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1 Introduction

Since the advent of side channel attacks, classical cryptanalysis is no longer suffi-
cient to ensure the security of cryptographic algorithms. In practice, the implemen-
tation of algorithms on electronic devices is a potential source of leakage that an
attacker can use to completely break a system [29, 15, 21]. The injection of faults
during the execution of cryptographic algorithms is considered as an intrusive side
channel method because secret information may leak from malicious modifications
of a device’s behavior [13, 11]. In this context, the security of public key cryptosys-
tems [13] and symmetric ciphers in both block [11] and stream modes [23] has
been challenged. Recently, some interesting results have been obtained by attacking
public key cryptosystems. More precisely, several papers demonstrated that the per-
turbation of public elements may induce critical flaws in implementations of public
key cryptosystems [10, 14, 25].

We propose here a survey of the applications of fault attacks against different
RSA implementations, classical or sophisticated. After a presentation of the RSA
cryptosystem and its classical implementation, we review chronologically the at-
tacks and some of the proposed countermeasures. Although first attackers focused
their efforts to exploit perturbations of secret elements or related operations (see
Sect. 3), recent works adressed the security of public elements (see Sect. 4). This
new trend is all the more interesting since public elements are usually handled in
a less secure way than private ones. Furthermore it may lead to powerful attacks
regardless to the kind of induced perturbations.

Alexandre Berzati · Cécile Canovas-Dumas
CEA Leti, Grenoble, France

Louis Goubin
Versailles Saint-Quentin-en-Yvelines University, France

1



2 Alexandre Berzati, Cécile Canovas-Dumas, and Louis Goubin

2 RSA Implementations

The celebrated RSA has been invented in 1977 by Ronald Rivest, Adi Shamir and
Leonard Adleman [36]. This method has been the first one instantiating the principle
of public key cryptography, introduced earlier, as a concept, by Whitfield Diffie and
Martin Hellman [20]. Nowadays, RSA is certainly the most widely used algorithm
to ensure the security of communications or transactions.

The RSA security relies on the Integer Factorization Problem (IFP). The best
known method for solving an instance of this problem is the Number Field Sieve
which complexity is sub-exponential with respect to the size of the RSA field [30].
To the best of our knowledge, the larger RSA modulus ever factored by this method
is a 768-bit one [26]. As a consequence, this method can not be used today to factor
practical sized moduli (i.e. 1024 or 2048 bits).

In practice, the RSA can be declined in both standard and CRT modes. The stan-
dard mode is the straightforward way for implementing RSA. Its principle is recalled
below. The CRT mode of RSA, where CRT stands for Chinese Remainder Theorem,
is usually used to perform efficient signatures in embedded systems. Further details
about CRT-RSA implementations can be found at [35, 31].

2.1 Standard RSA

2.1.1 Key Generation.

Let N, the public modulus, be the product of two large prime numbers p and q.
The length of N, denoted by n, also stands for the RSA length. Let e be the public
exponent, coprime to φ(N) = (p− 1) · (q− 1), where φ(·) denotes Euler’s totient
function. Then the pair Kp = (N,e) is the RSA public key, that is spread over a net-
work. The public key exponent e is linked to the private exponent d by the following
equation:

e ·d ≡ 1 mod φ(N) (1)

This exponent is also called private key Ks, that is kept secret by its owner.

2.1.2 RSA Encryption.

Let m be the plaintext that will be ciphered with the RSA algorithm. Then, the
cipher operation relies on the following modular exponentiation involving the public
exponent e:

C ≡ me mod N (2)

Here C denotes the ciphertext. After sending this cyphertext throughout a network,
the expected receiver of the message may want to recover the original message by
decrypting C. Then, this operation boils down to compute:
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m̃≡Cd mod N (3)

If no error occurs during computation, transmission or decryption of C, then we
expect to get:

m̃≡ m mod N (4)

One can notice that performing a decryption implies the knowledge of the private
key. This ensures that only its owner, and so the expected receiver, is able to recover
m.

