with the set
of integers {aj}–this is the largest positive integer m such that the diophantine equation

∑

j

ajxj = m

has no positive integral solution (x0, . . . , xn). It is known (e.g. [BDR]) that the Frobenius
number is bounded by

∑

j

aj +
√

a0a1a2(a0 + a1 + a2) = O(poly(a)),

assuming that a0 ≤ a1 . . .. Hence, s(g) = O(poly(a)).

Since f(k) is a quasi-polynomial, the degree of the numerator of F (t) is less than the degree
of the denominator [St3]. Thus the maximum value of i that occurs in (37) is an.

Let gi(k), i ≤ an, be the quasi-polynomial whose generating function is ti/
∏n

j=0(1− t
aj ).

Then
s(gi) ≤ i+ s(g) = O(poly(a, n)).

Since, hi’s in (37) are nonnegative, s(f) = max s(gi). The result follows. Q.E.D.

7.3 Applications of saturated integer programming

Proof of Theorem 4.8

We shall only prove the result for Fλ,n,m(k), the other cases being similar.

By Permanent PH1, there exists an explicit polytope P (k) = Pλ,n,m(k) such that Fλ,n,m(k) =
fP (k), and the bitlength 〈P (k)〉 for given k is poly(n,m, 〈λ〉, 〈k〉). Fix k′ greater than the
saturation index of Fλ,n,m(k). By Lemma 7.2, P (k′) contains an integer point iff span(P (k′))
contains an integer point. The latter can be solved in poly(〈P (k′)〉, 〈k′〉) = poly(〈λ〉, n,m, 〈k′〉)
time using a polynomial time algorithm for solving linear diophantine systems (cf. Corollary
5.4.9 in [GLS]). Q.E.D.

Proof of Theorem 5.6

This is similar to that of Theorem 4.8.

Proof of Theorem 4.9

Assume that Permanent PH1 and Determinant PH1 (a) hold. Let k and λ be such that OH
holds for given n and m.

Claim: Vkλ(G) is an incidence-based geometric obstruction for given n and m.

Proof of the claim: By Determinant PH1 (a), Gλ,m(k) = fQ(k). Hence G(kλ,m) is the num-
ber of integer points in Qλ,m(k). By OH (b), the affine span of Qλ,m(k) does not contain an
integer point. That is, G(kλ,m) = 0. By OH (a), span(Pλ,n,m(k)) contains an integer point.
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Furthermore, by OH, k is larger than the saturation index of the asymptotic Ehrhart quasipoly-
nomial Fλ,n,m(k) of Pλ,n,m(k) (polynomially bounded in Permanent SH). Hence, by Lemma 7.2,
Pλ,n,m(k) contains an integer point. By Permanent PH1, F (kλ, n,m) is the number of integer
points in the polytope Pλ,n,m(k). Hence F (kλ, n,m) > 0. Thus Vkλ(G) is an incidence-based
geometric obstruction by Definition 2.4. This proves the claim.

To prove explicitness of the obstruction family O, we have to show that, given k, λ, n and
m, whether k and λ satisfy OH for this n and m can be checked in poly(〈k〉, 〈λ〉, n,m) time.
By Permanent PH1, the polytope P (k) = Pλ,n,m(k) is explicit and its bitlength for given k
is poly(n,m, 〈λ〉, 〈k〉). Its affine span span(P (k)) can be computed in polynomial time by the
GLS algorithm [GLS] for linear programming, and whether span(P (k)) contains an integer
point can be decided in polynomial time by using the polynomial time algorithm for solving
linear diophantine equations (cf. Corollary 5.4.9 in [GLS]). Thus OH (a) can be checked in
polynomial time. Similarly, assuming Determinant PH1 (a), we can check in polynomial time if
span(Qλ,m(k)) contains an integer point. Hence OH (b) also can be checked in polynomial time.
We assume that the polynomial bound on the saturation index in Permanent SH (Hypothesis 4.6)
is explicitly given. Whether k is larger than this explicit bound is also easy to check. Thus OH
can be checked in polynomial time for given k, λ, n and m.

Hence O is explicit. Q.E.D.

8 Evidence for the plausible converse

In this section we justify the dotted right arrow in (1).

