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[1] Our analysis of Global Positioning System (GPS) site coordinates in a global
reference frame shows annual variation with typical amplitudes of 2 mm for horizontal
and 4 mm for vertical, with some sites at twice these amplitudes. Power spectrum analysis
confirms that GPS time series also contain significant power at annual harmonic
frequencies (with spectral indices 1 < o < 2), which indicates the presence of repeating
signals. Van Dam et al. [2001] showed that a major annual component is induced by
hydrological and atmospheric loading. Unless accounted for, we show that annual signals
can significantly bias estimation of site velocities intended for high accuracy purposes
such as plate tectonics and reference frames. For such applications, annual and semiannual
sinusoidal signals should be estimated simultaneously with site velocity and initial
position. We have developed a model to calculate the level of bias in published velocities
that do not account for annual signals. Simultaneous estimation might not be necessary
beyond 4.5 years, as the velocity bias rapidly becomes negligible. Minimum velocity bias
is theoretically predicted at integer-plus-half years, as confirmed by tests with real data.
Below 2.5 years, the velocity bias can become unacceptably large, and simultaneous
estimation does not necessarily improve velocity estimates, which rapidly become
unstable due to correlated parameters. We recommend that 2.5 years be adopted as a
standard minimum data span for velocity solutions intended for tectonic interpretation or
reference frame production and that we be skeptical of geophysical interpretations of
velocities derived using shorter data spans.  INDEX TERMS: 1294 Geodesy and Gravity:
Instruments and techniques; 1243 Geodesy and Gravity: Space geodetic surveys; 1247 Geodesy and Gravity:
Terrestrial reference systems; 1299 Geodesy and Gravity: General or miscellaneous; KEYWORDS: GPS, annual

signal, velocity, error, time series, power spectrum

1. Introduction

[2] Velocities derived from geodetic coordinate time
series are now routinely used as input to geophysical
models [Segall and Davis, 1997], with many applications
including plate boundary dynamics, postglacial rebound,
surface mass loading, and global sea level change. It has
recently emerged that GPS coordinate time series have
significant annual signals [e.g., Van Dam et al., 2001],
which might significantly bias published velocity estimates.
This paper systematically investigates the effect of annual
signals on geodetic velocities and complements recent
research on power law noise of coordinate time series
[Zhang et al., 1997; Mao et al., 1999]. Indeed, seasonally
driven signals with an annually repeating component would
include power at all annual harmonic frequencies, which
would affect both spectral and time domain characteriza-
tions of GPS errors.

[3] A major component of annual signals is now known
to be true physical site motion. The dominant cause for
annual signals with respect to a global reference frame is
surface loading due to hydrology and atmospheric pressure.
Van Dam et al. [2001, p. 651] report that in loading models
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of continental water storage, “vertical displacements have a
root mean square (RMS) values as large as 8§ mm and are
predominantly annual in character.” These hydrological
models (also accounting for atmospheric loading) were
shown to correlate strongly with the same GPS coordinate
time series used here, with the variance reduction in GPS
height residuals being approximately equal to the variance
of the model. Hence seasonal variation, which is best
described by a deterministic model (rather than a power
law noise model), is likely to contribute to velocity error for
globally referenced coordinates, especially over short data
spans. Until physical models of annual signals adequately
describe the observed variation, a reasonable solution to this
problem is to estimate an annual signal (amplitude and
phase) simultaneously with site velocities and initial posi-
tions. Another strategy is to reference coordinates regionally
(e.g., by spatial filtering [Wdowinski et al., 1997]), which
would not be effective for large regions such as the North
American—Pacific plate boundary, or for stability tests of
major plates. A major component of annual signals is now
known to be true physical site motion [Blewitt et al., 2001].

[4] There are several concerns motivating our research.
First, there are numerous recent examples of published
estimates of tectonic velocities with as little as 1-2 year
data spans, where annual signals have not been taken into
account in the estimated velocities and errors. Their effects
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have often been ignored completely or have been subject to
incorrect intuitive speculation. For example, Dixon and
Mao [1997, p. 536] state “the influence of annual errors
... on velocity estimates would be minimal for an integer
number of years but would affect velocity estimates for the
2.5 year time span used here” (which our research here
proves to be wrong). If annual signals are not taken into
account, it is shown here that they typically dominate
velocity errors during the first 2.5 years of coordinate time
series, with the nonobvious theoretical result supported by
our data that the bias drops rapidly between 2 and 2.5 years.
This is consistent with anecdotal evidence that GPS velocity
solutions tend to be unstable until a 2-year data span is
exceeded. Our research here can be used as a guide to set
criteria for publishing new results and can also be used to
assess the level of errors in previously published results.

[5] Second, geodetic investigations almost always rely on
the availability of an accurate global reference frame, either
directly or indirectly. For example, such a frame is essential
for accurate orbits produced by the International GPS
Service (IGS), Earth rotation parameters produced by the
International Earth Rotation Service (IERS), globally refer-
enced site coordinates, and global site velocities to define
kinematics relative to stable plate interiors for deformation
studies. Current procedures to produce the IERS Terrestrial
Reference Frame (ITRF) do not account for annual signals in
deriving site velocities (though future versions may do so if
this type of research demonstrates the benefits). To consider
the effects on current ITRF and IGS procedures, it should be
kept in mind that such analyses assume no time correlation
between epoch solutions; in fact this class of solution
currently dominates the tectonophysics literature. It should
also be noted that even if power law stochastic models (e.g.,
flicker noise) were used, they alone would not account
properly for time domain behavior due to annual signals.