2.1.3 RSA Signature Scheme.

As for the decryption, the RSA signature S of a message m consists in a modular
exponentiation to the power d:

S≡ md mod N (5)

To check the validity of the received signature (S,m), the associated public key is
used to ascertain that:

m
?≡ Se mod N (6)

In general, this is not really the plaintext m that is signed but a hash ṁ. This opera-
tion is performed by using a hash function H such that ṁ = H (m). Then, the sent
signature is (S, ṁ) where S ≡ ṁd mod N. Furthermore, the usage of a hash func-
tion is generally combined with a padding scheme (e.g. RSA-OAEP [3] for the RSA
encryption and RSA-PSS [4] for the signature). For the different fault attacks pre-
sented in this paper, we assume that all RSA decryptions or signatures are performed
with some hash and/or deterministic padding function.

2.2 Modular exponentiation methods

Modular exponentiation is one of the core operations to implement asymmetric
cryptography. Indeed for both RSA decryption and RSA signature schemes, one has
to compute a modular exponentiation of the input message as efficiently as possible.
For a naive implementation of this operation, we may write:

md mod N ≡ m ·m · . . . ·m︸ ︷︷ ︸
d times

mod N (7)

The computational complexity of the algorithm above is exponential with respect to
the exponent length, which is not acceptable to implement the modular exponentia-
tion. However, a method as intuitive as the previous one, but much smarter, consists
in expressing the exponent in a binary basis: d = ∑n−1

i=0 2i ·di. Then, we can perform
a modular exponentiation by scanning the bits of the exponent:
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md mod N ≡
n−1

∏
i=0

m2idi mod N (8)

As a consequence, the power is no longer performed by multiplying d times a mes-
sage m by itself but by multiplying, at most log2(d) times, square powers of m.
Hence the cost of the exponentiation methods declined from this principle, also
called binary exponentiations, is linear with respect to the exponent length which
is much more efficient than the naive approach. The next section briefly introduces
common implementations of binary exponentiations

2.2.1 “Right-To-Left“ Exponentiation.

The first method to perform a modular exponentiation is to scan the exponent bits
from least to most significant ones. That is why it is also referred as the “Right-
To-Left“ method. In practice, this method is the most intuitive since it consists in
computing consecutive square powers of the input message and, depending on the
current exponent bit value, multiplying these powers to the accumulation register.
As a consequence, this algorithm exactly transcripts (8). The complete algorithm is
detailed below.

Algorithm 1: “Right-To-Left“ Modular Exponentiation

Input: m,d = ∑n−1
i=0 2i ·di,N

Output: S = md mod N
A← 1;
B← m;
for i = 0 to n−1 do

if di = 1 then
A← A ·B mod N;

end
B← B2 mod N;

end
return A;

2.2.2 “Left-To-Right“ Exponentiation.

It is also possible to scan the exponent bits from most to least significant bits. The
associated method is not surprisingly called “Left-To-Right“ exponentiation. This
other method differs from the dual one by an accumulation register withdrawal and
a different execution flow. Indeed, each iteration begins with the execution of a
square that can be followed, depending on the current exponent bit value, by a mul-
tiplication. This method is also detailed in Algorithm 2.



A Survey of Differential Fault Analysis against Classical RSA Implementations 5

Algorithm 2: “Left-To-Right“ Modular Exponentiation

Input: m,d = ∑n−1
i=0 2i ·di,N

Output: S = md mod N
A← 1;
for i = (n−1) to 0 do

A← A2 mod N if di = 1 then
A← A ·m mod N;

end
end
return A;

2.2.3 Other variants.

Although both previously presented algorithms are quite efficient to compute mod-
ular exponentiations, their implementation may leak information on the exponent.
Indeed, the execution of a multiplication directly depends on the current value of
the exponent bits. This makes smart card implementation of modular exponentia-
tion algorithm potentially vulnerable to side channel attacks, such as DPA. A basic
solution to thwart this flaw is to make the execution independent from the exponent
value. Such a variant has been already proposed by J.-S. Coron at CHES 1999 [19]
and is also known as the Square & Multiply Always algorithm. In this case, one
square and one multiplication are sequentially executed at each iteration, whatever
the value that the current exponent bit may take.

The performance of the exponentiation algorithms can also be improved. For
example, we can derive from the previous algorithms the Sliding-Window Exponen-
tiation used in the OpenSSL library. The principle of this variant is to scan the
exponent by, at most, k-bit windows. Hence, after precomputing some odd powers
of the input message m, this method significantly reduces the number of iterations
for a modular exponentiation, and so the performance.

Finally, some variants allow to improve both security and performance. This is
the case of the Montgomery exponentiation algorithm [32]. Obviously, it exists other
efficient implementations of the modular exponentiation, but we advise an interested
reader to take a look at [27] for more details.