8.1 Why should geometric obstructions exist and general FH hold?

We begin with justification of GOH, the Equivalence Conjecture 2.6, and General FH (Hypoth-
esis 3.1) on the basis of the proof of the Strong Flip Theorem 2.3 in [GCTflip].

This proof is based on: (1) hardness of the permanent (Conjecture 2.2), which is the first
assumption in Theorem 2.3, (2) the characterization by symmetries of the permanent (the prop-
erty (P)), (3) easiness of computing the determinant, and (4) the characterization by symmetries
of the determinant (the property (D)), which is needed in all efficient computations of the de-
terminant (e.g. the Guassian elimination). The proof shows that if ∆V [f, n,m] 6⊆ ∆V [g,m]
then, assuming the additional derandomization conjecture in Theorem 2.3, there exist short
and easy-to-compute proof certificates of this noninclusion, namely, the global obstruction sets
Sn,m(s). The dependence of these obstructions on the representation theoretic characterization
by symmetries of the permanent and the determinant is only indirect via the proof of Theo-
rem 2.3 and extrinsic; i.e., it depends on the embeddings of ∆V [f, n,m] and ∆V [g,m] in P (V ).
It is a reasonable conjecture that there exist similar short and easy-to-compute representation
theoretic obstructions with direct dependence on the intrinsic representation theoretic structures
of ∆V [f, n,m] and ∆V [g,m]. That is, whatever is extrinsic and indirect can conjecturally be
made intrinsic and direct.

Now we have to specify what we mean by the intrinsic representation theoretic structure
of ∆V [f, n,m] and ∆V [g,m]. By intrinsic, we mean the representation theoretic structures of
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their coordinate rings RV [f, n,m] and RV [g,m]. The most detailed such structure is provided
the multiplicative structure of these rings. But this multiplicative structure is hard to compute.
This is so even for the multiplicative structure of the much simpler coordinate ring C[G] of G.
The most favourable basis of C[G] from the representation theoretic perspective is the canoni-
cal basis whose multiplicative structure constants are known to be nonnegative; cf. [Lu]. These
structure constants are also known [FKK] to be generalizations of the Kazdan-Lusztig polynomi-
als evaluated at q = 1. But the problem of computing values of the Kazdan-Lusztig polynomials
at q = 1 is #P -hard. In fact, even the much easier problem of computing Littlewood-Richardson
coefficients (which are [LT] values of very special kinds of Kazdan-Lusztig polynomials at q = 1)
is known to be #P -complete [N]. Hence, this computation cannot be done in polynomial time,
assuming the standard complexity theory conjecture that P#P 6⊆ P (or equivalently, that the
permanent cannot be computed in polynomial time.) Since the rings RV [f, n,m] and RV [g,m]
are much harder than the coordinate ring C[G], their multiplicative structures are even harder.
This means the easy-to-compute representation theoretic obstructions predicted by (the proof
of) the strong flip Theorem 2.3 cannot depend on the detailed multiplicative structures of the
rings RV [f, n,m] and RV [g,m], since these structures are hard to compute.

So to locate such obstructions, we ignore the detailed multiplicative structures and con-
sider instead the much coarser representation theoretic data consisting of the multiplicities of
Vλ(G) in RV [f, n,m]∗ and RV [g,m]∗ for all λ. The multiplicity based geometric obstructions
(Definition 2.4) are precisely the representation theoretic obstructions based on this data.

But even these multiplicities are hard to compute, since they are much harder than the
Littlewood-Richardson coefficients, which, as remarked above, are #P -complete [N]. Thus the
easy-to-compute representation theoretic obstructions predicted by the strong flip Theorem 2.3
cannot depend on the exact values of the multiplicities if both the multiplicities are large.