[6] Third, annually repeating signals generally contain
not only an annual sinusoidal component but also the annual
harmonics. Estimation of only the annual amplitude and
phase will therefore not mitigate the entire effect of an
annually repeating signal. It is not immediately obvious
how many extra terms should be included.

[7] Fourth, while estimation of annual harmonics may
reduce systematic error, it will also introduce a greater
random error in velocity due to the increased number of
parameters. We can expect this to be a problem for shorter
time series, when correlations between the estimated param-
eters become increasingly significant. We might expect that
below some minimum data span the systematic bias we are
attempting to mitigate would be less harmful than the
dilution of velocity precision.

[8] Guided by these concerns, we formulate the following
research questions. First, there are fundamental questions:
What are the temporal characteristics of velocity bias in the
presence of an annually repeating signal when the velocity
estimation assumes no deterministic model or interepoch
correlations? Can such temporal characteristics be used to
advantage? Second, there are questions of interpretation of
published results: How should we interpret errors of pub-
lished velocity solutions (and hence the significance of the
research findings) that have not accounted for annual signals?
What is the minimum data span at which one should accept
velocity estimates (e.g., as input to ITRF) that have not
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accounted for annual signals? Third, there are questions of
implementation. What is the data span beyond which the
degradation in precision arising from estimation of extra
annual signal parameters is smaller than typical systematic
bias? What is the data span beyond which negligible gain is to
be made by estimating annual (and harmonic) signals?

[9] We begin by systematically developing a theoretical
foundation for the analysis of annually repeating signals and
their effect on velocity. We proceed to develop an error model
that might be used to reinterpret errors of published results;
this is tested using our own data. On the basis of the theory
and data we then answer the research questions posed above.

2. Theoretical Foundation
2.1. Previous Work

[10] Black and Scargle [1982] analyzed the apparent
motion of a star that is assumed to have secular proper
motion plus a sinusoidal perturbation. They pointed out that
the residual motion to the apparent secular motion would
represent a distorted version of the sinusoidal perturbation
because the secular motion used to form the residuals is
itself biased by the perturbation. This is relevant to our
geodetic problem; while Black and Scargle [1982] focused
on the detection and estimation of the sinusoidal signal, our
emphasis is on faithful recovery of secular motion and on
modeling its error. Furthermore, we generalize our theoret-
ical foundation to accommodate not only pure sinusoidal
signals but also repeating signals of arbitrary form.

2.2. Velocity Bias Due to a Sinusoidal Signal

[11] Consider a time series of n coordinate data r; (i =
1,2,..., n), which are regularly spaced with time interval Atz.
Let the coordinates be modeled as a linear function of time
plus an arbitrary sinusoidal signal:

ri = s+ ut; + a cos(2wft; — ) + v;, (1)

where initial position s and velocity u are unknown, v;
represents data noise, and the signal is characterized by
frequency f, amplitude a, and phase lag o.

[12] Now consider using least squares to estimate simul-
taneously the velocity and initial position, where we erro-
neously disregard the sinusoidal signal. Appendix Al
derives an equation (equation (AS5)) that can be used to
compute the bias due to an unmodeled signal in the limit of
small data intervals, which in this case implies At < 1/f.
Inferring the appropriate partial derivatives for equation
(AS) from equation (1), the bias vector for the estimated
parameters is

-1

T T T
[2dt [ dt [ tacos(2nfi — p)dt
0 0 0

T
[acos(2wft — ¢)dt
0

. cos(2mf T — ¢) — cosp
sin(2nfT — ) + o T 2

sin(2nf T — ) + sin(yp) '
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Figure 1. Velocity bias from an annual sinusoidal signal

versus data span, shown specifically for cosine and sine
signals. The velocity bias scales with the amplitude, taken
here to be 1 mm.

where 7 is the time spanned by the data. The biases from
equation (2) apply only when the inversion uses a data
covariance matrix with no temporal correlations (which is
the case for most published results). For example, equation
(2) applies even if there is real colored noise in the data,
provided no temporal correlations are assumed in the data
covariance matrix. Note that equation (2) represents an
incremental bias, so the total velocity error would generally
be some superposition of equation (2) plus an error induced
by the real noise.

[13] As a brief aside, equation (A6) can be used to
compute the formal covariance matrix

12 1 —1ir
_ 2
Cx—UWAfﬁ<7%T %%2> (3)

Hence the formal error in velocity is the well-known
formula [e.g. Zhang et al., 1997]

or(T) = 1227732 A, (4)
This is not intended to be realistic or to take into account
systematic error and is only used as a reference error
function further into this paper.