3 Classical Fault Analysis of Standard RSA Implementations

Since the introduction of fault attacks at the end of the nineties, the security against
perturbation of CRT-based implementation of RSA has not been the sole implemen-
tation mode targeted [13]. Indeed, the security of standard RSA implementations
have been also challenged, leading to various attack methodologies. Among these
fault attacks, we have chosen to distinguish to main categories. The first one deals



6 Alexandre Berzati, Cécile Canovas-Dumas, and Louis Goubin

with the perturbation of intermediate computations. The fault attacks that belong in
this category take advantages of the perturbation of intermediate values or of the
execution flow. The second category we have distinguished gather attacks based on
exploiting modifications of RSA public elements. This trend is quite recent but has
ever led to successful applications against various standard RSA implementations.

The next paragraph details the different attacks that we have identified from our
state-of-the-art study.

3.1 Perturbation of intermediate computations

3.1.1 Register faults.

Bellcore researchers not only introduced the concept of fault attacks [5] but they also
showed how this new concept can be applied to many public key cryptosystems,
including standard RSA, and their various implementations. In more details, they
explained in [13] how to exploit fault injections during the execution of a standard
RSA signature to recover the private exponent. The fault model they considered, the
so-called register fault, is a transient or permanent bit-flip induced in the memory
area containing the current value of the exponentiation algorithm. Under this model,
they showed that the perturbation of standard RSA signature, implemented with the
“Right-To-Left“ exponentiation, may leak some secret information. The principle
of the attack is described in the next paragraph

General Methodology.

The fault attack against standard RSA signature proposed by Bellcore researchers
can be split in two parts. The first one is “on-line“ and consists in gathering suffi-
ciently many message/faulty signature pairs (mi, Ŝi) by inducing permanent faults,
one per faulty signature, on the register that contains a intermediate values. Then,
in the second part, the attackers tries to analyze the collected faulty signatures to
recover the whole secret key. Hence, this part of the attack is completely “off-line“.
The principle of the analysis is recalled below. Let Si be the correct signature and let
ε(mi) =±2b be the mathematical representation of a bit-flip with 0 6 b < n. Since
this fault is supposed to be permanent, then corresponding faulty signature can be
expressed as:
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Ŝi ≡

((
t−1

∏
j=0

m
2 jd j
i

)
±2b

)
·

n−1

∏
j=t

m
2 jd j
i (9)

≡ Si±2b ·
n−1

∏
j=t

m
2 jd j
i mod N (10)

or Si ≡ Ŝi±2b ·m
d[t]
i mod N (11)

with d[t] = ∑n−1
j=t 2 jd j. If we use the signature’s verification operations, the previous

equation becomes:

mi ≡ (Ŝi±2b.m
d[t]
i )e mod N (12)

One can notice that this equation is interesting because it only depends on the mes-
sage mi and the corresponding faulty signature Ŝi (i.e. the knowledge of the correct
signature is no longer required). Moreover, the fault injection has isolated a part d[t]
of the private exponent d. This is precisely this part of exponent that the attacker has
to determine with a guess-and-determine approach.

The whole exponent is gradually recovered, from most to least significant bits,
by repeating the previous analysis on different faulty signatures. In each analysis,
w bits of exponent are retrieved. In more details, for each analysis, the attacker has
to simultaneously guess the values of the part of exponent isolated d[t] and the fault
induced ±2b such that (12) is satisfied. According to [13], the whole private ex-
ponent d can be determined by this way, with a probability greater than 1

2 , from
(n/w) log (2n) message-signature pairs. In this case, the attack complexity is about
O((2wn3log2(n))/w3) exponentiations. We can additionally remark that this fault
attack was later generalized to “Left-To-Right“-based exponentiations by J. Blömer
and M. Otto [34].

3.1.2 Faults on the private exponent.

This attack was published by F. Bao et al. in [1] and then in [2]. The principle is
to induce a transient error during the decryption, that produces the same effect as a
bit modification of the private exponent. In practice, such an effect can be obtained
by flipping a bit of the private exponent, or by corrupting the evaluation made just
before the conditional branch in the classical implementations of the modular expo-
nentiation (see Sect. 2.2). The following paragraph only describes the attack for a
bit error on the exponent d.

General methodology.