So to locate them, we consider even coarser representation theoretic data, namely the thresh-
old data, which specifies, for each Vλ(G) and small k = O(poly(n,m)), whether its multiplicity
in RV [f, n,m]∗ exceeds k (and similarly for RV [g,m]∗). The threshold-based geometric obstruc-
tions are precisely the representation theoretic obstructions based on this data. Fortunately,
the fundamental obstacle to efficient computation of the multiplicative or multiplicity data–
namely, #P -completeness of the Littlewood-Richardson coefficients–is absent for the threshold
data. This is because whether a Littlewood-Richardson coefficient cλα,β > k can be decided in
polynomial time, specifically in poly(〈α〉, 〈β〉, 〈λ〉, k) time, where 〈α〉 denotes the bitlength of
the specification of α; cf. [GCT3] for an algorithm for k = 0 and [BI] for an algorithm which
can be extended to work for general k. Thus the strong flip Theorem 2.3, in conjunction with
the argument above, leads to the conjecture that the threshold based geometric obstructions are
precisely the short and easy-to-compute intrinsic representation theoretic obstructions predicted
by (the proof of) the strong flip Theorem 2.3: specifically, (1) threshold-based geometric ob-
structions exist as per the Equivalence Conjecture 2.6, and (2) the underlying decision problems
can be solved in polynomial time, so that these obstructions are also easy to compute, verify,
and decode–this is precisely the General FH (Hypothesis 3.1) for threshold-based obstructions.
Thus (1) and (2) together constitute an “intrinsic form” of the (conclusion of the) strong flip
Theorem 2.3.

The threshold data is close to the incidence data when m is small (O(poly(n))). This leads
to GOH for small m and General FH for incidence-based obstructions.
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Here it is important that the group G in the definition of obstructions (Definition 2.4) is
GLl(C). Equivalently, if we let G be SLl(C), then it is important to consider (as in Definition 1.2
in [GCT2]) the finer representation theoretic grading information which gives, for each partition
λ, the multiplicity of the Weyl module Vλ(SLl(C)) of SLl(C) in RV [f, n,m]d and RV [g,m]d,
for each d. If we replace GLl(C) by SLl(C) and ignore this grading information, the incidence
based obstructions need not exist. That is, we cannot simplify the incidence data used in
Definition 2.4 any further. This is the main result of [BI2] for GCT of matrix multiplication.
The article [BLMW] also points out importance of the grading information.

Remark 1: One may also wonder why we did not consider geometric obstructions based ap-
proximate multiplicities of Vλ(G) in RV [g,m]∗ and RV [f, n,m]∗. It is known that approximate
values of well behaved #P -complete quantities (such as the permanent of a nonnegative integer
matrix [JSV]) can be computed efficiently in probabilistic polynomial time. So it is plausible
that even obstructions based on approximate multiplicities are easy to compute. But the proof
of the strong flip Theorem 2.3 shows that, whenever ∆V [f, n,m] 6⊆ ∆V [g,m], there exist short
global obstruction sets Sn,m(s) that can be computed not just in polynomial time, but also fast
in parallel: specifically, in polylogarithmic time using polynomial number of processors. The
standard complexity theory conjecture is that approximate values of #P -complete quantities
cannot be computed fast in parallel (when they are large). Hence, obstructions based on ap-
proximate multiplicities cannot be the representation theoretic obstructions that are easy to
compute in parallel as predicted by the proof of the strong flip Theorem 2.3.

Remark 2: The assumption P#P 6⊆ P in the justification in this section can be replaced by
Conjecture 2.1 replacing easy-to-compute everywhere by easy-to-compute-in-parallel.

8.2 Why should Determinant and Permanent FH hold?

We have already justified General FH (Hypothesis 3.1) above. For efficient verification of geomet-
ric obstruction labels as in F3 in General FH, we need efficient criteria for deciding nonvanishing
of F (λ, n,m) and G(λ,m); cf. Proposition 3.3. This leads to Determinant and Permanent FH
(2) (Hypothesis 3.2).

We now justify Determinant FH (1) for the multiplicities G′(λ,m), assuming that Deter-
minant FH (2) holds as argued above. The argument for the other multiplicities G(λ,m) and
F (λ, n,m) is similar.

It can be shown using the Weyl character formula that G′(λ,m) can be expressed as the
difference between two #P -quantities. If G′(λ,m) does not belong to #P , then to decide if
it is zero, one would have to compute these two quantities and hence G′(λ,m) exactly. But
the problem of computing G′(λ,m) is #P -hard, since the much easier problem of computing
Littlewood-Richardson coefficients is #P -complete [N]. Hence exact computation of G′(λ,m)
cannot be done in polynomial time assuming the standard complexity theory conjecture that
P#P 6⊆ NP . But Determinant FH (2) says that the problem of deciding if G′(λ,m) is zero
belongs to P . This is why Determinant FH (1) for G′(λ,m) is conjectured to hold.