[14] Now, taking the upper matrix element of equation
(2), the velocity bias is

cos(2nf T — ) — cos
20/ T

u(T) = {51n(21rfT -9+

6a
nf T2
1. . .
3 [sin(27/ T — ) +sin @}}~ (5)

A priori, we generally do not know the phase lag, so it is
useful to factor together terms dependent on ¢. We have

ETG 9-3

discovered that equation (5) reduces to the lucid expression

#(T) = sin f T

cosnf T — sin(vf T —¢).  (6)

6a
wf T?
Clearly, the velocity bias is a zero-crossing oscillatory
function of data span 7, which tends to zero for large 7. This
function is plotted in Figure 1 for f= l/yr and @ = 1 mm
using example values of phase lag ¢ = 0, w (for a pure
+cosine signal) and ¢ = +7/2 (for a pure +sine signal). Most
importantly, equation (6) tells us that for arbitrary phase lag
¢ the velocity bias is zero when T satisfies
sintf T

wf T

nf T =tannf T. )

This is a well-known transcendental equation, which there-
fore has no analytical solution. Numerical solution to
equation (7) for positive data spans 7'yields the following list:

0=cosmf T —

T = 1.4303,2.4590, 3.4709, 4.4774, 5.4815... (8)

Therefore we have discovered the ‘‘zero-bias theorem™
that the velocity is unbiased near integer-plus-half (m + %)
cycles, for positive m. These nodes can be clearly seen in
Figure 1.

[15] Owing to the independence of phase lag, we can also
conclude that equation (8) applies to an arbitrary super-
position of signals (at frequency f'), which is applicable to
annual geodetic signals that arise from a combination of
many constituents. It is useful to quantify the magnitude of
the velocity bias as a root-mean-square (RMS) quantity,
averaged over all possible phase lags. From equation (6),

2“ 1/2
T
op(T) = fT2 COSTYfT—Slnﬁf '( sin?(nf T — ap)dap)
0
sintf T| 1
sz costf T — o T oI

= 272410 (T).
)

Equation (9) is plotted in Figure 2 along with the maximum
possible bias 0,,, from equation (6). In the case where we
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Figure 2. Velocity bias from an annual sinusoidal signal
versus data span, showing maximum possible bias (max),
and root mean square bias (RMS). The velocity bias scales
with amplitude, taken here to be 1 mm.
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have a set of sites, we can replace amplitude a with the
RMS amplitude o,. Clearly, the RMS bias also has zero
values at data spans given by equation (8).

2.3. Velocity Bias Due to a Repeating Signal

[16] An arbitrary repeating time series discretely sampled
at intervals At can be expanded as a Fourier series:

1/2fAr)
S a cos(arkft— 0.

k=1

b(t) = (10)

where fis the fundamental frequency. (The & = 0 term is not
needed, as it is absorbed by the initial position parameter).
There are 1/( fAf) samples within one fundamental period.
Therefore the sampled signal can be described by a unique
set of 1/(fAf) Fourier parameters a; and y; hence the
limited summation to k = 1/(2fAf). Each of the terms from
equation (10) will contribute to the velocity bias according
to equation (6), where the frequency must be replaced by
each harmonic of the fundamental frequency. Therefore we
can expand the velocity bias for a general repeating signal
over an arbitrary data span T as

/@A)
i(T) = bax

kf T?

sin wkf T
Tkf T

sin(mkf T — ¢;).

(11)

If we assume that the phase lags ¢, are randomly distributed,
then the RMS velocity bias is given by quadratic summation
over all contributing Fourier components:

rac \ 2
on(T) = (Z ci) ,

{cos Tkf T —

k=1

(12)
k=1

where by analogy with equation (9),

6ak

T) = 37 72

cos kf T — (13)

sin wkf T
wkfT

Here ay, is the amplitude for Fourier component 4.

[17] For the types of physical processes that might give
rise to annual signals, the power spectrum should be
approximately proportional to f/~* [Agnew, 1992], where
« is the spectral index appropriate to the process. We now
assume (to be tested later) that the harmonics contributing to
the repeating signal obey this power law. As power is
proportional to the square of amplitude, and as harmonic
frequency is proportional to k, we can substitute into
equation (13)

aj :alkiﬂ/z. (14)

Therefore equation (12) becomes

1/2f At . 212
_ 6ba X sin kf T
o) = 3inr 2 [ 2 (C"S AT - Tfr) }

(15)

For annually repeating signals we set f'= 1 and specify 7 in
years. Function (15) is plotted in Figure 3 showing that
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Figure 3. Velocity bias versus data span for annually
repeating signals with spectral index o= 1 and fundamental
amplitude of 1 mm. Upper and lower bounds assume that «
ranges from 0.5 to 2, respectively. Also shown is the white
noise-equivalent error with the same 1.4-mm standard
deviation as the annually repeating signal.

velocity bias is relatively insensitive to values of « for data
spans beyond 2 years. As we show later, a conservative
value to assume is o = 1. Thus, with data sampled every
week, equation (15) becomes

1/2

6a; 21 sin wkT\ 2
7y=_1 N v 1
1) = 377 LZ; 2 (COS T ) (1e)

This is the key equation of our paper, as it represents an
additional error in published velocities that do not account
for annual errors and have assumed no correlations between
epoch solutions. To apply equation (16) requires only
knowledge of the data span used 7 and an assumed typical
value for the annual signal amplitude a;. We note that the
formal errors of published velocities often include a
covariance scaling factor based on the observed variance
of the coordinate time series. For reference, Figure 3 also
plots the RMS velocity that would arise from white noise
given by equation (4), where the level of white noise is set
to be equal to the RMS signal.