Let m be a plaintext and C the corresponding ciphertext obtained from a RSA en-
cryption (see Sect. 2). In case of a faulty computation, the deciphered text m̂ is:



8 Alexandre Berzati, Cécile Canovas-Dumas, and Louis Goubin

m̂≡Cd̂ mod N

The fault is exploited by dividing the erroneous result by a correct one: m̂ ·m−1. The
induced error can be modeled as a bit-flip of the t-th bit of d. Therefore, we have:

m̂≡C∑i=n−1
i=0,i̸=t 2i·di+2t d̄t mod N

That implies, either m̂ ·m−1 ≡C−2t
mod N⇒ dt = 1,

or m̂ ·m−1 ≡ C2t
mod N ⇒ dt = 0. This method can be repeated until we obtain

enough information on the private exponent. Note that this attack is also suitable in
case of a multiple error model [1]. Moreover the principle can be adapted to attack
cryptosystems based on discrete logarithm (DSA, El-Gamal, . . . ). Finally, this attack
strategy has been later extended and generalized by M. Joye et al. [24], who describe
an improved attack relying on the mere knowledge of the faulty deciphered text.

3.1.3 Exploiting safe-errors.

Classical fault attacks often exploit the difference between a correct and a faulty
output to deduce some secret information. However, M. Joye and S.-M. Yen noticed
that some secret information may leak even if a fault causes no effect on the final
result of the computation [38]. This is why this particular kind of fault attacks is
also called “safe-error“ attack. The attacker must be able to perform some pertur-
bation of which he knows the probably effect with a good repeatability. Among
these attacks, two categories are usually distinguished: C-safe-error attacks that
target dummy operations [39] and M-safe-error attacks that target registers allo-
cations [38]. In order to illustrate the principle of safe-error attacks in the context
of RSA, we have chosen to detail the C-safe-error attacks against the Square &
Multiply Always exponentiation [19].

General methodology.

The purpose of the Square & Multiply Always exponentiation is to make its execu-
tion independent from the exponent value. Hence, the conditional branch is with-
drawn (see Sect. 2.2) and an extra dummy multiplication is added such that, re-
gardingless of the value of the exponent, a square and a multiplication are always
executed at each iteration. The principle of the C-safe-error attacks proposed by
S.-M. Yen et al. [39] is to exploit faults induced while dummy multiplications are
performed. To achieve this, the attacker has to inject a fault during a RSA signature
and, if the signature remains “error-free“, it means that a dummy multiplication has
been infected. Therefore, the attacker can deduce that the exponent bit value handled
while the perturbation was provoked is zero. Otherwise, the result would be incor-
rect and the exponent bit value equals to one. The attacker has to repeat the attack
at each iteration to gradually recover the whole private exponent. One can notice
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that this attack does not apply upon classical exponentiation algorithm but upon a
variant expected to defeat Simple Power Analysis. As a consequence, checking only
the output may not be enough to protect and implementation of a cryptographic al-
gorithm against faults. Furthermore, designers of secure solution may be careful not
to add new vulnerability while trying to defeat other ones.

4 Exploiting Perturbations of RSA public modulus

Although the issue of exploiting malicious modifications of public elements was
addressed in the context of Elliptic Curve based cryptosystems [16], it took a half
decade before seeing the first application to RSA. Indeed, the first fault attack
against public key elements is due to J.-P. Seifert with a method for corrupting RSA
signature’s verification [37, 33]. This fault attack aims to corrupt signature verifica-
tion mechanism by modifying the value of the public modulus N. Nevertheless, no
information about the private exponent d is revealed with this fault attack.

Whether it is necessary or not to protect RSA public elements was an open ques-
tion until Brier et al. attack proposal for recovering the whole private key. This
attack, inspired from Seifert’s one [37, 33], was published in [14] and reviewed
in [17]. It makes it possible to extract the private key using a modulus perturbation.
As in Seifert’s attack, the fault on the modulus is induced before executing the ex-
ponentiation. Hence, if the faulty modulus has a small divisor r, the attacker will be
able to solve an instance of the Discrete Logarithm Problem from the corresponding
faulty signature and obtain d mod r.