Remark: Just as in Section 8.1, the assumption P#P 6⊆ P in the justification above and below
can be replaced by Conjecture 2.1 replacing easy-to-compute everywhere by easy-to-compute-
in-parallel.
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8.3 Why should positivity hold?

Now we justify the positivity hypotheses PH1 and SH (Hypotheses 4.2 and 4.6) assuming FH.
We only give the argument for G′(λ,m), the arguments for G(λ,m) and F (λ, n,m) being similar.

By Determinant FH (1), G′(λ,m) belongs to #P . By the proof of NP -completeness of the
integer programming problem, it follows that G′(λ,m) can be written as the number of integer
points in an explicit polytope Q′

λ,m. PH1 for G′(λ,m) (i.e. Determinant PH1 (b)) basically says
just this with an additional naturality constraint that the asymptotic Ehrhart quasipolynomial
of Q′

λ,m(k) should coincide with the asymptotic stretching quasipolynomial (Theorem 4.1) of
G′(λ,m) (as in the case of the Littlewood-Richardson coefficients [BZ, DM]).

Once PH1 holds for G′(λ,m), deciding its nonvanishing is an integer programming problem.
Since integer programming is NP -complete, there is no polynomial time algorithm for decid-
ing nonvanishing G′(λ,m) (assuming P 6= NP ) unless the polytope Q′

λ,m(k) in Determinant
PH1 (b) is exceptional. By the results in Section 7 the saturation index of the Ehrhart quasi-
polynomial of a polytope is a good measure of the computational complexity of the associated
integer programming problem. Hence, if Determinant FH (2) holds as argued above, that is, if
the problem of deciding if Q′

λ,m(k) has an integer point belongs to P , then it is a reasonable
conjecture that the saturation index of the asymptotic Ehrhart quasipolynomial of Q′

λ,m(k) is
small (polynomial). This is what SH for G′(λ,m) (i.e., Determinant SH (2)) says.

8.4 Why should OH hold?

We have already justified GOH in Section 8.1. By the following result, OH is close to GOH.

Lemma 8.1 Assume PH1 (Hypothesis 4.2). If kλ is an incidence-based geometric obstruction
label for some integer k greater than the saturation indices of Fλ,n,m(k) and Gλ,m(k) (which by
SH are small, i.e., O(poly(n,m))), then (λ, k) satisfies OH.

Proof: If kλ is a geometric obstruction label, then by Definition 2.4, Gλ,m(k) is zero and Fλ,n,m(k)
is nonzero. By PH1 (Hypothesis 4.2), Gλ,m(k) = fQ(k), where Q = Qλ,m(k), and Fλ,n,m(k) =
fP (k), where P = Pλ,n,,m(k). Hence, if kλ is a geometric obstruction label, the polytope
P = Pλ,n,,m(k) contains an integer point and Qλ,m(k) does not. Since k is greater than the
saturation index of Gλ,m(k), by Lemma 7.2, the affine span of Qλ,m(k) does not contain an
integer point. The affine span P contains an integer point since P does. Hence (λ, k) satisfies
OH. Q.E.D.

This finishes the justification for the dotted arrow · · · > in the decomposition (1).

9 How to prove positivity?

In this section, we formulate additional positivity hypotheses, called PH0, which suggest an
approach to prove PH1.

To state PH0, we need a definition.
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Definition 9.1 Let H be a connected reductive algebraic subgroup of connected reductive alge-
braic G, and H its Lie algebra with the standard generators (ei, fi and hi) as described in [FH].
A basis B of a representation V = Vλ(G) of G, where λ is the highest weight of G, is called
positive with respect to the H-action if:

1 It is H-compatible. This means there exists a filtration of B:

B = B0 ⊃ B1 ⊃ · · ·

such that 〈Bi〉/〈Bi+1〉, where 〈Bi〉 denotes the linear span of Bi, is isomorphic to an
irreducible H-module.

2 Each b ∈ B has a combinatorial indexing label whose bitlength 〈b〉 is polynomial in 〈λ〉 and
the rank r(G) of G. Furthermore, each b ∈ B is a weight vector for the H-action. Thus b
is a highest weight vector if eib is zero for all i.

3 For each standard generator h of H and each b ∈ B,

hb =
∑

b′∈B

(−1)
dh

b,b′ chb,b′b, (38)

where each chb,b′ is a nonnegative integer, and dh
b,b′ is an integer that can be computed in

poly(〈b〉, 〈b′〉, r(G)) time.