2.4. Diluted Precision Due to Signal Estimation

[18] An approach that appears to be gaining favor is to
estimate sinusoidal signals directly from geodetic data.
However, this should be carefully considered because
formal velocity precision is necessarily diluted by the
introduction of the extra parameters; the question is, to
what extent? Estimation of the extra parameters would only
be justifiable if the dilution of precision is more than
compensated by removal of the otherwise expected velocity
bias. Estimation might not even be necessary for longer data
spans if the velocity bias becomes insignificant.

[19] We now address this by deriving an analytical
expression for velocity precision, again under the common
assumption of no temporal correlations. Consider our orig-
inal equation (1) where, in addition to initial position and
velocity, we also estimate the amplitude and phase of the
sinusoidal signal. In this case, a transformation of variables
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is desirable to linearize the equations:

ri =5+ ut; +a cos(2w fi; — @) +v; (17)
=5+ ut; + p cos2w fi; + q sin 2w ft; + v;,

where the estimated parameters are u, s, p, and ¢. From
equation (A6) the formal covariance matrix for the
estimated parameters becomes

[y Pdt [ tdt
T T
o — o2ar| o 1t Jo dt
X o t cos 2nfidt  f, cos 2mftdt

St sin 2nfide [] sin 2nfidt

fOTt cos 2mfidt
[ cos 2mfid [ sin 2mfide
[ cos? 2mfidt [ sin 27ft cos 2mftd
[ sin 2nft cos 2mfide  [] sin® 2nfidt

[y ¢ sin 2nftd

(18)

The prime indicates that this is the covariance for our new
set of four parameters. Analytical inversion of this gives
(after meticulous algebraic manipulation) the following
elegant result for the formal error in velocity:

op(T) = (1221732 A1 26,

sin nm\2\
6 (cos TfT — ST )
<MW(Fﬁﬂﬁﬂﬂg
wfT

where equation (4) gives the reference error function of(7),
and we define the “dilution of precision” as

. 2 —]/2
6 (cos wf T — SH;}?T)
PO =\ e (e T (0)
( - mf T >

Equation (19) has been written in a form to emphasize
several important properties, which can be seen graphically
in Figure 4 for the case /= 1/yr. First, comparing equation
(19) with the linear motion model (velocity plus initial
position) given by equation (4), we see that D(7) precisely
quantifies the dilution of precision caused by the introduc-
tion of the two extra parameters. The dilution of precision
blows up rapidly for 7 < 1.5 cycles.

[20] Second, the dilution of precision rapidly approaches
unity as the data span is increased. The increase in formal
error due to the estimation of sine and cosine amplitudes
becomes negligible after 2.5 cycles. As a corollary, estima-
tion of Fourier amplitudes for higher harmonics will also
have negligible effect on formal velocity error after 2.5
cycles. Numerical tests confirm this.

[21] Third, the dilution of precision is unity at exactly the
data spans given by equation (8). That is, sinusoidal
estimation does not improve the expected precision of
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Figure 4. Velocity formal error versus data span assuming
4-mm white noise for two cases: (1) estimation of linear
motion model (velocity plus initial position) and (2) linear
motion model plus estimated annual sine and cosine
amplitudes. Also shown on the right axis is the dilution of
precision D versus data span.

velocities for precisely the same data spans that produce
zero velocity bias. Intuitively, this is because any error in
the sine and cosine term at these data spans has no
consequence on the estimate of velocity. This confirms that
our theoretical development is self-consistent and suggests
that an acceptable alternative to sinusoidal estimation is to
select data spans of integer-plus-half cycles.

2.5. Theoretical Findings

[22] The RMS velocity bias expressed by equation (16)
(and shown in Figure 3) and the dilution of precision
expressed by equation (20) (and shown in Figure 4) can
be used to draw some theoretical conclusions. First, the
summation of equation (16) converges rapidly, with terms
k = 1,2 typically accounting for ~90% of the resulting
bias. This therefore suggests that to adequately mitigate
velocity bias, only the annual and semiannual amplitudes
and phases need to be estimated simultaneously along
with velocity and initial position. However, estimation
should only be applied for data spans 7 > 2.5 years to
avoid problems of correlated parameters and becomes
rapidly unnecessary for 7 > 4.5 years. In almost any
realistic circumstance, estimation of annually repeating
signals will dilute the precision by a negligible amount
for T > 2.5 years.

[23] Second, solutions tend to be minimally biased at data
spans of integer-plus-half years (contrary to the unfounded
assumption quoted in section 1). This would approximately
cancel the velocity bias from all Fourier terms where £ is
odd (including the fundamental frequency) because equa-
tion (8) shows that such data spans approximately satisfy
zero-bias solutions. Note that such a cancellation of odd
terms is independent of spectral assumptions; therefore this
is a robust and general approach. Moreover, estimation of
an annual sinusoid is not necessary at integer-plus-half year
data spans. In this case, the dominant remaining bias would
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Figure 5. Map of the 23 GPS sites of the International GPS Service used for this analysis, which passed

strict criteria on data spans and data outages.

be due to the smaller semiannual signals, which can be
computed from equation (13):

1. sin2nw(m+1)
2 Sy = Y
cos 2w (m +2) 2mm + 1)

1 3a2

02 (T = m-&-i) = 21/2ﬁ(m+%)2
3a2

= 2‘/27Y(m+%)2

(1)

For example, taking our typical amplitudes of 2 mm
(annual) and 1 mm (semiannual) would give rise to a
velocity error of 0.1 mm/yr at 2.5 years (semiannually
dominated) in contrast to 0.7 mm/yr at 2.0 years (annually
dominated).