A new fault attack against “Right-To-Left“-based implementations of the core
RSA exponentiation [8], completed by the attack of the dual implementation [7] has
been presented lately. Contrary to previous attacks, authors assumed that the fault
is injected during the execution of an RSA signature. Then, from the knowledge of
a correct and a corresponding faulty signature, the attacker guesses-and-determines
simultaneously the faulty modulus and the part of the private exponent that has been
isolated by the fault injection. To recover the whole exponent, the attacker has to re-
peat the analysis for sufficiently many signatures perturbated at different moments
of the execution.

In the next paragraphs, we will detail the different fault attacks published against
RSA public elements.

4.1 Modifying N before a signature to solve small DLP.

Although J.-P. Seifert – with its attack proposal to corrupt a RSA signature verifi-
cation mechanism [37, 33] – first addressed the issue of exploiting RSA signatures
performed under a faulty public modulus N, the first analysis leading to a complete
secret key recovery is due to E. Brier et al. [6]. The main idea of their attack is to an-
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alyze faulty signatures performed under a faulty modulus N to recover small parts of
the private exponent d (i.e. 20 to 30 bits from each faulty signatures). All the parts of
exponent extracted from different faulty RSA signatures are finally combined with
the Chinese Remainder Theorem to build the full private exponent.

General Methodology.

This fault attack can be split into two distinct phases. The first one is “on-line“ and
consists in gathering K pairs message/faulty signatures (mi,Si)16i6K computed with
faulty moduli N̂i ̸= N such that:

Si = ṁi
d mod N̂i (13)

The authors assumed that the values of the different faulty (N̂i)16i6K are not known
by the attacker. However, they have also supposed that theses values are uniformly
distributed over the n-bit long integers [14, 17]. From this set of faulty signatures,
the attacker performs an “off-line“ phase which consists in recovering the private
exponent by parts. The proposed analysis is declined in different variants depending
the choice of the attacker to generate, or not, a table of possible values for faulty
moduli. But, generating such a table, also referred as the dictionary of moduli [14],
requires to choose a fault model. Finally, one can notice that the number of signa-
tures to gather (i.e. the parameter K) depends on the method chosen to perform the
analysis. Both methods are detailed below.

Analysis without dictionary.

This first method is used when the attacker is not able to identify a fault model from
the set of gathered faulty signatures or, if the identified model induce a dictionary
too large to be handled (i.e. more than 232 entries). In this case, it is not possible
to retrieve faulty moduli used to perform the faulty signatures. To overcome this
difficulty, the authors give a mean to find some factors pa of N̂i thanks to the equation
(14) that it satisfied under some conditions 1 with probability 1 if pa | N̂i and 1

r
otherwise (where r is a small prime that divides the multiplicative order of ṁi).

Si ≡ ṁi
d mod φ(pa) mod pa (14)

Then, for such a pa, if φ(pa) is divisible by a small enough prime rk (i.e. 20 to
30-bit long), the attacker can take advantage of the bias (see [14, Proposition 1]
for details) with a counting method that enables to determine parts of the private
exponent dk = d mod rk by solving small discrete logarithms on the faulty signa-
tures gathered. Hence, when R = ∏k rk is bigger than N (and obviously bigger than
φ(N)), it is possible to use the Chinese Remainder Theorem to build the whole pri-

1 p is a prime number such that p - ṁi and p - Si
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vate exponent d from the recovered parts.
One can notice that the advantage of this method is that it may lead to a full

key recovery regardingless of the faults injected on the different moduli. Accord-
ing to [14, 17], the implementation of this methodology enables to recover 512-bit
private exponents (1024-bit in case of small public exponent e2) by gathering about
25000 faulty signatures. On the other hand, 60000 faulty signatures are enough to
recover 1024-bit secret exponents (2048-bit in case of small public exponent e).

Analysis with a dictionary.

The attack performance can be improved if the attacker is able to identify and vali-
date a fault model from the faulty signatures collected during the “on-line“ phase.
From this fault model and the knowledge of N, the attacker can establish a list of
possible values for the faulty moduli. This list is also called dictionary of moduli.
Once the dictionary is generated, the attacker tries to guess the pairs (mi, Ŝi) that
result from a computation with one of the dictionary entry. Each successful guess,
or “hit“, brings a certain amount of information on the private exponent d. In terms
of performance, this approach is very interesting since, according to [14, 17], 28
“hits“ and only 1100 faulty signatures are enough for recovering a 1024-bit RSA
private exponent. Moreover, by finding these “hits“ with a statistical approach, it is
possible to extract the private exponent with a number of faults equal to the num-
ber of “hits“ (which is proved to be optimal). In this case 28 faulty signatures may
suffice to recover a 1024-bit RSA private exponent.