We call B an explicit positive basis if, in addition,

a Each chb,b′ has a #P -formula, and its nonvanishing can be decided in time poly(〈b〉, 〈b′〉, r(G))
time.

b Whether a given b ∈ B is a highest weight vector can be decided in poly(〈b〉, 〈λ〉, r(G)) time.

We call a positive basis strictly positive if dh
b,b′ are all zero.

An explicit positive basis of any finite dimensional representation V of G with respect to
the H action can be defined similarly as long as V has a compact combinatorial specification,
akin to the specification λ of Vλ(G). In this case we let the bitlength 〈V 〉 of this combinatorial
specification play the role of 〈λ〉 in the above definition.

If H is not connected, we assume that we are given the standard generators of its connected
component H0 containing the identity and an explicit set S of generators of the discrete part
(so that H0 and S together generate H). An explicit positive basis of a representation V of H
is then defined similarly by requiring, in addition, that an explicit positive representation of the
form (38) also exists for sb, for every s ∈ S.

The well known positive (#P ) Littlewood-Richardson rule for decomposing the tensor prod-
uct of irreducible GLn(C)-representations (which implies the analogue of PH1 for Littlewood-
Richardson coefficients) follows from the proof of the following deep positivity result proved in
[Lu]. It is a specialization at q = 1 of a more general positivity result in the quantum getting.
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Littlewood-Richardson PH0: [Lu] Let H = GLn(C) be embedded in G = H×H diagonally.
Then the irreducible representation Vα(H)⊗Vβ(H) of G has a strictly positive (canonical) basis
with respect to the H action. It may be conjectured that this basis is explicitly positive. But
this is not known at present.

One may similarly try to prove general PH1 (Hypotheses 4.2 and 5.3) by proving the following
generalization of the Littlewood-Richardson PH0 first and then deducing PH1 from it.

Hypothesis 9.2 (PH0)

Plethsym PH0: Let
H = GLn(C)→ G = GL(V ), V = Vµ(H), (39)

be the plethysm representation map (15). Then each Weyl module Vλ(G) has an explicit positive
basis Bλ

µ with respect to the H-action.

PH0 for C[V ], RV [f, n,m] and RV [g,m]: C[V ]d, RV [f, n,m]d and RV [g,m]d (specified com-
pactly by just giving n,m and d in unary) have explicit positive bases with respect to the G-action.

More strongly, RV [g,m] has an explicit positive monomial basis B̄g induced by an explicit
positive monomial basis Bg of C[V ] that is simultaneously compatible with the action of G and
the action of Gg ⊆ G, where Gg denotes the stabilizer of g = det(Y ) ∈ V . This means there
exists a finite generating set Sg = {s1, . . . , sl} ⊆ Bg with the following properties:

1. Each s ∈ Sg is homogeneous and has a combinatorial label of bitlength 〈s〉 = poly(n,m).

2. Each basis element b ∈ Bg is a monomial in the generators in Sg.

3. Let Bg(d) ⊆ Bg be the subset of basis elements of degree d. Then Bg(d) is an explicit
positive basis (Definition 9.1) of RV [g,m]d.

4. Let Bg(d) = Bg,0(d) ⊃ Bg,1(d) ⊃ · · · be the G-compatible filtration of Bg(d) as in Def-
inition 9.1. Let B̃g,i(d) be the basis of the G-module 〈Bg,i(d)〉/〈Bg,i+1(d)〉 induced by
Bg,i(d) \ Bg,i+1(d). Then B̃g,i(d) is an explicit positive basis of 〈Bg,i(d)〉/〈Bg,i+1(d)〉 with
respect to the Gg-action.

5. Let C[Sg] be the free ring generated by Sg, and Ig the ideal so that RV [g,m] = C[Sg]/Ig.
Let GBg denote the Gröbner basis of Ig (with an appropriate ordering among the elements
in Sg). Then B̄g is the standard monomial basis of RV [g,m] with respect to GBg.