[24] Third, theory suggests that the velocity bias due to
annually repeating signals would be reduced significantly
when extending data spans from 2 to 2.5 years. Hence 2.5
years might be taken as a minimum data span for accepting
velocity estimates for geophysical interpretation. These
three main conclusions are of course theoretical and
depend on how annually repeating signals should realisti-
cally be characterized, which we now address by testing
with actual data.

3. Experimental Verification
3.1. Data Description

[25] To test the various assumptions and conclusions of
the preceding theoretical framework, we analyzed data from
a set of IGS sites for which we have velocity solutions with
data spans of 3.5 years. The coordinate time series was
produced by analysis of weekly IGS Analysis Center
solution files in Software Independent Exchange (SINEX)
format, using the fiducial-free methodology of Davies and

Blewitt [2000]. For a number of reasons, most coordinate
time series have a finite data gap. Of the 55 sites originally
analyzed, 23 satisfied the strict criteria that (1) there be no
additional parameters needed to estimate instantaneous
coordinate offsets (e.g., arising from hardware changes or
coseismic displacement); (2) any gap in the time series be
<8 weeks, which is short enough to capture expected
seasonal variations without excluding many sites. Figure 5
shows a map of these sites.

3.2. Spectrum of Annual Repeating Signal

[26] First, we characterized the range of annually repeat-
ing signals present in our globally referenced coordinate
time series by simultaneous estimation of annual and semi-
annual amplitudes and phases at each site along with initial
position and velocity. Table 1 summarizes the results,
showing the range (and RMS) of values for annual and
semiannual amplitudes. Thus for approximate calculations
we might take typical values of 2 mm for horizontal annual,
4 mm for vertical annual, 1 mm for horizontal semiannual,
and 2 mm for vertical semiannual, with worst-case values a
factor of 2 larger. This implies that the previous theoretical
calculations should be scaled accordingly. For example,
Figure 3 assumes a 1-mm sinusoidal signal; therefore the
worst-case effect of an annual horizontal signal would
require scaling of the curves by a factor of 4, leading to a
velocity bias of ~1.6 mm/yr at 2 years and ~0.5 mm/yr at
2.5 years.

[27] Equation (16) assumed that annually repeating sig-
nals could be characterized by a spectral index o = 1,
although Figure 3 illustrates the lack of sensitivity to a
broad range of o values. To test the validity of this
assumption, modified periodograms were computed for
each site [Scargle, 1982]. The stacked results can be
interpreted as the power density distribution averaged over
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Table 1. Estimated Amplitudes by Least Squares

Annual Annual Semiannual Semiannual
Velocity Component RMS, mm Range, mm RMS, mm Range, mm
Up 44 1.1-10.9 1.5 0.2-3.6
East 1.8 0.3-4.4 0.5 0.1-2.0
North 1.5 0.2-2.9 0.7 0.1-1.2

all sites. Figure 6 shows the results of this procedure applied
to height time series. The plots for east and north (not
shown) are very similar in character, except for overall
magnitude. A value of o = 1 (solid curve in Figure 6)
approximately characterizes the overall average power
spectrum. Figure 6 shows the power at annual harmonics
with darker bars. For the height component, the average
power at annual period is equivalent to amplitude 3.7 mm
[Scargle, 1982], and at semiannual period the equivalent
amplitude drops to 1.5 mm. The equivalent annual ampli-
tudes in east and north are 1.5 mm and 1.2 mm, respec-
tively. (This is consistent with the simultaneous estimation
of annual and semiannual signals shown previously). Par-
ticularly noteworthy is that annually repeating signals show
up as peaks above the background spectrum at the annual
frequency and its harmonics. This empirically proves the
significant presence of annually repeating signals in our
data. As previously noted, Van Dam et al. [2001] have
positively identified a major component of these signals as
being due to hydrological and atmospheric loading.

[28] The presence of real, significant annually repeating
signals is now conclusive. An interesting question is to what
extent do these signals leak into power law spectral analy-
ses? Mao et al. [1999] found the value oo =1 & 0.4 describes
globally referenced GPS coordinate time series and was
unable to remove the annual term and achieve consistent
results. Zhang et al. [1997] found the value = 0.4 + 0.1 best
fits their regionally referenced time series, but their data span
was too short to remove annual signals. While our back-
ground spectrum can be characterized by 0.5 < o < 1, the
annual harmonics are better fit by larger values 1 < o < 2.
The results of our study suggest that power spectral analyses
not accounting for annual signals would tend to be biased
toward higher values of o. Moreover, conversion of the
power spectrum into time domain errors would be inaccurate
if a significant part of the spectral power were due to
annually repeating signals. It is not conclusive whether
currently published power laws would therefore overesti-
mate velocity errors at longer data spans, but it is a
conjecture deserving attention beyond the scope of this

paper.