Although fault attacks has been considered as a powerful way to attack implementa-
tions of cryptographic algorithms, the presented attacks highlighted that even non-
critical elements, such as public keys, have to be protected against perturbations.
Whereas public elements are not supposed to reveal secret information, their pertur-
bation may be a source of leakage leading to the corruption of a signature verifica-
tion mechanism [37, 33] or worse, to a full private key recovery [14, 17]. However,
the use of an exponent randomization technique may be an effective way for de-
feating such attacks. Furthermore, these attacks only apply for perturbations that
occur before performing the core exponentiation of the RSA signature. The attack
presented in the next section proved that this claim is no longer true since the per-
turbation of public elements during the signature can also be exploited.

2 When e is small, the authors take advantage of the RSA equation e ·d ≡ 1 mod φN to determine
the most significant part of d. Indeed, knowing that φN =N+1− p−q≈N for its most significant
part, then d ≈ 1+k·(N+1)

e with k < e. Hence, if e is small (e.g. e = 216+1), the most significant part
of d can be directly deduced from the previous relation completed by an exhaustive search on k.
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4.2 Exploiting faults on N during a RSA signature.

In J.P Seifert and E. Brier et al.’s proposals [37, 14], authors exploited perturbations
of the public modulus provoked before the core exponentiation so that the whole
signature is performed with a faulty modulus N̂. The attack presented by A. Berzati
et al. [8] extended the fault model by enabling an attacker to exploit faults injected
of a “Right-To-Left“ based exponentiation. The modification of N was supposed to
be a transient random byte fault modification. It means that only one byte of N is
changed to a random value. Moreover, they also assumed that the value of the faulty
modulus N̂ is not known by the attacker. However, the time location of the fault
is a parameter known by the attacker and used to perform the cryptanalysis. This
fault model has been chosen for its simplicity and practicability in smart card con-
text [22, 12]. Furthermore, it can be easily adapted to 16-bit or 32-bit architectures.
This attack was later generalized to “Left-To-Right“ based implementations includ-
ing Montgomery or Sliding-Window exponentiations. Finally, the authors proved at
CHES 2010 that the exponent randomization method – also referred as exponent
blinding – suggested by P. Kocher [28] may not be efficient for protecting RSA
implementations against faults on public key elements.

General Methodology.

In order to detail the general methodology, we assume that the implementation of
the modular exponentiation is “Right-To-Left“-based (see Sect. 2.2.1) and that an
attacker is able to transiently modified one byte of the public modulus N at the t-
step of the exponentiation. If we denote by At and Bt the internal register values,
then for a fault occurring while Bt is computed, we have:

Ŝt ≡ At · B̂dt
t · . . . · B̂

2(n−1)−t ·dn−1
t mod N̂ (15)

≡ At · B̂t

d[t]
2t mod N̂ (16)

where d[t] = ∑n−1
i=t 2i ·di Hence, the fault injection splits the computation into a cor-

rect and a faulty part. The main consequence is that a part of the private exponent,
namely d[t] is isolated by the fault injection. In practice this part of exponent is com-
posed of a known (already determined) part and part to guess. So, if the part to
guess is small enough, it is possible to guess-and-determine it from a faulty/correct
signature pair (Ŝt ,St). Therefore, since the faulty modulus is also unknown by the
attacker, the attacker has to choose a candidate value N̂′ (built according to the fault
model) and another candidate value for the part of d[t] to guess. Then he computes

from the correct signature A′t ≡ St · ṁ
−d′

[t] mod N and:

S′(d′
[t],N̂

′) ≡ A′t ·
(

ṁ2t−1
mod N

)2·
d′
[t]
2t

mod N̂′ (17)
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Then, if this re-built faulty signature satisfies (18) then the pair of candidate values
(N̂′,d′[t]) is the expected one with high probability. Otherwise, the attacker has to
choose another candidate pair and perform this test again.