6. Let B̄g(d) ⊆ B̄g denote the standard monomial basis of RV [g,m]d formed by the standard

monomials in B̄g of degree d. The combinatorial specification of any b = sj1
i1
. . . sjk

ik
∈ B̄g

specifies the indices jt’s of sit’s occurring here with nonzero exponents. Then each B̄g(d)
is an explicit positive basis of RV [g,m]d (Definition 9.1) with respect to the action of G,
and also with respect to the action of Gg as in 4 above.

7. Each element c ∈ GBg has an explicit, positive expression of the form:

c =
∑

b∈Bg

(−1)αc
bβc

bb, (40)
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where b’s that occur in the support of c have poly(n,m) degree, αc
b is a poly(n,m)-time

computable integer, and βc
b is a nonnegative integer with a #P -formula whose nonvanishing

can be decided in poly(n,m) time.

PH0 for RV [f, n,m] and RV [g,m] is conjectured on the basis of the Strong Flip Theorem 2.3,
which suggests that the elimination theory of the class varieties ∆V [g,m] and ∆V [f, n,m] can be
made explicit (which is essentially what PH0 says). Here positivity is essentially a prerequisite
for explicitness. Indeed, the structure constants chb,b′ and βc

b in (38) and (40) are, in general,
hard to compute. Hence we require them to have positive #P -formulae (for the same reasons
as in Section 8.2) so that their nonvanishing may be decided in polynomial time.

Plethysm PH0 implies a #P -formula for the plethysm constant, a crucial ingradient of
Plethysm PH1 (Hypothesis 5.3):

aπ
λ,µ =

∑

b∈Bλ
π,µ

1, (41)

where Bλ
π,µ ⊆ Bλ

µ consists of all basis elements that are highest weight vectors with weight π.

By 3 (b) in Definition 9.1, whether b ∈ Bλ
π,µ can be checked in polynomial time. Hence this

is a #P -formula. PH0 for RV [f, n,m]d and RV [g,m]d similarly implies #P -formulae for the
multiplicities F (λ, n,m) and G(λ,m), the crucial ingradient of PH1 for these multiplicities.

One may wonder why we should go through PH0 to prove PH1 for these multiplicities
since the Littlewood-Richardson rule has an elementary proof, whereas PH0 for Littlewood-
Richardson coefficients [Lu] is far deeper. The reason is again the Strong Flip Theorem 2.3,
which suggests that problems of difficulty comparable to general PH0 can be expected in any
proof of the strong permanent vs. determinant conjecture, modulo derandomization. Indeed,
the problem of constructing an extremely explicit positive separator between ∆V [f, n,m] and
∆V [g,m] addressed in the strong flip theorem seems harder than the problem of constructing
explicit positive bases of RV [f, n,m] and RV [g,m] because of the higher level of explicitness in
the former problem.

The Strong Flip Theorem does not say anything regarding the plethysm constants. Hence it
is plausible that Plethysm PH1 has a much a simpler proof than Plethysm PH0. But Plethysm
PH0 is a simpler prototype of PH0 for RV [f, n,m] and RV [g,m], and hence, deserves to be
studied first.

An approach towards Plethysm PH0 is described in the sequels [GCT7] and [GCT8] to this
paper. The basic idea is to quantize the embeddingH ⊆ G to get an embeddingHq ⊆ G

H
q , where

Hq is the standard quantum group [Dr] associated with H, and GH
q is a nonstandard quantum

group constructed in [GCT7]. The article [GCT8] constructs a conjectural canonical basis of
an appropriate quantization of Vλ(G) with respect to the GH

q -action. This basis conjecturally
yields an explicit positive basis of Vλ(G) when specialized at q = 1. For PH0 for RV [g,m], one
has to similarly quantize the triple Gg ⊆ G ⊆ GL(V ) to get an explicit positive basis Bg of C[V ]
simultaneously compatible with respect to the action of G and Gg. One also has to show that
Bg induces an explicit positive basis B̄g of RV [g,m]. For this it is crucial that g be characterized
by its stabilizer.

One can also formulate analogues of PH0 for the orbit closure of a point x ∈ P (V ) char-
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acterized by an explicitly given stabilizer, where V is a representation of a connected algebraic
reductive group–we omit the details.

10 The arithmetic P vs. NP problem in characteristic zero

In this section we lift the story for the permanent vs. determinant problem in the preceding
sections to the arithmetic P vs. NP problem in characteristic zero defined in [GCT1]. Since
the story is very similar, we will be brief.