3.3. Test of Velocity Bias Theory

[29] Ideally, we could test our theory of velocity bias by
assessing the accuracy of estimated velocities as a function
of data span. Obviously, we have no absolute truth to assess
accuracy; however, we can compare velocity estimates for a
variety of data spans with the solution using the longest data
span. We have therefore developed the “velocity stability
test,” which incrementally decreases the data span from 3.5
years for all site solutions and computes the RMS difference
in velocity at each data span from the velocity at 3.5 years.
Apart from providing an appropriate test of our theory, this
approach has practical utility for assessing how velocity
solutions stabilize in time and converge to acceptable
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values. Taking the test data span as 77 and the reference
3.5-year data span as 75, this experimental RMS is com-
puted as

(22)

021 = (;V > (1) - ujm)]z)

where u,(T) is the estimated velocity for site j and data span
T and N is the number of sites. We call this the “observed
velocity stability.”

[30] Appendix A2 derives equation (A16), a model of the
expected variance in the change of parameter estimates
when increasing the data span from 7 to 75:

26
03y = 0e(T1)* = o(2)* + > [op(Th) + 07(T2)
k=1
—ZOk(Tl)Ok(Tz)COST(k(Tl — Tz)],

(23)

where the appropriate inputs are given by equations (4) and
(13). We call this the ‘“modeled velocity stability.”
Equation (23) accounts for both the formal covariance plus
the variance arising from annually repeating signals. There
are two free parameters in this model: the level of white
noise o,, as input to equation (4) and the amplitude of the
fundamental (annual) frequency a; as input to equation
(14); hence equation (13). In this case, a; should be
interpreted as the RMS amplitude averaged over sites. The
most interesting feature of equation (23) is the theoretical
prediction of temporal undulations in the observed velocity
stability. This is a characteristic consequence of the
presence of annual signals. By comparing the modeled
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Figure 6. Power spectral density distribution, created by
stacking periodograms from all 23 sites. Curves are shown
for spectral indices o = 0.5 (long dashed line), o = 1 (solid
line), and o = 2 (short dashed line). Darker bars are at
harmonic frequencies and can be seen to peak above the
background spectrum until 5 cycles per year. While the
background falls within 0.5 < o < 1, harmonic power is
better fit by larger values 1 < o < 2. If there is leakage of
harmonic power into the background, then the true back-
ground might be closer to white noise.
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Figure 7. Root-mean-square velocity bias for data spans
with respect to 3.5-year data span for the (top) vertical
component and (bottom) horizontal components. Real data
are plotted. Curves represent models for each component.

with the observed velocity stability we can assess whether
the model satisfactorily explains the pattern observed in real
data.

[31] An advantage of this method is that it uses the time
domain characteristics of real data through the observed
velocity stability. A possible criticism is that the modeled
velocity stability does not assume power law noise (for the
nonrepeating components). It should, however, be noted
that the observed velocity stability through equation (22)
clearly shows the predicted undulations independent of any
stochastic assumptions, which implies that any colored
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noise that might be present does not significantly mask
the predicted effect. Another possible limitation is that
equation (23) assumes a continuous time series and might
not be valid for time series with long data gaps. Our
analysis shows that equation (23) does appear to be
reasonably valid for the data set from 23 IGS sites
(Figure 6) that satisfy the previously described time gap
criterion of <8 weeks.

[32] Figure 7 plots the observed RMS stability using up,
north, and east coordinate time series from these sites. The
curves represent the modeled RMS stability, with best
fitting values for the annual sinusoidal amplitude a; of
5+ 1 mm for up and 2 £ I mm for east and north. An
important feature is the evidence for undulations in the
velocity bias, which can be clearly seen with annual
period. The predicted flattening of the curves is evident
near 2.5 years. As expected, the annually repeating signals
are larger for the vertical component (5-mm RMS ampli-
tude) than the horizontal (2-mm RMS amplitude), again
consistent with both our direct estimation and spectral
analyses. This consistency, together with the observed
undulations predicted by the model, lends credence to
the theoretical findings on the importance of integer-
plus-half year data spans. In particular, Figure 7 verifies
that 2.5-year estimates of velocity (our recommended
minimum data span) are reasonably stable in comparison
with 3.5-year estimates.

4. Discussion

[33] We have developed, from first principles, a theory of
errors in velocity for coordinate time series that contain
annually repeating errors. The velocity biases predicted by
the theory are relatively insensitive to the wide variation in
power spectral index of coordinate time series reported in
the literature. The model does explain well the stability of
real velocity estimates versus data span and shows the same
essential undulating features that have hitherto been absent
from models of velocity error. We are now in the position of
being able to answer our stated research questions.

1. What are the temporal characteristics of velocity bias
in the presence of an annually repeating signal when the
velocity estimation assumes no deterministic model or
temporal correlations? The velocity bias undulates in time
with minimum values near integer-plus-half year spans and
peak values near integer years. The undulations die out
quickly after 4.5 annual cycles, after which they may be
considered negligible. Figure 3 shows the velocity bias as a
function of data span for a 1-mm amplitude annual signal
for a range of spectral indices (applied to power at harmonic
frequencies). Equation (16) expresses this bias assuming a
power spectral index o = 1. Our data indicate that power
spectrum of annual harmonics can be adequately described
by a range of spectral values 1 < o <2. Figure 3 shows that
velocity bias is not very sensitive to the assumed spectral
index.