S′(d′
[t],N̂

′) ≡ Ŝt mod N̂′ (18)

The whole exponent is gradually recovered by cascading the previous analysis with
signatures faulted at different moments of the execution and using the knowledge
of already found parts. The performance of this fault attack mainly depends on the
number of exponent bits w, that the attacker can extract from correct/signature pair.
This parameter is a trade-off between fault number and performance and so, has to
be carefully chosen. Authors estimated that for w = 4 (which ensure a reasonable
execution time), the number of faulty signatures to gather for recovering a 1024-bit
private exponent is about 250 [8]. Finally, one can notice that a similar analysis can
be performed when the first operation infected by the fault is a multiplication (i.e.
the computation of At is infected first). The details of this variant are provided in [8].

Application to “Left-To-Right“ based exponentiations.

After exploiting public key perturbation during execution of “Right-To-Left“ im-
plementations of RSA signatures, A. Berzati et al. later generalized their attack
to “Left-To-Right“ based exponentiations. Although both dual algorithms are very
similar, the generalization of the previous fault attack was not so easy. To illus-
trate the difficulties induced by this generalization they have considered a classical
“Left-To-Right“ exponentiation (see Sect.2.2.2) and an attacker able to perturbate
the modulus N during its execution as in the previous fault model but, t steps before
the end of the execution. Denoting by An−t the internal register before the perturba-
tion of N, the faulty signature Ŝt can be expressed as below:

Ŝt = An−t
2t · ṁd[t] mod N̂ (19)

and, this time d[t] = ∑t−1
i=0 2i · di denotes the t-bit least significant part of d. By ob-

serving (19), one can notice that, contrary to the “Right-To-Left“ case, t cascaded
squares are induced by the fault injection. Hence, extending the previous analy-
sis supposes that the attacker is able to compute modular square roots (which is a
difficult problem in RSA rings). Fortunately, since these additional squares are com-
puted modulo N̂, it is possible to efficiently compute square roots when N̂ is prime
(or B-smooth) using the probabilistic Tonelli & Shanks algorithm [18]. To validate
the consistency of considering only prime faulty moduli, the authors provided a
complete theoretical analysis based on number theory. Hence they estimated that,
according to the fault model and for a 1024-bit RSA, 1 faulty modulus over 305 will
be prime [7]. Moreover, they observed that, although two square roots may be com-
puted from a given quadratic residue, the number of t-th square root is not 2t but is
bounded by the bigger power of two dividing N̂−1. Since this power is usually quite
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small (i.e. smaller than 5 in their experiments), they concluded that, in practice, the
computation of square roots does not prevent an attacker from using a guess-and-
determine approach declined from “Right-To-Left“ analysis and recovering parts of
d when “Left-To-Right“-based exponentiations are targeted.

In the previous paragraph, we have detailed a proposal for attacking both dual im-
plementations of the modular exponentiation [8, 7]. In both cases, the attacker takes
advantage of the fault that occurs during the execution of an RSA signature. How-
ever, the previous results show that “Right-To-Left“-based exponentiations seem to
be easier to attack than “Left-To-Right“ ones. Moreover, this attack methodology
has been later reused to successfully defeat the randomized exponent countermea-
sure [9]. Although this countermeasure seems to be efficient against perturbations
of public elements that occur before the computation of signatures [14], A. Berzati
et al. showed at CHES 2010 that signatures partially infected by a faulty public
modulus are still exploitable when the private exponent is blinded [9]. However, the
authors suggest to use the Probabilistic Signature Scheme with RSA (RSA-PSS) [4]
for defeating their attacks. Eventually, this work completes the state-of-the-art and
highlights the need for protecting RSA public elements against perturbations, even
during the computation of signatures.

5 Conclusion

The study of the fault injection in RSA implementations shows that a large panel
of different attacks exist. Of course the popularity of RSA is widely accountable,
but the variety of the proposed implementations, even secured ones, leads to dif-
ferent fault exploitations. If first instance of fault attacks has led to very powerful
applications, especially for CRT-RSA where one fault may suffice, standard RSA
implementations seems to be more difficult to attack. Indeed, for such implementa-
tions, the goal of the attacker is not to factor the modulus but gradually recovering
the private exponent by bit windows or by residues. The vulnerability of this kind
of implementations is the modular exponentiation that scans the private exponent
bit by bit. In the both cases, the conditional checks must be avoided or secured and
the public elements have to be protected as the others values. One can conclude that
implementations that parcel the secret elements for the computation, are by con-
struction vulnerable to fault attacks. The countermeasures as masking techniques
lead to confuse the isolated parts, but they may be not enough efficient, as proven
by the number of attacks that nevertheless exploit the residual vulnerabilities.
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