The role of the permanent is played in the arithmetic P vs. NP problem by the following
function E(X) (cf. [GCT1]) defined over Q. Take a set {Xj

i |1 ≤ j ≤ k, 1 ≤ i ≤ m} of m-

dimensional vector variables, for a fixed constant k ≥ 3. Here each Xj
i is an m-vector. So there

are km vector variables overall. Let X be the m × km variable matrix whose columns consist
of these km variable vectors. For any function σ : {1, . . . ,m} → {1, . . . , k}, let detσ(X) denote

the determinant of the matrix Xσ whose i-th column is X
σ(i)
i . Define E(X) =

∏

σ detσ(X)
where σ ranges over all such functions. The function E(X) is also characterized by symmetries
(cf. [GCTflip]) just like the permanent. Let n = km2 be the total number entries in X. By
the (nonuniform) arithmetic P vs. NP problem in characteristic zero we mean the problem of
showing that E(X) cannot be computed by an arithmetic circuit over Q of poly(n) size. It is a
formal implication of the usual nonuniform P vs. NP problem (i.e., NP 6⊆ P/poly conjecture)
since deciding if E(X) is zero is NP -complete [Gu].

The role of the determinant function is played in the P vs. NP problem by the following
function H(Y ) (cf. [GCT1]), which is P -complete. To define it, consider a generic arithmetic
circuit of depth k and width m. It consists of k+ 1 levels of nodes, numbered 0 to k, each level
containing m nodes, except the root level zero, which contains a single output node. Each node
in the level i < k is connected to every node in level i + 1. Each node u in the input level k
is labeled with the variable yu; the function computed by this node is defined to be yu. The
function h(u) computed by a node u in level i < k is defined to be

∑

v,w y
u
v,wh(v)h(w), where v

and w range over nodes in level i + 1 and each yu
v,w is an indeterminate. Let Y be the vector

of the variables yu’s at the input level k and the variables yu
v,w’s. Let H(Y ) be the function

computed at the root level zero. It is a homogeneous form in Y with total degree exponential in
k. Let m = O(r2) be the size of Y for the generic circuit with depth and width r. The function
H(Y ) is characterized by symmetries in a weaker sense (cf. [GCT1]) that is good enough for
our purposes.

Let V be the space of homogeneous forms in Y with degree equal to that of H(Y ), P (V ) the
corresponding projective space. Then V and hence P (V ) has the action of G = GLm(C). We
think of h = H(Y ) as a point in P (V ). Let W be the space of forms in X with degree equal to
that of E(X). We think of E(X) as a point in P (W ). Let φ : P (W )→ P (V ) be the embedding,
similar to the embedding φ in Section 2.2, and let e = e(Y ) = Eφ(Y ).

The orbit closure ∆V [h,m] = Gh is called the class variety associated with the complexity
class P , and the orbit closure ∆V [e, n,m] = Ge is called the class variety associated with the
complexity class NP . (Alternatively, we can also define ∆V [h,m] to be the G-orbit closure of
[h], the set of all points in P (V ) stabilized by the stabilizer Gh ⊆ G of h.)
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It is shown in [GCT1] that if E(X) can be computed by an arithmetic circuit of depth and
width ≤ r then

∆V [e, n,m] ⊆ ∆V [h,m] (42)

wherem = O(r2). Hence, to solve the nonuniform arithmetic P vs. NP problem in characteristic
zero, it suffices to show that this is not possible when r = poly(n).

LetRV [e, n,m] andRV [h,m] be the homogeneous coordinate rings of ∆V [e, n,m] and ∆V [h,m],
respectively. Let H(λ,m) denote the multiplicity of Vλ(G) in RV [h,m]∗ and E(λ, n,m) the mul-
tiplicity of Vλ(G) in RV [e, n,m]∗. The following is the analogue of Definition 2.4 in this context.

Definition 10.1 A Weyl module S = Vλ(G), for a given partition λ, is called an incidence-based
geometric obstruction for the inclusion (42) if E(λ, n,m) > 0 and F (λ,m) = 0.

Analogues of FH, PH1, SH, PH2, and PH0 (Hypotheses 3.1, 3.2, 4.2, 4.6, 4.7,9.2) can now
be conjectured, and analogues of the decompositions (1), (8), and Theorems 4.1, 4.8, and 4.9
then hold.
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