2. Can such temporal characteristics be used to advan-
tage? Yes. To almost eliminate velocity bias, only use data
spans greater than 4.5 years. Otherwise, select data spans of
3.5 years or 2.5 years, where the bias is minimum. The
advantage of this recommendation is that it is extremely
simple for any investigator to implement.
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3. How should we interpret errors of published velocity
solutions (and hence the significance of the research
findings) that have not accounted for annual signals? One
approach is to add in quadrature to the published error the
expected velocity bias based on the theory presented here.
For example, take typical (or extreme) values of annual and
semi annual amplitudes from Table 1, and insert them into
equation (16) or scale Figure 3. Alternatively, estimate the
amplitudes from published time series, keeping in mind
that amplitudes would appear systematically smaller in
residual time series due to secular bias [Black and Scargle,
1982].

4. What is the minimum data span at which one should
accept a velocity estimate (e.g., as input to ITRF) that has
not accounted for annual signals? This clearly depends on
the application. As a practical rule, the minimum
acceptable data span is 2.5 years for velocities estimated.

5. What is the data span beyond which the degradation
in precision arising from estimation of extra annual signal
parameters is smaller than typical systematic bias?
Degradation in precision due to the extra parameters is
negligible for data spans beyond 2.5 years. Annual signals
and their harmonics should not be estimated for shorter
data spans due to correlated parameters, which cause
random instability in velocity estimates.

6. What is the data span beyond which negligible gain is
to be made by estimating annual (and harmonic) signals?
According to our data and models, rapidly decreasing gain
is to be made by estimating annual signals for data spans
beyond 4.5 years.

[34] While we certainly expect these findings to be
useful to many users, there are some additional points to
consider. First, equation (20) is not generally applicable for
estimators that assume a colored noise stochastic model;
however, the estimation of annual signals should still be
effective. Second, annual signals might not be a dominant
effect for a specific data set (and analysis procedure);
however, we recommend that annual signals be initially
assumed unless there is evidence to the contrary. Signal
amplitudes and spectral indices should ideally be assessed
for specific network and analysis procedures. Our ampli-
tudes, however, should be generally applicable to globally
referenced coordinates and may be taken as upper bounds
for regionally referenced coordinates. Third, our velocity
bias model might underestimate errors for time series with
significant data outages (>8 weeks) and for sites where
coordinate offsets require estimation due to equipment
changes. Fourth, other types of error might also bias
velocity. For example, hydrological loading is known to
induce significant interannual signals and can even cause
secular coordinate variation over several years [Van Dam
et al., 2001].

5. Conclusions

[35] For precise geophysical applications such as tecton-
ics, annual and semiannual sinusoidal signals should be
estimated simultaneously with site velocity and initial posi-
tion. Simultaneous estimation becomes rapidly unnecessary
beyond 4.5 years, as we have shown that the velocity bias
eventually becomes negligible. Minimum velocity bias is
theoretically predicted at integer-plus-half years, as con-
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firmed by tests with real data. Below 2.5 years the velocity
bias can become unacceptably large, and simultaneous
estimation does not necessarily improve velocity estimates,
which rapidly become unstable due to correlated parameters.
We recommend that 2.5 years be adopted as a standard
minimum data span for velocity solutions intended for
tectonic interpretation or reference frame production and
that we be skeptical of geophysical interpretations of veloc-
ities derived using shorter data spans.

[36] Finally, we note the difficulty in characterizing the
entire velocity error (not just the bias) in the time
domain given that the power spectrum represents some
combination of deterministic behaviors and various sto-
chastic behaviors. This work is one step toward this goal.
To conclude, we have established that a more complete
time domain description of velocity errors must incorpo-
rate annually repeating signals; we have provided a
means to quantify bias in published velocities and have
recommended criteria for future publication of velocity
results.

Appendix A:
Al. Least Squares in the Data Continuum Limit

[37] It would be possible to formulate this problem by
defining the minimization functional as an integral over
time of the difference between the “‘data function”
describing the data continuum limit and the ‘“model
function,” which is linear in the estimated parameters.
However, we take the point of view that fundamentally
we wish to derive what happens to the results of the
classic discrete least squares algorithm as the data are
sampled at increasingly small intervals. While both
approaches provide the same result, the discrete approach
has the advantage that it more intuitively relates to the
results produced by the actual algorithm used for data
processing.

[38] Let us therefore consider the observation equations:

zZ=Ax+vV

Z(Il) A](I]) Am(ll) X1 Vi

Z(tn) AI (tn) Am (tn) Xm Vn

where the terms are written as explicit functions of the n
data epochs; z is the observed minus computed data; the
matrix A contains partial derivatives of the observation
model with respect to the m parameters x; and matrix v
represents the data noise. The classic least squares normal
equations are

;2’1,41(:,-)2 2 41 (5)4n(1) éAl(t,-)z(ti)
éAl (1) () :zlAm(z,.)z éAm(z,v)z(t,-)
(A2)

where X is the least squares parameter vector. Now let us
assume that data are collected at regular intervals Az, over
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the time period = 0 to = 7. We can multiply both sides by
At without affecting the computation of X:

anAl ()’ At iAl (1) A (1) At
i=1 i=1
Xn:Al(ti).Am(tl)At Xn:Amttl)zAt
i=1 i=1
: (A3)

> Am(t:)z(t:) At

=1
Consider the case where the sampling interval is sufficiently
small such that each summation in (A3) approaches the
definite Riemann integral, which by definition gives

T T T
[ai@Pde - [A1()A,(1)de [ 41(1)=(0)dr
0 0 0
o o =,
[ A1 (t)An(t)dt [ An(t)dt S An(t)z(t)dt
0 0 0
(A4)

Therefore as we decrease the data interval, the least squares
estimate vector converges to

-1

fA. (1)dt fAl (1) A, (1)dt fTAl ()z(¢)dt

T

J A (0)=z(t)dt

o
[ A (t)dt
0 0

[ A1 (2)A (1)dt
0

(AS)

Since (A1) is linear, (AS) can be interpreted it as a residual
equation. For example, in the case that the model is
inadequate, X can be interpreted as systematic error in the
estimated parameters, and z(f) can be interpreted as an
assumed function representing systematic error in the data
minus model. Equation (AS5) is used in this way to derive
systematic bias in velocity estimation arising from sinusoi-
dal signals in the time series of position. For this purpose,
the data interval must be much less than the sinusoidal
period for equation (A5) to be a valid approximation.

[39] The formal covariance matrix for the estimated
parameters (which is not intended to account for systematic
error) can be written

Ci =02 (ATA) !

fAl(l)zdt fAl(I)Am(l)dl )
0 0
=~ o2 At : : (A6)
T T
[ A1) A (2)dt [ An(2)*dt
0 0

where 0,7 is the assumed variance of noise in data sampled
at interval Ar. Note that the covariance matrix is proportional
to the data interval only because the data interval is inversely
proportional to the number of data. The true utility of
equation (A6) lies in the fractional increase in the covariance
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matrix as extra parameters are added to the model (in which
case, the assumed data interval is irrelevant).

A2. Variance in Temporal Change of Estimate
With Time-Dependent Bias

[40] From least squares theory we know the following two
equations (which are analogous to weighted mean compu-
tations) describe how to update an estimate X; and cova-
riance C;, which uses data up to time 7, by adding new,
independent data Xa with covariance C, from time 7 to 75,
to produce a new estimate X, with covariance C,:

C,'% = C'% + Ca'ka
(A7)
Gl=ct+ch.

“Independent data” of course amount to an assumption of
data uncorrelated in time, which is a common assumption in
data processing. We can write the change in estimate

% — %1 = GG, 'k + CCRM % — 14

= (C2C;' — 1) %1 + C2CL'RaA. (A8)

Using the property that X; and XA are independent, the
covariance matrix for the change in estimates is given by

Cooy = (CC; 1) Ci(C'C, — ) + C,CL'CACLC,
=CC'C, —2C, + C + G (G, — CY) Gy

=C -G, (A9)
Hence the variance of the difference in velocity estimates at
times 7 and 75 is

03, = of(T1)" — o (1),

where the formal standard deviations in velocity o, (7) are
given by equation (4).

[41] In the presence of a time-dependent bias in velocity
u(T), the variance in change of estimate includes both the
formal component (A10), which accounts for precision, plus
a systematic component, which is uncorrelated with the
formal component:

(A10)

03 = or (1) = op (1)’ + E{u(T) B}, (ALD)

where E denotes the statistical expectation operator.

[42] In the case of an annually repeating signal, &(T) is
given by equation (15), and the E has the effect of averaging
over all possible phases for each of the signal harmonics, as
was performed in equation (9). The variance due to bias is
therefore

E{a(ry) - a(r2)} —E{

Z ur (Ty)sin(wkTy — @)
3

2
_ Zuk(Tz)Sin(ﬁsz _ ‘-Pk):| }
k
= ZE{[uk(Tl)Sin(ﬂle _ kpk) (AIZ)
k

—uk(Tz)Si‘n(’Ksz — kpk)]z}



BLEWITT AND LAVALLEE: EFFECT OF ANNUAL SIGNALS ON VELOCITY

where

_ 6a, " sin kT
= monre | ™ ==

ur(T) (A13)

In equation (A12) we have assumed that the phases for the
various harmonics are uncorrelated. Equation (A12) can be
expanded as a function of sines and cosines of the phase
angles, which then allows us to apply the expectation
operator:

E{[“k(Tl)Sin(ﬁle — @) — w(Tr)sin(wkT, — kPk)]z}
= E{[cos ¢y [ux (T )sin 7kTy — uy (T2 )sin k5]
—sin ¢y [ug (T))cos ©kTy — uy (T2 )cos ’nsz]]z}
1
=3 [ (T )sin ©kT, — g (Ts)sin wkTy)?

1
+§ [ (Ty )cos TkTy — i (T)cos wkTs)?
1

= Euk(Tl)z + %uk(Tz)z — up (T} )ug (T )cos wk(T) — Ty). (Al14)

Therefore (A11) becomes

% D (1)’ + u(T2)?
k

—2uk(T1)uk(T2)cos ’Kk(Tl — Tz)].

03 =o0r(T1)* — or(T2)” +

(A15)

Comparing equations (13) and (A13), we can express this
alternatively as

03y = 0r(T1)* = oe(T2)* + > [0}(Th) + 03(T2)
k

*ZOk(Tl)O'k(Tz)COSTYk(TH — Tz)], (A16)

where ox(7) is the theoretical RMS velocity bias for Fourier
component k at data span 7.

[43] In conclusion, equation (A16) can be used to com-
pute the expected standard deviation in the difference of
estimate velocity at times 7 and 7, (“modeled velocity
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stability’”) using formal errors from equation (4) and the
theoretical RMS velocity biases given by equation (13).
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